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I discuss some aspects of a lattice approach to canonical quantum gravity in a connection formulation, discuss 
how it differs from the continuum construction, and compare the spectra of geometric operators - encoding 
information about components of the spatial metric - for some simple lattice quantum states. 

1. D I S C R E T I Z I N G  G R A V I T Y  

My contribution describes some aspects of an 
a t tempt  to define a quantum theory of gravity 
in 3+1 dimensions, starting from a lattice dis- 
cretization of spatial 3-manifolds. This approach 
is complementary to other ones currently under 
study, most importantly, the Regge calculus pro- 
gram and its variant, using so-called dynamical 
triangulations. It differs from them in at least 
two aspects. Firstly, its basic configuration vari- 
ables are not discretized versions of the space- or 
space-time metric tensor, but of su(2)-valued con- 
nection one-forms. Secondly, in order to exploit 
the structural resemblance with lattice gauge field 
theory, one best uses Hamiltonian, and not path 
integral methods. 

1.1. S e t t i n g  
The classical starting point is a reformulation 

of Einstein gravity in terms of a phase spaze vari- 
able pair (Aid(x), E~(x)) defined on a continuum 
3-manifold E, where a is a spatial and i = 1,2, 3 
an adjoint su(2)-index. This is a real version 
of the well-known su(2, C)-valued Ashtekar vari- 
ables (but still describing Lorentzian, and not Eu- 
clidean gravity!). Using the real variables, one 
avoids the difficulty of having to impose quantum 
reality conditions, but the Hamiltonian constraint 
acquires a potential term which is not present 
in the complex formulation. This is functionally 
rather involved, but can probably still be han- 
dled [1]. The (doubly densitized, inverse) metric 
tensor is a function of the momentum variables, 
gab __ Ea Ebi. 
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In terms of the (A, E)-variables, Einstein grav- 
ity assumes the form of a Dirac constrained sys- 
tem, subject to a set of seven first-class con- 
straints per space point, namely, three spatial dif- 
feomorphism, one Hamiltonian and three Gauss 
law constraints. 

In the lattice approach [2], one approximates 
E by a lattice A, consisting of one-dimensional 
edges or links li meeting at vertices nj. For sim- 
plicity, A is chosen cubic, and all vertices are of 
valence six. The lattice analogues of the Hamil- 
tonian variables (A, E) are a set of link-based 
variables (V, p) which however are not canonical. 
This comes about because the link analogue of 
the local algebra-valued connection A(x) is the 
group-valued exponentiated integral of A, the link 
holonomy vaB(1). Hence the configuration space 
associated with a single link is a copy of the com- 
pact group manifold SU(2). 

The wave functions of the quantum theory are 
the square-integrable functions on the product 
over all links of the group SU(2). The opera- 
tors VaB(l) are represented by multiplication and 
the non-local link momenta  ~(l) can be identified 
with the left- and right-invariant vector fields on 
the l ' th copy of the group. 

The kinematical structure described above is 
identical with that  used in Hamiltonian lattice 
gauge theory. This setting is also well-suited for 
gravity, since the part of the constraints corre- 
sponding to internal gauge rotations is identi- 
cal with those of Yang-Mills theory. One has 
two choices of dealing with the gauge constraints: 
one can either keep discretized versions of the 
quantum Gauss law constraints and eventually 
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use them to project out physical, gauge-invariant 
wave functions, or go directly to a basis of gauge- 
invariant quantum states. We will follow the lat- 
ter path, but this choice is not essential. 

The elementary functions spanning the gauge- 
invariant Hilbert subspace 7/inv are the traces 
of holononfies of closed lattice paths, obtained 
by multiplying together the corresponding link 
holonomies. An independent basis can be given 
in terms of so-called spin-network states, where 
one assigns unitary irreducible representations of 
SU(2) (i.e. half-integer spins) to links and gauge- 
invariant contractors to lattice vertices. However, 
the reader should be warned that  in explicit cal- 
culations one still has to worry about the pres- 
ence of zero-norm states, that  exist in the form of 
Mandelstam constraints. Equivalently, the choice 
of an independent set of states involves - for fixed 
spin assignments - a selection of independent con- 
tractors from the entire set at each vertex n. For 
each n, the spaces involved are finite-dimensional, 
but their dimension grows fast with increasing 
spin. 

1.2. L a t t i c e  vs.  c o n t i n u u m  t h e o r y  
The lattice construction is in many aspects sim- 

ilar to the loop quantization program in the con- 
t inuum, that  also uses SU(2)-valued holonomies 
U.y[A] := P exp ~.y A or their traces Tr U~ [A] as 
the basic configuration variables. However, in or- 
der to avoid confusion, let us point out the main 
differences between the two formalisms. 

Graph or lattice configurations also appear in 
the continuum theory as part  of the specification 
of a quantum state. However, to obtain the entire 
Hilbert space of the kinematical quantum theory 
(i.e. before imposition of the Hamiltonian and 
diffeomorphism constraints), one has to consider 
states associated with all possible graphs. As a 
consequence, in order to specify a quantum state 
completely, one needs a) a graph 3 ,̀ b) consis- 
tent non-vanishing spin assignments to all of its 
edges, and c) matching gauge-invariant contrac- 
tors at all non-trivial vertices of 3'. Of course, 
linear combinations of such states are also possi- 
ble. The Hilbert space is, loosely speaking, the 
space L 2(~4/~) of all square-integrable functions 
on the space of gauge connections modulo gauge, 

which is an infinite-dimensional space. 
By contrast, the configuration space for lattice 

gravity (for a finite lattice) is f inite-dimensional.  
Before considering gauge transformations,  there 
are three degrees of freedom associated with each 
lattice link (parametrizing an element of SU(2)) 
times the number of links of the lattice. Further- 
more, the lattice is fixed, i.e. all states and opera- 
tors are defined on the same lattice. (Eventually, 
one wants to make the lattice bigger, in order 
to obtain a better  approximation to the contin- 
uum theory. Still, the lattice operators never mix 
states associated with different lattices.) In or- 
der to specify a quantum state on the lattice, one 
needs a) consistent spin assignments to all of its 
edges (vanishing spin is allowed, but does not im- 
ply that  the underlying link "vanishes"), and b) 
matching gauge-invariant contractors at all lat- 
tice vertices. 

A related important  difference is that  the con- 
t inuum states depend on graphs imbedded in E, 
whereas lattice states are based on a subset of lat- 
tice links, with the lattice A itself not thought of 
as imbedded in an underlying manifold, but as a 
discrete approximation to E. As a result, in the 
continuum theory we can still define the action 
of the diffeomorphism group Diff(E) on states in 
a straightforward way. The lattice theory does 
not possess enough degrees of freedom to sup- 
port such an action, and the most one can hope 
for is to define some kind of "discrete version of 
Diff(E)", that  goes over to the usual continuum 
action in the limit as the lattice spacing a is taken 
to zero. This is also a non-trivial issue in other 
discrete approaches to quantum gravity. 

Note that  the appearance of one-dimensional 
"loopy" excitations in the lattice theory is a con- 
sequence of the type of discretization we have 
chosen, and should not necessarily be considered 
fundamental ,  in the sense that  as the continuum 
limit is approached, one may expect only genuine 
three-dimensional properties of states and opera- 
tors to be physically important .  The central as- 
sumption of the lattice construction is of course 
the existence of such a continuum limit. 

On the other hand, the fundamental  assump- 
tion that  leads to the continuum loop represen- 
tation is that  the Wilson loops Tr U-,[A] become 
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well-defined operators in the quantum theory. 
Classically, the information contained in Tr U, al- 
lows one to reconstruct the space of smooth con- 
nections modulo gauge. Quantum-mechanically, 
the operators Tr U7 can be thought of as distri- 
butional excitations of the connection A along 
some loop or graph 7, and are therefore rather 
singular objects from a three-dimensional point 
of view. Nevertheless, well-behaved unitary rep- 
resentations of the classical algebra of the Wil- 
son loops exist, and it is exactly those that  have 
been used in the loop quantization approach. 
They do have some peculiar properties, for exam- 
ple, operator actions tend to be sensitive to cer- 
tain topological characteristics of quantum loop 
states, such as their number of edges or vertices, 
and the way flux lines are arranged. However, 
this is certainly not the only way one may set 
up a quantum theory. It has been argued that  it 
is physically more realistic to quantize configura- 
tion variables associated with three-dimensionally 
smeared objects, like for instance tubes instead 
of loops. Quantization of such an algebra is not 
likely to share all of the features that have made 
the loop representations so attractive. 

2. G E O M E T R I C  O P E R A T O R S  

In spite of the differences outlined in the pre- 
vious section between the lattice and the contin- 
uum quantum theories, there obviously is a great 
structural resemblance between the two. This is 
in particular true for the action of certain geo- 
metric operators one may construct in both set- 
tings, measuring volumes, areas, and lengths of 
spatial regions. It is not nay aim here to discuss 
the construction and properties of these quanti- 
ties in great detail, but rather to focus attention 
on a point that  has received little attention in the 
literature. 

The classical continuum expressions for vol- 
ume, area and length are given purely as func- 
tions of the inverse dreibein variables E, 

V(~) = d z ~Eobc '~k~°~b~¢  ~i  ~ j  ~k 

fc [E .E  E E (E2JE3) 2 
2 2j a 3k_ 

c(c) = d x V  " ' 

where 7"4 is a three-dimensional spatial region, S 
a surface with unit normal in 3-direction, and C 
a curve dual to the 2-3-plane. As usual, their 
discretizations are not unique. We choose them 
as follows [3]: 

~(~'~latt) = y ~  i ~ D ( n )  ' 

n~latt 

1 1  

nESlatt 

£(gl~tt) = ~ ( - (p i (n ,2 )p  i(n,g))2 
n~Cl att 

(n, 2)p#(n, 
with D(n) = cabc eiJkpi(n, 6)pj(n, b)pk(n, ~), and 
the symmetrized link momenta pi(n, &). 

An agreeable property of the geometric lattice 
functions is that the expressions under the square 
roots can be represented by self-adjoint operators 
in the quantum theory, and therefore the opera- 
tor square roots be defined in terms of the spec- 
tral resolutions. The spectra and eigenfunctions 
can be computed explicitly, by virtue of the fact 
that the quantum operators are defined purely in 
terms of the link momenta ~5, which have a par- 
ticularly simple action on spin-network states. A 
further consequence is that  the diagonalization 
of geometric operators can be performed inde- 
pendently at each lattice vertex (operators as- 
sociated with different vertices commute),  which 
vastly simplifies their discussion. 

The complete spectrum of the area operator 
can be written down immediately, since .A is a 
function only of Laplacians. The spectrum of the 
volume operator V is only partially known, al- 
though general formulas for its matr ix  elements 
can be given. The spectrum of the length opera- 
tor £ has not yet been studied. 

One reason for investigating the geometric op- 
erators is their simplicity, as compared to that  of 
the Hamiltonian constraint. In addition, knowl- 
edge of the spectrum of the volume operator is 
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Figure 1. Eigenvalues of geometric lattice operators at a given vertex n. 

vital for constructing phase space functions de- 
pending in some way on density factors of the 
form ~ - dv/-d-~ E,  for example, the length 
function or the Hamiltonian.  

We will compare the spectra of these operators 
for some simple, explicit spin-network configura- 
tions. Since unit cells of the lattice can be re- 
garded as the smallest building blocks of geome- 
try, one would certainly like to check whether the 
order of magnitude of the eigenvalues is compara- 
ble. To further simplify matters ,  we will consider 
maximally  symmetr ic  local lattice configurations, 
where no lattice direction is preferred, and con- 
centrate on the volume and area operators. 

Recall that  a local spin-network configuration 
around a vertex n is determined by assigning half- 
integer spins si or flux line numbers j i  = 2si 

to each of the six incoming lattice edges, and a 
gauge-invariant contractor at n. We take all six 
j i  equal, ji = j ,  j = 1 ,2 , . . . .  Fig.1 shows the 
length scales extracted from the area and (the 
non-negative) volume eigenvalues, i.e. the square 
and third root respectively. For the volume eigen- 
values, the degeneracy of the eigenspace is indi- 
cated. The area eigenspaces are maximally de- 
generate. 

Observe first that  the length scales for given 

j are roughly the same. This is also true for 
the single length eigenvalue calculated so far (it 
is that  of the only positive-volume eigenstate for 
j = 1). Further, note that  lengths obtained from 
the volume operator are systematically smaller 
than those obtained from the areas. This in- 
dicates that  one may encounter problems when 
a t tempt ing to construct a macroscopic flat, Eu- 
clidean geometry from these microstates, even if 
one uses eigenstates maximizing the volume for 
given j .  It is possible that  this effect goes away 
for larger j .  Alternatively, this "volume deficit" 
may be an indication that  generic local geome- 
tries have a small non-vanishing scalar curvature 
(I thank S. Carlip for this suggestion). 

Note also that  the volume spectrum becomes 
more spread out with increasing j and that  there 
are m a n y  zero-volume states. An important  issue 
in quantum gravity is whether or not these states 
can or must be included in the Hilbert space. 
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