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Global dynamics of the mixmaster model
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Abstract. The asymptotic behaviour of vacuum Bianchi models of class A near the initial
singularity is studied, in an effort to confirm the standard picture arising from heuristic and
numerical approaches by mathematical proofs. It is shown that for solutions of types other
than VIII and IX the singularity is velocity dominated and that the Kretschmann scalar is
unbounded there, except in the explicitly known cases where the spacetime can be smoothly
extended through a Cauchy horizon. For types VIII and IX it is shown that there are at most
two possibilities for the evolution. When the first possibility is realized, and if the spacetime is
not one of the explicitly known solutions which can be smoothly extended through a Cauchy
horizon, then there are infinitely many oscillations near the singularity and the Kretschmann
scalar is unbounded there. The second possibility remains mysterious and it is left open whether
it ever occurs. It is also shown that any finite sequence of distinct points generated by iterating
the Belinskii–Khalatnikov–Lifschitz mapping can be realized approximately by a solution of the
vacuum Einstein equations of Bianchi type IX.

PACS numbers: 0420E

1. Introduction

Solutions of the vacuum Einstein equations with anSU(2) isometry group acting on
spacelike hypersurfaces have been studied extensively over the past twenty-five years or
more. This class of spacetimes was christened the ‘mixmaster model’ by Misner. Useful
points of entry into the literature on the subject are the book by Hobillet al [11], where
many of the contributions are devoted to the mixmaster model, and the book by Wainwright
and Ellis [23], which contains a wealth of background information on the dynamics of
spatially homogeneous cosmological models. Almost all the work which has been done on
the mixmaster model is either heuristic in nature or based on numerical calculations. There
are very few rigorous results. Although the numerical and heuristic approaches have led
to differences of opinion, it seems that a consensus has now developed concerning various
features of the evolution of these spacetimes. This will be referred to in the following as
the ‘standard picture’. This paper is an investigation of what aspects of this standard picture
can be supported by rigorous theorems.

There are different motivations which explain the amount of effort which has been
put into understanding this very special class of spacetimes. One of these is the desire
to understand the nature of spacetime singularities and in particular to find out whether
the geometry near a singularity admits a simple description or whether it is intrinsically
complicated. The interest of the mixmaster model is that it is a case where although the
setting is relatively simple (the Einstein equations reduce to ordinary differential equations)
the behaviour of the solutions seems to be very complicated. Another motivation for
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studying the mixmaster model is provided by the idea of Belinskiiet al [3] that it could
provide an approximate description for very general spacetime singularities. This suggestion
that very general spacetime singularities can be described approximately by a relatively
simple model, if true, is only useful insofar as the model itself is understood.

In this paper the ordinary differential equations which describe the mixmaster model
will be looked at from the point of view of the theory of dynamical systems. This approach
has been discussed extensively in the book by Bogoyavlensky [5]. This book contains
many interesting ideas, but does not contain any general theorems on the mixmaster model,
the end result being an impressionistic informal description as to what the behaviour of
generic solutions should be. Another way of writing the equations for the mixmaster
model as a dynamical system has been presented by Wainwright and Hsu [24] (see also
chapter 6 of [23]). Their equations cover a wider class of spacetimes which are spatially
homogeneous. In particular, they include vacuum spacetimes of Bianchi types of class A,
i.e. Bianchi types I, II, VI0, VII 0, VIII and IX. This means considering spacetimes with
three-dimensional isometry groups more general than justSU(2). The type IX spacetimes
constitute the mixmaster model. According to the standard picture, general spacetimes of
type VIII have a complicated singularity similar to that of general spacetimes of type IX,
while the singularities in solutions of the other types are much simpler. It turns out to
be very helpful to study all class A models in a unified way rather that trying to handle
type IX in isolation. In [24] various general properties of this system were determined, and
in particular the nature of its equilibrium points was investigated in detail. The work of
Wainwright and Hsu is the starting point for the investigations of the present paper.

The Wainwright–Hsu dynamical system can be used to relate the standard picture to
the concept of an attractor. This provides a way of representing the essential questions
geometrically. The reader is referred to section 6.4 of [23] for details.

The results of the paper can be summarized as follows. Any solution of the vacuum
Einstein equations with a Bianchi symmetry of class A can be classified, according to its
behaviour near the initial singularity, into one of three types. These will be referred to as
‘standard convergent’, ‘standard oscillatory’ and ‘anomalous’. (For the precise meaning of
this terminology, see the last paragraph of section 4.) Solutions of types I, II, VI0 and VII0
belong to the standard convergent type. This is also true of the NUT solutions of types VIII
and IX, discussed further below. All other solutions of types VIII and IX belong to either
the standard oscillatory or the anomalous type. If it could be shown that the anomalous
type never occurs then this would provide a strong confirmation of what was referred to
above as the standard picture. However, the results of this paper do not suffice to obtain
that conclusion; in fact they do not even suffice to show that the standard oscillatory type
ever occurs.

The detailed conclusions which can be made about the spacetimes of the different types
just introduced concern, on the one hand, whether the singularity is a curvature singularity
and, on the other hand, precise statements about the convergent or oscillatory nature of the
spacetimes near the initial singularity. Those vacuum Bianchi models of class A which
admit an extension through a smooth Cauchy horizon have been determined explicitly in
[6]. Here it is shown that in any vacuum spacetime of Bianchi class A which does not
admit such an extension and which is not anomalous, the Kretschmann scalarRαβγ δR

αβγ δ

is unbounded in a neighbourhood of the initial singularity. This can be seen as a result on
the non-existence of ‘intermediate singularities’ in this class of spacetimes. In general this
result is weakened by the fact that we have no control over how many anomalous spacetimes
exist. On the other hand, for types other than VIII and IX it provides optimal information.
As for the question of convergent or oscillatory behaviour, it is shown that in the standard
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convergent case the singularity is velocity dominated. On the other hand, in the standard
oscillatory case it is shown that naturally defined geometrical quantities undergo infinitely
many oscillations as the singularity is approached.

One aspect of the standard picture is that general solutions of the mixmaster model are,
in some sense, supposed to be approximated near the singularity by a mapping of the circle
to itself, the BKL (Belinskii–Khalatnikov–Lifschitz) mapping. The results on oscillations
mentioned up to now say nothing about this. However it can be proved to be true in a
weak sense. The statement is that, given any finite sequence generated by the BKL map,
there exists a solution of the Einstein vacuum equations of type IX (or indeed of type VIII)
which reproduces this sequence with any desired degree of accuracy.

All the results mentioned up to now concern vacuum spacetimes and at this point a
comment is in order as to how these relate to cosmological models with matter. The
standard picture includes the idea that the dynamics of models with matter should be
approximated near the singularity by that of vacuum models, under two conditions. Firstly,
the equation of state should not be too extreme. As an example, consider a perfect fluid
with equation of statep = ρ (stiff matter). In that case there are open sets of initial data for
which the corresponding solutions do not behave like vacuum solutions near the singularity.
Secondly, the conclusion can only hold for generic initial data. There are exceptional
solutions (e.g. the Friedmann solutions) where the matter influences the dynamics near the
singularity decisively. There is no general proof that, for moderate types of matter and
generic initial data, the dynamics can be approximated by a vacuum model. It is known
to be true for special Bianchi types with matter described by a perfect fluid with a suitable
equation of state. Moreover, there is reason to believe that it is true more generally, as
explained in section 6.4 of [23].

This paper is organized as follows. Section 2 presents some parts of the theory of
dynamical systems which will be necessary in the analysis. In section 3 the system of
Wainwright and Hsu is recalled. Various results on the asymptotic behaviour of a solution
of the Wainwright–Hsu system as the singularity is approached are proved in section 4. In
section 5 these results are used to obtain conclusions about curvature singularities and the
convergent or oscillatory behaviour of the corresponding spacetime. Moreover, it contains
the precise formulations of the results which have been presented informally in the preceding
paragraphs.

2. Background on dynamical systems

The purpose of this section is to collect together some facts on dynamical systems which are
useful in the analysis of the dynamics of Bianchi models. For a more general introduction
to relevant aspects of the theory the reader is referred to [22]. Consider the system of
ordinary differential equations:

dx

dt
= f (x) (2.1)

wheref : Rn→ Rn is aC∞ mapping. (The choice of the differentiability classC∞ is not
essential in what follows; it suffices for the applications in this paper.) The corresponding
local flow is the mappingF defined by the condition thatF(t, x) is the value at timet
of the solution of (2.1) which takes on the valuex at time t = 0, provided the solution
exists that long. An equilibrium point of (2.1) is a pointx with f (x) = 0. An important
element in the analysis of the global properties of solutions of (2.1) is the study of the local
behaviour of solutions near equilibrium points. This can be described using the concept of
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topological equivalence.

Definition. If x0 is an equilibrium point of (2.1) andy0 is an equilibrium point of the system
dy/dt = g(y) with local flow G(t, y), then the two systems are said to be topologically
equivalent near the pointsx0 andy0, respectively, if there exists a homeomorphismφ of an
open neighbourhoodU of x0 onto an open neighbourhoodV of y0, with φ(x0) = y0 such
that, wheneverF(t, x) is defined for somex ∈ U , G(t, φ(x)) is also defined and is equal
to φ(F (t, x)).

In other words, when expressed in appropriate local coordinates the solutions of the two
systems look identical. An equilibrium pointx0 of the system (2.1) is calledhyperbolic
if the derivativeDf (x0) of f at that point (which defines the linearization of the system
about that point) has no eigenvalues which are purely imaginary. A fundamental result on
hyperbolic equilibrium points is the Hartman–Grobman theorem [9, p 244]:

Theorem 2.1.If x0 is a hyperbolic equilibrium point of the system (2.1), then nearx0 the
system is topologically equivalent to the linearized system dx̄/dt = Df (x0)x̄ near the origin.

Note that the homeomorphism whose existence is required in the definition of topological
equivalence cannot in general be chosen to be a diffeomorphism. However this fact will
play no role in what follows. Linear systems which have no purely imaginary eigenvalues
can be classified up to topological equivalence [2, p 48]. Letn+ and n− be the number
of eigenvalues with positive and negative real parts, respectively. Two linear systems of
ODEs without purely imaginary eigenvalues are topologically equivalent near the origin
if and only if the corresponding values ofn+ and n− are equal. (In fact in this case the
equivalence is global, i.e.U andV can be taken to be all ofRn.) Thus up to topological
equivalence, the only linear systems onRn with no purely imaginary eigenvalues are given
by the systems onRn+ × Rn− defined by dy/dt = y, dz/dt = −z, with y ∈ Rn+ and
z ∈ Rn− . A system of ODE of this type is known as a standard saddle and there are only
n + 1 possibilities inRn. If n+ or n− vanishes then there is not a saddle in the usual
sense, but rather a source or sink. Nevertheless, we include this case in the definition of a
standard saddle. Combining this discussion with the Hartman–Grobman theorem shows that
in a neighbourhood of any hyperbolic equilibrium point the system (2.1) is topologically
equivalent to a standard saddle.

What can be said in the case of an equilibrium pointx0 which is not hyperbolic? LetE+,
E0 andE− be the spaces spanned by those generalized eigenvectors ofDf (x0) whose real
parts are positive, zero and negative, respectively. These are called the unstable, centre and
stable subspaces, respectively. In general,Rn is the direct sum of these three subspaces and
the hyperbolic case is that where the centre subspace reduces to zero. Associated to these
subspaces are locally invariant manifolds. A submanifoldM of an open neighbourhoodU
of x0 is called locally invariant if wheneverx ∈ M andF(t, x) ∈ U thenF(t, x) ∈ M.

Definition. A (local) stable, centre or unstable manifold of the equilibrium pointx0 is aC1

submanifold of an open neighbourhoodU of x0 which is locally invariant, which contains
x0, and whose tangent space atx0 is the stable, centre or unstable subspace, respectively.

From the topological classification of hyperbolic fixed points discussed above it is clear
that a hyperbolic fixed point has stable and unstable manifolds which are locally unique,
i.e. the intersection of any such manifold with a sufficiently small neighbourhood of the
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equilibrium point is unique. A generalization of this to non-hyperbolic equilibrium points
is given by the centre manifold theorem [1]:

Theorem 2.2.Let x0 be an equilibrium point of (2.1) and suppose thatf is C∞. Then there
exist stable and unstable manifolds of classC∞ and a centre manifold of classCk for any
finite k. The stable and unstable manifolds are locally unique.

The centre manifold need not beC∞ in general; theCk centre manifolds may shrink
ask increases. The centre manifold need also not be locally unique (see [25, p 210] for an
example). Despite the non-uniqueness of the centre manifold, it can be used to formulate
a generalization of the Hartman–Grobman theorem to non-hyperbolic equilibrium points.
This is the reduction theorem of Shoshitaishvili [19, 20]. For a detailed proof in English
see [14].

Theorem 2.3.Let x0 be an equilibrium point of (2.1). Then nearx0 the system is topologically
equivalent to the Cartesian product of a standard saddle with the restriction of the flow to
any centre manifold.

Suppose for a moment thatf is such that all solutions of (2.1) can be extended so as
to be defined for all real values oft . Then anα-limit point of a solutionx(t) of the system
(2.1) is a pointx∗ such that there exists a sequencetn with tn→−∞ andx(tn)→ x∗. The
α-limit set of the solution is the set of allα-limit points. The concepts of anω-limit point
andω-limit set are defined analogously by replacing−∞ by∞. If some solutions of (2.1)
do not extend globally in time, it is possible to rescalef by a positive function so that all
solutions of the rescaled system do exist globally in time. This is discussed by Wainwright
and Hsu in section 3 of [24]. The notions ofα- andω-limit points can be applied to the
rescaled system. The image of a solution of the original system inRn is also the image
of a solution of the rescaled system. It is natural to define theα- andω- limit points of a
solutionx(t) of the original system to be those of the corresponding solution of the rescaled
system. This definition can be rephrased in terms of the original system. A solutionx(t)

of (2.1) defined on some time interval is said to be maximally extended if it cannot be
extended to a solution on any strictly longer interval. If a maximally extended solutionx(t)

is defined on the interval(t−, t+), then theα-limit and ω-limit points of the solution are
limits of sequences of the formx(tn) where tn → t− or tn → t+. This is consistent with
the previous definition in the case where the solution is defined for all real values oft .

Some standard properties ofα-limit sets will now be listed (cf [25, p 46]). Corresponding
properties hold forω-limit sets. Theα-limit set of any solution is closed. It consists of a
union of images of solutions of the ODE. It is clear that it must also contain theα-limit
sets of these solutions. If the solution stays in a compact set for allt < t0 then theα-limit
set is connected. Monotonic functions are a useful tool for locatingα- andω-limit sets, as
shown by the following simple lemma.

Lemma 2.1.Let U be an open subset ofRn and letF be a continuous function onU such
that F(f (t)) is strictly monotonic for any solutionf (t) of (2.1) as long asf (t) is in U .
Then no solution of (2.1) whose image is contained inU has anα- or ω-limit point in U .

Proof.Suppose thatp ∈ U is anα-limit point of a solutionf (t) whose image is contained in
U . ThenF(f (t)), being strictly monotonic, must have a limit, possibly infinite, ast → t−.
On the other hand, there is a sequencetn with tn → t− such thatF(f (tn)) converges to
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F(p). HenceF(f (t)) converges toF(p). ThusF is constant on theα-limit set of f (t).
There exists a solution̄f (t) which passes throughp and is entirely contained in theα-limit
set of f (t). It follows from the above thatF is constant alongf̄ (t), contradicting the
property of strict monotonicity. The argument for theω-limit set is similar.

3. The equations of Wainwright and Hsu

There are many popular ways of writing the equations for Bianchi models. The analysis
which follows uses a form of the equations for models of class A due to Wainwright and Hsu
[24]. This is natural since it is in a sense an extension of their approach. The results of the
present paper concern vacuum spacetimes, whereas the Wainwright–Hsu system describes
a perfect fluid with linear equation of statep = (γ − 1)ρ. However, vacuum models
are described by the restriction to the submanifold defined by the vacuum Hamiltonian
constraint. The latter is independent ofγ and so the choice ofγ is immaterial for our
purposes. However, the explicit form of the equations off the constraint hypersurface is
more or less complicated according to the value ofγ . In order to take advantage of this,
γ = 2

3 is chosen in the following. With this choice, the equations are:

N ′1 = (q − 46+)N1

N ′2 = (q + 26+ + 2
√

36−)N2

N ′3 = (q + 26+ − 2
√

36−)N3

6′+ = −(2− q)6+ − 3S+

6′− = −(2− q)6− − 3S−

(3.1)

where

q = 2(62
+ +62

−)

S+ = 1
2[(N2−N3)

2−N1(2N1−N2−N3)]

S− = 1
2

√
3(N3−N2)(N1−N2−N3)

(3.2)

and a prime denotes a derivative with respect to a certain time coordinateτ . The (vacuum)
Hamiltonian constraint is

62
+ +62

− + 3
4[N2

1 +N2
2 +N2

3 − 2(N1N2+N2N3+N3N1)] = 1. (3.3)

A solution of the vacuum Einstein equations with a Bianchi symmetry of class A is described
by a solution of (3.1) with initial data satisfying (3.3). Then of course the whole solution
lies in the submanifold defined by (3.3). Ift is a Gaussian time coordinate based on one
of the orbits of the group action defining the symmetry, and if trk(t) denotes the mean
curvature of these orbits, then the time coordinateτ in (3.1) is defined by the relation
τ(t) = − 1

3

∫ t
t0

tr k(t ′) dt ′. Since the determinant of the induced metric of the orbits satisfies
d/dt (log detg) = −2 trk, τ 3 is proportional to the volume form of the orbits. In other words,
τ represents a length scale related to that volume form. The main step in reconstructing the
entire spacetime is to integrate the equation d/dτ(tr k) = −(1+262

++262
−)(tr k), which is

essentially the Raychaudhuri equation. Another integration then gives the relation betweent

andτ . Moreover, trk can be used to convert the variables used by Wainwright and Hsu into
more conventional ones. For the precise definition of the variables(N1, N2, N3, 6+, 6−)
the reader is referred to [24]. The variablesN1, N2 andN3 describe the curvature of the
spatial slices and, at the same time, the Bianchi type. In particular, they allow all Bianchi
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types of class A to be included in a single dynamical system. When a fluid is present,6+
and6− are related to the shear. In the vacuum case they represent the trace-free part of the
second fundamental form. All of these variables are dimensionless, in the sense that if the
spacetime metric is multiplied by a constant they do not change. This means that they are
candidates for quantities which remain finite when a spacetime singularity is approached.
The system (2.3) has a threefold symmetry, which is not obvious when the equations are
written in this form. It is described in detail in [24]. In particular, it cyclically permutes
N1, N2 andN3.

In discussing the global structure of the spacetimes considered in this paper, we restrict
ourselves to the maximal Cauchy development of data on a spacelike orbit, which is in
any case the only part of the spacetime described directly by the variables in (3.1). It is
well known that a vacuum Bianchi model of class A, and not of type IX, is geodesically
complete in one time direction which, reversing the time orientation if necessary, we can
assume to be the future. In the other time direction there is a finite upper bound to the
length of all causal geodesics. In the case of Bianchi type IX, a bound of this kind holds in
both directions as a consequence of a result of Lin and Wald [15, 16]. In the latter case the
variables in (3.1) are not defined at the moment of maximum expansion. This is because the
definition of these variables involves dividing by the mean curvature trk, which vanishes
at that moment. Thus a maximally extended solution of (3.1) of Bianchi type IX represents
only half of a maximal Cauchy development, where the model is either always expanding
or always contracting. Reversing the time orientation if necessary, it can be assumed that it
is expanding, so that the singularity lies in the past. With these conventions, if a maximal
solution of (3.1) is defined on the interval(τ−, τ+) then the behaviour of the corresponding
spacetime near the singularity is encoded in the behaviour of the solution asτ → τ−.
For Bianchi types other than IX the behaviour asτ → τ+ encodes the behaviour of the
spacetime in the time direction where it is complete. For Bianchi type IX it encodes the
behaviour near the time of maximal expansion.

The Bianchi type to which a solution of (3.1) corresponds depends on the values of
N1–N3. If all three are zero the Bianchi type is I. If precisely one is non-zero then it is II.
If precisely two are non-zero it is either VI0 (signs opposite) or VII0 (signs equal). If all
three are non-zero it is either IX (all signs equal) or VIII (one sign different from the other
two). The set of points corresponding to any one of the Bianchi types is invariant under
the flow of the differential equation. A point of this set will be referred to as a point of the
given Bianchi type.

There are various monotonic functions which can be defined. The functionN1N2N3

is strictly monotonic along any solution of type IX or VIII (cf the function11 of [24])
because(N1N2N3)

′ = 3q(N1N2N3). This gives the result forq 6= 0. If q = 0 then the
Hamiltonian constraint shows that either6′+ or 6′− is non-zero and this proves the desired
result. The functions

Zε = [ 4
36

2
− + (N2+ εN3)

2]/(−εN2N3)

are non-negative functions on the sets of points of type VI0 and VII0 with N1 = 0 for
ε = 1 andε = −1, respectively. They are strictly decreasing except when6− = 0. These
statements are proved in [24]. The function(1+ 6+)2 is a non-increasing function along
solutions on the union of points of types I, II, VI0 and VII0 with N1 = 0. This is because

d

dτ
[(1+6+)2] = −4(1+6+)2(1−62

+ −62
−) (3.4)

and the vacuum Hamiltonian constraint implies that62
+ + 62

− 6 1 for the given Bianchi
types. This is analogous to a monotonic function for solutions of class B given by Hewitt
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and Wainwright [10], cf also [23, p 150].
In order to study the question of which of the spacetimes described by the above

equations have curvature singularities, it is useful to express curvature invariants of the
spacetimes in terms of the Wainwright–Hsu variables. Consider the example of the
Kretschmann scalarRαβγ δRαβγ δ. Define a dimensionless version of this quantity by

κ = Rαβγ δRαβγ δ/(tr k)4. (3.5)

Thenκ can be expressed as a polynomial in the variablesN1, N2, N3, 6+ and6−. This
can conveniently be done using the formulae for curvature given by Ellis and MacCallum
[8]. Here only the expression for solutions of type I will be written out, namely

κ = (− 2
9 + 2

96+ + 4
96

2
+)

2+ 2( 1
96

2
+ + 1

36
2
− − 1

96+ − 2
9)

2+ 2
276

2
−(26+ − 1)2. (3.6)

The fact that it is a positive definite expression is explained by the fact that for a vacuum
spacetime of Bianchi type I the magnetic part of the Weyl tensor vanishes.

4. Possible limit sets

It will now be shown, among other things, that theα-limit set of any solution of (3.1)–
(3.3) of type I, II, VI0 or VII 0 is a single point of type I or type VII0. Consider first a
solution of type I. It corresponds to an equilibrium point of (3.1) and so is its ownα-limit
set, as well as its ownω-limit set. These points form a circle, sometimes known as the
Kasner circle. Next consider a solution of type II. Using the threefold symmetry of the
equations, it may be assumed without loss of generality that it satisfiesN2 = N3 = 0.
Then an elementary calculation shows that either6− = 0 or the ratio(6+ −2)/6− is time
independent (cf [23, pp 137–8]). Taking account of the Hamiltonian constraint, this reduces
the motion to motion along a curve. The direction of motion along this curve is controlled
by the monotonic function(1+6+)2. It follows that theα-limit set consists of one point on
the Kasner circle and theω-limit set of another. There are three points on the Kasner circle
which play a special role. They are denoted byT1, T2 andT3 in [24] and have coordinates
(−1, 0), ( 1

2,±
√

3/2). They divide the Kasner circle into three equal parts. Theα-limit set
of a solution of type II withN1 6= 0 lies on the longer of the two open arcs with endpoints
T2 andT3, while theω-limit set lies on the shorter of these arcs. The pointsT1, T2 andT3

are permuted cyclically by the threefold symmetry, which shows what happens for type II
solutions withN2 6= 0 or N3 6= 0. Associating theα-limit set of a type II solution with
the ω-limit set of that solution defines a mapping from the Kasner circle with the three
exceptional points removed to the Kasner circle. This is a realization of the famous BKL
(Belinskii–Khalatnikov–Lifschitz) mapping.

Consider next solutions of type VI0 or VII 0. Using the threefold symmetry, it can be
assumed without loss of generality thatN1 = 0. Equation (3.4) and lemma 2.1 imply that
for any α-limit point 62

+ + 62
− = 1 or 6+ = −1. For these solutions the Hamiltonian

constraint reduces to:

62
+ +62

− + 3
4(N2−N3)

2 = 1 (4.1)

and so if6+ = −1 then62
+ + 62

− = 1 anyway. Moreover we also haveN2 = N3. This
means in particular that there are noα-limit points of type VI0. Theα-limit set must contain
a solution of the equations which satisfies these conditions everywhere. The second and
third equations of (3.1) then give eitherN2 = N3 = 0 or 6− = 0, whence6+ = ±1.
Where6+ = −1, 6+ + 1 = 0 and since this function is non-negative and non-increasing
along solutions, it follows that any solution which has a point of this type as anα-limit
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point must be independent ofτ . Apart from these solutions which are independent ofτ , the
remaining possibilities are that either theα-limit set contains a point with6+ = 1,6− = 0
andN2 = N3, or that the entireα-limit set is contained in the Kasner circle. The points in
the first of these two cases constitute the image of a whole solution and so if one of them
belongs to theα-limit set of a solution, they all do. In particular, this would mean that the
solution would not remain in a compact set. It will now be seen that this is impossible. In
the Bianchi VI0 case this is simple, since the Hamiltonian constraint shows that the set of
Bianchi VI0 points is compact. The Bianchi VII0 case requires a little more work. Consider
the behaviour of the non-increasing functionZ−1 along any solution of type VII0. Either it
is identically zero or it is bounded below by a positive constant for allτ 6 τ0 and some
fixed τ0. In the first caseN2 = N3, 6− = 0 and6+ = ±1. ThenN ′2 = 2(1+ 6+)N2 and
the solution remains in a compact set asτ → τ−. In the second case, for any fixedτ0,

N2N3 6 C[ 4
36

2
− + (N2−N3)

2] (4.2)

holds for allτ 6 τ0. Combining this with the Hamiltonian constraint (4.1) proves that the
solution remains in a compact set asτ → τ−. The fact that solutions of these types remain
in a compact set for all sufficiently negative times also proves that theirα-limit sets are
non-empty.

The pointsT1, T2 and T3 of the Kasner circle correspond to spacetimes obtained by
making identifications in a subset of Minkowski space. In particular they are flat. In fact
they are the only flat Kasner solutions, since from (3.6) the Kretschmann scalar is non-zero
at all other points of the Kasner circle. The points of type VII0 which satisfy6+ = −1
and6− = 0 represent the same spacetime as the pointT1. The reason for this is that
the Wainwright–Hsu variables depend not only on the spacetime but on a choice of frame.
The flat Kasner solutions admit a frame of type I and a one-parameter family of frames of
type VII0, which can all be used. Thus one spacetime is represented by different points
in R5. These type VII0 solutions and those obtained from them by applying the threefold
symmetry will be referred to as the flat type VII0 solutions. This terminology will be
justified later, when it is shown that they are the only flat solutions of type VII0.

It has now been shown that, except for the flat solutions of type VII0, the α-limit set
of any solution of type I, II, VI0 or VII 0 is contained in the Kasner circle. It will now
be shown that it consists of a single point of the Kasner circle. To see this, consider the
behaviour of the function(1+6+)2 along the given solution. It cannot take two different
values on theα-limit set, since then it could not be monotonic along the solution. Thus the
α-limit set of any given solution consists of points on the Kasner circle where6+ takes on
the same value. But for any given value of6+ there is only one point, in which case the
desired result follows, or there are two. In the latter case it follows from the connectedness
of the α-limit set that only one of the two can be contained in it. The following theorem
has now been proved:

Theorem 4.1.Theα-limit set of a solution of (3.1)–(3.3) of type I, II, VI0 or VII 0 is a single
point of type I or a flat point of type VII0, the latter only being possible if the solution is
independent ofτ .

Note that all the arguments used to prove this were elementary, and that the reduction
theorem (theorem 2.3) was not used. In studying theα-limit sets of solutions of types VIII
and IX heavier machinery is required. Note first that, due to the strictly monotonic function
for these Bianchi types presented in section 3, theα-limit set of any solution of type VIII
or IX is contained in the setN1N2N3 = 0, which consists of points of the other, simpler,



2350 A D Rendall

Bianchi types. It follows that theα-limit set, if non-empty, contains the image of a solution
of one of these types. It then also contains theα-limit set of that solution. Thus it follows
from theorem 4.1 that:

Theorem 4.2.Theα-limit set of a solution of (3.1)–(3.3) of type VIII or IX is either empty
or contains a point of type I or contains a flat point of type VII0.

In the rest of this section it will be shown that, except for a small set of well understood
solutions, if theα-limit set of a solution of type VIII or IX is non-empty, then it either
contains a non-empty open subset of flat points of type VII0 or a non-flat point of the Kasner
circle and that in the latter case it contains more than one non-flat point of the Kasner circle.

Theorem 4.3.Theα-limit set of a solution of (3.1)–(3.3) of type VIII or IX has at least one
of the following properties:
(i) it is empty;
(ii) it contains at least two distinct points of type I, at least one of which is non-flat;
(iii) it consists of flat points of type I or VII0 and contains a non-empty open subset of the

set of points of type VII0;
(iv) it is a flat point of type I or VII0 and the solution is contained in the unstable manifold

of that point.

Proof. The essential point is to apply the reduction theorem (theorem 2.3) to the equilibrium
points of the system. In this context it is important to note that the Kasner circle is a centre
manifold for each of the non-flat points contained in it, while the manifoldsN1 = 0,N2 = 0
andN3 = 0 are centre manifolds for the flat solutions of type I and VII0 which they contain.
This follows from the computation of the eigenvalues and eigenspaces of the equilibrium
points carried out by Wainwright and Hsu [24] and the obvious fact that the manifolds in
question are invariant manifolds.

Consider now a solution of type VIII or IX with non-emptyα-limit set. First it will
be shown that if itsα-limit set contains one non-flat pointp of type I, it contains at least
two points of type I. The Kasner circle, which is a centre manifold forp, consists of
equilibrium points. Hence, by the reduction theorem, a neighbourhood ofp is foliated by
invariant manifolds of codimension one, each of which meets the Kasner circle at a single
point. In each of these submanifolds the flow is topologically equivalent to a standard
saddle. It follows that if the solution converges top asτ → τ−, it must lie on the unstable
manifold ofp and that otherwise theα-limit set must contain the stable manifold. Suppose
without loss of generality thatp belongs to the shorter of the two arcs of the Kasner circle
joining T2 to T3. Then the analysis of the linearization in [24] shows that the subspaces
N2 = N3 = 0 andN1 = 0 are the stable and unstable manifolds, respectively. Since the
unstable manifold contains no points of types VIII or IX, it follows that theα-limit set
of the solution under consideration contains the stable manifold, which is the image of a
solution of type II. Since theα-limit set is closed, it follows that it must also contain the
image ofp under the BKL map. Thus it contains at least two distinct points.

Next the case will be considered where noα-limit point of the solution is a non-flat
point of type I. Because of the monotonic functionN1N2N3, all α-limit points must satisfy
N1 = 0,N2 = 0 orN3 = 0. A α-limit point of type II or type VI0 or a non-flat point of type I
or VII 0 is not possible, as follows from theorem 4.1. Hence the entireα-limit set consists of
flat points of type I or VII0. Note also that no solution on the centre manifold can approach
one of these points asτ → τ−, unless it is the solution which stays at that point all the time.
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Hence, by the reduction theorem, the solution under consideration can only approach a point
of that type if it lies on the stable manifold of that point. Using the calculations of [24]
once more, the stable manifold can be identified. After applying the threefold symmetry if
necessary, it is given by the equationsN2 = N3, 6− = 0. The Bianchi type IX solutions
satisfying these conditions are the Taub–NUT solutions. Similarly, solutions of type VIII (or
indeed of type II) satisfying these conditions are the NUT solutions of those types described
by Siklos [21]. It remains to consider the case of a solution whoseα-limit points are flat
points of type I or VII0, but which does not converge to such a point. By the reduction
theorem, a solution of this type which hasp as anα-limit point must repeatedly leave the
neighbourhood ofp whose existence is asserted by the theorem. In particular, it crosses a
sphere of any sufficiently small radius aboutp infinitely many times. Thus someα-limit
point lies on any such sphere. It follows that theα-limit set contains an open subset of the
set of flat points of type VII0.

The notions of ‘standard convergent’, ‘standard oscillatory’ and ‘anomalous’ mentioned
in the introduction will now be defined in terms of the four cases of the theorem. A
solution of type VIII or IX is standard convergent if it satisfies property (iv) of theorem 4.3.
A solution of any other Bianchi type of class A is always standard convergent. (This
terminology is justified by theorem 4.1.) A solution is standard oscillatory if it satisfies
property (ii) of theorem 4.3. A solution which is neither standard convergent nor standard
oscillatory is called anomalous.

5. Conclusions

The results of the previous section on theα-limit sets of solutions of (3.1)–(3.3) will now
be interpreted in terms of properties of the corresponding spacetimes. The first issue to
be considered is that of curvature singularities. Here the theorems of the last section
give complete information for all types other than VIII and IX. For these two types the
information obtained is less satisfactory.

Theorem 5.1.Let (M, g) be a vacuum spacetime with a Bianchi symmetry of class A.
Suppose that the time orientation has been chosen such that the maximal Cauchy
development of data on a homogeneous hypersurface is past incomplete, so that there is a
past singularity. Then at least one of the following holds:

(i) the Kretschmann scalar is unbounded in a neighbourhood of the initial singularity;
(ii) the maximal Cauchy development can be extended through a smooth Cauchy horizon,

and then the spacetime is flat or a NUT spacetime;
(iii) the corresponding solution has property (i) or property (iii) of theorem 4.3.

Proof. Assume that property (iii) of the conclusions of this theorem does not hold. Then
if the solution of (3.1)–(3.3) corresponding to the given spacetime is of type VIII or IX,
it has property (ii) or (iv) of the conclusions of theorem 4.3. The solutions which have
property (iv) of theorem 4.3 have already been identified; they are the NUT spacetimes. It
is known that they admit an extension through a smooth Cauchy horizon (cf [6]). Thus it
remains to prove the theorem in the case that a solution of type VIII or IX has property (ii) of
theorem 4.3 and in the case that the Bianchi type is neither VIII nor IX. From theorems 4.1
and 4.3 it follows that either the spacetime corresponds to a flat point of type I or VII0 or
that there is a non-flat point of type I in theα-limit set. In the first of these cases, it is known
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that the spacetime can be extended through a smooth Cauchy horizon [6]. In the second case
the values of the scalarκ introduced in section 2 have a cluster pointκ0 6= 0 asτ → τ−,
whereκ0 is the value ofκ at a non-flatα-limit point of the solution on the Kasner circle.
Since the Kretschmann scalar is equal toκ(tr k)4, it follows that lim supRαβγ δRαβγ δ = ∞.
This completes the proof.

According to the standard picture of the mixmaster solutions, case (iii) of theorem 5.1
should not occur. If that were the case, a clean result would be obtained on the non-
existence of ‘intermediate singularities’. This would mean that every solution possessed
either a smooth Cauchy horizon or an unbounded curvature invariant near the singularity.
Note that this conclusion has been proved for solutions of type other than VIII and IX,
as can be seen from an examination of the above proof. In fact, slightly more has been
proved, since it has not only been shown that the Kretschmann scalar is unbounded near
the singularity, but also that it tends to infinity there at the same rate as(tr k)4. Computing
curvature invariants other than the Kretschmann scalar would not lead to an improved result
for types VIII and IX using the above techniques, since all curvature invariants vanish at
the flat points.

The other important point of interpretation concerns the question of convergent or
oscillatory behaviour near the singularity, and velocity dominance. The notion of a velocity
dominated singularity was introduced by Eardleyet al [7] and a related notion was used by
Isenberg and Moncrief [12] (see also [17, 18] for other applications). The general idea is
that near the singularity the spacetime should be approximated in some appropriate sense
by a solution of Bianchi type I. In the present context it might be tempting to say that a
solution of (3.1)–(3.3) is velocity dominated if itsα-limit set consists of a point on the
Kasner circle. However, this is too simple, since the flat points of type VII0 represent the
same spacetimes as the flat points of Bianchi type I. Thus the following definition will be
used:

Definition.A singularity in a spacetime with a given(3+1)-decomposition is calledweakly
velocity dominatedif the generalized Kasner exponentspi(t, x) converge to a limit for each
fixed x as the singularity is approached and if their limits satisfy

∑
i p

2
i = 1.

This definition requires some further explanation. Suppose that the hypersurfaces of
constantt have nowhere vanishing mean curvature near the singularity (if this is not the
case, the definition is deemed to be violated). Letλi be the eigenvalues of the second
fundamental form. Then the mean curvature is trk = ∑

i λi and the generalized Kasner
exponents are defined to bepi = λi/(tr k). In a Kasner solution they are constants and satisfy
the equation required in the above definition. For the Bianchi spacetimes considered here,
the definition will be applied with a(3+1)-decomposition defined by Gaussian coordinates
based on a homogeneous hypersurface. Then the generalized Kasner exponents are linear
combinations of6− and6+ and the equation of the definition becomes62

+ + 62
− = 1. It

is easy to think up alternative definitions. For instance, the condition
∑

i p
2
i = 1 could be

replaced by the conditionρi/(tr k)2→ 0, whereρi are the eigenvalues of the spatial Ricci
tensor. The resulting definition isa priori stronger than that given above but in all the cases
where the above definition is shown to be satisfied in the following the stronger definition
is also satisfied.

Returning to the question of oscillatory behaviour, a functionF on an interval(τ−, τ+)
will be said to have infinitely many oscillations asτ → τ− if there exist two numbersa, b
with a < b and a sequenceτn with τn → τ− asn→∞ such that for any positive integer
k, F(τ2k−1) 6 a andF(τ2k) > b.
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Theorem 5.2.Let (M, g) be a vacuum spacetime with a Bianchi symmetry of class A.
Suppose that the time orientation has been chosen such that the maximal Cauchy
development of data on a homogeneous hypersurface is past incomplete, so that there is a
past singularity. Then either:
(i) the singularity is weakly velocity dominated;
(ii) the spacetime is of type VIII or IX and6+ or 6− has infinitely many oscillations as

the singularity is approached;
(iii) the spacetime is of type VIII or IX and the corresponding solution of (3.1)–(3.3) fails

to be contained in a compact set asτ → τ−.

Proof. If the spacetime is not of type VIII or IX then the result follows immediately from
theorem 4.1. Consider a spacetime of type VIII or IX such that the corresponding solution
of (3.1)–(3.3) is contained in a compact set asτ → τ−. Then it must have one of the
properties (ii), (iii) or (iv) of theorem 4.3. If it has property (iv) of that theorem the
singularity is weakly velocity dominated. If it has property (ii) it repeatedly comes close to
two different points of the Kasner circle asτ → τ− and so6+ or 6− has infinitely many
oscillations as the singularity is approached. If it does not belong to any of these cases
of theorem 4.2 then itsα-limit set must be a compact subset of the set of flat points of
type I and VII0. In that case6+ → −1 and6− → 0 and the solution is weakly velocity
dominated.

This result implies in particular that solutions which are neither of type VIII or IX
are (weakly) velocity dominated. The standard picture indicates that the only solutions of
types VIII and IX which are velocity dominated are the NUT solutions and that case (iii)
of theorem 5.2 would be superfluous. However, it has not been proved that this is the case.
In this context, it is interesting to compare solutions of the vacuum Einstein equations with
the solutions of the Einstein–Maxwell equations of Bianchi type VI0 studied by LeBlanc
et al [13]. They found a remarkable similarity between the dynamics of these solutions
and that of the mixmaster model. At the same time, the equations of the Einstein–Maxwell
model are defined on a compact region so that the analogue of the behaviour in case (iii)
of theorem 5.2 is ruled out.

Although the BKL mapping plays an implicit role in these results, they do not provide
any direct confirmation of the idea, which is part of the standard picture, that the BKL
mapping represents an approximation to solutions of the mixmaster model in some sense.
The next result is a statement which goes in that direction. Recall that the BKL mapping is
a mapping from the Kasner circle with the three exceptional pointsT1, T2 andT3 removed
to the Kasner circle. Starting with a point of the Kasner circle and applying the BKL
mapping repeatedly produces a sequence of points. If one of these points is one ofT1, T2

or T3 then the map can no longer be applied and only a finite sequence can be defined. If,
on the other hand, this never happens, an infinite sequence is obtained. This may or may
not be periodic. By a finite non-repeating sequence of BKL iterates we mean a finite initial
piece of the iteration, which never hits the same point twice, whether or not the sequence
as a whole is finite or infinite for that starting point. In the case that the whole sequence is
periodic, we need to cut it off after some number of iterations smaller than the period. To
measure the quality of the approximation, the Euclidean metric in the spaceR5 where the
Wainwright–Hsu system is defined will be used. The distance between pointsx and y in
this metric will be denoted byd(x, y).

Theorem 5.3.Let {x1, . . . , xn} be a finite sequence of BKL iterates andε > 0. Then there
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exists aδ > 0 and a solution of the vacuum Einstein equations of Bianchi type IX which,
when written in the Wainwright–Hsu variables asf (τ), has the following properties:
(i) δ < ε and the balls of radiusδ about each of the pointsxi have disjoint closures;
(ii) there exists a finite sequence of timesτ1 > · · · > τn such thatf (τi) is contained in

the open ball of radiusδ aboutxi , while for τi 6 τ 6 τi+1 the solution does not come
closer thanδ to anyxj other thanxi or xi+1.

Proof. As explained in section 3, each iteration of a point via the BKL map can be
represented by a solution of Bianchi type II. Fori = 1, 2, . . . , n− 1, let si be the image of
the Bianchi II solution which producesxi+1 from xi . Choose someη > 0 smaller thanε
such that the closures of the ballsBi of radiusη about the pointsxi are disjoint and such
that on each of these balls the flow has the local product structure of the reduction theorem.
Now chooseδ0 < η such that any point which is a distance less thanδ0 from each of two
distinct si must be inside one of the ballsBi . That such aδ0 exists follows from the fact
that the intersections of eachsi with the complement of the union of theBj are disjoint
compact sets. LetS be the set of all points which are a distance less thanδ0 from somesi ,
this is an open set which contains allxi . For 16 i 6 n−1 let yi be a point ofsi which is a
distance less thanδ0 from xi . For 26 i 6 n let zi be a point ofsi−1 which is a distance less
thanδ0 from xi . Let δ1 be such that the ball of radiusδ1 abouty1 is contained in the ball of
radiusδ0 aboutx1. There exists a time1τ1 such that the solution withf (τ) = z2 satisfies
f (τ + 1τ1) = y1. Chooseε2 > 0 such that ifd(x, z2) < ε2 thend(F (1τ1, x), y1) < δ1.
HereF denotes the local flow of the differential equation. By reducing the size ofε2 if
necessary, it can be ensured that ifd(x, z2) < ε2, thenF(τ, x) ∈ S\B ′i for all τ 6 1τ1,
whereB ′i is the complement of̄Bi ∪ B̄i+1. Now chooseδ2 such that anyx with the correct
signs ofN1, N2 andN3, which lies in the open ball of radiusδ2 abouty2, passes through
the open ball of radiusε2 aboutz2 and stays inS as long as it stays in the ball of radius
δ0 aboutx2. The existence of a numberδ2 with this property follows from the local saddle
point structure of the flow near the pointx2. In a similar way we can recursively define
1τi for i = 2, . . . , n−1, εi for i = 3, . . . , n andδi for i = 3, . . . , n−1. Now letδ = δn−1

and letx∗ be any point of type IX such thatd(x∗, zn) < δ. We claim that the solution
with initial datax∗ for τ = 0 has the desired properties. Note first that by construction it
enters each of the ballsBi and is contained inS. Let τn = 0 andσn−1 = τn +1τn−1. Let
τn−1 > σn−1 be a time such thatd(f (τn−1), zn−1) < εn−1 andf (τ) is in Bi−1 for all τ in
the interval [σi−1, τi−1]. Continuing in this way, the otherτi can be defined recursively.

The intuitive meaning of this theorem is that the solution visits small neighbourhoods
of the points generated by the BKL iteration and, moreover, does so in the order determined
by the iteration. An analogous theorem holds with type IX replaced by type VIII, the proof
being almost identical. This result shows that arbitrarily long but finite segments of a BKL
iteration can be realized by a solution of the Einstein equations. However, it says nothing
about the full iteration, if it happens to be infinite. This is natural, since for a given measure
of error ε and a given starting point specified with precisionε it cannot be expected that
the qualitative behaviour of the sequence of iterates is determined.

What do theorems 5.1–5.3 tell us about mixmaster dynamics? They tell us that a finite
sequence of BKL iterates corresponds to a solution of the exact equations. They do not
tell us the ultimate fate of the solution at early times because the possibility is left open
that eventually all solutions show the behaviour described above as anomalous. Numerical
results make this possibility implausible. Recent calculations [4] have been able to observe
150 BKL iterates in numerical solutions of the mixmaster model. Moreover, there is no
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indication that things change at that point and anomalous behaviour seems never to have
been observed numerically. Thus it seems reasonable to suppose that at least a large open
set of initial data for the mixmaster model gives rise to standard oscillatory behaviour. On
the other hand, it it difficult to see how the mathematical techniques used in this paper could
lead to a proof of this fact. The key question is, what other techniques might do so.
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