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An affine vertex operator construction at an arbitrary level is presented which is
based on a completely compactified chiral bosonic string whose momentum lattice
is taken to be théMinkowskian affine weight lattice. This construction is mani-
festly physical in the sense of string theory, i.e., the vertex operators are functions
of Del Giudice-Di Vecchia—FubiniDFF) “oscillators” and the Lorentz genera-
tors, both of which commute with the Virasoro constraints. We therefore obtain
explicit representations of affine highest weight modules in terms of physical
(DDF) string states. This opens new perspectives on the representation theory of
affine Kac—Moody algebras, especially in view of the simultaneous treatment of
infinitely many affine highest weight representations of arbitrary level within a
single state space as required for the study of hyperbolic Kac—Moody algebras. A
novel interpretation of the affine Weyl group as the “dimensional null reduction”
of the corresponding hyperbolic Weyl group is given, which follows upon re-
expression of the affine Weyl translations as Lorentz boosts19@7 American
Institute of Physics.S0022-24887)03109-3

I. INTRODUCTION

In this article we propose a generalization of the Frenkel-Kac—SE#e8) vertex operator
realization of nontwisted affine Lie algebras at level ‘ot an arbitrary level. This construction
was originally based on the spatial compactification of a bosonic string whose momentum lattice
is taken to be th¢Euclidean root lattice of a finite-dimensional simple Lie algebraAdDE type.

The Laurent coefficientémodes of the tachyon vertex operators together with the string oscilla-
tors then constitute a basis of the affine algebra. This basis is not physical in the sense of string
theory since, except for the zero mode, these operators do not commute with the Virasoro con-
straints. However, there is also a “covariant” version of the FKS construétiowhere the
momentum lattice of the string is enlarged by a two-dimensional Minkowski lattice; then the zero
mode operators are indeed physical in the sense of string theory and already by themselves form
a basis of the affine algebra. Apparently it has not been generally appreciated so far that, apart
from being manifestly physical, this construction is applicable to affine Lie algebras at arbitrary
level and thus more general than the FKS construction. The characteristic feature of our model is
that the momentum lattice of the string is taken to be(Mimkowskian affine weight lattice. This

model was recently exploited in Ref. 5 to construct an explicit representation of the affine Sug-
awara generators in terms @fansversal Del Giudice—Di Vecchia—FubiniDDF) operators at
arbitrary level.

A main new result of this article is a string vertex operator realization of the affine Cartan—
Weyl basis(in particular the step operatgrat an arbitrary level in terms of physicaDDF)
operators rather than ordinary string oscillators as in Refs. 3 and 4. Consequently, we can evaluate
the action of these operators on any given physical state directly in terms of the DDF basis. This
construction leads us to consider a new typél@fel-dependentphysical field.2*(z), similar to
the old Fubini—Veneziano fiel&*(z), but where the ordinary string oscillators are replaced by
level-/ transversal DDF oscillators. Apart from the center of mass coordinate, the.fiétdsere
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already introduced in Ref. 5. Whereas the correct definition of the center of mass maded

not matter in Ref. 5, it is absolutely essential here; somewhat surprisingly, this definition turns out
to involve the Lorentz generatok$,,,, which are physical operators, rather than the operagbrs
which are not physical unlike the center of mass momegrftaThe construction also requires a
corresponding new type of “tachyon vertex operator” witt replaced by.Z2*; more general
operators of this type presumably will be needed at a later stage.

The proper definition of the center of mass mode, and the corresponding replacement of a
translation generator by a Lorentz transformation leads us to our second main result, namely a new
interpretation of the affine Weyl group as a “dimensional null reduction” of the hyperbolic Weyl
group. More specifically, this result hinges on re-expressing the so-daifide) Weyl transla-
tions as Lorentz boosts. Consequently, these elements of the affine Weyl group should really be
called “Weyl boosts.” In this way it becomes obvious that the embeddings of the finite, affine and
hyperbolic Weyl groups of the finite, affine and hyperbolic Kac—Moody algeb@gC g, re-
spectively(with the finite algebray of rankd—2), are just the discrete analogs of the correspond-
ing sequence of embeddings of the continuous groupgISQ{CISO(d—2)CSO([d—1,1) into
one anothefsee Eq(4.16]. Here ISO@—2) is defined to be the subgroup of S{1,1) leaving
invariant a given lightlike vector, which in our case is just the affine null réoWe find it
remarkable that this new description of the affine Weyl group is really forced upon us by the DDF
approach, and this suggests that it is the truly natural interpretation of the known result that the
affine Weyl group is a semidirect product of the finite Weyl group and the affine Weyl transla-
tions. While the affine Weyl transformations leave the level of a given representation fixed, one
can in principle also consider level-changing boosts. As we expect such transformations to provide
important new insights into the structure of hyperbolic Kac—Moody algebras and their Weyl
groups we briefly discuss these generalizations in the last section.

We believe that the results presented in this article open new and promising perspectives for
the theory of irreducible representations of affine Lie algebras, especially with regard to the
problem of understanding hyperbolic Kac—Moody algeliggually our main goa) where one
must simultaneously deal with infinitely many inequivalent representations of arbitrary level. As
shown in the present article, this aim can be achieved by embedding all the affine representation
spaces into a single Fock space of physical states. Among the fascinating open problems for
further study let us especially mention the idea of extending the present construction to “level-
changing vertex operatorstactually, this will be a generic feature when we go over to the
hyperbolic extension of the affine Lie algepraossibly also of more general-type than the
tachyon-type vertex operators utilized here. Whereas the affine generators themselves involve only
transversal DDF operators and thus contribute only transversal excitations to states within a single
irreducible affine representation, the longitudinal DDF operators by construction map affine
vacuum vectors into each other and will accordingly act as representation-chaagihgin
general, even level-changingperators. The latter have so far played no role in the representation
theory of affine algebras, and are unnecessary as long as one deals only with one representation at
a time. However, it is clear that a proper understanding of the longitudinal DDF operators is one
of the keys to unraveling the mysteries of indefinite and hyperbolic Kac—Moody algebras.

Il. AFFINE WEIGHTS AND DDF OPERATORS

We consider a nontwisted affine Lie algelyan_&hen, (for general references on this
subject see, e.g., Refs. 6 angwith underlying simple finite-dimensional Lie algebgeof type
ADE and with rankd—2 (d>2). The affine(respectively, finitg root lattice is denoted b®

(respectively Q). The space of dominant integral affine weights is given by

d-2
P.:={Aeb*|A-r,eZ, 0<sI<d—2}= > 7Z,A+C8,
1=0
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where é is the affine null rootr, are the affine simple roots, anl, (0<I<d-—2) are the
fundamental affine weights defined by;-r;=46,; and A,;-Ay=0 for 0<I, J=d—2. For any
dominant weightA the level/ e Z is defined by(in comparison with Ref. 5 we have switched
signs so as to be in unison with the standard convenfidns.

/7 =A-6. 2.1
By L(A) we denote the corresponding integrable irreducible highest weight modulgyolés

clear thatL(A)=L(A+zé) for all ze C. By putting

A=A+
S

1 1A2 é
2

for any A e P, of nonzero level we thus obtain a “tachyonidf.e., A’2=2) dominant integral
affine weight which gives rise to a highest weight modu(e\’) isomorphic toL(A). Without
loss of generality we shall assume from now on thais some tachyonic dominant weight of
positive level/.

Now let A be any weight if)(A), the set of weights fot.(A). It ensues thati) A% e 27 and
(i) A><A?=2. To see this we note that=A—r for somer e Q. . Then(i) follows from A?
=2(1—A-r)+r? by the fact thatA is an integral weight and thaD is an even lattice by
assumption. To provéi), we use thai\ is Weyl equivalent to a uniqua’ € P, NQ(A) with
decomposition\’=A—r’ for somer’ eQ, ; henceA>=N"2=A%2—A.r'—\'-r'<A2=2 be-
cause bothA and\’ are dominanfcf. Ref. 6 (Proposition 11.4)3.

These observations are crucial for the DDF construction to be described below: for any level-
/ weightA e Q(A) we define its DDF decompositibioy

A=a—nk,, (2.2
where

k, : ! o, 2.3

=8, 23

and the vectoa is uniquely determined by demandia§= 2. Thusn=1— 1\?, and by the above
result,n is always a non-negative integer as required by the DDF construction. We will reder to
as the “tachyonic leve¥ vector” and to the corresponding stg@® as the “tachyonic leve¥
state” associated ta. Note that, for/>1, the tachyonic vectax occurring in Eq(2.2) in general
is not a weight forL(A) because of the fractional coefficient in front &f Rather it will be used
as an auxiliary vector in the construction below.

A central feature of our approach is the realization of the affine representationlspiras
a (tiny) subspace of a much bigger spageof physical string states, itself a subspace of a Fock
space# which is the direct sum of irreducible Heisenberg modules created by the usual string
oscillators from the ground statéh)=exp(\-q)|0) for arbitrary affine weights\. More pre-
cisely,

Ti=spafa’y, - [M)[Neb*,m, >0}, (2.4

where the string oscillatorsf, (me 7,0< u<d—1) and the center of mass operatqfs p* obey
the standard commutation relations

[aﬁ,aﬁ]=m7]"”5m+n’0, [Q’u,py]=i7]"”’, a'lol’Epl"

with p#|N)=\*|\). To isolate the physical states, we introduce the Virasoro operators
J. Math. Phys., Vol. 38, No. 9, September 1997
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1
Lm:=§2 Qg @y (2.5

ne’?

which satisfy a Virasoro algebra with central chamged [the normal-ordering---: with respect
to the string oscillatorsyf, in Eq. (2.5 is defined in the usual manfeThe space of physical
string states”C.7 is then defined as

Pi={pe T|Lop=,Lp=0¥n>0}. (2.6)

As already indicated, we shall be interested in certain subspacésmobre specifically, the affine
representation spadg A) associated with the highest weightwill be embedded into the space

PAN= & rMNcz, (2.7
Ae Q)
where
PN ={ye T|Lop=¢, Lp=0¥Nn>0, pry=\"y, O<sp<d—1} (2.9

denotes the space of physical string states with momentum

An explicit realization of the physical states is afforded by the so-called DDF opefdftFs.
write them down we need the DDF decompositi@®) since these operators will always act on
some tachyonic stat@a) associated with a given weightin the sense explained above. Further-
more, we need a set of polarization vectdfs=£'(a)=£'(N) (1<i=d—2) satisfying&'- &
=¢;; and £'.6=¢"-a=0, which constitute a basis for the complex vector spgicalual to the
Cartan subalgebr of g. The DDF operators are defined®d{ [to make the notation less cum-
bersome, and contrary to the notational conventions of Ref. 5, we here suppress thedaltee
DDF operators in Egs(2.9) and (2.10 because this dependence is already implied by their
dependence oa]

. dz
A (a):= 3@ 2—;§'(a)-P(z)ex;{imk/-X(z)], (2.9
o dz m d ) _
Aq(a):= fﬁ PPk —a-P(z)+§d—ZIn k, -P(z)|exdimk, -X(z)]:
—% A A (@) -+ 280K P, (2.10
d
Al(a):= 39 Z—;ik/-P(z)exp[imk/-X(z)]=5mok/-p, (2.11

for meZ, 1<i=d-—2. Here we have used the well-known Fubini—Veneziano coordinate and
momentum fields, respectively,

| .
XH(z):=q*—ip*In zﬂ%}o = apz™™, (2.12
K(7) =i d 1 mo—m—1
P#(z): =i d—ZX (z)=rgZ akz , (2.13

and employed the standard normal-ordering-  for the transversal DDF operators
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Al AL for m<n
ALAL - for m>n’ 219

XAl AJX
><AmAn><-_

Let us recall from Ref. 5 that the shift of any polarization vedfa)=£'(\) along thed
direction leaves the associated DDF oper#p(a) unchanged fom# 0, because the residue of
a total derivative always vanishes. On the other hand, the differéhe®) — &'(N\) for any A
e ()(A) is, without loss of generality, always proportionaldoThus, form+ 0, we are effectively
dealing with a single set of DDF operato#s,(A) for the whole modulel(A); the zero mode
operators do differ for differerd, however. For definiteness, we choose the polarization vectors to
be £'(A) throughout.

The above operators obey the commutation relations

[ALAl=md 8,0k, P, (2.19

[AL AL]=0, (2.16

o _ 2
[Am ,An ]:(m_n)Am+n+ T

(M2 = 1) 8y ,0K P (2.17
They arephysical i.e.,
[Lm All=[Lm,Ar]=0. Vm,neZil<i<d-2,

and therefore map physical into physical states. Moreover, they constitute a spectrum-generating
algebra for the string. In particular,

_ . 1
9/ﬂ>=spaﬂA'_1ml-~A'_MmMAnl'--AnN|a> > m,+ > n=1-3 A2, (2.18

for a DDF decompositiod=a—nk, of A and fori ,=1,...d—2, m,>0, n;=---=ny=2. Note
thatA”,|ayxL _,|a—k,), i.e., AZ; generates null physical states which must be discarded.

lll. AFFINE VERTEX OPERATORS AT ARBITRARY LEVEL

We introduce a linear mag, : g—End>’(A) as follows:
Ki— é-p,

d—Ag-p, 3.0)

i dz .
H— i; mg(A)-P(z)exmmﬁ-X(z)],

dz
El— jg z—m:exp{i(r+m5)-X(z)]:cr,

with re A and thusr + mée A. c, denotes a cocycle factor satisfyirge's9= ¢(r,s)e's%, for
some bimultiplicative two-cocycle normalized s.te(0,0)= e(r,—r) = 1. Indeed, it is straightfor-
ward to check(see Refs. 3 and)4hat the above operators are physical, i.e.,

[Lons TAK)]=[ L, A =L, mA(HW) =L, mA(E})]=0

forall mneZ, reA, 1<i<d-—2. More precisely, for anne (A) one has
J. Math. Phys., Vol. 38, No. 9, September 1997
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mA(K): 72N 7 M),

mA(d): 7N PN

(3.2
WA(Hirn)Zy(}‘)Hy“‘er's),
TA(Ef): PN pAFrEmd),
Furthermore, the following relations hold:
[mA(Hp), mA(HD1=/m& 8,400, 3.3
[7A(HR), TAERT= (&' 1) TA(Emsn), (3.4)
0 if r-s=0
[mA(EL), mA(ES)]=1 €(r, 9 ma(EpS) if r-s=—1, (3.5
mA(Hin) +/Mépino if r-s=—2
[7A(K),mA(X)]=0 Vxeg, (3.6
[mA(d), TA(Hp) 1= mary(H}), (3.7)
[7A(d), mA(Ef)]=max(E). (3.9

Hencer, defines a levekK vertex operator realization @fon 7’(A). By identifying the vacuum
vectorv 4 in L(A) with the tachyonic ground statd) in °(A), we conclude that

L(A)—=Z(A). (3.9
To see this, we first write down the realization of the Chevalley—Serre generators, viz.

e 1=mA(Ey), fii=—mA(E,"), hii=mu(ri-Hp)=r;-p, for 1<i=<d-2,

ep:=mA(E1 %), foi=—mA(E?)), hoi=mA(K—6-Hp)=r¢-p,

where@ denotes the highest root in. Ten we have to veriffsee, e.g., Ref. 6Corollary 10.4]
both the vacuum vector conditions

e|A)=0 for O<I=d-2, (3.10
and the null vector conditions
7N Ay=0 for O<I=d-2. (3.1
From Eg.(3.2 we infer that
e : NN g pN L pAT) - for O<I<d-2.

Hencee||A) has at least eigenvalue 2 fhg because&2=r|2=2 andA is dominant, so thatA
+r1)2=4; but this contradicts the fact that|A) is a physical stat¢cf. Eq. (2.8)], hencee,|A)
must be zero. The null vector§1+r"A|A> vanish by the same argument singeA\—(1+r,
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-A)r,]1?=2+A-r,. In other words, the null vectors are really zero in our approach. The space
7M™ must not be confused with the weight spade\), , the space of states with weigktin the
representation; rather, we have ttie general properinclusion

L(A)y—2W. (3.12

If we make use of the observation that in E§.1) only transversal linear combinations of the
string oscillators and consequently transversal DDF operators can occur, we conclude that

multy(A) =dim L(A),<dim 27} =pg_o(1— 3\?). (3.13

This is a universal estimate for the weight multiplicities of any irreducible affine highest weight
module which seems to be new. F6r=1 this bound is known to be saturatkd a higher level,
however, the formula may constitute only a crude upper bound. In general, there are “missing
states,” namely the physical states which liett™ but not inL(A), . Note, however, that these
have nothing to do with the above null vectors.

We also note that

TA(H) =AL(A), (3.14

which shows that the transversal DDF operatbhq(A) occur not only as part of the spectrum
generating algebra for the physical string states but also as homogeneous Heisenberg subalgebra
of the affine algebra. One might therefore ask whether it is possible to rewrite the step operators
mA(Er) also in a manifestly physical form in terms of these DDF operators. Indeed, this is
possible if in addition one uses the Lorentz generators. To this end we introdutrartheersal
coordinate field

. . ) . 1 .
2ND=212)=(E) (k)M =i pInz+i X —A(A)Z", (319
m#0
where
1
M#=grpr—q'pr—i Y — alkap) (3.16
n=0 N

are the Lorentz generators, and th@ensversal momentum field

. _ d . .
PND=72):=i 2 (D)= mZZ Al (A)z~m1 (3.17)

(where we again do not indicate the dependence on the level explidiibte that the center of
mass coordinate in E43.19 is (£') ,(k,),M*" rather tharg' as one might have naively guessed.
This choice is forced upon us by the requirement that the fig¢ldz) should be physical: since

[Lyn,M#"]=0, (3.18
we have, with definitior(3.15),
[Ly..27(2)]=0, (3.19

whereas EQ.(3.19 would not vanish if the zero mode werg'. Second, substituting
(€") u(k,), M~ for ' amounts to a replacement of a translation gener@anomentum spage
by a Lorentz rotation. As we will see, this is precisely what is required because our new expres-
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sions are defined in terms of DDF operators which shift the momentum by a vector proportional
to k, whereas Eq(3.1) is defined in terms of ordinary string oscillatosg, which do not shift
momentum. There is a corresponding reinterpretation of the affine Weyl translation by a Lorentz
boost(see Sec. IV.

Observe also that we have defined the new figlt{z) so far only for transversal indices.
However, our definition can be generalized to the longitudinal compongfitdy means of the
operatorsA,,, defined in Eqs(2.10 and(2.11), respectively. Note thak,,=0 for all m+0, just as
in light cone gauge string theory. Although we will make no use of the compongfitsn this
article, we expect them to become relevant in future generalizations involving level-changing
operatorgsee Sec. Y We note that field$3.15 are transcendental expressions in terms of the
standard oscillator basis.

Next we establish the relation between the “old” step operato(éE,,) defined in Eq(3.1)
and a set of new ones which manifestly depend on the DDF operators. The “new’/Aestlp
operators are defined by

=r . dZ /mX H D X
E(A):= Omz % exdir-.2(z)]xc,, (3.20

where we use the standard normal order(Bdl4) for the Heisenberg oscillators and where the
cocycle factors,, which are functions of momentum, were explained after Bdl) and are the
same as in Ref. 1. The operat@820 will permit us to evaluate the action of the step operators
directly in terms of the DDF basis.

Theorem 1: On the representation spac€ A), we have

mA(EL) =En(A), (3.21)

where the operatorsr,(Ey) and E,(A) are defined, respectively, in Egs. (3.1) and (3.20).
Consequently, the operatorg,EA), A, (A), 8-p, and Ag-p realize the affine algebra at level
on.Z(A) in terms of the transversal Heisenberg algebra spanned by the. A

Proof: By construction, the operato£s, are physical. The DDF operat@t‘h shifts the mo-
mentum bynk -, and since the residue in E@.20 picks up 1+/m-r-a of such modes foEp,
(a denotes the eigenvalue pj, the contribution of the DDF oscillators to the shift of momentum
will be (1+/m+r-a)k,. On the other hand, the zero mode involving the Lorentz generators
provides a momentum shift by— (1+r-a)k,=["lt,(a)—a, so that in totalE], maps7™ into
P AH1TMd) a5 required. The momentum sHiftt, (a) is just a Weyl translation, and we will return
to this point in Sec. I\[see Eq.(4.4)].

Next, we have to check that the new step operators satisfy the required commutation relations,
and this part of the proof is very similar to the corresponding one for the FKS construction. From
the last observation we immediately get

[v-p,El]=v-(r+ m&)EL,,

for anyve h*, which yields the correct commutation relations witQ(K), m4(d), ande(H{)).
By the use of Eqs(3.14), (4.14), and(2.15 we obtain, form+0,

[7a(H), .24 (2)]= 82",

from which Eq.(3.4) follows. Now, let us work out the commutator of two step operators which
amounts to calculating the operator product of normal-ordered exponentials of the transversal
coordinate field, namely,

J. Math. Phys., Vol. 38, No. 9, September 1997
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r dz /My, NX H o X
[E , n]—e (r,s) ot o 2 2™ exdir-. 2(2)15% exdis 2 (W)]5Cr 4.

We split the transversal coordinate field as follows:

2\(2)=2"(2)+Q'—iP' In z+.2". (2),

where
2e@i=i Y o A' (MZ™ Qi=(&),(k) MM, Pi=¢p,
so that we can write the step operators explicitly as
~ dz o - N
Em= é o7 exfdir-.2°-(z)]1e" 2" P exdir-.2-(2)]c,.

Using Eq.(2.19 and the relatiof Q',P!]1=i4'l, which is valid on the level subspace”(A)
only, we find that

exlir- 2-(2)]exdis 2 -(w)]= (1-%)@@5 7-(wlexdir-2-(21 (|z>|wl]),
Zr-Peis~Q=Zr~seis-QZr-P,

e'"Qc,e's % =¢(r,s)e' "9,

Thus, we have

[E' ES]=e(r, s)jg ol {z/mw/“(z W) S exlir-. 2 -(2)+is. 2"~ (w)]
X el 9 Qz PSP exrfir- 2. (2)+is . 2-(W)]}Cp 4 s.

It is clear that the commutator vanishes fes=0. Forr-s=—1, we have +se A. Furthermore,
the contour integral of aroundw then has the effect of settirg=w in the integrand due to the
simple pole, and the resué(r,s)E[", follows. The case-s=—2 is equivalent tes=—r and
corresponds to a second order poleatw of the integrand. Cauchy’s theorem then yields the
required result, viz.

r-p
+ir-2-(2)

PO dw d
r s S |
[EmEnl= P o V" @z

/ . o
Z"+ir- 2 (2)+ W

=W

dw —1 ’
o W w/ M A W)+ /mw ] =ALL A+ /M no-

Finally, we have to verify thakE], really gives the same result as(E;,) in terms of the
string oscillators. For this purpose, we re-express the DDF operators for a given transversal
physical state in terms of ordinary string oscillators. Then the leading oscillator contributions are
the same because any product of DDF operafgddiffers from the corresponding product of
string oscillatorsy,, only by terms all of which involve at least one lightlike oscilla@m_, with
the null rooté [this statement is no longer true for longitudinal DDF operators as can be seen by
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simple inspection of Eq¥A7)—(A10) given in Ref. §. Moreover, the Lorentz generators do not
contribute to the leading oscillator terms. Since any physical state is uniquely determined by its
leading oscillators, the result follows. |

We emphasize again that the equality stated in the theorem holds only on the subspace
AAN)CZ, but not on the whole physical state space This is because we must utilize the
relationk ,-a=k,-A=1 for all \e Q(A) in the proof. We note that an analogous result would
hold for the original FKS construction if one makes the simple replaceafentz’ ™ (see Ref. 11
where this observation was made in the context of parafermibtwvever, in our approach, the
level-~ representation space is a subspace of a much bigger space, the space of all physical states
of arbitrary level, which enables us to treat infinitely many irreducible representations simulta-
neously(as required by a representation theoretic approach to hyperbolic Kac—Moody algebras

One of the nice features of the above realization is that it allows us to simply understand what
is special about the basic representation, i.e., Igvell: only in this case is it possible to express
the step operators entirely in terms of the homogeneous Heisenberg subalgebra spanned by the
mA(Hp)'s, for |/]>1, the step operators cannot be expressed in terms of the ope!kb;pad;one
As a result we again have missing states, namely physical states which cannot be “reached” by
applying step operators successively to the tachyonic vacuum vegtefA) that defines the
representation. As we pointed out already, these missing states must not be confused with the null
vectors of the conventional approach. The consequences of our new formulation for the compu-
tation of affine characters is an intriguing problem for further study.

As an application of Theorem 1 we can immediately rederive the new expression for the affine
Sugawara generators given in Ref. 5. Recall that in terms of the affine Cartan—Wey{(Dasis
these are given by

d-2
1 o i i o o — o
/Uﬂ;—§C7IF—5;§ZizaowAHﬂQwA(Hh,Q;+ElﬁwA(Epn](Emch, (3.22

reA

whereh" denotes the dual Coxeter numbergofThe new normal-ordering symbpl- -] refers to
the mode indices of the affine generators; for the operatqidd,,) (but not for the step opera-
tors)) it is the same as Eq2.14 by Eq.(3.14. The operatorsz{nf] are well known to generate a
Virasoro algebrdsee, e.g., Ref. 12, and references thgrein

[, A =(m=—n) A7)+ o )<m —M) S noma(K), (3.23

with central charge

. /dimg

They act as outer derivations on the affine Lie algebra according to
[*%{rh/]'Ai/n]:_nAi/(ern)! [’{{m/]iEn]__nEirH—n (3.29

In particular, we observe tha%%/]=—7rA(d). By construction, the Sugawara generators are
physical, viz.

[AL]1=0 VmneZ. (3.26
Now let Z:=e?™'” (or any other primitive/th root of unity. We haveé the following corollary.

Corollary 1: The operators%ﬁ{ ! can be directly expressed in terms of the transversal Heisen-
berg algebra by
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hD d-2 o
7 ial
A= — E E KA A (e mng(/) .:21 SARA - nx
(/?—1)(d—2)h" 1
24/(/+h0) om0~ 2/(/+hD) 2 2 [{P-1]2

reA pP=1

§> —z”“ oexplir-[2(P2) -2 ()1} . (3.27)

Proof: Using the operator expansion in the proof of Theorem 1 we get
2 :Er EminZ 2 Er Eerndl_nZ0 E:nanr:r

neZ
dw
_ 2 Z*/n /(m+n)
[ é 2mi |2]>|w] 2mi é 2mi |z <|w| 27T|]( w)~ E

X| = exp{ir-[k%;(z)—j;(w)]}exp{ir~[%’>(z)—%‘>(w)]}
dw < dz zZw'm » o . x
=% 2 le ﬁvp > {(z—w)z(z W) % explir-[.2(2)—2(w) ]} 1,

wherew, : = {Pw. With the identity

f
Z—w a

=7/ 7 2 AWt zw AWl T =R (W),

Z—Wp

the sum over the poles at=w, for 1<p</—1 immediately yields the third term in E¢3.27).
As regards the pole at=w, we have to evaluate

dw 1 d? [ Zw’'m

X eXp[if'[%'(Z)—%'(W)]}i]

o o 2mi 2 dZ |F(zw,) ew
d2 Z/ 1 2X
=— /m /m+1><
rgA ZWI{W dZ |F (zw/) +/W x| gw W) J'

where the terms linear in drop out due to the sum over both positive and negative roots. Using
Eq. (3.17 and the fact that

d-2
> rer=2 hDZ £RE,

reA

the second term is seen to give a contribution

hD
2/(/+/D/E 2 XA A/m nx (3.28

nel 1=

in the formula for the Sugawara operators. Finally, a straightforward calculation yields
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1d[ /-1
2dZ |F(z,w,) o 127w
which, together WitHA_|=(d—2)hD, leads to the constant term in E@.27). ]

IV. THE AFFINE WEYL GROUP

We now return to the remarks made at the beginning of the proof of Theorem 1. As noted
there, the momentum shift effected by the step opel@@0 on a given state is the combination
of the shifts effected by the DDF operatdishich are always along the null ro@® and a zero
mode contribution, such that the total shift coincides with the one obtained for the original step
operator of Eq.(3.2). Furthermore, we observed that the so-callaffine) Weyl translations
naturally appeared there; the latter are designatet] &% for r e Q and act orh* as

t,(V):=v+(V-&)r—[(v-8)3r2+r-v]5, (4.2
whereve h*. Now, it is a well-known result that the affine Weyl group is the semidirect product
of the Weyl group of the underlying finite dimensional Lie algeprand the affine Weyl trans-
lations, i.e.,

2(g)=W(g)X <. (4.2
To re-examine this result in the light of our approach we need the following family of translations:
Lt (v)=v":=v+(v-k,)r—[(v-k,)2r2+r-vlk,, 4.3

for /e N andk, was defined in Eq.2.3). More specifically, we have the following transformation
formulas for a tachyonic level- vectora, a polarization vecto&'(a), and the affine null vectod,
respectively:

[“lt,(a)=a'=a+r—(3%+r-a)k,, (4.4
it (£'(a)=£(a)=E(a)—[r-£(@]k,, (4.5
[Nt ()=6=6. (4.6

The above maps are linear and indeed fulfill the translation property
ol Tt =170, o Vr,seQ. 4.7

Moreover, they preserve thi®linkowskian!) norm, i.e.,v'?=v2. We will now exploit this fact by
re-interpreting them as Lorentz boosts. In this way the affine Weyl group becomes a discrete
subgroup of ISOd—2), the subgroup of the full Lorentz group S 1,1) leaving fixed a given
lightlike vector. For the level-preserving transformations considered in this sectiond +S&)(is
therefore nothing but the stability subgro(ip the hyperbolic Weyl groupof the affine null root

0.
To proceed, we rewrite Eq4.3) as
ol =17, (4.8
with
7= W) =841,k ) = (k) ur 7= 317(K ) u(K )" (4.9
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It is elementary to show thaf 7= exp! 1w with

w,, =1 ,k),=1,(k,),. (4.10

We have a unitary representatibﬂ& of this Lorentz boost on the Fock space by means of the
Lorentz generatoré3.16), viz.

- i
o~ _— _ 7 v|.
[ ]J.—exp(Z[ lo, M~ ) (4.12)

one finds that
A7 =) a, TN a (D)= (V) e, YmeZ. (412
For instance, on the tachyon stg&, we get
(7 ay=|a’). (4.13

Since, as we already noted, the transverse DDF oscillators remain unchanged thr we
therefore have, oB(A),

7AL(@)(17) T=Al (@) =Al(a), (4.14
(7A@ () =A@ =Ala) —r-£/(a). (4.19

Although the replacement of the momentum shift by the Weyl transla@o8 and the
re-interpretation of this translation as a Lorentz boost was forced on us by the replacement of
ordinary string oscillators by DDF operators, it is now clear that this interpretation is the natural
one. This is also evident from the following diagram, which displays the nested sequence of Weyl
groups of the finite, affine and hyperbolic Kac—Moody algely@sC g as discrete subgroups of
the corresponding continuous groups

W C W C 2(g)
n N n (4.16
sQd-2) C ISd-2) C SOod-1,1)

We can thus think of the affine Weyl group as a dimensional null reduction of the full hyperbolic
Weyl group, similar in spirit to the Kaluza—Klein reduction of Einstein’s theory with a null-
Killing vector which was recently studied in Ref. 13, where the group BOZ) made its
appearance as the residual tangent space symmetry.

V. LONGITUDINAL DDF OPERATORS AND LEVEL-CHANGING TRANSFORMATIONS

We finally turn to longitudinal DDF operators. In the representation theory of affine algebras
these have played no role so far, because one usually considers only one representation at a time.
By contrast, the longitudinal DDF operators do change the level, and therefore interpolate between
different, and inequivalent affine representations. This fact is immediately evident if one allows
the vectorr in the exponent of Eq(3.20 to have level/#0, in which case the field2*
inevitably acquires a longitudinal component. Conversely, a nonvanishing longitudinal component
in this expression implies thatcannot only have components in the affine root lattice, but must
have/ # 0. While the necessity of studying several representations simultaneously does not arise
in the theory of affine representations as such, the problem must be faced when one considers
hyperbolic Kac—Moody algebras which contain infinitely many affine representations of arbitrary
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level. Furthermore, as shown in Ref. 8, longitudinal states do appear in these algebras. We claim
that the formalism developed in this paper furnishes the requisite tools for further investigations in
this direction, because it allows us to embed the different representations into a single Fock space
of physical states. In this section we present some preliminary results concerning the longitudinal
DDF operators, which we expect to become relevant in future developments. In particular, we will
also consider the level-changing generalizations of the Lorentz b@bStswhose unitary imple-
mentation yields operators interpolating between DDF operators of different level.

Because there is an infinity of tachyonic statas the longitudinal DDF operatorA,,(a)
introduced in Eq.(2.10 constitute an infinity of Virasoro algebras, but with uniform central
chargec=26—d, see Eq(2.17. By construction, all of these commute with the Virasoro gen-
eratorsL,,, and are therefore physical. Moreover, they also commute with the Sugawara genera-
tors (3.22

[Zh).AL (8)]=0 (5.0

for all tachyonica associated with a weighte Q2(A). Although their polarization is along, a
short calculation shows that they are still invariant under the Lorentz 4@t in accordance
with Egs.(4.14) and(4.15; namely, we have

ATAN@(N) = Ag(@) =An(a),
725 (@) ([N 1=A5 (@) =A5 (a) +T-a.
Their commutation relations with the step operat@20 (for reA_) are given by
ERA, (@)=A, (a)Eh, (5.2

wherea’ is the Weyl-boosted tachyon momentum defined in @g}). In deriving this result, the

AIA term in Eq.(2.10 is essential. The longitudinal DDF operators can thus be regarded as
intertwining operators between differefliiut isomorphi¢ representations. The above relation also
permits us to extend the proof of Theorem 1 to states containing longitudinal excitations by simply
moving all step operators to the right of the longitudinal DDF operators.

So far, we have only considered the action of integrated tachyon vertex operators associated
with affine rootsr + mée A. From the point of view of string theory it is natural to incorporate
“step operators” associated with arbitrary tachyonic affine dominant integral weightSo let
us define

EA: = 3{; %:exr{iA’-X(z)]:cA, (5.3

for A’ e P satisfyingA’?=2. SinceA’ has nonvanishing level in general, only the special case
of level zero(A’=r+mé for r € A) leads to the step operatdg;,. By construction, the gener-
alized step operators are physical,

EA":pN L AA+A), (5.4)

but the crucial observation is that they change the level, i.e., they map from a highest weight
moduleL (A) to the moduld.(A+ A'). Again, one might wonder whether these operators can be
rewritten in a manifestly physical form, and it is at this point that the longitudinal DDF operators
will enter the stage. In the remainder, we will therefore generalize the affine Weyl translations to
level-changing translations which will be necessary for rewriting the generalized step operators in
terms of the DDF operators.
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For any\, in the weight systenf)(A,) of a dominant weighi\; with positive level/;, we
define

[ty (V) =V (VR )N = [(V-K )N+ VN DK 4 (5.5
Note that the affine null root is no longer invariant but is rescaled according to
V]t)‘l( k)=K 1/, (5.6
The above maps are linear and again fulfill the translation property
[ dalgy ol =0y (5.7)

Moreover, they preserve the norm, which allows us to rewrite them as Lorentz boosts. To see this,
we rewrite Eq.(5.5 as

[[/]t)\l(v)]p,yvvz[/]f,uvvv (58)
with
17,7= (M ), = 84 D)Wk )" (K4 ) o) = (K4 )k ). (5.9

A careful calculation shows that!7=exp 1w with

e, i=In

/

[ (k)= (k) u(M), 1. (5.10

The last two equations generalize the expressions in(&dd.and(4.10, respectively, which can
be reobtained by putting’;=0. The unitary representatidfl.7 of this level-changing Lorentz
boost on the Fock space is still given by formy1l). By Eq. (5.6), conjugation with the
operator” 17 transmutes level! DDF operators into levelA +/;) DDF operators.

A natural ansatz for éongitudinal coordinate fieldanalogous to Eq3.15) is

- /1 : : 1 _
2y (D=1 1+ 2 (Aq) (k) M#=i(Ag-p)in z+.%}o S AL(A+AYZ™,
(5.1)
with associatedongitudinal momentum field
»— cd - -m-1
Pan D=1 a2 = > AL(A+ANZ ™ L (5.12
meZ

This means, however, that one will have to face up to the problem of dealing with exponentials of
such operators. This is not quite the same as exponentiating the Virasoro algebra because our
operators are always well defined on finite occupation number states, for which the contour
integral picks up only finitely many contributions, but the technical problems of manipulating such
expressionse.g., computing operator products analogous to the ones used in the proof of Theorem
1) still seem daunting. The relevant calculations would be analogous to the computation of string
scattering amplitudes in the light cone gauge, with the longitudinal operators and bilinears of
transversal oscillators in the exponent—something that apparently has never been done in the
literature.
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