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The causal structure of Einstein’s evolution equations is considered. We show that in general they can be
written as a first-order system of balance laws forany choice of slicing or shift. We also show how certain
terms in the evolution equations, which can lead to numerical inaccuracies, can be eliminated by using the
Hamiltonian constraint. Furthermore, we show that the entire system is hyperbolic when the time coordinate is
chosen in an invariant algebraic way, and for any fixed choice of the shift. This is achieved by using the
momentum constraints in such a way that no additional space or time derivatives of the equations need to be
computed. The slicings that allow hyperbolicity in this formulation belong to a large class, including harmonic,
maximal, and many others that have been commonly used in numerical relativity. We provide details of some
of the advanced numerical methods that this formulation of the equations allows, and we also discuss certain
advantages that a hyperbolic formulation provides when treating boundary conditions.
@S0556-2821~97!05616-6#

PACS number~s!: 04.25.Dm

I. INTRODUCTION AND OVERVIEW

In a previous Letter@1#, we proposed a new formalism for
numerical relativity based on a formulation of Einstein field
equations as a hyperbolic system of balance laws. This was
an extension of previous results which were derived origi-
nally in a particular gauge~harmonic slicing! @2#, but in @1#
we showed how to enlarge this to a broad family of slicing
conditions, including the most commonly used choices in
numerical relativity. The application of this formalism to
practical problems requires a more detailed description and
discussion, which is the aim of the present work. In this first
follow-up paper we describe the formalism in much more
detail than before, and describe broadly the kinds of numeri-
cal methods that are applicable to such a system of equa-
tions. In future papers in this series we will provide detailed
numerical examples in one dimension~1D! and 3D, with
comparisons to other formalisms and standard numerical
methods.

There are numerous motivations for this new formulation
of the equations.

~i! Numerical methods.First, standard numerical methods
for evolution systems, such as flux conservative balance
laws, have been developed specifically to treat only certain
systems of equations, and only for these systems are their
numerical properties well understood. The standard
Arnowitt-Deser-Misner~ADM ! formulation of the equations

@3–5# is much more complicated, and therefore one has to be
very careful when attempting to applyad hocvariations on
these methods to Einstein’s theory; the numerical properties
of these systems are not well understood. This is a major
reason why numerical relativity has proved much more dif-
ficult than, say, computational fluid dynamics~CFD!. For
example, without novel approaches, such as apparent horizon
boundary conditions@6,7#, black hole spacetimes, could not
previously be evolved beyond aboutt5150M @8,9# without
codes crashing due to the inadequacy of the numerical meth-
ods being used. Worse yet, in interesting cases where black
holes~i.e., horizons! do not seem to form, yet where singu-
larities may be developing, similar problems cause codes to
become very inaccurate and crash even much earlier@10#,
preventing a full exploration of the spacetime. If special nu-
merical methods could be developed specifically for the stan-
dard formulation of the Einstein equations, as they have been
for decades in CFD, presumably these problems could be
treated properly. However, this would be a formidable un-
dertaking. On the other hand, we have managed to write the
equations in a form which can take advantage of this vast
knowledge of numerical methods applied to systems of con-
servations laws, and their numerical properties, developed
for CFD. With this new formulation one can now apply
many standard methods~e.g., the genuine MacCormack@12#
method! for anychoice of lapse and shift. This already offers
new possibilities for evolution schemes. But for a wide fam-
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ily of lapse conditions, the system is furthermorehyperbolic,
meaning here that one can find a complete set of eigenfields
with real eigenvalues for the system of equations. This pro-
vides a framework for developing a much deeper knowledge
of the system of equations, its characteristic fields and their
speeds, and also brings a variety of more advanced numerical
methods@e.g., so-called total variation diminishing~TVD!
schemes@13## that exploit this knowledge at the finite differ-
ence level. In CFD this knowledge is crucial in treating the
kinds of large gradients and ‘‘shocklike’’ features that can
also develop in strongly gravitating systems due to gauge or
physical effects in the Einstein system. We will give ex-
amples of these possibilities below.

~ii ! Boundary conditions.Second, in the case of slicings
that allow the system to be hyperbolic, the decomposition of
the system into its eigenfields can be crucial in developing
appropriate boundary conditions. On a finite domain, bound-
aries have always been a serious problem in numerical rela-
tivity. But in a hyperbolic system one has detailed knowl-
edge of which quantities are propagating in which directions,
and also their speeds. This allows a natural identification of
radiative variables. This information is crucial in formulating
conditions at boundaries that allow outgoing quantities to
actually escape from the system~‘‘outgoing radiation condi-
tions’’!, while providing ways to avoid generating unphysi-
cal and unwanted signals that propagate inward from the
boundaries~‘‘no incoming radiation conditions’’!. This is
useful not only at the outer boundary, but also it may be
especially important in the case of black holes where bound-
ary conditions are imposed on the horizon@‘‘apparent hori-
zon boundary conditions,’’~AHBC!#. In AHBC’s, which ex-
ploits the causal properties of the spacetime to chop out
singular regions inside the black hole, a detailed knowledge
of the causal structure of the entire system of equations is
very important, and can be provided through a hyperbolic
treatment.

~iii ! Gauge modes.Another important aspect of this way
of writing the system is the identification of gauge modes.
For slicings that ensure hyperbolicity, not only are physical
degrees of freedom identified, which must propagate at the
speed of light, but also special gauge modes, which are re-
lated to the choice of slicing, are naturally singled out. This
separation of physical from gauge effects may play an im-
portant role in devising appropriate gauges or in interpreting
numerical results.

~iv! Theoretical analysis.Because hyperbolic systems of
conservation laws have been studied for many years, much is
known about their theoretical properties, the existence of so-
lutions, the treatment of boundaries, the conditions under
which shocks can develop, etc.@14–18#. With the entire set
of Einstein equations now cast in this form, for a variety of
practical gauge conditions, they can be studied with this
body of knowledge in mind.

The starting point for this new formulation is the standard
311 decomposition of spacetime@3–5#, which clearly sepa-
rates the dynamical degrees of freedom from the gauge ones:
the lapse functiona and the shift componentsb i . In our
previous Letter@1# we considered in detail only the zero shift
case just for simplicity. We complete here the presentation
by considering the arbitrary shift case. The term ‘‘arbitrary’’
here means that one can prescribe the shift as a given space-

time function. It does not mean that one can naively pre-
scribe it by a local relationship with dynamical quantities~as
one does with the lapse when choosing, for instance, har-
monic slicing!, because this would turn the shift into a dy-
namical quantity and then the hyperbolicity of the complete
system would hold only for some specific choices. We will
instead keep the shift as a purely kinematical degree of free-
dom which can be adapted to every specific problem. This is
a subtle, but important, point that will be discussed further
below.

In order to cast the evolution system into first-order hy-
perbolic form, we introduce three extra dynamical quantities
Vi with evolution equations provided by the momentum con-
straint. This approach is different from the classical one,
where harmonic coordinates are enough to get hyperbolicity
@19#. This is the price to pay for having an arbitrary shift,
because one can no longer use the three shift components to
eliminate unwanted terms in Einstein equations. The gauge-
independent alternative of using the three momentum con-
straints is more adapted to numerical applications.

This use of the momentum constraints is a shared feature
in many new hyperbolic formalisms@20,21#. Some of these
@20# are variations on the idea from Choquet and Ruggeri
@22# of taking an extra time derivative to get a third-order
evolution system which can then be written into first-order
form. Others prefer to take an extra space derivative of the
Einstein field equations@23# to take advantage of the Bianchi
identities. In any case, the extra derivatives multiply the
number of independent quantities to be evolved. Our ap-
proach, instead, uses only three extra quantities and contains
no extra derivative of any kind. In many senses, it is similar
to the one recently developed by Fritelli and Reula@21#.

Another shared feature in all the new hyperbolic formal-
isms is that all of them allow harmonic slicing of the space-
time ~harmonic time coordinate!. This implies a local rela-
tionship between the lapse function and the space volume
element, so that the lapse becomes a dynamic degree of free-
dom. In our formalism, we generalize the harmonic condi-
tion to a much wider set of dynamical slicings, including the
ones which have been actually used in successful numerical
applications@24,25#. To be more specific, let us remember
that in the zero shift case, harmonic slicing amounts to a
linear relationship between lapse and space volume element,
whereas our general case amounts to the lapse being any
monotonically increasing function of the space volume ele-
ment. An interesting point is that this condition not only
ensures hyperbolicity, but also singularity avoidance. We ex-
tend below to our general case a previous proof for harmonic
slicing @26#.

In a recent work@27#, the question of whether a dynami-
cal gauge condition can introduce the so-called ‘‘coordinate
shocks’’ has been raised. Although our formalism@1# has
been used for simplicity to illustrate the point, this problem
is inherent to harmonic slicing itself, and therefore to all
formulations of the equations, whether they follow the ADM
approach, the new hyperbolic formalisms@20,21,23#, or any
other formulation. The same problem has been detected even
in numerical codes based in nonhyperbolic systems but using
dynamical gauges@28#. More work is needed to understand
the implications of that effect, but in any case a way around
this problem is to use maximal slicing@29#. In that way one
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gets a coupled elliptic-hyperbolic system in which the gauge
degree of freedom is elliptic so no coordinate shocks can
appear due to the slicing. This could explain why codes
based on maximal slicing are usually more robust.

A final important point in our introduction is the choice of
an evolution system. In our previous Letter@1# we consid-
ered only the standard choice, arising from the space com-
ponents of the Ricci tensorRab . As we detail in Sec. II B
below, there is actually a one-parameter family of physically
equivalent evolution systems which are all hyperbolic for the
same gauge choices with the same characteristic speeds: we
provide the eigenvectors for all of them. Far from being a
mathematical curiosity, this choice freedom allows one to
select the system in that family which is free from Newton-
ian contributions. By this we mean that the evolution of the
gravitational field is a purely relativistic effect: in Newtonian
gravity there is no evolution and the gravitational field can
be computed at every instant by integrating an elliptic equa-
tion ~the Poisson equation, which can be understood as the
Newtonian limit of the Hamiltonian constraint!. In all but
one of the evolution systems in that family the general rela-
tivistic dynamical terms are mixed with pure Newtonian con-
tributions. The only evolution system in which this does not
happen turns out to be different from the standard one: it
arises from the space components of the Einstein tensorGab
and then we will call it the ‘‘Einstein system.’’ This is cru-
cial for numerical applications either to weak field problems
or at the outer boundary of a finite difference grid.

II. THE FORMALISM

A. Space plus time decomposition

In order to clarify the differences between the new evolu-
tion system we propose and its predecessors, we first review
the standard evolution system. The Einstein field equations
consist of a nonlinear system of ten second order partial dif-
ferential equations when written in terms of the spacetime
metric componentsgmn . In order to study the causal struc-
ture of this system, we will use a time coordinatet to label
the evolution. This amounts to introducing a ‘‘lapse’’ func-
tion a relatingdt with the proper time interval between the
t5const hypersurfaces.

The following study depends on the actual choice of this
time coordinate, so that we will consider changes of the
space coordinates only. In this sense, it is clear that the lapse
functiona is a scalar quantity and the 3D ‘‘induced metric’’
g i j on every constantt hypersurface is a tensor quantity. It is
then more convenient to write down the line element in the
following way ~311 decomposition@3–5#!:

ds252a2dt21g i j ~dxi1b idt!~dxj1b jdt!, ~1!

where the shiftb i is related to the choice of space coordi-
nates on everyt5const hypersurface.

Another important tensor quantity is the extrinsic curva-
ture Ki j ~second fundamental form! of the hypersurfaces,
which can be expressed just as the proper time derivative of
the induced metric, taken along the normal lines:

~] t2Lb!g i j 522aKi j . ~2!

Einstein’s equations can then be expressed in terms of the set
of variables

~a,b i ,g i j ,Ki j ! ~3!

and it can be seen that no time derivative of the lapse nor the
shift appears into the resulting system. So far this is just the
standard 311 approach@3–5#.

We can either consider these kinematical quantitiesa, b i

as being arbitrarily prescribed or we can provide supplemen-
tary equations for them. In this work we shall take a com-
bined approach, by supposing that the shift componentsb i

are known spacetime functions~we took them to be zero in
our previous Letter@1# just for simplicity!, whereas we
choose to evolve the lapsea according to

~] t2bk]k!lna52aQ, ~4!

where the functionQ will be given later. This form will turn
out to encompass many common choices of lapse.

B. Evolution systems

The evolution ofKi j is given by a set of six evolution
equations obtained from Einstein equations. For instance, the
space components of the four-dimensional Ricci tensor
(4)Ri j can be written@4#

~] t2Lb!Ki j 52a i ; j1a@~3!Ri j 22Ki j
2 1trKKi j 2

~4!Ri j #,
~5!

where index contractions and covariant derivatives are with
respect to the induced metricg i j , and the three-dimensional
Ricci tensor constructed from the induced metric is denoted
by (3)Ri j . This set of equations, together with Eq.~2!, is
taken to be the standard evolution system. We shall call it in
what follows the ‘‘Ricci evolution system’’ for the set of
variables~3!.

The remaining four Einstein equations are constraints,
which can be easily identified: the ‘‘energy,’’ or Hamiltonian
constraint

2a2G005 ~3!R1~ trK !22tr~K2!, ~6!

where (3)R is the trace of the three-dimensional Ricci tensor,
and the ‘‘momentum constraint’’

aGi
05Ki ;k

k 2] i~ trK !. ~7!

These constraint equations are first integrals of the evolution
system. They are then redundant provided that they are im-
posed on the initial data~otherwise one would get unphysical
solutions!.

It is not often appreciated that, although it is the standard
evolution system, the Ricci system~5! is not convenient for
many numerical applications. One way of seeing this is to
look at the space components of the Ricci tensor for a perfect
fluid:

~4!Ri j 58p@~m1p!uiuj11/2~m2p!g i j #. ~8!

where m is the total energy density of the fluid,p is the
pressure, andui is its fluid three-velocity. Notice that the
second term contains a contribution from the energy of the
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fluid which does not vanish in the Newtonian limit, where
the three-velocities are taken to be small compared to one
and the pressure small compared to the energy density.

This means that the system~5! has a Newtonian contribu-
tion from the energy density which, allowing for the energy
constraint~6!, is to be compensated with other Newtonian
contributions in the geometry terms. This situation can be
very inconvenient either in ‘‘post-Newtonian’’~moderately
relativistic! scenarios, where the small relativistic evolution
effects can easily be masked by the truncation errors of the
larger Newtonian terms, or even in strong field scenarios
where it can be difficult to preserve the constraints at the
boundaries.

To remedy this problem, let us note that an evolution
equation plus a constraint leads to another evolution equa-
tion. Using the relation

~4!Ri j 5Gi j 21/2~2a2G001tr G!g i j , ~9!

where we have noted trG5g i j Gi j , we will combine the
energy constraint~6! with Eq. ~5! to cancel out theG00 term,
obtaining a different evolution system,

~] t2Lb!Ki j 52a i ; j1a@~3!Ri j 22Ki j
2 1trKKi j 2Gi j #

2a/4g i j @
~3!R2tr~K2!1~ trK !222trG#,

~10!

which is equivalent to the one arising from the space com-
ponentsGi j of the Einstein tensor.

We shall call it in what follows the ‘‘Einstein evolution
system.’’ The matter terms in the perfect fluid case can be
computed now from

Gi j 58p@~m1p!uiuj1pg i j #, ~11!

so that they vanish in the Newtonian limit. This ‘‘Einstein
system’’ has been found to be useful in tests of hydrody-
namic evolution@11#, but it is important not only in the mat-
ter case. The use of the Einstein system~10! turns out to be
very important to obtain the long term evolution for a
vacuum1D black hole that we presented in our previous
Letter, and will be discussed in detail in a future paper in this
series.

The two systems~5! and~10! are not equivalent: they can,
in principle, have different solutions. However, the physical
solutions~the ones verifying the constraints! are common to
both systems. Physics is not affected, of course, but the
mathematical structure can be modified by the choice of the
evolution system among the infinitely many combinations of
the Ricci system with the energy and/or momentum con-
straints. As we have suggested that the use of the energy
constraint is important for accuracy, we will see below that
the use of the momentum constraint is crucial to ensure hy-
perbolicity@22,2#. This providesa posterioria good criterion
for choosing a particular evolution system among the many
possibilities.

C. A first-order evolution system

The evolution systems~5!,~10! are first order in time, but
second order in space. To obtain systems which are also of

first order in space, we will follow the standard procedure by
introducing auxiliary variables which correspond to the
space derivatives:

Ak5]klna, Bk
i 51/2]kb

i , Dki j51/2]kg i j . ~12!

Note that the shift components are given at every instant so
that the space derivativesBi

j are known. The evolution equa-
tions for the remaining quantities can be obtained by taking
the time derivative of Eq.~12! and interchanging the order of
space and time derivatives:

] tAk1]k@2b rAr1aQ#50, ~13!

] tDki j1]k@2b rDri j 1a~Ki j 2si j !#50, ~14!

where we have used the shorthand

si j 5~Bi j 1Bji !/a, ~15!

and for notational convenience, we have also written
Bi j 5g ikBj

k , even thoughBi j is not a tensor quantity.
Note that we have used here the ordering freedom of

space derivatives in a different way than we did in our pre-
vious Letter@1#, where Eq.~14! was written as

] tDki j1] r@2b rDki j1adk
r ~Ki j 2si j !#

5~2Bk
r 2a trsdk

r !Dri j . ~16!

The present choice~14! is more suitable for numerical
applications when the shift does not vanish, as it does not
introduce extra sources. The same criterion leads us to write
down Eqs.~2!,~4! as

] tg i j 522a~Ki j 2si j !12b rDri j ,

] tln a52aQ1b rAr . ~17!

So far, Eqs.~13!–~17! have been written in a first order
balance law form

] tu1]kF2
k u5S2u, ~18!

where the vectoru displays the set of variables and both
‘‘fluxes’’ Fk and ‘‘sources’’S are vector valued functions.
Our goal will be write the entire system of evolution equa-
tions in this form. We introduce the additional quantities

Vi5Dir
r 2Dri

r , ~19!

where again even though theDi jk are not components of a
tensor, we raise indices in the usual way with the three-
metric g i j . Then after extensive manipulation the evolution
equations for the extrinsic curvature components~5! can also
be put in the first-order balance law form given by Eq.~18!.

This almost completes the system, for which the nonzero
fluxes are

F2
k Ak52b rAr1aQ, ~20!

F2
k Dki j52b rDri j 1a~Ki j 2si j !, ~21!
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F2
k Ki j 52bkKi j 1a@Di j

k 2n/2Vkg i j 1
1
2d i

k~Aj12Vj2D jr
r !

1 1
2d j

k~Ai12Vi2Dir
r !#, ~22!

where the free parametern allows one to select a specific
evolution system~it is zero for the Ricci system and one for
the Einstein system!. The nonzero source terms are those
appearing in Eq.~17! and

S2Ki j 52~Kir Bj
r1K jr Bi

r2Ki j Br
r !1a$2 ~4!Ri j 22Ki

kKk j

1trKKi j 2G ri
k Gk j

r 12Dik
r Dr j

k 12D jk
r Dri

k 1Gkr
k G i j

r

2~2Dkr
k 2Ar !~Di j

r 1D ji
r !1Ai~Vj21/2D jk

k !1Aj~Vi

21/2Dik
k !2nVkDki j1n/4g i j @2Dk

rsG rs
k 1Dkr

r Ds
ks

22VkAk1tr~K2!2~ trK !212a2G00#%. ~23!

So far we have achieved a balance law formulation which
will be valid for any gauge choice~lapse and shift!. Already
this is something useful, as many numerical methods, such as
the genuine MacCormack scheme@12#, have been devised
explicitly for such a system. In particular we note that with-
out this balance law formulation, onecannotapply a method
like MacCormack, which was designed to treat not only the
time evolution, but also the fluxes and sources, in a specific
way. Previous applications of a ‘‘MacCormack-like’’
method, as in Ref.@8#, used only the time evolution part of
this scheme, leaving the most important spatial part of the
system to be treated without regard for the particular struc-
ture of the equations.

However, as important as the balance law formulation is,
additional benefit could be gained if the system would be
actually hyperbolic. This means that the entire system of
balance law equations~18! can be diagonalized, with a com-
plete set of eigenvectors with real eigenvalues. This is not
yet the case, mainly because of the combinations~19! arising
in the flux terms~20!. They could be eliminated by a suitable
shift choice~imposing harmonic space coordinates, for in-
stance!, but we prefer to deal with an arbitrary shift and we
will proceed in a different way.

The three combinations defined by Eq.~19! are very in-
teresting quantities. One can actually compute their time de-
rivative from Eq.~14! and make use of the momentum con-
straint, ~7! to obtain for these three combinations evolution
equations of the balance law form~18! with

F2
k Vi52bkVi1Bi

k2Bi
k ,

S2Vi5a@aGi
01Ar~Ki

r2trKd i
r !1Ks

r~Dir
s 22Dri

s !

2Ki
r~Drs

s 22Dsr
s !#12~Bi

r2d i
r trB!Vr

12~Dri
s 2d i

sD jr
j !Bs

r . ~24!

Then one can relax the algebraic condition~19! and consider
Vi as a set of supplementary independent quantities to be
evolved according to their evolution equations~24!. The vec-
tor arrayu representing the independent quantities satisfying
the balance law equations~18! will then contain the 37 func-
tions

u5~a, g i j , Ki j , Ai , Dri j , Vi !, ~25!

so that the condition~19! can now be considered as an alge-
braic constraint which will hold if and only if the momentum
constraint is satisfied. This is the key point to get a hyper-
bolic system, and it has nothing to do with the coordinate
gauge: it is just making a free use of the momentum con-
straint, a feature which is shared by other recent hyperbolic
formulations@20,21#. The conditions under which this sys-
tem is actually hyperbolic will be given below, along with
the explicit eigenvectors and eigenvalues~characteristic
speeds! and the diagonalized system.

D. Invariant algebraic slicing

Before we can complete our analysis, we need to know
how the ‘‘slicing source function’’Q, and how the shift
vector b i , depend on the fields to be evolved. We will use
the lapse function degree of freedom to specify a time coor-
dinate, which amounts to specifyingQ. This will be done by
relating the lapse to the space metric coefficients~dynamical
lapse!, but keeping the freedom of choosing arbitrary space
coordinates on every slice~kinematical shift!. We will de-
mand then our lapse to be an algebraic condition, invariant
under any transformation of the space coordinates on every
slice. We must use then scalars, such asa, Q, trK and their
proper time derivatives. If we restrict ourselves to scalars
containing no derivatives of the metric coefficients, we can
play only with a and we get either a ‘‘geodesic slicing’’
(a5const) or one of its generalizations. This is too restric-
tive, as we will see later. If we allow also for first-order
derivatives of the metric, we have alsoQ and trK at our
disposal. As we have seen in the previous section, the prin-
cipal part of the evolution system is quasilinear, so let us
take a generic quasilinear homogeneous condition@1#

Q5 f ~a!trK, ~26!

where f is an arbitrary function.
The geodesic slicing is then included as a subcase with

f 50. The f 51 case corresponds to the ‘‘harmonic slicing’’
@22,26# ~the resulting time coordinate is harmonic!. Another
interesting case is the ‘‘11 log’’ slicing @24,25#, obtained
when f 51/a; it mimics maximal slicing near a singularity,
when the lapse collapses to zero.@Here we have considered
the casea}11 ln(Ag), which differs slightly from that con-
sidered in@24,25#. Both cases are included in this class of
slicings.#

The slicing condition~26! can be integrated in normal
coordinates~zero shift! to obtain, up to some integration con-
stant,

Ag5F~a!, ~27!

whereF is an arbitrary function. This shows the generality of
this condition, which is somehow hidden in its invariant
form ~26!.

The widely used maximal slicing@3,29# (trK50) is in-
cluded also as a limiting case whenf diverges~F is con-
stant!. It is a very special case because the lapsea is given
by an elliptic condition, so that the evolution system be-
comes a coupled hyperbolic-elliptic system. Moreover,a is
no longer related to the space volume elementAg ~which is
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actually constant in the zero shift case! and the recent dis-
cussion of ‘‘coordinate shocks’’@27# does not apply to maxi-
mal slicing.

It is worth studying the behavior of the slicings defined by
Eq. ~26! when the space volume elementAg goes to zero.
This will be a singularity of the slicing, but it is more con-
venient to view it in an equivalent way, as a singularity of
the congruence of time lines normal to the slicing, so that we
can use the integral form~27!. Let us suppose that this sin-
gularity occurs after a finite proper time intervalts away
from our initial time slice. The elapsed coordinate time will
be given by the integral

Dt5E
0

ts dt

a
, ~28!

so that an obvious necessary condition for singularity avoid-
ance is that the lapse function vanishes before or at the sin-
gularity ~lapse collapse!, because otherwise the integral~28!
will be finite and this means that the singularity will be
reached in a finite coordinate time.

If the lapse vanishes~lapse collapse! at t0,ts , the slic-
ing is said to have a ‘‘limit surface’’ and it stops before
reaching the singularity: this happens for instance with maxi-
mal @30# or ‘‘1 1 log’’ slicing. If the lapse vanishes precisely
at t05ts , singularity avoidance would mean that the im-
proper integral~28! diverges~one does not reachts in a
finite time!. One can obtain a sufficient condition for singu-
larity avoidance for ‘‘focusing singularities’’@26#, that is
when the space volume element vanishes at a bounded rate,
so that

u]tAguts
5uF8~a!]tauts

,B, ~29!

and it is clear that if we assume strict monotonicity ofF at
the singular point

uF8~a!uts
Þ0, ~30!

that would imply that the lapse itself vanishes at a bounded
rate

u]tauts
,B8, ~31!

and the improper integral~28! would not converge: the sin-
gularity cannot be reached in a finite coordinate time. It fol-
lows that focusing singularities are avoided by strictly mono-
tonic choices of F, such as the ones that ensure
hyperbolicity, as we will see below.

E. Causal structure of the evolution system

In what follows we will analyze the causal structure of the
set of equations we have derived. It will turn out that under
certain conditions, the system is hyperbolic, allowing a better
understanding of the theoretical properties of the system that
also permits yet more powerful numerical methods to be
applied to the Einstein equations. In this section we consider
the shift vectorb i as a known function of spacetime. In the
next section we discuss the shift and its effect on the system
more fully.

The causal structure of a first-order system is given by its
principal, or transport, part. The source terms contain no
space derivatives, so that the principal part is given by the
flux terms

] tu1]kF2
k u50. ~32!

In this kind of analysis it is essential to write the entire sys-
tem so that the source terms contain no derivatives of the
fields. Otherwise, by manipulating the flux~derivative! and
source terms one could apparently change the causal struc-
ture of the system at will. We can consider the transport part
separately by splitting the evolution described by Eq.~18!
into two separate processes: the first one is the transport pro-
cess described by Eq.~32!, and the second one is the sources
contribution, given by the following system ofordinary dif-
ferential equations

] tu5S2u. ~33!

This conceptual splitting can be easily implemented in
numerical applications. If we note byE(Dt) the numerical
evolution operator for system~18! in a single time step, we
get that, up to second-order accuracy inDt,

E~Dt !5S~Dt/2!T~Dt !S~Dt/2!, ~34!

whereT, S are the numerical evolution operators for systems
~32! and ~33!, respectively. This is known as ‘‘Strang split-
ting’’ @31#.

Note that, according to Eq.~17! the evolution equations
for the lapse and the induced metric have no flux terms. This
means that we can regard the transport step as the propaga-
tion of a reduced set of 30 quantities:

u5~Ki j , Ai , Dri j , Vi ! ~35!

in an inhomogeneous ‘‘background.’’ The Eq.~32! is linear
in the quantities~35!, and this is a key point in what follows.
This means thatduring the transport stepthe ‘‘background’’
quantities, which evolve according to Eq.~33!, are fixed.

The standard procedure for studying the causal structure
of first-order systems starts by choosing a fixed space direc-
tion. Only space derivatives along this direction will be con-
sidered, so that the resulting system is actually one dimen-
sional. This procedure does not match the usual one for
second order equations, where there is no need for choosing
a priori a direction and all derivatives are dealt with simul-
taneously. The first order formalism, in contrast, allows one
to treat one direction at a time, and this ‘‘locally one-
dimensional’’ ~LOD! approch is useful both for theoretical
analysis and numerical applications.

Let us begin our LOD analysis by taking for instance our
space direction along thexk coordinate axis. We will then
neglect all fluxes along the other directionsxk8. It follows
that, apart from the background metric coefficients, the 14
quantities

Ak8 ,Dk8 i j ~ i , j 51 ,2 ,3k8Þk! ~36!

have no flux along thexk direction, so that they are charac-
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teristic fields propagating along the time lines~zero charac-
teristic speed!. Propagation along time lines is much more
convenient for numerical applications than propagation
along normal lines~speed2bk! as we had in our previous
Letter @1#. @As we will see below, propagation along time
lines can be treated by methods for ordinary differential
equations~ODE’s!.# They only coincide in the zero shift
case.

Rather than studying the transport properties of theu’s,
the evolution of the remaining 16 quantities is more easily
studied by taking theirfluxes~20! to be the basic quantities.
Hence we rewrite the LOD transport equations using the
fluxes along the selected directionxk as the basic quantities.
We find that~the principal part of! the resulting equations

can be written as a system of 16 one-dimensional advection
equations~no sum ink!:

] tS F2
k Vk

F2
k Vk8

F2
k Kik8

F2
k Dkik8

F2
k Kr

r

F2
k Ak

F2
k Dkr

r

D 1A]kS F2
k Vk

F2
k Vk8

F2
k Kik8

F2
k Dkik8

F2
k Kr

r

F2
k Ak

F2
k Dkr

r

D 50, ~37!

whereA is the characteristic matrix of this reduced system

A5S 2bk 0 0 0 0 0 0

0 2bk 0 0 0 0 0

2n/2ag ik8 ad i
k 2bk agkk 0 0 0

0 0 a 2bk 0 0 0

~223n/2!a 0 0 0 2bk agkk 0

0 0 0 0 a f 2bk 0

0 0 0 0 a 0 2bk

D . ~38!

Its eigenvalues are then the ‘‘characteristic speeds.’’ The
corresponding right eigenvectors are the ‘‘characteristic
fields.’’

Let us list the 16 characteristic fields associated with Eq.
~38!:

The three quantitiesF2
k Vi plus the single quantity

F2
k Ak2 f F2

k Dkr
r , which propagate along normal lines~speed

2bk!.
The ten combinations

F2
k Kik86Agkk@F2

k Dkik81~d i
kF2

k Vk82n/2g ik8F2
k Vk!/gkk#,

~39!

which propagate along light cones~speed2bk6Agkk, re-
spectively!.

The two combinations

Af F2
k Kr

r6Agkk@F2
k Ak1~223n/2!F2

k Vk/gkk# ~40!

which propagate, respectively, with the gauge-dependent
speed2bk6Af gkk ~‘‘gauge speed’’!.

A system is said to be hyperbolic if all the characteristic
speeds are real and the characteristic matrix can be fully
diagonalized~see for instance Ref.@18#!. This is our case
provided thatf .0 @note that iff 50, as in the geodesic case,
the last combination~40! contains only one independent
quantity and the set of eigenfields is no longer complete#.
Gauge speed coincides with light speed only in the harmonic
case (f 51). It becomes infinite for a maximal slicing, which
can be considered as a limiting case of our condition~26!.

The advantage of having a hyperbolic system is that we
know now explicitly which combination is propagating for-

ward or backward along the selected direction. Suppose, for
instance, that one is using a 3D Cartesian finite difference
grid with vanishing shift at the outer boundaries. It follows
that the five combinations one gets from Eq.~39! by using
the plus ~respectively minus! sign are entering the grid
through the left~respectively right! outer boundary along the
xk direction. The same thing happens with the gauge combi-
nation ~40!. This information should be very valuable when
devising boundary conditions, as we will show in a future
publication.

The very existence of ‘‘gauge speeds’’ is a remarkable
result. One is used to thinking that light cones are enough to
determine the causal structure of spacetime. This is true if we
refer only to the invariant features. But the evolution system
evolves spacetime together with the coordinate system we
are using to label it~the dynamical lapse in our case!. For
instance, maximal slicing is associated with an infinite gauge
speed~as it must be, because both the lapse and its deriva-
tives are provided by an elliptic equation!. These consider-
ations single out the harmonic slicing, in which gauge cones
and light cones do coincide. This further degeneracy simpli-
fies the causal structure of spacetime, but it is just accidental
and we see no reason to overlook the richer structure that
arises in the general case.

F. The role of the shift

The balance law evolution equations for the entire set of
variables~25! is valid for any choice of lapse functiona and
shift vectorb i whatever. In the analysis of the causal struc-
ture, we considered very carefully the effect of the choice of
lapse, and showed that for a large family of conditions, the
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system is actually hyperbolic. But so far we have said little
about the shift, treating it as a given spacetime function. In
such a case it has no dynamics and hence it does not enter in
to the discussion of the causal structure of the system, except
through its connection with the eigenspeeds of the other vari-
ables.

However, in practice in numerical relativity, the shift is
not prescribed ahead of time as a known function of the
spacetime coordinates. Instead, one wants it to respond to the
dynamics of the system, and it is usually related in some
explicit functional way to the metric and extrinsic curvature
variables themselves. If the shift is taken to be some explicit
function of the other fields, and introduced to the system in a
way that it changes continuously as a dynamical variable,
this could affect the causal structure of the system. In this
case, one would need to substitute this prescription into the
complete system and analyze the causal structure on a case
by case basis. In all cases, the equations are still valid, but as
far as the causal structure is concerned, for some cases the
eigenfields and eigenspeeds could change, or the hyperbolic-
ity itself could be broken. This statement should be true for
any formulation of the Einstein equations. A careful analysis
of many such cases, where the shift is considered as a true
dynamical variable, has been carried out@32–34#.

On the other hand, the shift need not be considered as a
dynamical variable of the system. One is free to choose it
any time as one likes. For example, on a given time slice one
could prescribe it to be any arbitrary function of the other
fields in the system, and hold this fixed as long as one likes.
While the other variables in the system evolve, the shift is
held fixed in time. Then the shift has no dynamics, and can-
not affect the causal structure of the system. On a later time
slice, one may again choose the shift freely, and then con-
sider it to be fixed for the next period of evolution. In fact,
one can do this as often as one likes, say on every time slice.
However, it is crucial to point out that this isnot the same as
having a dynamic shift that can affect the causal structure of
the system. In the latter dynamic case, the shift changes con-
tinuously as the other fields evolve. In the case we are con-
sidering, which we could call a momentarily ‘‘frozen shift,’’
the evolution of the fields isdecoupledfrom the development
of the shift, and vice versa. During the evolution of the fields
the shift has no dynamics, and is a known function of space.
This is a subtle, yet crucial point. It is not merely a point of
view, but a key practical point to be made. The shift can be
chosen in this way on every time step, but in the process of
evolving the fields from one time step to the next it must be
regarded as a fixed function. Note that we can not say the
same about the lapse, because this will amount to drop out
the lapse derivativesAk @their fluxes in Eq.~37!# from the list
of dynamical quantities. This means that we should then sup-
press the corresponding row and column in the characteristic
matrix ~38!, that will no longer be diagonalizable.

As in this treatment the shift is a known function of space
for all evolution steps, the previous analysis of the causal
structure and hyperbolicity carries through forall shift
choices one cares to make on all time steps. However, this
treatment has certain numerical consequences that will be
considered in the next section.

III. NUMERICAL METHODS

In this section we describe in broad terms the kind of
numerical methods that can applied to this formulation of the
Einstein equations. We will defer a detailed treatment, com-
plete with numerical examples, to future publications. In the
previous sections, we have reformulated the evolution equa-
tions as a first-order system of balance laws, valid for any
choice of lapse and shift, without taking any additional de-
rivative. This allows one to use standard numerical methods
from computational fluid dynamics: Lax-Wendroff, stag-
gered leapfrog, MacCormack@31#. We have also seen that
for some choices of the lapse function the evolution system
is hyperbolic, so that we can use more advanced numerical
methods@18# and have better control at the boundaries, as we
will see below.

To obtain a finite difference version of our equations, one
can use the numerical splitting approach as we outlined
above@see, e.g., Eq.~34!#. This has many advantages, which
we summarize here:

The nonlinear terms in Einstein equations~the ones con-
taining products of first derivatives of the metric! appear
only in the sources step~33!, in the form of a coupled system
of ordinary differential equations. In numerical tests we have
discretized this part using standard predictor-corrector or
modified midpoint methods@31# to second-order accuracy,
although many prescriptions are possible. Note that this
gives one the possibility of using methods for stiff ODE’s if
the source terms behave in this way.

The remaining terms~the principal part! are in flux con-
servative form ~32!. This allows us to apply the high-
resolution methods which have been developed for compu-
tational fluid dynamics. We have discretized that part using a
second order TVD~total variation diminishing! method@18#,
although again many possibilities could be examined.

We can tailor the shift to fit our needs by choosing any
profile just after every sources step, but keeping it constant
during the whole transport step~‘‘frozen’’ shift !. This allows
of course an explicit prescription of the shift~we have used
for instance a parabolic shift profile to track the horizon of
1D black holes!. But this also allows an indirect prescription,
as it can be done for instance via the solution of some elliptic
equation~minimal distortion shift, or similar conditions!, ex-
actly in the same way we do when imposing the maximal
slicing condition for the lapse. The key point is that the shift
must be kept fixed during the transport step, as described
above, or else the analysis of the eigenfields would have to
be redone.

Allowing for Eq. ~17! and the previous considerations, the
metric coefficients do not evolve in the transport step. This
means that we are just evolving now the reduced set of dy-
namical variables~35! and the principal part~32! is linear in
these quantities:

F2
k u5Ak~x!u. ~41!

We can then describe the transport step by writing Eq.~32!
in the form

] tu1]k@Ak~x!u#50, ~42!
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because the metric coefficients contained in the matrixAk

are time independent in the transport step. The resulting
equation~42! can be then interpreted as a transport equation
in an inhomogeneous~but fixed! background. The alternative
form ~37! for the evolution of the fluxes~41! follows then
easily.

The complete numerical details of 1D and 3D codes de-
veloped to solve these equations with a variety of advanced
methods will be given elsewhere. It is our purpose to outline
all details necessary to understand both theoretical and prac-
tical aspects of our approach, and to provide some simple
examples of its power.

Before moving to more specific application in the 1D
case, we further discuss an important numerical aspect of the
treatment of the shift. As we have stressed, the equations we
have presented are valid forany choice of lapse and shift,
and a host of numerical methods may be applied as de-
scribed. For applications where hyperbolicity is important, it
is clear that the system is hyperbolic for a certain family of
slicings and a given spacetime function of shift. Further-
more, any prescription for the shift, even if it is explicitly a
function of the fieldsu and their derivatives, can preserve
hyperbolicity if the system is treated appropriately by hold-
ing the shift fixed during the transport step.

The numerical implication of this treatment is important.
It means that if hyperbolicity is desired, in some cases the
shift may only be enforced numerically in a first-order way
during the evolution. For example, in a method that requires
a prediction and correction of the fields during the transport
step, the shift must remain decoupled~fixed! during both
steps. Hence although the fields may be evolved forward in
time in a second-order way, in our present scheme the shift
itself is not necessarily implemented to second-order accu-
racy in time. This issueonly arises if one exploits informa-
tion about the eigenfields in the actual numerical implemen-
tation. For example, in a MacCormack method, which does
not make use of hyperbolicity, this is not an issue, nor is it an
issue if the shift is a given spacetime function. The conver-
gence properties for complicated examples, where the shift is
prescribed as an explicit function of the fields~say, minimal
distortion shift!, and where knowledge of hyperbolicity is
used in the numerical methods, will have to be investigated
carefully in the future.

A. The one-dimensional case

Let us further illustrate the advantages of our formulation
by outlining numerical methods in the one-dimensional case.
The 3D case can be handled similarly by directional split-
ting. To label the values, we will use a superindex for the
time level and a subindex for the grid position. For the trans-
port equations

] tu1]xF2u50, ~43!

we can then use flux-conservative numerical methods of the
form

ui
n115ui

n2
Dt

Dx
~Fi 11/2

n11/22Fi 21/2
n11/2!. ~44!

These are two-step algorithms. In the first step, one must
compute the fluxes at the ‘‘interface points’’xi 61/2 at the
intermediate time leveltn11/2 to a given accuracy~we will
use first order!. The final step~44! improves the overall ac-
curacy by one order~we get then second-order overall accu-
racy!. The time step is limited by the causality condition
~also known as Courant-Friedrichs-Lewy condition@31#!,
which states that the maximal speed in the numerical algo-
rithm is justDx/Dt ~one grid point at a time!, providing an
upper bound to the time stepDt to ensure that this speed is
greater than the characteristic speeds.

In order to compute the interface fluxesFi 11/2
n11/2, we will

take advantage of the fact that, allowing for Eq.~42!, the
transport equation~43! can be written as

] tF1A~x!]xF50, ~45!

which is the one-dimensional version of the system of advec-
tion equations~37!. This means that the eigenfields of the
characteristic matrixA ~38! propagate along characteristic
lines in either the forward or backward direction, depending
on the sign of their characteristic speed. The fluxes can be
first evaluated at every grid point, and then the diagonal
combinations~i.e., the eigenfields! are computed. These di-
agonal combinations are propagated to the grid interfaces,
using Eq.~45!, and inverted there through the diagonaliza-
tion process to compute the fluxesFi 11/2

n11/2 that we will need
in the second step~44!.

There are many ways to propagate the diagonal fluxes.
Let us consider for instance a diagonal fluxF with positive
characteristic speedl. Let us decompose the resulting inter-
face flux as

Fi 11/2
n11/25Fi

n1d i , ~46!

so thatFi
n would be the zero-order prediction andd gives

then the difference between the zero and first or higher order
estimates. Differentd values will lead to different methods,
such as the Lax-Wendroff method,

d i
LW5

1

2 S12l
Dt

DxD~Fi11
n 2Fi

n! ~47!

or the Beam-Warning method,

d i
BW5d i 21

LW 5
1

2 S 12l
Dt

DxD ~Fi
n2Fi 21

n ! ~48!

and we see that, up to a factor,d i is a measure of the flux
slope at the upstream grid pointxj .

One can choose a slope which is a nonlinear average of
the two one-sided linear estimates; namely,

d i5minmod~d i 21
LW , d i

LW!. ~49!

which corresponds to the ‘‘minmod’’ average~just discard
the steepest slope!. This leads to the ‘‘monotonic upstream-
centered’’ ~MUSCL! algorithm, which is very robust and
easy to implement. Unlike the Lax-Wendroff or Beam-
Warning methods, it has the TVD property@18#, which
means that no spurious numerical oscillations can appear
during the transport step, and this proves to be very conve-
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nient in black hole codes, where large gradients arise near
the horizon. We will show examples in a future publication.

B. Boundary conditions

The main problems with boundary conditions are consis-
tency and stability. Hyperbolic systems show here one of
their main advantages, because they allow a complete analy-
sis of the information flow at the boundary. One can actually
compute the characteristic fields at every boundary and sepa-
rate them into two sets: either incoming or outgoing ones.
Boundary conditions should provide external information for
incoming fields only. Imposing any condition on outgoing
fields would be inconsistent and boundary instability would
arise in the code. In this sense, an ‘‘outgoing radiation’’ con-
dition should be understood and implemented as a ‘‘no in-
coming radiation’’ condition for the incoming fields.

The second-order accurate operator splitting~34! that we
are using requires boundary conditions to be imposed on the
transport step only~the sources step is made of ordinary
differential equations!. This is why we have chosen the or-
dering given in Eq.~34! instead of

E~Dt !5T~Dt/2!S~Dt !T~Dt/2!, ~50!

which would require to impose boundary conditions twice on
a single time step.

The natural way to impose boundary conditions in the two
step schemes~44! that we are using for the transport part is
by prescribing the fluxesFn11/2 of the incoming fields at the
outermost interfaces

Fi min21/2
n11/2 , Fi max11/2

n11/2 , ~51!

wherei min, i max are the labels of the boundary points.
We have seen in the previous sections that, for every

space direction, there are six incoming eigenfields at the
outer boundaries~five on the light cone plus one on the
gauge cone!. Remember, however, that we have three ‘‘re-
dundant’’ quantitiesVi in our formalism, which are related to
the metric derivatives through the algebraic equation~19!,
which amounts to the momentum constraint. This allows us
to use the computed values of theVi to reduce the number of
algebraically independent incoming fields at the boundary to
what one could expect from physical considerations: one
gauge field plus two light cone fields which account for the
gravitational radiation degrees of freedom.

One could argue that the use of the constraint~19! at the
boundaries is not consistent in the operator splitting ap-
proach, because the constraints are not first integrals of the
transport and source parts, when considered separately. This
is true in the generic case, but one should notice that in the
Strang splitting we are using, Eq.~34!, we impose the bound-
ary conditions attn11/2 in the transport step, so that we have
evolved, precisely,

T~Dt/2!S~Dt/2! ~52!

and the valuesun11/2 provide a consistent first order approxi-
mation of the complete equation~source terms included! at
tn11/2.

IV. CONCLUSIONS

We have extended the discussion of our previous Letter
on a new hyperbolic formulation of Einstein’s equations for
numerical relativity. The equations have been cast into a flux
conservative system of balance laws that is valid forany
choice of lapse and shift. This formulation allows one to use
numerical methods such as those of MacCormack, Lax-
Wendroff, and others. We further showed that the system of
equations ishyperbolic, meaning that its characteristic ma-
trix is fully diagonalizable with real eigenvalues, for a wide
variety of lapse conditions, including most of those com-
monly used in numerical relativity. This hyperbolicity can be
maintained for arbitrary shift choices, provided that care is
taken in the numerical implementation during the transport
step of the evolution scheme.

This hyperbolicity of the system can provide many addi-
tional benefits, including the application of a large body of
numerical methods that make use of the eigenfields and their
characteristic speeds. Such methods have been crucial in hy-
drodynamics, where large gradients develop, and should find
application in numerical relativity as well. We sketched in a
general way how some of these methods can be applied to
our system of equations. Hyperbolicity can also provide in-
formation about the fields, their direction of propagation, and
their speeds, that should prove to be very useful in devising
boundary conditions, both at horizons~AHBC! and at nu-
merical grid boundaries. In both cases, one wants to enforce
that outgoing signals leave the boundary, and that no spuri-
ous signals come in.

Finally, we showed that our system of equations can be
modified by use of the Hamiltonian constraint to remove
numerically difficult terms in the evolution equations, while
maintaining hyperbolicity. This leads us to propose use of
what we refer to as the ‘‘Einstein’’ system, as opposed to the
standard ‘‘Ricci’’ system. Detailed numerical examples of
these ideas will be provided in future papers in this series.
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