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The causal structure of Einstein’s evolution equations is considered. We show that in general they can be
written as a first-order system of balance laws doy choice of slicing or shift. We also show how certain
terms in the evolution equations, which can lead to numerical inaccuracies, can be eliminated by using the
Hamiltonian constraint. Furthermore, we show that the entire system is hyperbolic when the time coordinate is
chosen in an invariant algebraic way, and for any fixed choice of the shift. This is achieved by using the
momentum constraints in such a way that no additional space or time derivatives of the equations need to be
computed. The slicings that allow hyperbolicity in this formulation belong to a large class, including harmonic,
maximal, and many others that have been commonly used in numerical relativity. We provide details of some
of the advanced numerical methods that this formulation of the equations allows, and we also discuss certain
advantages that a hyperbolic formulation provides when treating boundary conditions.
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I. INTRODUCTION AND OVERVIEW [3-5] is much more complicated, and therefore one has to be
very careful when attempting to appad hocvariations on
In a previous Lettef1], we proposed a new formalism for these methods to Einstein’s theory; the numerical properties
numerical relativity based on a formulation of Einstein field of these systems are not well understood. This is a major
equations as a hyperbolic system of balance laws. This wagason why numerical relativity has proved much more dif-
an extension of previous results which were derived origificult than, say, computational fluid dynami€¢€FD). For
nally in a particular gaugéharmonic slicing [2], but in[1]  example, without novel approaches, such as apparent horizon
we showed how to enlarge this to a broad family of slicingboundary condition$6,7], black hole spacetimes, could not
conditions, including the most commonly used choices inpreviously be evolved beyond abaist 150M [8,9] without
numerical relativity. The application of this formalism to codes crashing due to the inadequacy of the numerical meth-
practical problems requires a more detailed description andds being used. Worse yet, in interesting cases where black
discussion, which is the aim of the present work. In this firstholes(i.e., horizon$ do not seem to form, yet where singu-
follow-up paper we describe the formalism in much morelarities may be developing, similar problems cause codes to
detail than before, and describe broadly the kinds of numeribecome very inaccurate and crash even much eddi@y
cal methods that are applicable to such a system of equareventing a full exploration of the spacetime. If special nu-
tions. In future papers in this series we will provide detailedmerical methods could be developed specifically for the stan-
numerical examples in one dimensi¢hD) and 3D, with  dard formulation of the Einstein equations, as they have been
comparisons to other formalisms and standard numericdbr decades in CFD, presumably these problems could be

methods. treated properly. However, this would be a formidable un-
There are numerous motivations for this new formulationdertaking. On the other hand, we have managed to write the
of the equations. equations in a form which can take advantage of this vast

(i) Numerical methodgFirst, standard numerical methods knowledge of humerical methods applied to systems of con-
for evolution systems, such as flux conservative balancservations laws, and their numerical properties, developed
laws, have been developed specifically to treat only certaifor CFD. With this new formulation one can now apply
systems of equations, and only for these systems are theinany standard methods.g., the genuine MacCormagk?]
numerical properties well understood. The standardnethod for anychoice of lapse and shift. This already offers
Arnowitt-Deser-Misne(ADM ) formulation of the equations new possibilities for evolution schemes. But for a wide fam-
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ily of lapse conditions, the system is furthermbngerbolic  time function. It does not mean that one can naively pre-
meaning here that one can find a complete set of eigenfieldscribe it by a local relationship with dynamical quantitias
with real eigenvalues for the system of equations. This proene does with the lapse when choosing, for instance, har-
vides a framework for developing a much deeper knowledgenonic slicing, because this would turn the shift into a dy-
of the system of equations, its characteristic fields and theinamical quantity and then the hyperbolicity of the complete
speeds, and also brings a variety of more advanced numericsystem would hold only for some specific choices. We will
methods[e.g., so-called total variation diminishin@VvD) instead keep the shift as a purely kinematical degree of free-
scheme$13]] that exploit this knowledge at the finite differ- dom which can be adapted to every specific problem. This is
ence level. In CFD this knowledge is crucial in treating thea subtle, but important, point that will be discussed further
kinds of large gradients and “shocklike” features that canbelow.
also develop in strongly gravitating systems due to gauge or In order to cast the evolution system into first-order hy-
physical effects in the Einstein system. We will give ex- perbolic form, we introduce three extra dynamical quantities
amples of these possibilities below. V; with evolution equations provided by the momentum con-
(i) Boundary conditionsSecond, in the case of slicings straint. This approach is different from the classical one,
that allow the system to be hyperbolic, the decomposition ofvhere harmonic coordinates are enough to get hyperbolicity
the system into its eigenfields can be crucial in developind19]. This is the price to pay for having an arbitrary shift,
appropriate boundary conditions. On a finite domain, boundbecause one can no longer use the three shift components to
aries have always been a serious problem in numerical relaliminate unwanted terms in Einstein equations. The gauge-
tivity. But in a hyperbolic system one has detailed knowl-independent alternative of using the three momentum con-
edge of which quantities are propagating in which directionsstraints is more adapted to numerical applications.
and also their speeds. This allows a natural identification of This use of the momentum constraints is a shared feature
radiative variables. This information is crucial in formulating in many new hyperbolic formalism£0,21. Some of these
conditions at boundaries that allow outgoing quantities td20] are variations on the idea from Choquet and Ruggeri
actually escape from the systdftoutgoing radiation condi- [22] of taking an extra time derivative to get a third-order
tions”), while providing ways to avoid generating unphysi- evolution system which can then be written into first-order
cal and unwanted signals that propagate inward from théorm. Others prefer to take an extra space derivative of the
boundaries(“no incoming radiation conditions). This is  Einstein field equation|23] to take advantage of the Bianchi
useful not only at the outer boundary, but also it may beidentities. In any case, the extra derivatives multiply the
especially important in the case of black holes where boundrumber of independent quantities to be evolved. Our ap-
ary conditions are imposed on the horiZdapparent hori-  proach, instead, uses only three extra quantities and contains
zon boundary conditions,{AHBC)]. In AHBC's, which ex-  no extra derivative of any kind. In many senses, it is similar
ploits the causal properties of the spacetime to chop oub the one recently developed by Fritelli and Rejl24].
singular regions inside the black hole, a detailed knowledge Another shared feature in all the new hyperbolic formal-
of the causal structure of the entire system of equations isms is that all of them allow harmonic slicing of the space-
very important, and can be provided through a hyperbolidime (harmonic time coordinaje This implies a local rela-
treatment. tionship between the lapse function and the space volume
(iii) Gauge modesAnother important aspect of this way element, so that the lapse becomes a dynamic degree of free-
of writing the system is the identification of gauge modes.dom. In our formalism, we generalize the harmonic condi-
For slicings that ensure hyperbolicity, not only are physicaltion to a much wider set of dynamical slicings, including the
degrees of freedom identified, which must propagate at thenes which have been actually used in successful numerical
speed of light, but also special gauge modes, which are reapplications[24,25. To be more specific, let us remember
lated to the choice of slicing, are naturally singled out. Thisthat in the zero shift case, harmonic slicing amounts to a
separation of physical from gauge effects may play an imiinear relationship between lapse and space volume element,
portant role in devising appropriate gauges or in interpretingvhereas our general case amounts to the lapse being any
numerical results. monotonically increasing function of the space volume ele-
(iv) Theoretical analysisBecause hyperbolic systems of ment. An interesting point is that this condition not only
conservation laws have been studied for many years, much ensures hyperbolicity, but also singularity avoidance. We ex-
known about their theoretical properties, the existence of satend below to our general case a previous proof for harmonic
lutions, the treatment of boundaries, the conditions undeslicing [26].
which shocks can develop, e{d4—1§. With the entire set In a recent wor27], the question of whether a dynami-
of Einstein equations now cast in this form, for a variety of cal gauge condition can introduce the so-called “coordinate
practical gauge conditions, they can be studied with thishocks” has been raised. Although our formali$tj has
body of knowledge in mind. been used for simplicity to illustrate the point, this problem
The starting point for this new formulation is the standardis inherent to harmonic slicing itself, and therefore to all
3+1 decomposition of spacetini8—5], which clearly sepa- formulations of the equations, whether they follow the ADM
rates the dynamical degrees of freedom from the gauge oneapproach, the new hyperbolic formalisfiz0,21,23, or any
the lapse functionw and the shift componentg'. In our  other formulation. The same problem has been detected even
previous Lettef1] we considered in detail only the zero shift in numerical codes based in nonhyperbolic systems but using
case just for simplicity. We complete here the presentatiomlynamical gaugef28]. More work is needed to understand
by considering the arbitrary shift case. The term “arbitrary” the implications of that effect, but in any case a way around
here means that one can prescribe the shift as a given spadhis problem is to use maximal slicif@9]. In that way one
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gets a coupled elliptic-hyperbolic system in which the gaugeEinstein’s equations can then be expressed in terms of the set
degree of freedom is elliptic so no coordinate shocks camf variables

appear due to the slicing. This could explain why codes .

based on maximal slicing are usually more robust. (o, 8" 7. Kij) ©)

A final important point in our introduction is the choice of and it can be seen that no time derivative of the lapse nor the

an evolution system. In our previous Let{dr] we consid- : ; . A
ered only the standard choice, arising from the space Coms_hlft appeatrs into the resulting system. So far this is just the

ponents of the Ricci tensd®,,. As we detail in Sec. 11 B standard 3-1 approact{3-5].

below, there is actually a one-parameter family of physicallyas \évgncagrg:?;rr” Co?zgjcerirbtggsoi \Il(v'girgg“cril\/? dueagfjme’li men-
equivalent evolution systems which are all hyperbolic for the gal y P ; P bp
ALy equations for them. In this work we shall take a com-

same gauge choices with the same characteristic speeds: ) . ;
provide the eigenvectors for all of them. Far from being a@med approach, by supposing that the shift componghts

mathematical curiosity, this choice freedom allows one to?'€ known spacetime functiorteie took them to be zero in

select the system in that family which is free from Newton- Ul Previous Letter(1] just for S|_mpI|C|tw, whereas we
ian contributions. By this we mean that the evolution of theChoose to evolve the lapseaccording to

gravitational field is a purely relativistic effect: in Newtonian (3, B9 )Ina= — aQ, (4)
gravity there is no evolution and the gravitational field can

be computed at every instant by integrating an elliptic equawhere the functior® will be given later. This form will turn
tion (the Poisson equation, which can be understood as théut to encompass many common choices of lapse.
Newtonian limit of the Hamiltonian constrajntin all but

one of the evolution systems in that family the general rela- B. Evolution systems

tivistic dynamical terms are mixed with pure Newtonian con- ) . i )
tributions. The only evolution system in which this does not The evolution ofKj; is given by a set of six evolution
happen turns out to be different from the standard one: iduations obtained from Einstein equations. For instance, the
arises from the space components of the Einstein teBggr ?f)ace compongnts of the four-dimensional Ricci tensor
and then we will call it the “Einstein system.” This is cru- - Rij can be writter{4]

cial for numerical applications either to weak field problems _ 3 2 4

or at the outer boundary of a finite difference grid. (0= Lo)Kij =~ i+ al PRy — 2K + KK = )R”]’(S)

where index contractions and covariant derivatives are with
respect to the induced metrig; , and the three-dimensional
A. Space plus time decomposition Ricci tensor constructed from the induced metric is denoted

In order to clarify the differences between the new evolu-bY ®)R;;. This set of equations, together with E@), is
tion system we propose and its predecessors, we first reviel@ken to be the standard evolution system. We shall call it in
the standard evolution system. The Einstein field equationyhat follows the “Ricci evolution system” for the set of
consist of a nonlinear system of ten second order partial difvariables(3). S _ _
ferential equations when written in terms of the spacetime 1h€ remaining four Einstein e“quanons” are constraints,
metric components,,, . In order to study the causal struc- which can be easily identified: the “energy,” or Hamiltonian
ture of this system, we will use a time coordinateo label ~ constraint
the evolution. This amounts to introducing a “lapse” func-
tion « relatingdt with the proper time interval between the
t=const hypersurfaces. _ _where ®R is the trace of the three-dimensional Ricci tensor,

_ The foIIo_wmg study depends_on the _actual choice of thisyq the “momentum constraint”

time coordinate, so that we will consider changes of the

space coordinates only. In this sense, it is clear that the lapse aGiO= K:Sk_ 3,(trK). (7)
function « is a scalar quantity and the 3D “induced metric” ’

7ij on every constartthypersurface is a tensor quantity. It is These constraint equations are first integrals of the evolution
then more convenient to write down the line element in thesystem. They are then redundant provided that they are im-

Il. THE FORMALISM

2a2G%= R+ (trK)2—tr(K?), (6)

following way (3+1 decompositiorf3—-5]): posed on the initial dat@therwise one would get unphysical
o . . solutions.
ds’=—a?dt?+ ; (dx + g'dt)(d¥ + gldt), (1) It is not often appreciated that, although it is the standard

evolution system, the Ricci syste(B) is not convenient for

where the shiftg' is related to the choice of space coordi- Many numerical applications. One way of seeing this is to

nates on every=const hypersurface. look at the space components of the Ricci tensor for a perfect
Another important tensor quantity is the extrinsic curva-fluid:

ture Kj; (second fundamental fonmof the hypersurfaces, Do, _ _

which can be expressed just as the proper time derivative of Rij=8a[(ntp)uitj+ U2Au=p)¥;]. (8)

the induced metric, taken along the normal lines: where 4 is the total energy density of the fluigh is the

pressure, andy; is its fluid three-velocity. Notice that the
(0= Lp)yij= —2aKj; . (2 second term contains a contribution from the energy of the
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fluid which does not vanish in the Newtonian limit, where first order in space, we will follow the standard procedure by
the three-velocities are taken to be small compared to onmtroducing auxiliary variables which correspond to the
and the pressure small compared to the energy density. space derivatives:

This means that the syste®) has a Newtonian contribu- : .
tion from the energy density which, allowing for the energy Ac=ddna, By=1208', Dyj=1/20y;. (12)
constraint(6), is to be compensated with other Newtonian ) ] )
contributions in the geometry terms. This situation can beVote that the shift components are given at every instant so
very inconvenient either in “post-Newtonian{moderately ~ that the space derivativé are known. The evolution equa-
relativistio scenarios, where the small relativistic evolution tions for the remaining quantities can be obtained by taking
effects can easily be masked by the truncation errors of théhe time derivative of Eqi12) and interchanging the order of
larger Newtonian terms, or even in strong field scenario$pace and time derivatives:
where it can be difficult to preserve the constraints at the

boundaries. A+ a — B'A+aQ]=0, (13
To remedy this problem, let us note that an evolution .
equation plus a constraint leads to another evolution equa- Dyij+ ol — B'Dryij + a(Kjj —s;)]=0, (14)

tion. Using the relation
where we have used the shorthand

WR; =G — 1/2(— a®G%+1tr G)y;j , 9
1 1] ( a )y'] ( ) Sij:(Bij+Bji)/a’ (15)
where we have noted B=1v"G;;, we will combine the

energy constraints) with Eq. (5) to cancel out th& term, and for notational convenience, we have also written

obtaining a different evolution system, Bij=iBj, even thougtB;; is not a tensor quantity.
Note that we have used here the ordering freedom of
(0= Lp)Kij=—ajj+ a[<3>Rij _2Ki2j +trKK;; — G space derivatives in a different way than we did in our pre-

vious Letter[1], where Eq.(14) was written as
— alby; [P R—tr(K?) + (rK)?— 2trG],

(10 ODyij+ o[ — B'Dyij+ a8 (Ki; —si)) ]

N . . =(2By— a trsé)D,;; . 16
which is equivalent to the one arising from the space com- (2B D (16
ponentsG;; of the Einstein tensor. o , The present choicél4) is more suitable for numerical

We shall call it in what follows the “Einstein evolution appjications when the shift does not vanish, as it does not
system.” The matter terms in the perfect fluid case can bgniroduce extra sources. The same criterion leads us to write
computed now from down Egs.(2),(4) as

Gij=8m[(u+p)uiuj+pyijl, (11 ayij=—2a(Kj;—s;j) +2B Dy,

so that they vanish in the Newtonian limit. This “Einstein
system” has been found to be useful in tests of hydrody-
namic evolutionf11], but it is important not only in the mat-
ter case. The use of the Einstein systeif) turns out to be
very important to obtain the long term evolution for a
vacuum1D plack h_oIe that we pre_sgnted in our previous atu+(9kF‘iu=S,u, (18)
Letter, and will be discussed in detail in a future paper in this

series. _ where the vectou displays the set of variables and both
The two systems5) and(10) are not equivalent: they can, «qxes” FX and “sources”S are vector valued functions.

in principle, have different solutions. However, the physicalg,,, goal will be write the entire system of evolution equa-

solutions(the ones verifying the constraintare common 10 iong'in this form. We introduce the additional quantities
both systems. Physics is not affected, of course, but the

mathematical structure can be modified by the choice of the V.=D' —D". (19
evolution system among the infinitely many combinations of ' " "

the _Ricci system with the energy and/or momentum conypere again even though tli&;, are not components of a
straints. As we have suggested that the use of the enerq¥nsor, we raise indices in the usual way with the three-
constraint is important for accuracy, we will see below thatatric y:i . Then after extensive manipulation the evolution
the use of the momentum constraint is crucial to ensure hyéquationjs for the extrinsic curvature componédBjscan also
perbolicity[22,2]. This providesa posterioria good criterion  pa put in the first-order balance law form given by Etg).

for choosing a particular evolution system among the many Tnhis almost completes the system, for which the nonzero
possibilities. fluxes are

aln a=—aQ+B'A;. a7

So far, Eqs.(13)—(17) have been written in a first order
balance law form

C. A first-order evolution system FKA:=—B'A +aQ, (20

The evolution system&b),(10) are first order in time, but « .
second order in space. To obtain systems which are also of FZDyjj=—B'Dyjj + a(Kj; —sj)), (21)
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|:'<_Kij - —BkKij + a[Dikj - n/2kaiJ- + %5:((Aj +2V;-D}) so that the cqnditio_l(\19) can now be considered as an alge-
braic constraint which will hold if and only if the momentum
+ %5}((Ai+2Vi— DI, (22)  constraint is satisfied. This is the key point to get a hyper-
bolic system, and it has nothing to do with the coordinate
where the free parameter allows one to select a specific gauge: it is just making a free use of the momentum con-
evolution systenit is zero for the Ricci system and one for straint, a feature which is shared by other recent hyperbolic
the Einstein systejn The nonzero source terms are thoseformulations[20,21. The conditions under which this sys-
appearing in Eq(17) and tem is actually hyperbolic will be given below, along with
the explicit eigenvectors and eigenvaluésharacteristic
S-Kjj :Z(KirBHKirBir_KiiBrr')+“{_(4)Rii _ZKikKkJ speed}szmd thegdiagonalized syste?n. o

+trKK;; =T KT} + 2D}, Dy + 2D, DI + T T

K ; ; K D. Invariant algebraic slicing

Before we can complete our analysis, we need to know

—1/2DK) —NnVXD i+ n/dy;[ — DT K+ D} DE° how the “slicing source function"Q, and how the shift
‘ ) 5 50 vector 8', depend on the fields to be evolved. We will use
—2VKA+tr(K?) — (trK)?+ 22°G™}. (23 the lapse function degree of freedom to specify a time coor-

: . . dinate, which amounts to specifyirf@. This will be done by
wiIISl?ef?/;\llivdefB?\z/; acf;ilﬁvgdcﬁ (ggézni_eelg\év deLTﬁuzt:gg dWh'd}elating the lapse to the space metric coefficiédigramical
y gaug P y lapse, but keeping the freedom of choosing arbitrary space

this is sor_nething useful, as many numerical methods, .SUCh Toordinates on every slicgkkinematical shift. We will de-
the genuine MacCormack scherf&?], have been devised mand then our lapse to be an algebraic condition, invariant

E)L?t)ltlr?ilgyb;?;r?ggTasv?%frtr?mét:gnp%z;ﬂg;g SprI];tae rt:;th\ggh ur_1der any transformation of the space coordinates on every

like MacCormack, which was désigned to treat not only theSIICe' We must use _then scalars, suphxaQ, trK and their

time evolution bu't also the fluxes and sources, in a specifi roper time derlvgtlvgs. If we restrict ourse_lv_es to scalars
' ' ontaining no derivatives of the metric coefficients, we can

way. Previous applications of a “MacCormack-like play only with « and we get either a “geodesic slicing”

method, as in Ref8], used only the time evolution part of : o o .
this scheme Ieaang] the mostyimportant spatial paprt of thé.azconst) or one of its generalizations. This is too restric-

. . ive, as we will see later. If we allow also for first-order
system to be treated without regard for the particular Strucaerivatives of the metric, we have al€ and tK at our
ture of the equations. '

. .. _disposal. As we have seen in the previous section, the prin-
However, as important as the balance law formulation is

additional benefit could be gained if the system would betIpal part of the evolution system is quasilinear, so let us

actually hyperbolic. This means that the entire system O%ake a generic quasilinear homogeneous condftign

balance law equationd8) can be diagonalized, with a com- Q=f(a)trK, (26)
plete set of eigenvectors with real eigenvalues. This is not

yet the case, mainly because of the combinati@3 arising wheref is an arbitrar :

: I . y function.

n Fhe qu>§ ter.ms(ZO}. They COUIQ be ellmlnated_by a swtab!e The geodesic slicing is then included as a subcase with
shift choice (imposing harmonic space coordinates, for iN-¢_0 Thef=1 case corresponds to the “harmonic slicing”

st_ance, but we prefer to deal with an arbitrary shift and we [22,2€ (the resulting time coordinate is harmoniénother

W'"T'rj]m(t:ﬁed in a (z;_ﬁert_ent Wgy];. db 9 . interesting case is the “%log” slicing [24,25, obtained
€ three combinations detined by HA9) are VErY 1" \whenf=1/e; it mimics maximal slicing near a singularity,

teresting quantities. One can actually compute their time de\ivhen the lapse collapses to zefblere we have considered

rivative from Eq.(14) and make use of the momentum con- . .co\ .1 1 |n(,/5). which differs slightly from that con-
straint, (7) to obtain for these three combinations evolution _. . . : .
sidered in[24,25. Both cases are included in this class of

equations of the balance law for(h8) with

slicings]
FkV.:_IBkV._i_B.k_B.k The slicing condition(26) can be integrated in normal
- o coordinategzero shifi to obtain, up to some integration con-
S_V,=a[aGl+A, (K —trk &)+ K{(DS —2D%) stant,
—K{(D}%—2Dg)]+2(B{— 5trB)V, Vy=F(a), (27

S _ sSPi r
+2(Dy 5'SD”)BS' (24) whereF is an arbitrary function. This shows the generality of
Then one can relax the algebraic conditid®) and consider this condition, which is somehow hidden in its invariant
V; as a set of supplementary independent quantities to piorm (26): , . o
evolved according to their evolution equatid@d). The vec- The widely used maximal slicin3,29] (trk=0) is in-
tor arrayu representing the independent quantities satisfyingluded also as a limiting case whéndiverges(F is con-

the balance law equatiori&8) will then contain the 37 func- Stan}. Itis a very special case because the lapss given
tions by an elliptic condition, so that the evolution system be-

comes a coupled hyperbolic-elliptic system. Moreoveis
u=(a, vj, Kij, A, Du, Vi), (25 no longer related to the space volume elemépt(which is
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actually constant in the zero shift casnd the recent dis- The causal structure of a first-order system is given by its
cussion of “coordinate shocks[27] does not apply to maxi- principal, or transport, part. The source terms contain no
mal slicing. space derivatives, so that the principal part is given by the

It is worth studying the behavior of the slicings defined byflux terms
Eq. (26) when the space volume elemeyty goes to zero. K
This will be a singularity of the slicing, but it is more con- du+gF-u=0. (32)
venient to view it in an equivalent way, as a singularity of
the congruence of time lines normal to the slicing, so that wdn this kind of analysis it is essential to write the entire sys-
can use the integral forrt27). Let us suppose that this sin- t€m so that the source terms contain no derivatives of the
gularity occurs after a finite proper time interval away fields. Otherwise, by manipulating the flyderivative and
from our initial time slice. The elapsed coordinate time will Source terms one could apparently change the causal struc-

be given by the integral ture of the system at will. We can consider the transport part
separately by splitting the evolution described by ELB)
s dT into two separate processes: the first one is the transport pro-
At= Jo PR (28 cess described by E(32), and the second one is the sources

contribution, given by the following system ofdinary dif-

so that an obvious necessary condition for singularity avoid¢férential equations
ance is that the lapse function vanishes before or at the sin-
gularity (lapse collapse because otherwise the integfaB)

will be finite and this means that the singularity will be ) - S .
reached in a finite coordinate time. This conceptual splitting can be easily implemented in

If the lapse vanisheflapse collapseat 7,< 7., the slic- numer_ical applications. If we note tﬁ(_At) th_e numerical
ing is said to have a “limit surface” and it stops before €volution operator for systerfl) in a single time step, we
reaching the singularity: this happens for instance with maxi9€t that, up to second-order accuracyAiy
mal[30] or *‘1 +log” slicing. If the lapse vanishes precisely
at o= 17, singularity avoidance would mean that the im-

proper integral(28) diverges(one does not reachg in a . .
finite time). One can obtain a sufficient condition for singu- WhereT, S are the numerical evolution operators for systems

larity avoidance for “focusing singularities26], that is (32 and(33), respectively. This is known as “Strang split-
when the space volume element vanishes at a bounded raf9” [31.

du=S_u. (33

E(At)=S(At/2) T(At)S(AL/2), (34)

so that Note that, according to Eq17) the evolution equations
for the lapse and the induced metric have no flux terms. This
|0, =|F'(a)d,al, <B (29 ~ Mmeans that we can regard the transport step as the propaga-
s s tion of a reduced set of 30 quantities:
and it is clear that if we assume strict monotonicityFofat _
the singular point u=(Kij, A, Dy, Vi) (39
IF'(@)|, #0 (30) in an inhomogeneous “background.” The E®2) is linear

in the quantitieg35), and this is a key point in what follows.
his means thaduring the transport stethe “background”
uantities, which evolve according to E®3), are fixed.

The standard procedure for studying the causal structure
of first-order systems starts by choosing a fixed space direc-
tion. Only space derivatives along this direction will be con-
sidered, so that the resulting system is actually one dimen-
sional. This procedure does not match the usual one for
second order equations, where there is no need for choosing

that would imply that the lapse itself vanishes at a bounde
rate

0,0, <B, (31

and the improper integrdP8) would not converge: the sin-
gularity cannot be reached in a finite coordinate time. It fol-

lows that focusing singularities are avoided by strictly mono-; yyinri a direction and all derivatives are dealt with simul-

tonic choices of F, such as the ones that ensureiyneqysly. The first order formalism, in contrast, allows one
hyperbolicity, as we will see below. to treat one direction at a time, and this “locally one-
dimensional” (LOD) approch is useful both for theoretical
E. Causal structure of the evolution system analysis and numerical applications.

In what follows we will analyze the causal structure of the L€t US begin our LOD analysis by taking for instance our
set of equations we have derived. It will turn out that underSPace direction along the* coordinate axis. ‘We will then
certain conditions, the system is hyperbolic, allowing a betteneglect all fluxes along the other directior. It follows
understanding of the theoretical properties of the system thdbat, apart from the background metric coefficients, the 14
also permits yet more powerful numerical methods to bequantities
applied to the Einstein equations. In this section we consider
the shift vectorB' as a known function of spacetime. In the A D (i,j=1,2 X" #K) (36)
next section we discuss the shift and its effect on the system
more fully. have no flux along the* direction, so that they are charac-
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teristic fields propagating along the time linggro charac- can be written as a system of 16 one-dimensional advection
teristic speefl Propagation along time lines is much more equationgno sum ink):

convenient for numerical applications than propagation
along normal linegspeed— B*) as we had in our previous Fk vk FK vk

Letter [1]. [As we will see below, propagation along time Eky Ek v
lines can be treated by methods for ordinary differential K K
equations(ODE’s).] They only coincide in the zero shift F- Kir FZKixr
case. A F¥ Dy +Ad, FDyiw | =0, (37)
Rather than studying the transport properties of ulse |:k_K[ F‘iK[
the evolution of the remaining 16 quantities is more easily kA SN
studied by taking theifluxes(20) to be the basic quantities. F'Z DT F; Df
—=kr —=kr

Hence we rewrite the LOD transport equations using the
fluxes along the selected directiah as the basic quantities.
We find that(the principal part of the resulting equations whereA is the characteristic matrix of this reduced system

— X 0 0 0 0 0 0
0 - 0 0 0 0 0
—NRayy ask —pX ay* 0 0 0
A= 0 0 a - 0 0 0 (38)
(2-3n/2)a O 0 0 -85 ay o0
0 0 0 0 af -8 0
0 0 0 0 a 0o —pgK

Its eigenvalues are then the “characteristic speeds.” Thevard or backward along the selected direction. Suppose, for
corresponding right eigenvectors are the “characteristidnstance, that one is using a 3D Cartesian finite difference

fields.” grid with vanishing shift at the outer boundaries. It follows
Let us list the 16 characteristic fields associated with Egthat the five combinations one gets from E&9) by using
(38): the plus (respectively minus sign are entering the grid

The three quantitiesF*V, plus the single quantity through the lef(respectively rightouter boundary along the
F* A,—fFX DY, , which propagate along normal linéspeed x* direction. The same thing happens with the gauge combi-

- BY). nation (40). This information should be very valuable when
The ten combinations devising boundary conditions, as we will show in a future
publication.
F¥Kir = VYMFE Dy + (8FX Vi — /2y FX VK 194K, The very existence of “gauge speeds” is a remarkable

(390  result. One is used to thinking that light cones are enough to

. ) determine the causal structure of spacetime. This is true if we

which propagate along light conéspeed— B+ ¥, re-  refer only to the invariant features. But the evolution system

spectively. o evolves spacetime together with the coordinate system we
The two combinations are using to label itthe dynamical lapse in our casd-or

instance, maximal slicing is associated with an infinite gauge

VIFEK = \/;FR[FKAK+(2_3”/2)FI(—VI(/7KK] (40) speed(as it must be, because both the lapse and its deriva-

which propagate, respectively, with the gauge—dependerﬂv.es are provided by an e”'Pt'C leguatll)oﬁl'h(.ase consider
K o ations single out the harmonic slicing, in which gauge cones
speed— B+ fy** (“gauge speed). ; S . S
. . L ._.._and light cones do coincide. This further degeneracy simpli-
A system is said to be hyperbolic if all the characteristic,. . o !
fies the causal structure of spacetime, but it is just accidental

speeds are real and_the characteristic m_atr_ix can be fUIIde we see no reason to overlook the richer structure that
diagonalized(see for instance Refl18]). This is our case . ;
arises in the general case.

provided thaff >0 [note that iff =0, as in the geodesic case,
the last combination(40) contains only one independent
guantity and the set of eigenfields is no longer complete
Gauge speed coincides with light speed only in the harmonic The balance law evolution equations for the entire set of
case (=1). It becomes infinite for a maximal slicing, which variables(25) is valid for any choice of lapse functiomand
can be considered as a limiting case of our conditif). shift vector8' whatever. In the analysis of the causal struc-
The advantage of having a hyperbolic system is that weure, we considered very carefully the effect of the choice of
know now explicitly which combination is propagating for- lapse, and showed that for a large family of conditions, the

F. The role of the shift
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system is actually hyperbolic. But so far we have said little Ill. NUMERICAL METHODS

about the shift, treating it as a given spacetime function. In In this section we describe in broad terms the kind of

to the discussion of the causal structure of the system, exCep§stein equations. We will defer a detailed treatment, com-
through its connection with the eigenspeeds of the other varkiete with numerical examples, to future publications. In the

ables. _ o . o _ previous sections, we have reformulated the evolution equa-
However, in practice in numerical relativity, the shift is {ijons as a first-order system of balance laws, valid for any
not prescribed ahead of time as a known function of thechoice of lapse and shift, without taking any additional de-
spacetime coordinates. Instead, one wants it to respond to thgative. This allows one to use standard numerical methods
dynamics of the system, and it is usually related in somérom computational fluid dynamics: Lax-Wendroff, stag-
explicit functional way to the metric and extrinsic curvature gered leapfrog, MacCormadi81]. We have also seen that
variables themselves. If the shift is taken to be some explicifor some choices of the lapse function the evolution system
function of the other fields, and introduced to the system in as hyperbolic, so that we can use more advanced numerical
way that it changes continuously as a dynamical variablemethodq18] and have better control at the boundaries, as we
this could affect the causal structure of the system. In thigvill see below.
case, one would need to substitute this prescription into the To obtain a finite difference version of our equations, one
complete system and analyze the causal structure on a ca&an use the numerical splitting approach as we outlined
by case basis. In all cases, the equations are still valid, but £Pove[see, e.g., Eq34)]. This has many advantages, which
far as the causal structure is concerned, for some cases tW¢ summarize here: .
eigenfields and eigenspeeds could change, or the hyperbolic- The nonlinear terms in Einstein equatioftise ones con-

ity itself could be broken. This statement should be true fof@iNing products of first derivatives of the melriappear

any formulation of the Einstein equations. A careful analysisOrlly in the sources .Ste(133)‘ n the form of a _coupled system
ordinary differential equations. In numerical tests we have

of many such cases, where the shift is considered as a trljc)filscretized this part using standard predictor-corrector or
dynamical variable, has been carried (82—34. P g P

On the other hand, the shift need not be considered as modified midpoint method$31] to second-order accuracy,

q ical able of th ¢ One is free to ch dithough many prescriptions are possible. Note that this
ynamical variable of the system. One IS iree 10 thoose lh;oq gne the possibility of using methods for stiff ODE's if
any time as one likes. For example, on a given time slice on

L : : e source terms behave in this way.
could prescribe it to be any arbitrary function of the other o remaining termghe principal paitare in flux con-

fiele in the system,. and hpld this fixed as long as one 'ﬁkefSServative form (32). This allows us to apply the high-
While the other variables in the system evolve, the shift isresolution methods which have been developed for compu-
held fixed in time. Then the shift has no dynamics, and cantational fluid dynamics. We have discretized that part using a
not affect the causal structure of the system. On a later timgecond order TVtotal variation diminishingmethod[18],
slice, one may again choose the shift freely, and then coralthough again many possibilities could be examined.

sider it to be fixed for the next period of evolution. In fact, ~We can tailor the shift to fit our needs by choosing any
one can do this as often as one likes, say on every time slicgrofile just after every sources step, but keeping it constant
However, it is crucial to point out that this motthe same as  during the whole transport stépfrozen” shift). This allows
having a dynamic shift that can affect the causal structure off course an explicit prescription of the shiftte have used
the system. In the latter dynamic case, the shift changes coffer instance a parabolic shift profile to track the horizon of
tinuously as the other fields evolve. In the case we are conlD black holes But this also allows an indirect prescription,
sidering, which we could call a momentarily “frozen shift,” as it can be done for instance via the solution of some elliptic
the evolution of the fields idecoupledrom the development €quation(minimal distortion shift, or similar conditionsex-

of the shift, and vice versa. During the evolution of the fieldsactly in the same way we do when imposing the maximal
the shift has no dynamics, and is a known function of space‘?“c'”g condltlor} for the !apse. The key point is that the shn‘t
This is a subtle, yet crucial point. It is not merely a point of MUSt be kept fixed during the transport step, as described
view, but a key practical point to be made. The shift can b bove, or else the analysis of the eigenfields would have to
chosen in this way on every time step, but in the process o € redor_1e. . . .

evolving the fields from one time step to the next it must be AI_Iowmg fo_r Eq. (17) and the previous considerations, the_
regarded as a fixed function. Note that we can not say thmetrlc coefficients dp not evqlve in the transport step. This
same about the lapse, because this will amount to drop o eans that we are just evolving now the reduced set of dy-

the lapse derivatives, [their fluxes in Eq(37)] from the list thaergleczlu\;?lrﬁtélse:sé%) and the principal parts2) is finear in
of dynamical quantities. This means that we should then sup-

press the corresponding row and column in the characteristic

matrix (38), that will no longer be diagonalizable. F u=Akx)u. (41

As in this treatment the shift is a known function of space

for all evolution steps, t_h_e previ(_)us analysis of the _causa{Ne can then describe the transport step by writing (88)
structure and hyperbolicity carries through fail shift in the form

choices one cares to make on all time steps. However, this

treatment has certain numerical consequences that will be

considered in the next section. du+ [ AX(x)u]=0, (42
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because the metric coefficients contained in the maAfix These are two-step algorithms. In the first step, one must

are time independent in the transport step. The resultingompute the fluxes at the “interface pointX;.q, at the

equation(42) can be then interpreted as a transport equatiointermediate time level”* %2 to a given accuracywe will

in an inhomogeneoudut fixed background. The alternative use first order The final step44) improves the overall ac-

form (37) for the evolution of the fluxe$41) follows then  curacy by one ordefwe get then second-order overall accu-

easily. racy). The time step is limited by the causality condition
The complete numerical details of 1D and 3D codes de{also known as Courant-Friedrichs-Lewy conditipd1]),

veloped to solve these equations with a variety of advancedhich states that the maximal speed in the numerical algo-

methods will be given elsewhere. It is our purpose to outlineithm is justAx/At (one grid point at a time providing an

all details necessary to understand both theoretical and praapper bound to the time steft to ensure that this speed is

tical aspects of our approach, and to provide some simplgreater than the characteristic speeds.

examples of its power. In order to compute the interface fluxe$; /2, we will
Before moving to more specific application in the 1D take advantage of the fact that, allowing for H42), the

case, we further discuss an important numerical aspect of theansport equatiof43) can be written as

treatment of the shift. As we have stressed, the equations we

have presented are valid fany choice of lapse and shift, dF+A(X)dF=0, (45)

and a host of numerical methods may be applied as de- ) ) )

scribed. For applications where hyperbolicity is important, itWhich is the one-dimensional version of the system of advec-

is clear that the system is hyperbolic for a certain family oftion equations(37). This means that the eigenfields of the

slicings and a given spacetime function of shift. Further-characteristic matrixA (38) propagate along characteristic

more, any prescription for the shift, even if it is explicitly a lines in either the forward or backward direction, depending

function of the fieldsu and their derivatives, can preserve ON the sign of their characteristic speed. The fluxes can be

hyperbolicity if the system is treated appropriately by hold-first evaluated at every grid point, and then the diagonal

ing the shift fixed during the transport step. comblnatlons(_Le.,_ the eigenfieldsare computed. _Th_ese di-
The numerical implication of this treatment is important, @Jonal combinations are propagated to the grid interfaces,

It means that if hyperbolicity is desired, in some cases thé/Sing Eq.(45), and inverted there thr(/)ugh the diagonaliza-

shift may only be enforced numerically in a first-order way tion process to compute the fluxgg; ;5 that we will need

during the evolution. For example, in a method that requireén the second stept4).

a prediction and correction of the fields during the transport There are many ways to propagate the diagonal fluxes.

step, the shift must remain decoupléiked) during both  Let us consider for instance a diagonal flExwith positive

steps. Hence although the fields may be evolved forward igharacteristic speexl. Let us decompose the resulting inter-

time in a second-order way, in our present scheme the shifece flux as

itself is not necessarily implemented to second-order accu- nt12

racy in time. This issu@nly arises if one exploits informa- i+12=Fitai, (46)

tion about the eigenfields in the actual numerical implemen-

tation. For example, in a MacCormack method, which does® thatF{‘_wouId be the zero-order prediction aigives
not make use of hyperbolicity, this is not an issue, nor is it anthen the difference between the zero and first or higher order

issue if the shift is a given spacetime function. The ConVer_(—:-stimates. Different values will lead to different methods,

gence properties for complicated examples, where the shift i§UCh as the Lax-Wendroff method,

prescribed as an explicit function of the fielgsy, minimal 1 At
distortion shif§, and where knowledge of hyperbolicity is 5iLW:_(1_)\ _)(Finu_':in) 47)
used in the numerical methods, will have to be investigated 2 Ax

fully in the f . .
carefully in the future or the Beam-Warning method,

A. The one-dimensional case SBW_ stW _ 1
i T9%-175

At
1=\ A_)(Fin_':inl) (48
Let us further illustrate the advantages of our formulation X
by outlining numerical methods In t_he one-dlmen§|onal CaS€ind we see that, up to a facta¥, is a measure of the flux
The 3D case can be handled similarly by directional spht-SIO e at the upstream arid poixt
ting. To label the values, we will use a superindex for the P P gnd pomy.

. ; . o One can choose a slope which is a nonlinear average of
time level and a subindex for the grid position. For the trans- : : . .

. the two one-sided linear estimates; namely,
port equations

U+ d,F _u=0, (43) s=minmod s, o). (49)

which corresponds to the “minmod” averadgist discard
we can then use flux-conservative numerical methods of ththe steepest slopeThis leads to the “monotonic upstream-
form centered” (MUSCL) algorithm, which is very robust and
easy to implement. Unlike the Lax-Wendroff or Beam-
Warning methods, it has the TVD properfit8], which
u-”*lzu-”——t (FM+12_pn+is (44) means that no spurious numerical oscillations can appear
' PAx T2 s during the transport step, and this proves to be very conve-
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nient in black hole codes, where large gradients arise near T(At/2)S(At/2) (52)
the horizon. We will show examples in a future publication.
B. Boundary conditions and the values" " provide a consistent first order approxi-

mation of the complete equatidsource terms includedat

The main problems with boundary conditions are consis- 7>

tency and stability. Hyperbolic systems show here one o
their main advantages, because they allow a complete analy-

sis of the information flow at the boundary. One can actually

compute the characteristic fields at every boundary and sepa- IV. CONCLUSIONS

rate them into wo sets: either ‘Ucoming or _outgoing_ ONES.  \ve have extended the discussion of our previous Letter
Boundary conditions should provide external information forOn a new hyperbolic formulation of Einstein’s equations for

:(pcigmlng ];';ISS _only. Imposmgdagy C%nd't'(.)n 0rt]).l(.)mgo'nlgdnumerical relativity. The equations have been cast into a flux
lelds would be inconsistent and boundary instability wWould.nseryative system of balance laws that is valid doy

arise in the code. In this sense, an “outgoing radiation” con-¢ nice of lapse and shift. This formulation allows one to use

ditio_n shoul_d _be”underst_ood and i”.‘p'em?”te(_’ as a "no Ny merical methods such as those of MacCormack, Lax-
coming radiation” condition for the incoming fields.

. Wendroff, and others. We further showed that the system of
The second-order accurate operator split{igg) that we y

i res bound diti be | q equations ishyperbolic meaning that its characteristic ma-
are using requires boundary conditions to be imposed on thﬁix is fully diagonalizable with real eigenvalues, for a wide

transport step onlythe sources step is made of ordinary \ ariety of lapse conditions, including most of those com-
differential equations This is why we have chosen the or- ,qny ysed in numerical relativity. This hyperbolicity can be
dering given in Eq(34) instead of maintained for arbitrary shift choices, provided that care is
E(At)=T(At/2)S(A)T(AL/2), (50) taken in the numerical implementation during the transport
step of the evolution scheme.
which would require to impose boundary conditions twice on ~ This hyperbolicity of the system can provide many addi-
a single time step. tional benefits, including the application of a large body of
The natural way to impose boundary conditions in the twonumerical methods that make use of the eigenfields and their
step schemeg44) that we are using for the transport part is characteristic speeds. Such methods have been crucial in hy-

by prescribing the fluxeE"* Y2 of the incoming fields at the drodynamics, where large gradients develop, and should find
outermost interfaces application in numerical relativity as well. We sketched in a

general way how some of these methods can be applied to
our system of equations. Hyperbolicity can also provide in-
formation about the fields, their direction of propagation, and
wherei min, i max are the labels of the boundary points.  their speeds, that should prove to be very useful in devising
We have seen in the previous sections that, for evenpoundary conditions, both at horizotdHBC) and at nu-

space direction, there are six incoming eigenfields at thenerical grid boundaries. In both cases, one wants to enforce
outer boundariegfive on the light cone plus one on the that outgoing signals leave the boundary, and that no spuri-
gauge cone Remember, however, that we have three “re-gys signals come in.

dundant” quantitieS/i in our formalism, which are related to Fina”y, we showed that our system of equations can be
the metric derivatives through the algebraic equati®®,  modified by use of the Hamiltonian constraint to remove
which amounts to the momentum constraint. This allows us,umerically difficult terms in the evolution equations, while
to use the computed values of tdeto reduce the number of maintaining hyperbolicity. This leads us to propose use of
algebraically independent incoming fields at the boundary tquhat we refer to as the “Einstein” system, as opposed to the
what one could expect from physical considerations: on&tandard “Ricci” system. Detailed numerical examples of

gauge field plus two light cone fields which account for thethese ideas will be provided in future papers in this series.
gravitational radiation degrees of freedom.

One could argue that the use of the constréal® at the
boundaries is not consistent in the operator splitting ap- ACKNOWLEDGMENTS
proach, because the constraints are not first integrals of the
transport and source parts, when considered separately. This We have benefited from discussions with a number of our
is true in the generic case, but one should notice that in theolleagues, particularly Wai-Mo Suen. This work was sup-
Strang splitting we are using, E(4), we impose the bound- ported by the DirecCio General para la InvestigacicCien-
ary conditions at"**2in the transport step, so that we have tifica y Tecnica of Spain under project PB94-1177, and also
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n+1/2 n+1/2
i min—1/2» i max+1/2» (51)
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