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An affine vertex operator construction at an arbitrary level is presented which is
based on a completely compactified chiral bosonic string whose momentum lattice
is taken to be the~Minkowskian! affine weight lattice. This construction is mani-
festly physical in the sense of string theory, i.e., the vertex operators are functions
of Del Giudice–Di Vecchia–Fubini~DFF! ‘‘oscillators’’ and the Lorentz genera-
tors, both of which commute with the Virasoro constraints. We therefore obtain
explicit representations of affine highest weight modules in terms of physical
~DDF! string states. This opens new perspectives on the representation theory of
affine Kac–Moody algebras, especially in view of the simultaneous treatment of
infinitely many affine highest weight representations of arbitrary level within a
single state space as required for the study of hyperbolic Kac–Moody algebras. A
novel interpretation of the affine Weyl group as the ‘‘dimensional null reduction’’
of the corresponding hyperbolic Weyl group is given, which follows upon re-
expression of the affine Weyl translations as Lorentz boosts. ©1997 American
Institute of Physics.@S0022-2488~97!03109-5#

I. INTRODUCTION

In this article we propose a generalization of the Frenkel–Kac–Segal~FKS! vertex operator
realization of nontwisted affine Lie algebras at level one1,2 to an arbitrary level. This construction
was originally based on the spatial compactification of a bosonic string whose momentum
is taken to be the~Euclidean! root lattice of a finite-dimensional simple Lie algebra ofADE type.
The Laurent coefficients~modes! of the tachyon vertex operators together with the string osci
tors then constitute a basis of the affine algebra. This basis is not physical in the sense of
theory since, except for the zero mode, these operators do not commute with the Virasor
straints. However, there is also a ‘‘covariant’’ version of the FKS construction,3,4 where the
momentum lattice of the string is enlarged by a two-dimensional Minkowski lattice; then the
mode operators are indeed physical in the sense of string theory and already by themselve
a basis of the affine algebra. Apparently it has not been generally appreciated so far that
from being manifestly physical, this construction is applicable to affine Lie algebras at arbi
level and thus more general than the FKS construction. The characteristic feature of our mo
that the momentum lattice of the string is taken to be the~Minkowskian! affine weight lattice. This
model was recently exploited in Ref. 5 to construct an explicit representation of the affine
awara generators in terms of~transversal! Del Giudice–Di Vecchia–Fubini~DDF! operators at
arbitrary level.

A main new result of this article is a string vertex operator realization of the affine Cart
Weyl basis~in particular the step operators! at an arbitrary level in terms of physical~DDF!
operators rather than ordinary string oscillators as in Refs. 3 and 4. Consequently, we can e
the action of these operators on any given physical state directly in terms of the DDF basis
construction leads us to consider a new type of~level-dependent! physical fieldX m(z), similar to
the old Fubini–Veneziano field,Xm(z), but where the ordinary string oscillators are replaced
level-l transversal DDF oscillators. Apart from the center of mass coordinate, the fieldsX m were
0022-2488/97/38(9)/4435/16/$10.00
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already introduced in Ref. 5. Whereas the correct definition of the center of mass mode ofX m did
not matter in Ref. 5, it is absolutely essential here; somewhat surprisingly, this definition turn
to involve the Lorentz generatorsMmn , which are physical operators, rather than the operatorsqm,
which are not physical unlike the center of mass momentapm. The construction also requires
corresponding new type of ‘‘tachyon vertex operator’’ withXm replaced byX m; more general
operators of this type presumably will be needed at a later stage.

The proper definition of the center of mass mode, and the corresponding replacemen
translation generator by a Lorentz transformation leads us to our second main result, namely
interpretation of the affine Weyl group as a ‘‘dimensional null reduction’’ of the hyperbolic W
group. More specifically, this result hinges on re-expressing the so-called~affine! Weyl transla-
tions as Lorentz boosts. Consequently, these elements of the affine Weyl group should re
called ‘‘Weyl boosts.’’ In this way it becomes obvious that the embeddings of the finite, affine
hyperbolic Weyl groups of the finite, affine and hyperbolic Kac–Moody algebrasḡ,g, ĝ, re-
spectively~with the finite algebraḡ of rankd22!, are just the discrete analogs of the correspo
ing sequence of embeddings of the continuous groups SO(d22),ISO(d22),SO(d21,1) into
one another@see Eq.~4.16!#. Here ISO(d22) is defined to be the subgroup of SO(d21,1) leaving
invariant a given lightlike vector, which in our case is just the affine null rootd. We find it
remarkable that this new description of the affine Weyl group is really forced upon us by the
approach, and this suggests that it is the truly natural interpretation of the known result th
affine Weyl group is a semidirect product of the finite Weyl group and the affine Weyl tra
tions. While the affine Weyl transformations leave the level of a given representation fixed
can in principle also consider level-changing boosts. As we expect such transformations to p
important new insights into the structure of hyperbolic Kac–Moody algebras and their
groups we briefly discuss these generalizations in the last section.

We believe that the results presented in this article open new and promising perspectiv
the theory of irreducible representations of affine Lie algebras, especially with regard t
problem of understanding hyperbolic Kac–Moody algebras~actually our main goal!, where one
must simultaneously deal with infinitely many inequivalent representations of arbitrary leve
shown in the present article, this aim can be achieved by embedding all the affine represe
spaces into a single Fock space of physical states. Among the fascinating open proble
further study let us especially mention the idea of extending the present construction to ‘‘
changing vertex operators’’~actually, this will be a generic feature when we go over to
hyperbolic extension of the affine Lie algebra!, possibly also of more general-type than t
tachyon-type vertex operators utilized here. Whereas the affine generators themselves invol
transversal DDF operators and thus contribute only transversal excitations to states within a
irreducible affine representation, the longitudinal DDF operators by construction map
vacuum vectors into each other and will accordingly act as representation-changing~and, in
general, even level-changing! operators. The latter have so far played no role in the represent
theory of affine algebras, and are unnecessary as long as one deals only with one represen
a time. However, it is clear that a proper understanding of the longitudinal DDF operators i
of the keys to unraveling the mysteries of indefinite and hyperbolic Kac–Moody algebras.

II. AFFINE WEIGHTS AND DDF OPERATORS

We consider a nontwisted affine Lie algebrag5n2 % h% n1 ~for general references on thi
subject see, e.g., Refs. 6 and 7! with underlying simple finite-dimensional Lie algebraḡ of type
ADE and with rankd22 (d.2). The affine~respectively, finite! root lattice is denoted byQ
~respectively,Q̄!. The space of dominant integral affine weights is given by

P1 :5$LPh* uL–r IPZ1,0<I<d22%5 (
I 50

d22

Z1LI1Cd,
J. Math. Phys., Vol. 38, No. 9, September 1997
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where d is the affine null root,r I are the affine simple roots, andLI (0<I<d22) are the
fundamental affine weights defined byLI–r J5d IJ and LI–L050 for 0<I , J<d22. For any
dominant weightL the levell P Z is defined by~in comparison with Ref. 5 we have switche
signs so as to be in unison with the standard conventions.6,7!

l :5L–d. ~2.1!

By L(L) we denote the corresponding integrable irreducible highest weight module overg. It is
clear thatL(L)>L(L1zd) for all zPC. By putting

L8:5L1
1

l
S 12

1

2
L2Dd

for any LPP1 of nonzero level we thus obtain a ‘‘tachyonic’’~i.e., L8252! dominant integral
affine weight which gives rise to a highest weight moduleL(L8) isomorphic toL(L). Without
loss of generality we shall assume from now on thatL is some tachyonic dominant weight o
positive levell .

Now let l be any weight inV~L!, the set of weights forL(L). It ensues that~i! l2P2Z and
~ii ! l2<L252. To see this we note thatl5L2r for somerPQ1 . Then ~i! follows from l2

52(12L–r )1r2 by the fact thatL is an integral weight and thatQ is an even lattice by
assumption. To prove~ii !, we use thatl is Weyl equivalent to a uniquel8PP1ùV(L) with
decompositionl85L2r 8 for some r 8PQ1 ; hencel25l825L22L–r 82l8–r 8<L252 be-
cause bothL andl8 are dominant@cf. Ref. 6 ~Proposition 11.4.a!#.

These observations are crucial for the DDF construction to be described below: for any
l weight lPV(L) we define its DDF decomposition8 by

l5a2nkl , ~2.2!

where

kl :5
1

l
d, ~2.3!

and the vectora is uniquely determined by demandinga252. Thusn512 1
2l

2, and by the above
result,n is always a non-negative integer as required by the DDF construction. We will refera
as the ‘‘tachyonic level-l vector’’ and to the corresponding stateua& as the ‘‘tachyonic level-l
state’’ associated tol. Note that, forl .1, the tachyonic vectora occurring in Eq.~2.2! in general
is not a weight forL(L) because of the fractional coefficient in front ofd. Rather it will be used
as an auxiliary vector in the construction below.

A central feature of our approach is the realization of the affine representation spaceL(L) as
a ~tiny! subspace of a much bigger spaceP of physical string states, itself a subspace of a Fo
spaceF which is the direct sum of irreducible Heisenberg modules created by the usual
oscillators from the ground statesul&[exp(il–q)u0& for arbitrary affine weightsl. More pre-
cisely,

F :5span$a2m1

m1 •••a
2mM

mM ul&ulPh* ,mm.0%, ~2.4!

where the string oscillatorsam
m (mPZ,0<m<d21) and the center of mass operatorsqm, pm obey

the standard commutation relations

@am
m ,an

n#5mhmndm1n,0 , @qm,pn#5 ihmn, a0
m[pm

with pmul&5lmul&. To isolate the physical states, we introduce the Virasoro operators
J. Math. Phys., Vol. 38, No. 9, September 1997
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Lm :5
1

2 (
nPZ

:an•am2n:, ~2.5!

which satisfy a Virasoro algebra with central chargec5d @the normal-ordering:•••: with respect
to the string oscillatorsam

m in Eq. ~2.5! is defined in the usual manner#. The space of physica
string statesP ,F is then defined as

P :5$cPF uL0c5c,Lnc50;n.0%. ~2.6!

As already indicated, we shall be interested in certain subspaces ofP ; more specifically, the affine
representation spaceL(L) associated with the highest weightL will be embedded into the spac

P ~L!5 %
lPV~L!

P ~l!,P , ~2.7!

where

P ~l!:5$cPF uL0c5c, Lnc50;n.0, pmc5lmc, 0<m<d21% ~2.8!

denotes the space of physical string states with momentuml.
An explicit realization of the physical states is afforded by the so-called DDF operators.9,10 To

write them down we need the DDF decomposition~2.2! since these operators will always act
some tachyonic stateua& associated with a given weightl in the sense explained above. Furth
more, we need a set of polarization vectorsj i[j i(a)[j i(l) (1< i<d22) satisfyingj i

–j j

5d i j and j i
–d5j i

–a50, which constitute a basis for the complex vector spaceh̄* dual to the
Cartan subalgebrah̄ of ḡ. The DDF operators are defined by9,10 @to make the notation less cum
bersome, and contrary to the notational conventions of Ref. 5, we here suppress the labell on the
DDF operators in Eqs.~2.9! and ~2.10! because this dependence is already implied by t
dependence ona#

Am
i ~a!:5 R dz

2p i
j i~a!–P~z!exp@ imkl –X~z!#, ~2.9!

Am
2~a!:5 R dz

2p i
:F2a–P~z!1

m

2

d

dz
ln kl –P~z!Gexp@ imkl –X~z!#:

2
1

2 (
nPZ

3
3An

i ~a!Am2n
i ~a!3

312dm0kl –p, ~2.10!

Am
1~a!:5 R dz

2p i
kl –P~z!exp@ imkl –X~z!#5dm0kl –p, ~2.11!

for mPZ, 1< i<d22. Here we have used the well-known Fubini–Veneziano coordinate
momentum fields, respectively,

Xm~z!:5qm2 ipm ln z1 i (
mÞ0

1

m
am

mz2m, ~2.12!

Pm~z!:5 i
d

dz
Xm~z!5 (

mPZ
am

mz2m21, ~2.13!

and employed the standard normal-ordering3
3•••3

3 for the transversal DDF operators
J. Math. Phys., Vol. 38, No. 9, September 1997
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3
3Am

i An3
j 3 :5H Am

i An
j

An
j Am

i
for m<n
for m.n. ~2.14!

Let us recall from Ref. 5 that the shift of any polarization vectorj i(a)[j i(l) along thed
direction leaves the associated DDF operatorAm

i (a) unchanged formÞ0, because the residue o
a total derivative always vanishes. On the other hand, the differencej i(L)2j i(l) for any l
PV(L) is, without loss of generality, always proportional tod. Thus, formÞ0, we are effectively
dealing with a single set of DDF operatorsAm

i (L) for the whole moduleL(L); the zero mode
operators do differ for differenta, however. For definiteness, we choose the polarization vecto
be j i(L) throughout.

The above operators obey the commutation relations

@Am
i ,An

j #5md i j dm1n,0kl –p, ~2.15!

@Am
2 ,An

i #50, ~2.16!

@Am
2 ,An

2#5~m2n!Am1n
2 1

262d

12
m~m221!dm1n,0kl –p. ~2.17!

They arephysical, i.e.,

@Lm ,An
i #5@Lm ,An

6#50. ;m,nPZ,1< i<d22,

and therefore map physical into physical states. Moreover, they constitute a spectrum-gen
algebra for the string. In particular,

P ~l!5spanH A
2m1

i 1 •••A
2mM

i M A2n1

2 •••A2nN

2 ua&U( mm1( nn512
1

2
l2J , ~2.18!

for a DDF decompositionl5a2nkl of l and for i m51,...,d22, mm.0, n1>•••>nN>2. Note
that A21

2 ua&}L21ua2kl &, i.e., A21
2 generates null physical states which must be discarded.

III. AFFINE VERTEX OPERATORS AT ARBITRARY LEVEL

We introduce a linear mappL : g→End P (L) as follows:

K°d–p,

d°L0–p,
~3.1!

Hm
i ° R dz

2p i
j i~L!–P~z!exp@ imd–X~z!#,

Em
r ° R dz

2p i
:exp@ i ~r1md!–X~z!#:cr ,

with rPD̄ and thusr1mdPD. cr denotes a cocycle factor satisfyingcre
is–q5e(r ,s)eis–qcr for

some bimultiplicative two-cocyclee normalized s.t.e(0,0)5e(r,2r )51. Indeed, it is straightfor-
ward to check~see Refs. 3 and 4! that the above operators are physical, i.e.,

@Lm ,pL~K !#5@Lm ,pL~d!#5@Lm ,pL~Hn
i !#5@Lm ,pL~En

r !#50

for all m,nPZ, rPD̄, 1< i<d22. More precisely, for anylPV(L) one has
J. Math. Phys., Vol. 38, No. 9, September 1997
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pL~K !:P ~l!→P ~l!,

pL~d!:P ~l!→P ~l!,
~3.2!

pL~Hm
i !:P ~l!→P ~l1md!,

pL~Em
r !:P ~l!→P ~l1r1md!.

Furthermore, the following relations hold:

@pL~Hm
i !,pL~Hn

j !#5l md i j dm1n,0 , ~3.3!

@pL~Hm
i !,pL~En

r !#5~j i
–r !pL~Em1n

r !, ~3.4!

@pL~Em
r !,pL~En

s!#5H 0 if r–s>0

e~r ,s!pL~Em1n
r1s ! if r–s521,

pL~Hm1n
r !1l mdm1n,0 if r–s522

~3.5!

@pL~K !,pL~x!#50 ;xPg, ~3.6!

@pL~d!,pL~Hm
i !#5mpL~Hm

i !, ~3.7!

@pL~d!,pL~Em
r !#5mpL~Em

r !. ~3.8!

HencepL defines a level-l vertex operator realization ofg on P (L). By identifying the vacuum
vectorvL in L(L) with the tachyonic ground stateuL& in P (L), we conclude that

L~L!�P ~L!. ~3.9!

To see this, we first write down the realization of the Chevalley–Serre generators, viz.

ei :5pL~E0
r i !, f i :52pL~E0

2r i !, hi :5pL~r i–H0!5r i–p, for 1< i<d22,

e0 :5pL~E1
2u!, f 0 :52pL~E21

u !, h0 :5pL~K2u–H0!5r0–p,

whereu denotes the highest root inD̄. Ten we have to verify@see, e.g., Ref. 6~Corollary 10.4!#
both the vacuum vector conditions

eI uL&50 for 0<I<d22, ~3.10!

and the null vector conditions

f I
11r I–LuL&50 for 0<I<d22. ~3.11!

From Eq.~3.2! we infer that

eI :P ~l!→P ~l1r I !, f I :P ~l!→P ~l2r I ! for 0<I<d22.

HenceeI uL& has at least eigenvalue 2 forL0 becauseL25r I
252 andL is dominant, so that (L

1r )2>4; but this contradicts the fact thateI uL& is a physical state@cf. Eq. ~2.8!#, henceeI uL&
must be zero. The null vectorsf I

11r I–LuL& vanish by the same argument since1
2@L2(11r I
J. Math. Phys., Vol. 38, No. 9, September 1997
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•L)r I #
2521L–r I . In other words, the null vectors are really zero in our approach. The s

P (l) must not be confused with the weight spaceL(L)l , the space of states with weightl in the
representation; rather, we have the~in general proper! inclusion

L~L!l�P ~l!. ~3.12!

If we make use of the observation that in Eq.~3.1! only transversal linear combinations of th
string oscillators and consequently transversal DDF operators can occur, we conclude tha

multL~l!5dim L~L!l<dim P transv.
~l! 5pd22~12 1

2l
2!. ~3.13!

This is a universal estimate for the weight multiplicities of any irreducible affine highest we
module which seems to be new. Forl 51 this bound is known to be saturated;1 at a higher level,
however, the formula may constitute only a crude upper bound. In general, there are ‘‘m
states,’’ namely the physical states which lie inP (l) but not inL(L)l . Note, however, that thes
have nothing to do with the above null vectors.

We also note that

pL~Hm
i !5Al m

i ~L!, ~3.14!

which shows that the transversal DDF operatorsAl m
i (L) occur not only as part of the spectru

generating algebra for the physical string states but also as homogeneous Heisenberg su
of the affine algebra. One might therefore ask whether it is possible to rewrite the step ope
pL(Em

r ) also in a manifestly physical form in terms of these DDF operators. Indeed, th
possible if in addition one uses the Lorentz generators. To this end we introduce thetransversal
coordinate field

X L
i ~z![X i~z!:5~j i !m~kl !nMmn2 i ~j i

–p!ln z1 i (
mÞ0

1

m
Am

i ~L!z2m, ~3.15!

where

Mmn:5qmpn2qnpm2 i (
nÞ0

1

n
a2n

[m an
n] ~3.16!

are the Lorentz generators, and thetransversal momentum field

P L
i ~z![P i~z!:5 i

d

dz
X i~z!5 (

mPZ
Am

i ~L!z2m21 ~3.17!

~where we again do not indicate the dependence on the level explicitly.! Note that the center o
mass coordinate in Eq.~3.15! is (j i)m(kl )nMmn rather thanqi as one might have naively guesse
This choice is forced upon us by the requirement that the fieldX i(z) should be physical: since

@Lm ,Mmn#50, ~3.18!

we have, with definition~3.15!,

@Lm ,X i~z!#50, ~3.19!

whereas Eq.~3.19! would not vanish if the zero mode wereqi . Second, substituting
(j i)m(kl )n Mmn for qi amounts to a replacement of a translation generator~in momentum space!
by a Lorentz rotation. As we will see, this is precisely what is required because our new e
J. Math. Phys., Vol. 38, No. 9, September 1997
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sions are defined in terms of DDF operators which shift the momentum by a vector propor
to kl whereas Eq.~3.1! is defined in terms of ordinary string oscillatorsam

m which do not shift
momentum. There is a corresponding reinterpretation of the affine Weyl translation by a Lo
boost~see Sec. IV!.

Observe also that we have defined the new fieldX i(z) so far only for transversal indices
However, our definition can be generalized to the longitudinal componentsX 6 by means of the
operatorsAm

6 defined in Eqs.~2.10! and~2.11!, respectively. Note thatAm
1[0 for all mÞ0, just as

in light cone gauge string theory. Although we will make no use of the componentsX 6 in this
article, we expect them to become relevant in future generalizations involving level-cha
operators~see Sec. V!. We note that fields~3.15! are transcendental expressions in terms of
standard oscillator basis.

Next we establish the relation between the ‘‘old’’ step operatorspL(Em
r ) defined in Eq.~3.1!

and a set of new ones which manifestly depend on the DDF operators. The ‘‘new’’ level-l step
operators are defined by

Êm
r ~L!:5 R

0

dz

2p i
zl m

3
3 exp@ i r•X ~z!#3

3cr , ~3.20!

where we use the standard normal ordering~2.14! for the Heisenberg oscillators and where t
cocycle factorscr , which are functions of momentum, were explained after Eq.~3.1! and are the
same as in Ref. 1. The operators~3.20! will permit us to evaluate the action of the step operat
directly in terms of the DDF basis.

Theorem 1: On the representation space L(L), we have

pL~Em
r !5Êm

r ~L!, ~3.21!

where the operatorspL(Em
r ) and Êm

r (L) are defined, respectively, in Eqs. (3.1) and (3.2
Consequently, the operators Eˆ

m
r (L), Al m

i (L), d–p, andL0–p realize the affine algebra at levell

on P (L) in terms of the transversal Heisenberg algebra spanned by the Am
i ’s.

Proof: By construction, the operatorsÊm
r are physical. The DDF operatorAn

i shifts the mo-
mentum bynkl , and since the residue in Eq.~3.20! picks up 11l m1r–a of such modes forÊm

r

~a denotes the eigenvalue ofp!, the contribution of the DDF oscillators to the shift of momentu
will be (11l m1r–a)kl . On the other hand, the zero mode involving the Lorentz genera
provides a momentum shift byr2(11r–a)kl [@ l #t r(a)2a, so that in totalÊm

r mapsP (l) into
P (l1r1md) as required. The momentum shift@ l #t r(a) is just a Weyl translation, and we will retur
to this point in Sec. IV@see Eq.~4.4!#.

Next, we have to check that the new step operators satisfy the required commutation rel
and this part of the proof is very similar to the corresponding one for the FKS construction.
the last observation we immediately get

@v–p,Êm
r #5v–~r1md!Êm

r ,

for anyvPh* , which yields the correct commutation relations withpL(K), pL(d), andpL(H0
i ).

By the use of Eqs.~3.14!, ~4.14!, and~2.15! we obtain, formÞ0,

@pL~Hm
i !,i X L

j ~z!#5d i j zm,

from which Eq.~3.4! follows. Now, let us work out the commutator of two step operators wh
amounts to calculating the operator product of normal-ordered exponentials of the trans
coordinate field, namely,
J. Math. Phys., Vol. 38, No. 9, September 1997
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@Êm
r ,Ên

s#5e~r ,s! R
0

dw

2p i R
w

dz

2p i
zl mwl n

3
3 exp@ i r•X ~z!#33

33 exp@ is•X ~w!#3
3cr1s.

We split the transversal coordinate field as follows:

X L
i ~z!5X ,

i ~z!1Qi2 iPi ln z1X .
i ~z!,

where

X "
i ~z!:5 i (

m"0

1

m
Am

i ~L!z2m, Qi :5~j i !m~kl !nMmn, Pi :5j i
•p,

so that we can write the step operators explicitly as

Êm
r 5 R dz

2p i
exp@ i r•X ,~z!#ei r–Qzr–P exp@ i r•X .~z!#cr .

Using Eq.~2.15! and the relation@Qi ,Pj #5 id i j , which is valid on the level-l subspaceP ~L!
only, we find that

exp@ i r•X .~z!#exp@ is•X ,~w!#5S 12
w

z D r–s

exp@ is•X ,~w!#exp@ i r•X .~z!# ~ uzu.uwu!,

zr–Peis–Q5zr–seis–Qzr–P,

ei r–Qcre
is–Qcs5e~r ,s!ei ~r1s!–Qcr1s.

Thus, we have

@Êm
r ,Ên

s#5e~r ,s! R
0

dw

2p i R
w

dz

2p i
$zl mwl n~z2w!r–s exp@ i r•X ,~z!1 is•X ,~w!#

3ei ~r1s!–Qzr–Pws–P exp@ i r•X .~z!1 is•X .~w!#%cr1s.

It is clear that the commutator vanishes forr–s>0. For r–s521, we haver1sPD̄. Furthermore,
the contour integral ofz aroundw then has the effect of settingz5w in the integrand due to the
simple pole, and the resulte(r ,s)Êm1n

r1s follows. The caser–s522 is equivalent tos52r and
corresponds to a second order pole atz5w of the integrand. Cauchy’s theorem then yields t
required result, viz.

@Êm
r ,Ên

s#5 R
0

dw

2p i
wl n

d

dz Fzl m1 i r–X ,~z!1S z

wD r–P

1 i r–X .~z!G
z5w

5 R
0

dw

2p i
wl ~m1n!@r•P ~w!1l mw21#5Am1n

r 1l mdm1n,0 .

Finally, we have to verify thatÊm
r really gives the same result aspL(Em

r ) in terms of the
string oscillators. For this purpose, we re-express the DDF operators for a given trans
physical state in terms of ordinary string oscillators. Then the leading oscillator contribution
the same because any product of DDF operatorsAm

i differs from the corresponding product o
string oscillatorsam

i only by terms all of which involve at least one lightlike oscillatord–a2n with
the null rootd @this statement is no longer true for longitudinal DDF operators as can be se
J. Math. Phys., Vol. 38, No. 9, September 1997
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simple inspection of Eqs.~A7!–~A10! given in Ref. 8#. Moreover, the Lorentz generators do n
contribute to the leading oscillator terms. Since any physical state is uniquely determined
leading oscillators, the result follows. j

We emphasize again that the equality stated in the theorem holds only on the sub
P (L),P , but not on the whole physical state spaceP . This is because we must utilize th
relationkl •a5kl •l51 for all lPV(L) in the proof. We note that an analogous result wo
hold for the original FKS construction if one makes the simple replacementzm→zl m ~see Ref. 11
where this observation was made in the context of parafermions!. However, in our approach, th
level-l representation space is a subspace of a much bigger space, the space of all physic
of arbitrary level, which enables us to treat infinitely many irreducible representations sim
neously~as required by a representation theoretic approach to hyperbolic Kac–Moody alge!.

One of the nice features of the above realization is that it allows us to simply understand
is special about the basic representation, i.e., levell 51: only in this case is it possible to expre
the step operators entirely in terms of the homogeneous Heisenberg subalgebra spanne
pL(Hm

i )’s, for ul u.1, the step operators cannot be expressed in terms of the operatorsAl m
i alone.

As a result we again have missing states, namely physical states which cannot be ‘‘reach
applying step operators successively to the tachyonic vacuum vectorvL[uL& that defines the
representation. As we pointed out already, these missing states must not be confused with
vectors of the conventional approach. The consequences of our new formulation for the c
tation of affine characters is an intriguing problem for further study.

As an application of Theorem 1 we can immediately rederive the new expression for the
Sugawara generators given in Ref. 5. Recall that in terms of the affine Cartan–Weyl basi~3.1!
these are given by

Lm
@ l # :5

1

2~ l 1h∨! (
nPZ F (i 51

d22

+
+pL~Hn

i !pL~Hm2n
i !+

+1(
rPD̄

+
+pL~En

r !pL~Em2n
2r !+

+G , ~3.22!

whereh∨ denotes the dual Coxeter number ofḡ. The new normal-ordering symbol+
+••• +

+ refers to
the mode indices of the affine generators; for the operatorspL(Hn

i ) ~but not for the step opera
tors!! it is the same as Eq.~2.14! by Eq. ~3.14!. The operatorsLm

@ l # are well known to generate
Virasoro algebra~see, e.g., Ref. 12, and references therein!

@Lm
@ l # ,Ln

@ l ##5~m2n!Lm1n
@ l # 1

c~ l !

12
~m32m!dm1n,0pL~K !, ~3.23!

with central charge

c~ l !:5
l dim g

l 1h∨ . ~3.24!

They act as outer derivations on the affine Lie algebra according to

@Lm
@ l # ,Al n

i #52nAl ~m1n!
i , @Lm

@ l # ,Ên
r #52nÊm1n

r . ~3.25!

In particular, we observe thatL0
@ l #52pL(d). By construction, the Sugawara generators

physical, viz.

@Lm
@ l # ,Ln#50 ;m,nPZ. ~3.26!

Now let z:5e2p i /l ~or any other primitivel th root of unity!. We have5 the following corollary.
Corollary 1: The operatorsLm

@ l # can be directly expressed in terms of the transversal Heis
berg algebra by
J. Math. Phys., Vol. 38, No. 9, September 1997
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Lm
@ l #5

1

2l (
nPZ

(
i 51

d22

3
3Al n

i Al ~m2n!
i

3
31

h∨

2l ~ l 1h∨! (
nÞ0~ l !

(
i 51

d22

3
3An

i Al m2n
i

3
3

1
~ l 221!~d22!h∨

24l ~ l 1h∨!
dm,02

1

2l ~ l 1h∨! (
rPD̄

(
p51

l 21
1

uzp21u2

3 R
0

dz

2p i
zl m21

3
3 exp$ i r•@X ~zpz!2X ~z!#%3

3 . ~3.27!

Proof: Using the operator expansion in the proof of Theorem 1 we get

(
nPZ

+
+Ê2n

r Êm1n
2r

+
+[ (

n>0
Ê2n

r Êm1n
2r 1 (

n.0
Êm2n

r Ên
2r

5H R dz

2p i R
uzu.uwu

dw

2p i
2 R dz

2p i R
uzu,uwu

dw

2p i J ~z2w!22(
n>0

z2l nwl ~m1n!

3S z

wD r–P

exp$ i r•@X ,~z!2X ,~w!#%exp$ i r•@X .~z!2X .~w!#%

5 R
0

dw

2p i (
p51

l R
wp

dz

2p i H zl wl m

~z2w!2~zl 2wl ! 3
3 exp$ i r•@X ~z!2X ~w!#%3

3J ,

wherewp :5zpw. With the identity

zl 2wl

z2wp
5zl 211zl 22wp1•••1zwp

l 221wp
l 215:F~z,wp!,

the sum over the poles atz5wp for 1<p<l 21 immediately yields the third term in Eq.~3.27!.
As regards the pole atz5w, we have to evaluate

(
rPD̄

R
0

dw

2p i

1

2

d2

dz2 H zl wl m

F~z,wl ! 3
3 exp$ i r•@X ~z!2X ~w!#%3

3J U
z5w

5
1

2 (
rPD̄

R
0

dw

2p i H wl m
d2

dz2 F zl

F~z,wl !G
z5w

1
1

l
wl m11

3
3F d

dw
i rX ~w!G2

3

3J ,

where the terms linear inr drop out due to the sum over both positive and negative roots. U
Eq. ~3.17! and the fact that

(
rPD̄

r ^ r52h∨ (
i 51

d22

j i
^ j i ,

the second term is seen to give a contribution

h∨

2l ~ l +h ∨)
(
nPZ

(
i 51

d22

3
3An

i Al m2n
i

3
3 ~3.28!

in the formula for the Sugawara operators. Finally, a straightforward calculation yields
J. Math. Phys., Vol. 38, No. 9, September 1997
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1

2

d2

dz2 F zl

F~z,wl !G
z5w

5
l 221

12l w

which, together withuD̄u5(d22)h∨, leads to the constant term in Eq.~3.27!. j

IV. THE AFFINE WEYL GROUP

We now return to the remarks made at the beginning of the proof of Theorem 1. As
there, the momentum shift effected by the step operator~3.20! on a given state is the combinatio
of the shifts effected by the DDF operators~which are always along the null rootd! and a zero
mode contribution, such that the total shift coincides with the one obtained for the origina
operator of Eq.~3.2!. Furthermore, we observed that the so-called~affine! Weyl translations
naturally appeared there; the latter are designated byt rPT for rPQ and act onh* as

t r~v!:5v1~v–d!r2@~v–d! 1
2r

21r–v#d, ~4.1!

wherevPh* . Now, it is a well-known result that the affine Weyl group is the semidirect prod
of the Weyl group of the underlying finite dimensional Lie algebraḡ and the affine Weyl trans
lations, i.e.,

W~g!5W~ ḡ!›T. ~4.2!

To re-examine this result in the light of our approach we need the following family of translat

@ l #t r~v![v8:5v1~v–kl !r2@~v–kl ! 1
2r

21r–v#kl , ~4.3!

for l PN andkl was defined in Eq.~2.3!. More specifically, we have the following transformatio
formulas for a tachyonic level-l vectora, a polarization vectorj i(a), and the affine null vectord,
respectively:

@ l #t r~a![a85a1r2~ 1
2r

21r–a!kl , ~4.4!

@ l #t r~j i~a!![j i~a8!5j i~a!2@r–j i~a!#kl , ~4.5!

@ l #t r~d![d85d. ~4.6!

The above maps are linear and indeed fulfill the translation property

@ l #t r+
@ l #ts5

@ l #t r1s ;r ,sPQ̄. ~4.7!

Moreover, they preserve the~Minkowskian!! norm, i.e.,v825v2. We will now exploit this fact by
re-interpreting them as Lorentz boosts. In this way the affine Weyl group becomes a di
subgroup of ISO(d22), the subgroup of the full Lorentz group SO(d21,1) leaving fixed a given
lightlike vector. For the level-preserving transformations considered in this section, ISO(d22) is
therefore nothing but the stability subgroup~in the hyperbolic Weyl group! of the affine null root
d.

To proceed, we rewrite Eq.~4.3! as

vm8 5 @ l #T m
nvn ~4.8!

with

@ l #T m
n[~@ l #t r !m

n:5dm
n 1r m~kl !n2~kl !mr n2 1

2r
2~kl !m~kl !n. ~4.9!
J. Math. Phys., Vol. 38, No. 9, September 1997
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It is elementary to show that@ l #T 5exp @l #v with

@ l #vmn :5r m~kl !n2r n~kl !m . ~4.10!

We have a unitary representation@ l #T̂ of this Lorentz boost on the Fock space by means of
Lorentz generators~3.16!, viz.

@ l #T̂ :5expS i

2
@ l #vmnMmnD ; ~4.11!

one finds that

@ l #T̂ ~l–q!~ @ l #T̂ !215 @ l #t r~l!–q, @ l #T̂ ~l–am!~ @ l #T̂ !215 @ l #t r~l!–am ;mPZ. ~4.12!

For instance, on the tachyon stateua&, we get

@ l #T̂ ua&5ua8&. ~4.13!

Since, as we already noted, the transverse DDF oscillators remain unchanged formÞ0, we
therefore have, onP (L),

@ l #T̂ Am
i ~a!~ @ l #T̂ !215Am

i ~a8!5Am
i ~a!, ~4.14!

@ l #T̂ A0
i ~a!~ @ l #T̂ !215A0

i ~a8!5A0
i ~a!2r–j i~a!. ~4.15!

Although the replacement of the momentum shift by the Weyl translation~4.3! and the
re-interpretation of this translation as a Lorentz boost was forced on us by the replacem
ordinary string oscillators by DDF operators, it is now clear that this interpretation is the na
one. This is also evident from the following diagram, which displays the nested sequence of
groups of the finite, affine and hyperbolic Kac–Moody algebrasḡ,g, ĝ as discrete subgroups o
the corresponding continuous groups

W~ ḡ! , W~g! , W~ ĝ!

ù ù ù

SO~d22! , ISO~d22! , SO~d21,1!

~4.16!

We can thus think of the affine Weyl group as a dimensional null reduction of the full hyper
Weyl group, similar in spirit to the Kaluza–Klein reduction of Einstein’s theory with a n
Killing vector which was recently studied in Ref. 13, where the group ISO(d22) made its
appearance as the residual tangent space symmetry.

V. LONGITUDINAL DDF OPERATORS AND LEVEL-CHANGING TRANSFORMATIONS

We finally turn to longitudinal DDF operators. In the representation theory of affine alge
these have played no role so far, because one usually considers only one representation a
By contrast, the longitudinal DDF operators do change the level, and therefore interpolate be
different, and inequivalent affine representations. This fact is immediately evident if one a
the vectorr in the exponent of Eq.~3.20! to have levell Þ0, in which case the fieldX m

inevitably acquires a longitudinal component. Conversely, a nonvanishing longitudinal comp
in this expression implies thatr cannot only have components in the affine root lattice, but m
havel Þ0. While the necessity of studying several representations simultaneously does no
in the theory of affine representations as such, the problem must be faced when one co
hyperbolic Kac–Moody algebras which contain infinitely many affine representations of arb
J. Math. Phys., Vol. 38, No. 9, September 1997
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level. Furthermore, as shown in Ref. 8, longitudinal states do appear in these algebras. W
that the formalism developed in this paper furnishes the requisite tools for further investigati
this direction, because it allows us to embed the different representations into a single Fock
of physical states. In this section we present some preliminary results concerning the longi
DDF operators, which we expect to become relevant in future developments. In particular, w
also consider the level-changing generalizations of the Lorentz boosts~4.9!, whose unitary imple-
mentation yields operators interpolating between DDF operators of different level.

Because there is an infinity of tachyonic statesua&, the longitudinal DDF operatorsAm
2(a)

introduced in Eq.~2.10! constitute an infinity of Virasoro algebras, but with uniform cent
chargec5262d, see Eq.~2.17!. By construction, all of these commute with the Virasoro ge
eratorsLm , and are therefore physical. Moreover, they also commute with the Sugawara g
tors ~3.22!

@L m
@ l # ,An

2~a!#50 ~5.1!

for all tachyonica associated with a weightlPV(L). Although their polarization is alonga, a
short calculation shows that they are still invariant under the Lorentz boost~4.8!, in accordance
with Eqs.~4.14! and ~4.15!; namely, we have

@ l #T̂ Am
2~a!~ @ l #T̂ !215Am

2~a8!5Am
2~a!,

@ l #T̂ A0
2~a!~ @ l #T̂ !215A0

2~a8!5A0
2~a!1r–a.

Their commutation relations with the step operators~3.20! ~for r PD̄! are given by

Êm
r An

2~a!5An
2~a8!Êm

r , ~5.2!

wherea8 is the Weyl-boosted tachyon momentum defined in Eq.~4.4!. In deriving this result, the
AiAi term in Eq. ~2.10! is essential. The longitudinal DDF operators can thus be regarde
intertwining operators between different~but isomorphic! representations. The above relation a
permits us to extend the proof of Theorem 1 to states containing longitudinal excitations by s
moving all step operators to the right of the longitudinal DDF operators.

So far, we have only considered the action of integrated tachyon vertex operators ass
with affine rootsr1mdPD. From the point of view of string theory it is natural to incorpora
‘‘step operators’’ associated with arbitrary tachyonic affine dominant integral weightsL8. So let
us define

EL8:5 R dz

2p i
:exp@ i L8–X~z!#:cL8 ~5.3!

for L8PP1 satisfyingL8252. SinceL8 has nonvanishing level in general, only the special c
of level zero~L85r1md for rPD̄! leads to the step operatorsEm

r . By construction, the gener
alized step operators are physical,

EL8:P ~l!→P ~l1L8!; ~5.4!

but the crucial observation is that they change the level, i.e., they map from a highest w
moduleL(L) to the moduleL(L1L8). Again, one might wonder whether these operators can
rewritten in a manifestly physical form, and it is at this point that the longitudinal DDF opera
will enter the stage. In the remainder, we will therefore generalize the affine Weyl translatio
level-changing translations which will be necessary for rewriting the generalized step opera
terms of the DDF operators.
J. Math. Phys., Vol. 38, No. 9, September 1997
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For anyl1 in the weight systemV(L1) of a dominant weightL1 with positive levell 1 , we
define

@ l #tl1
~v!:5v1~v–kl !l12@~v–kl ! 1

2l1
21v–l1#kl 1l 1

. ~5.5!

Note that the affine null root is no longer invariant but is rescaled according to

@ l #tl1
~kl !5kl 1l 1

. ~5.6!

The above maps are linear and again fulfill the translation property

@ l 1l 1#tl2
+ @ l #tl1

5 @ l #tl11l2
. ~5.7!

Moreover, they preserve the norm, which allows us to rewrite them as Lorentz boosts. To se
we rewrite Eq.~5.5! as

@ @ l #tl1
~v!#m

nvn5 @ l #T m
nvn ~5.8!

with

@ l #T m
n[~@ l #tl1

!m
n:5dm

n 1~l1!m~kl !n2~kl 1l 1
!m~l1!n2 1

2l1
2~kl 1l 1

!m~kl !n. ~5.9!

A careful calculation shows that@ l #T 5exp@l #v with

@ l #vmn :5 lnS 11
l 1

l
D @~l1!m~kl 1

!n2~kl 1
!m~l1!n#. ~5.10!

The last two equations generalize the expressions in Eqs.~4.9! and~4.10!, respectively, which can
be reobtained by puttingl 150. The unitary representation@ l #T̂ of this level-changing Lorentz
boost on the Fock space is still given by formula~4.11!. By Eq. ~5.6!, conjugation with the
operator@ l #T̂ transmutes level-l DDF operators into level-(l 1l 1) DDF operators.

A natural ansatz for alongitudinal coordinate fieldanalogous to Eq.~3.15! is

X L,L1

2 ~z!:5 lnS 11
l 1

l
D ~L1!m~kl 1

!n Mmn2 i ~L1–p!ln z1 i (
mÞ0

1

m
Am

2~L1L1!z2m,

~5.11!

with associatedlongitudinal momentum field

P L,L1

2 ~z!:5 i
d

dz
X L,L1

2 ~z!5 (
mPZ

Am
2~L1L1!z2m21. ~5.12!

This means, however, that one will have to face up to the problem of dealing with exponent
such operators. This is not quite the same as exponentiating the Virasoro algebra beca
operators are always well defined on finite occupation number states, for which the co
integral picks up only finitely many contributions, but the technical problems of manipulating
expressions~e.g., computing operator products analogous to the ones used in the proof of Th
1! still seem daunting. The relevant calculations would be analogous to the computation of
scattering amplitudes in the light cone gauge, with the longitudinal operators and bilinea
transversal oscillators in the exponent—something that apparently has never been done
literature.
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