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1. INTRODUCTION

The Lagrangian theory of gravit ational instability of homogeneous

and isotropic cosmologies turned out to be a much more powerful tool

for the modeling of inhomogeneit ies in Newtonian cosmology than the

standard Eulerian perturbat ion approach was (for the latter see, e.g.,

Refs. 57,58, and references therein) .

Already the general ® rst-order solut ion of this theory [15,16] (which

contains the widely applied ª Zel’ dovich approximat ionº [74,75] as a special

case) has been found to provide an excellent approxim ation of the density

® eld in the weakly non-linear regime (i.e., where the r.m.s. deviat ions of

the Eulerian density contrast ® eld d := r/ rH ± 1 are of order unity) in con-

trast to the Eulerian linear theory of gravitational instability [29,20,9,62].

This appears to be due to the fact that , in contrast to the Eulerian scheme,

the Lagrangian approxim ation takes fully into account , at any order, the

convect ive part (
®
v . Ñ )

®
v of the accelerat ion and conservat ion of mass. An-

other advant age of the Lagrangian equat ions is that they are regular at

caust ics (where the density blows up), whereas Euler’ s equat ions break

down. Therefore, Lagrangian solut ions can be continued accross caust ics,

i.e., at the places where structures form.

Most recently, the range of applicat ion of Lagrangian perturbat ion so-

lut ions for the modeling of large-scale structure has been great ly extended

by employing ® lt ering techniques which discard high-frequency modes in

the power-spectrum of the init ial data, and so enable to model highly non-

linear stages, even in hierarchical models with much small-scale power

[53,54,73].

In view of these results we think that the power of the Lagrangian

descript ion, usually applied only to ¯ ows under very restrictive condit ions

(planar, incompressible, etc.), has been underest imated. The recent inves-

tigat ion of solut ions demonstrates that the complicat ed nonlinear part ial

diŒerential equat ions which result from the transformation of the Eulerian

equat ions to Lagrangian coordinat es can be solved in special cases even

in three dimensions (see subsect ion 3.2.3) , which has been claimed to be

impossible in standard text books on hydrodynam ics discussing the La-

grangian picture. One reason for the possibility of constructing solut ions

lies in the close correspondence of Lagrangian ¯ ows and classical point

mechanics: the Lagrangian coordinat es label ¯ uid elements like coordinat e

indices, and in perturbat ion theory the Lagrangian evolut ion equat ions

for dust reduce to a sequence of ordinary diŒerential equat ions, as will

be shown below. For details on the Lagrangian picture of ¯ uid motion in

classical hydrodynam ics see Serrin [65] and the compilat ion by Stuart and
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Tabor [68].

We shall treat the init ial value problem for the Lagrangian perturba-

tion equat ions of all orders, using a global gauge condit ion to ® x the re-

lat ion between the background and the perturbed ¯ ows, and we establish

existence and uniqueness of perturbat ive solut ions for toroidal (or spat ially

periodic) models, thus complement ing work by Brauer et al. [11,12].

Lagrangian perturbat ion theory has become popular; various authors

pursue similar studies in relat ion to the modeling of large-scale structure

in the Universe [55,8,47,37,56]. For reviews see [9,10,62,21,22]. Recent

eŒorts concerning the Lagrangian theory in general relat ivity and in par-

ticular Lagrangian perturbat ion solut ions have been also focussed on evo-

lut ion equat ions for ¯ uid quant ities such as shear and vort icity, the gravi-

tational tidal tensor as the ª electric partº of the Weyl-tensor, as well as the

ª magnet ic partº of the Weyl-tensor. Supported by the works by Ehlers

[32], Tr Èumper [70] and Ellis [34], a variety of perspectives in cosmology

have been opened (see Refs. 43,44,49,50,30,6 3,5,4,13,46,48,3 5,6,51,52,61) .

In these works also the Newtonian limits, or analogues, respectively, have

been discussed. In a separat e note we complement this focus by giving a

clear-cut de® nit ion of the Newtonian limits of the electric and magnet ic

parts of the Weyl-t ensor in a 4 ± dimensional ª frame theoryº which covers

both Newton’ s and Einstein’ s theory [33]. In Newton’ s theory such ¯ uid

quant ities are expressed in terms of funct ionals of the trajectories. We

emphasize that our point of view of a Lagrangian treatment of evolut ion

equat ions, which was begun with the formulat ion of a closed Lagrangian

system for the trajectories by Buchert and G Èotz [14], aims to determine

¯ uid quant ities explicit ly in terms of the trajectory ® eld, and even inte-

grate these quant ities along the trajectories, if possible, thus, reducing the

descript ion to a single dynamical ® eld variable. This point of view en-

ables us to determine explicit ly the evolut ion of ¯ uid quant ities without

specifying part icular solut ions for the trajectories.

The paper is organized as follows. In Section 2 we summarize some

pertinent facts on the kinematics and dynamics of Newtonian self-gravit a-

ting ¯ ows in the Lagrangian framework. We give an alternat ive formula-

tion of the Lagrangian evolut ion equat ions in terms of diŒerential forms,

and we address the init ial value problem, the problem of existence of so-

lut ions, and the equivalence of Eulerian and Lagrangian formulat ions up

to the stage when shell-crossing singularit ies occur. We aim to give a

self-contained representat ion of the equat ions and some addit ional useful

relat ions. Therefore some equat ions are reviewed which are not needed

in the following sections. In Section 3 we discuss the Lagrangian theory

of gravitational instability of the Newtonian analogues of Friedmann cos-
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mologies. Here, we give the general perturbat ion and solut ion schemes at

any order and discuss the modeling of space as a 3-torus 3 as compared

to 3 . We make detailed remarks on the interpretation of the perturbat ion

scheme and prove uniqueness of the perturbat ion solut ions at any order

on the 3-torus.

2. THE LAGRANGIAN FRAMEWORK

2.1. K inematics

2.1.1. Integral-curves and displacem ent maps

Let
®
v [

®
x, t] denote a smooth Eulerian velocity ® eld on 3 £ [t0 , t1 ]. We

assume that j ®v j £ V, j ¶ v i / ¶ x j j £ M (indices run from 1 to 3).3 Then there

exists a unique smooth vector ® eld
®
f (

®
X , t) such that

d
®
f

dt
=

®
v [

®
f (

®
X , t), t] ,

®
f (

®
X , t0 ) = :

®
X . (1a, b)

The in tegral-curves t ½ ® ®
x( t) =

®
f (

®
X , t) of the velocity ® eld are labelled by

the (init ial) Lagrangian coordinat es
®
X ; d/ dt := ¶ / ¶ t +

®
v . Ñ is the total

(Lagrangian) t ime derivat ive, henceforth abbreviat ed by a dot ; a comma

(or Ñ ) denot es diŒerentiat ion with respect to Eulerian coordinat es, and a

vert ical slash (or Ñ 0 ) denotes diŒerentiat ion with respect to Lagrangian

coordinat es; only the lat ter commutes with the dot . Since dependent vari-

ables will sometimes be expressed either in terms of Eulerian or in terms of

Lagrangian coordinat es, we emphasize the diŒerent funct ional dependence

by using the notat ions [
®
x, t] or (

®
X , t), respectively.

Our assumpt ions on
®
v imply the following statements (A) ± (G ) :

The integral-curves de® ned by
®
f do not intersect . (A )

Since the volume expansion rate h := Ñ . ®
v is bounded by 3M , and since

(1) gives for the Jacobian

J := det ( f i | k ) (2a)

the equat ion

J (
®
X , t) = e

t

t 0
d t 9 h [

®

f (
®
X ,t 9 ) , t 9 ]

, (2b)

3 We employ orthonorm al coordinates x i and use corresp onding vect or and tensor

component s; therefore all indices m ay be writt en as subindices.
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we obtain

0 < e
- 3M ( t 1 - t 0 ) £ J (

®
X , t) £ e

3M ( t 1 - t 0 ) . (B )

Due to (1a),

j
.®

f j £ V. (C )

The de® nit ion (1a, b) of
®
f implies that

Çf i | k = v i , F f F | k . (2c)

Therefore, the elements of the deformation gradien t Ñ 0

®
f are bounded,

j f i | k j £ e
3M ( t 1 - t 0 )

, (D )

and

j Çf i | k j £ 3M e
3M ( t 1 - t 0 ) . (E )

These propert ies further have the consequences that the displacem ent map

f t :
®
X ½ ® ®

x =
®
f (

®
X , t), which sends ¯ uid part icles from their init ial posi-

tions at t ime t0 to their posit ions at time t, has the following property:

f t is an orientation preserving diŒeomorphism of 3 onto itself (F )

(see Appendix A for a proof).

Let h t denote the inverse of f t ;
®
X =

®
h [

®
x, t]. Its Jacobian matrix is

given by

h j , F =
1

2J
eF pqej r s f p | r f q | s , (3a)

and therefore

j h j , F j £ e
9M ( t 1 - t 0 ) . (G )

So far, we have listed consequences of the de® nit ion (1a, b) of
®
f in

terms of
®
v . Let us now, conversely, assume that we have a smooth

®
f (

®
X , t)

which has, on 3 £ [t0 , t1 ], the propert ies (A ) ± (E ). Then it is easily estab-

lished that (F ) and (G ) also hold, and the Eulerian velocity ® eld

®
v [

®
x, t] :=

.®
f (

®
h [

®
x, t], t) (3b)

is smooth and enjoys boundedness propert ies of the kind we started with.

These remarks show under which assumptions the kinemat ics de® ned by

an Eulerian
®
v [x, t] or a Lagrangian

®
f (

®
X , t), respectively, are equivalent ; we

then call the kinemat ics regular .
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R em arks:

(i) The preceding statements remain valid, with some adaptations, if space

is modeled not as 3 , but as a torus 3 .

(ii) If, contrary to our assumpt ions, the velocity ® eld
®
v or

.®
f were not

bounded, ¯ uid part icles might escape to in® nity in a ® nite t ime. If h ® ± ¥
su� cient ly fast, then J ® 0 there, and f t would no longer be locally

diŒeomorphic; the ¯ ow would then develop a caust ic. If (A) were violat ed,

f t would no longer be inject ive. In all three cases, (F ) would fail.

Under the assumptions discussed above we can also obtain the Euler-

ian acceleration ® eld
®
g =

®
v , t +

®
v . Ñ ®

v from
®
f :

®
g [

®
x, t] :=

. .®
f (

®
h [

®
x, t], t). (3c)

It is convenient to introduce the following abbreviat ion: Calculat ing the

Eulerian velocity gradient we obtain, with (3a),

v i , F = Çf i | j h j , F =
1
2 eF pq J ( Çf i , f p , f q )J - 1 , (3d)

where J (A, B , C ) abbreviat es the funct ional determinant of any three

funct ions A(
®
X , t), B (

®
X , t), C (

®
X , t) with respect to Lagrangian coordi-

nates:
¶ (A, B , C )

¶ (X 1 , X 2 , X 3 )
= : J (A, B , C ),

e.g., for the Jacobian we simply have J = J (f 1 , f 2 , f 3 ).

We now write the curl and the divergence of
®
g in terms of

®
f , using

®
h

as a transformation from Eulerian to Lagrangian coordinat es (hereafter,

repeated indices imply summation, with i , j , k running through the cyclic

permutations of 1, 2, 3) :

( Ñ £ ®
g)k = epq [j J ( Èf i ] , f p , f q )J

- 1
, (4a, b, c)

( Ñ . ®
g) =

1
2 ea bc J ( Èf a , f b, f c )J - 1 . (4d)

Explicit ly, these equat ions read (summation over j !)

( Ñ £ ®
g) i = J ( Èf j , f i , f j ) J

- 1
, (4a, b, c)

( Ñ . ®
g) = (J ( Èf 1 , f 2 , f 3 ) + J ( Èf 2 , f 3 , f 1 ) + J ( Èf 3 , f 1 , f 2 ) )J

- 1 . (4d)

The arguments on the left are
®
x, t, on the right ,

®
h [

®
x, t], t.
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Below we give an alternative formulat ion by using diŒerential forms.

Let d denote the operator of spatial exterior diŒerentiat ion acting on func-

tions and forms which may be expressed for regular kinematics either in

Eulerian (
®
x) or Lagrangian (

®
X ) coordinat es. Then eqs. (4) read

1
2 ( Ñ £ ®

g) i ei j k dxj Ù dxk = g[i , j ] dx j Ù dx i

= d Èf i Ù df i = d( Èf i df i ), (4a, b, c)

and

( Ñ . ®
g) dx1 Ù dx2 Ù dx3 = 3d Èf [1 Ù df 2 Ù df 3] = d(*

Èf i df i ) , (4d)

where * denot es the Hodge star operator with respect to the Euclidean

metric
± ®
dx2 . We shall, however, work with the ® rst form of eq. (4d) which

turns out to be more convenient than the more elegant second form. Also,

we shall lat er use the Hodge star operator with respect to the metric
± ®

dX 2

which coincides with the Euclidean metric
± ®
dx2 only at t = t0 . The latter

operator we shall denote with *.

Recall that the ant i-symmetric part taken over 3 indices mult iplied by

3 coincides with the sum of all cyclic permutations in expressions which

involve wedge product s, e.g.,

3d Èf [1 Ù df 2 Ù df 3] = d Èf 1 Ù df 2 Ù df 3 + d Èf 2 Ù df 3 Ù df 1 + d Èf 3 Ù df 1 Ù df 2 .

2.1.2. Principal invarian ts of a lin ear map

A linear map A : 3 ® 3 has the following three principal scalar invari-

ants:

I (A) : = tr (A), (5a)

I I (A) : = 1
2 ( (tr (A)2 ± tr (A2 ) ), (5b)

I I I (A) : = det (A). (5c)

For cartesian component s, A = (A i
j ) = (A i j ) .

In previous work the symbols I , I I , and I I I for the principal invari-

ants of any linear map have been used, either with respect to Eulerian or

Lagrangian coordinat es. The kinemat ical scalars for the expansion, the

shear, and the vort icity of the ¯ ow
®
f (

®
X , t), which we shall use in the

present work, can be expressed in terms of the principal invariant s (5),

which we shall do now.

2.1.3. Relation to kinematical variables

Let us split the Eulerian velocity gradient (v i , j ) into its symmetric and

anti-symmetric part s,

v i , j = v ( i ,j ) + v [i , j ] = : hi j + x i j , (6a)
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the rate of deformation hi j and the rate of rotation x i j . We can split hi j

into it s trace-free part , the (symmetric) shear tensor si j , and its trace h ,

which has already been introduced,

h i j = si j + 1
3
d i j h. (6b)

The (anti-symmetric) tensor ± x i j is dual to the angular velocity
®
x , de® ned

as
®
x := 1

2 Ñ £ ®
v . (6c)

The vort icity tensor x i j = ± ei j k x k can be expressed in terms of
®
f ,

x i j = v [i , j ] = 1
2 ep q [j J ( Çf i ] , f p , f q )J - 1 , (6d)

or, using diŒerential forms,

x := ± x i j dxi Ù dx j = dv = d(v j dx j ) = d Çf j Ù df j . (6e)

The component s of
®
x , x i = ±

1
2 ei j k x j k can be written explicit ly as (sum-

mation over j !)

x i = 1
2 J ( Çf j , f i , f j )J - 1 . (6f )

The magnitudes of shear and rotation are given by

s :=
1
2 si j si j , x := j ®

x j =
1
2 x i j x i j . (6g, h )

The preceding de® nit ions imply

1
2 v i , j v i , j = x

2
+ s

2
+

1
6 h2 , (7a)

1
2 v i , j v j , i = ± x

2
+ s

2
+ 1

6
h2 . (7b)

In view of (6) and (7) the principal scalar invariant s I , I I and I I I of

the tensor (v i , j ) are expressible in terms of kinemat ical scalars,

I (v i , j ) = v i , i = Ñ . ®
v = h , (8a)

I I (v i , j ) = 1
2 ( (v i ,i )

2 ± v i ,j v j , i )

= 1
2 Ñ . (

®
v Ñ . ®

v ±
®
v . Ñ ®

v ) = x 2 ± s2 + 1
3

h2 , (8b)

I I I (v i , j ) =
1
3 v i , j v j ,k vk ,i ±

1
2 (v i , i )(v i , j v j , i ) +

1
6 (v i , i )

3 =
1
3 (v i Vi j ) , j

= 1
3 Ñ . ( 1

2 Ñ . (
®
v Ñ . ®

v ±
®
v . Ñ ®

v )
®
v ± (

®
v Ñ . ®

v ±
®
v . Ñ ®

v ) . Ñ ®
v )

= 1
9

h3 + 2h(s2 + 1
3

x 2 ) + si j sj k sk i ± si j x i x j , (8c)
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where Vi j is the matrix with the subdeterminant s of u i , j as elements. The

second equalit ies in (8a ± c) show that all invariant s can be expressed in

terms of divergences of vector ® elds (which has been used and discussed

in the context of perturbat ion solut ions; see Ref. 19) . In obtaining them,

the ¯ atness of space is used essentially.

The velocity gradient v i ,j = v ( i , j ) + v [i , j ] has, in general, 6 independent

scalar invariant s:

h , s, x , t := 1
6 si j sj k sk i , si j x i x j , si j sj k x i x k , (8d)

and determines an invariant , orthonormal triad, the eigen-triad of the shear

tensor; these data together with the 3 Euler-angles of the triad charact erize

the 9 elements of v i , j invariant ly at any event.

Truesdell’ s invariant , dimensionle ss vort icity measure (see Ref. 65) is

equal to

m :=
x

s2 + (1/ 6)h2
. (8e)

All these kinematical variables can be expressed in terms of
®
f and its

derivat ives by means of eqs. (3).

It is useful to de® ne the Lagrangian (ª comovingº ) time-derivat ive of a

spat ial diŒerential form [such as x in eq. (6e)] as the part ial t ± derivat ive,

taken at ® xed X i , dX i . (For the int rinsic, geometrical meaning of this

derivat ive see Appendix B.)

Then (6e) implies

.

x = d Èf i Ù df i = d(gi dx i ) = dg . (9)

Therefore, we have the following kin em at ical Lem m a :

Let
®
v [

®
x, t] be a (continuously diŒerentiable) velocity ® eld and

®
g = Ç®

v the

corresponding accelerat ion ® eld. Then
®
g is irrotat ional, Ñ £ ®

g =
®
0, if and

only if its vort icity two-form x is conserved in the sense that

.
x = 0 , i.e., x t = x t 0 . (10)

(For several equivalent formulat ions see Appendix B.)

2.2. Dynam ics of self-grav itating ª dustº

So far we considered only kinemat ical relat ions which hold for any

regular ¯ ow ® eld
®
f . We now formulate the dynamical equat ions for New-

tonian self-gravit ating ¯ ows, restricting attention to pressureless matter

(ª dust º ) throughout this paper. Henceforth the variables xi are to be in-

terpreted as orthonormal coordinat es of a dynamical ly non-rotating frame

of reference.
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2.2.1. Conservation of mass

In the Lagrangian framework mass-con servation states that for a regular

¯ ow

. (
®
X , t) =

1

J (
®
X , t)

±
. (

®
X ). (11a)

The Eulerian mass density . can be calculat ed from (11a) by using the

inversion map
®
h [

®
x, t]: . [

®
x, t] = . (

®
h [

®
x, t], t).

Given
±
. (

®
X ) > 0, we have shown that under the assumptions of sub-

section 2.1.1, . is ® nite and posit ive for t0 £ t £ t1 . If, cont rary to those

assumpt ions, J ® 0, then . ® ¥ .

In terms of diŒerential forms eq. (11a) states that the density three-

form . d3 x = . dx1 Ù dx2 Ù dx3 is constant along the ¯ ow
®
f :

. d
3
x =

±
. d

3
X . (11b)

Hence

d

dt
( . d

3
x) = Ç. d

3
x + . 3dv [1 Ù dx2 Ù dx3] = ( Ç. + . Ñ . ®

v )d
3
x = 0,

i.e.,

Ç. + . h = 0 . (11c)

2.2.2. Gravitational ® eld equation s

For regular ¯ ows, ª Newton’ sº gravit at ional ® eld equat ions, generalized by

a cosmological term,

Ñ £ ®
g =

®
0, Ñ . ®

g = L ± 4pG . , (12a, b, c, d)

are, in view of eqs. (4), equivalent to the system of four Lagrangian evolu-

tion equat ions [obtained ® rst by Buchert and G Èotz, Ref. 14 (L = 0), and

Buchert , Ref. 15 (L /= 0)]

J ( Èf j , f j , f k ) = 0 , (13a, b, c)

(J ( Èf 1 , f 2 , f 3 ) + J ( Èf 2 , f 3 , f 1 ) + J ( Èf 3 , f 1 , f 2 ) ) ± L J = ± 4pG
±
. . (13d)

Expressed in terms of diŒerential forms, the Lagrange± Newton system (13)

reads

d Èf j Ù df j = d( Èf j df j ) = 0 , (13a, b, c)

and

3d Èf [1 Ù df 2 Ù df 3] ± L(df 1 Ù df 2 Ù df 3 ) = ± 4pG
±
. (dX 1 Ù dX 2 Ù dX 3 ). (13d)
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(We keep the numbering (a, b, c) here to remind the reader that these are in

fact three equat ions.) Equat ion (13d) can also be written more compactly

by using the Hodge star operator (with respect to the metric
± ®
dx2 ) :

*d(*
Èf j df j ) = L ± 4pG . , (13d)

where . is given by the integral (11a) .

The kinematical Lemma stated at the end of subsect ion 2.1.3 shows

that in the case of ª dustº , eqs. (12a, b, c) are equivalen t to the vort icity

conservat ion law (10) which, in this case, acquires the status of a law

of gravit ational dynamics, d Çf i Ù df i = x t 0 . In part icular for irrotational

ª dustº -¯ ows, x = 0 , the only remaining local law of gravity is the diver-

gence law (12d), but the equat ions d Çf i Ù df i = 0 must not be forgot ten!

Equat ions (13) are invariant under constant rotations R and time-

dependent translat ions T ,

®
f (

®
X , t) ½ ® R . ®

f (
®
X , t) + T (t), (14a)

which correspond to the transformat ions

x
a 9

= Ra 9
b x

b
+ T a 9

(t) (14b)

of the Eulerian coordinat es. With respect to (14b), the component s of the

gravitational ® eld strength
®
g transform according to

ga 9
[x

c 9
, t] = Ra 9

b gb
[x

c
, t] + ÈT a 9

( t). (14c)

In contrast to the case of isolated systems , where one puts L = 0 and re-

stricts at tention to inert ial frames and Galilean transformat ions ( ÈT = 0),

in cosmology the assumption of large-scale homogeneity does not allow

us to single out some coordinat e systems as inert ial ones, and the inho-

mogeneous term in (14c) unavoidably occurs in transformat ions relat ing

dynamical ly equivalent coordinat e systems [40,41]. Then eq. (14c) shows

that the gravit ational ® eld strength can no longer be considered as a spa-

tial vector ® eld independent of the spacet ime coordinat e system. We shall

come back to this well-known, but frequent ly disregarded fact in subsec-

tion 3.1.1. The arbit rariness in the choice of R and T can be restricted or

even removed by global condit ions depending on the solut ions considered,

as we shall see later.

2.2.3. Relation s between the Eulerian and the Lagrangian formulation s

Equat ions (13) are second-order evolut ion equat ions for the single dynam-

ical ® eld-variable
®
f . An evolut ion equat ion for the density is not needed,
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since . is given explicit ly by (11) . Thus, only three functions of four

variables determine the evolut ion of the system. In the Eulerian picture

we have seven functions of four variables, e.g., the density, and the three

component s of the velocity and the accelerat ion ® eld, obeying ® rst-order

equat ions.

Nevertheless, the regular solut ions of the two systems (those with

regular kinematics in the sense of subsect ion 2.1.1) are in one-to-one cor-

respondence, as follows from the preceding considerat ions and has been

indicat ed in [16]. More general solut ions of either system exist , but in

general they are no longer equivalent to solut ions of the other system; see

Remark (ii) below.

R em arks:

(i) The transit ion Lagrange ® Euler is simpler than the converse process:

in the former case, only the equat ions
®
x =

®
f (

®
X , t) have to be solved ª alge-

braicallyº for
®
X , whereas in the other case, one has to solve the diŒerential

equat ions (1) for
®
f .

(ii) In writing the ® rst version of eqs. (13a ± d) we dropped the factor J - 1 in

front of all terms. This is, of course, permitted as long as J /= 0; it holds in

part icular for regular solut ions. Since those equation s are regular even at

singularit ies of the system of ¯ ow lines, i.e., where J = 0, and, in general, J

changes sign, one may consider Lagrangian solut ions which have caust ics or

int ersecting trajectories. One may de ® ne . [
®
x, t] = i (

±
. (

®
X i ))/ ( j J (

®
X i , t) j ),

where the sum is performed over all values
®
X i such that

®
f (

®
X i , t) =

®
x.

Such solut ions, which contain ª mult i-dust º regions, are no longer equiva-

lent to Eulerian ones. Their physical mean ing and validity requires separate

consideration and is by no means obvious . In part icular, they cannot be

considered as weak limits of Vlasov-Poisson solut ions, since in the mult i-

stream region part icles at the same place with diŒerent velocit ies in general

have diŒerent accelerat ions, which violat es the weak principle of equiva-

lence. A general-relat ivist ic theory for mult i-dust spacet imes which does

not suŒer from this defect , has been outlined by Clarke and O’Donnell [28].

It would seem to be useful to develop a corresponding Newtonian theory.

Compare also discussions of this problem by Gurevich and Zybin [38].

3. NEWTONIAN COSMOLOGY IN LAGRANGIAN FORM

3.1. Basic concepts and equations

3.1.1. Euclidean and toroidal cosmological models

In Newton’ s original theory, which was designed and well-de® ned for iso-

lated systems only, as well as in standard versions of ª Newtonianº cosmol-
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ogy (see, e.g., Refs. 40,41 or 39) , physical space is assumed to be ª theº

Euclidean space based on the manifold 3 . For some purposes it is use-

ful or even necessary to model 3 ± space as closed, i.e., compact without

boundary, as we shall argue in subsect ion 3.1.3. It is indeed possible to do

that without changing any of the local laws so far adopted.

Since a closed, locally Euclidean 3 ± space is isometric to the quot ient

of a ¯ at torus by a ® nite group of isometries4 [45], we may without loss of

generality take space to be such a torus 3 . It is then still possible to cover

space at each time by ® nitely many overlapping orthonormal coordinat e

systems related by transformations (14b) with ÈT /= 0.

The inhomogeneous transformat ion law (14c) for the gravit ational

® eld strength can be understood by reformulat ing Newton’ s theory in co-

variant spacet ime language as init iated by Cartan [25,26] and completed

by Trautman [69] (see also the recent work on Newton± Cartan cosmology

by Rueede and Straumann, Ref. 60) . In that reformulat ion the gravita-

tional ® eld is represented as a symmetric, linear connect ion on spacet ime,

as in General Relativity. It then turns out that there exist non-rot ating or-

thonormal local coordinat es (t, xa ) such that the only non-vanishing com-

ponent s of the connect ion are given by Ca
tt . Moreover, the transforma-

tions relat ing these coordinat es are those given by (14b), and with respect

to them the Ca
tt transform exactly like the ga . In fact, the free-fall law

Èxa = ga , rewritten as the geodesic equat ion Èxa + Ca
tt = 0, shows that we

have the ident ity ga = ± Ca
t t , which ª explainsº the inhomogeneous trans-

formation law and will prove useful below.

3.1.2. Existence of solution s

Neither the Euler± Newton system nor the Lagrange± Newton system is a

diŒerential system to which standard existence theorems apply. The ® rst

system is mixed hyperbolic -ellipt ic, while the second is an overdetermined

implicit system not ® tting into the standard classi® cation of pde theory;

the lat ter may better be considered as an ordinary diŒerent ial equat ion for

the evolut ion of the time-dependent displacement map. (In this respect,

the analogous equat ions of General Relat ivity are ª simplerº ; Ref. 36.) Nev-

ertheless, Brauer [11] succeeded in proving linearizat ion stability of the

Euler± Newton system at spat ially compact (i.e. periodic) Friedmann-like

solut ions and local-in-t ime existence and uniqueness of solut ions which

represent ® nit e perturbat ions of those cosmological models, and Brauer

et al. [12] strengthened this result in several ways. The existence and

uniqueness results established in these papers refer to deviat ions from a

4 In part icular, it cannot have the topology of a 3-sphere, a fact which excludes ª New -

tonianº cosmological models based on a 3-sphere
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spat ially compact homogeneous background model which has to be speci-

® ed, at least part ly, for all time and not just by init ial data; they do not

refer to the total solut ion (background + perturbat ion) . In fact , ª the ® eld

equat ions of the Newton± Cartan theoryº [a 4-dimensional reformulat ion of

ª Newton’ sº theory], unlike the Einst ein equat ions, ª are not strong enough

to determine a solut ion uniquely in terms of init ial dataº [12]. For this

and other reasons, work in Newtonian cosmology should be considered as

a step towards corresponding relat ivist ic considerat ions.

Known solut ions of the Lagrangian equat ions include Newtonian

analogs of Friedmann’ s and Bianchi-type general-relat ivist ic cosmological

models. Some exact inhomogeneous solut ions have also been found (see

subsect ion 3.2.3) .

3.1.3. Locally isotropic cosmological models

Those ¯ uid motions which are locally isotropic in the sense that , at any

time and for each ¯ uid part icle P , there exists a neighbourhood on which

the ® eld of velocit ies relat ive to P is invariant under all rotations about P ,

are characterized by x = 0, s = 0, Ñ h = 0 and given with our coordinat e

choice (1b) by

®
x =

®
f H (

®
X , t) = a(t)

®
X , a( t0 ) := 1, (15)

if we convent ionally put
®
f H (

®
0, t) =

®
0. Such a motion, a Hubble ¯ ow ,

solves the Euler± Newton or the Lagrange± Newton system, respectively, if

and only if Friedmann’ s equat ion holds,

Ça2 ± e

a2
=

8pG . H + L

3
, e = const ., (16)

which implies
Èa

a
=

± 4pG . H + L

3
, (16 9 )

where . H = . H (t0 )a- 3 denotes the homogeneous density, and e, L and

. H (t0 ) are constants. Equat ion (16) holds as well in General Relat ivity,

where the energy constant e is related to the Gaussian curvature K 0 at

t0 by e = ± K 0 c2 . Local isotropy implies spat ial homogeneity, as is well-

known.

Instead of considering the 3-spaces t = const. of the locally isotropic,

Friedmann-like solut ions as globally Euclidean, we may consider the latter

as closed, i.e., without loss of generality as toroidal, as remarked above.

The simplest case arises if we ident ify all those point s (part icles) whose

Lagrangian coordinat es diŒer by integer mult iples of some constant length
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L (for the general case see Ref. 12) . In order not to burden our equat ions

by powers of L, let us choose L as our unit of length, i.e., put L = 1. All

part icles of such a toroidal un iverse change their distances in proport ion

to a(t), the locally Euclidean metric is
± ®
dx2 = a2 (t)

± ®
dX 2 as before, but

now the total volume of the universe is a3 (t). Note that this universe

is homogeneous and locally, but not globally isotropic. The coordinat e

lines X a = const. correspond to the shortest closed geodesics (of length

L = 1); geodesics of diŒerent direct ions may be closed and longer, or not

closed and of in® nite length. If we ® x an orientation (handedness ), the

coordinat e system (X a ) is now intrinsically ® xed except for translat ions

and those rotations which map the preferred orthonormal triad onto itself.

This removes the arbit rariness of R in eq. (14a) except for the 9 rotations

just mentioned.

The toroidal space as a diŒerentiable manifold cannot be covered in

a one-to-one, bicont inuous manner by a single coordinat e system. The

coordinat es (X a ) used so far are coordinat es on 3 , the covering space of

the torus 3 . In order to see whether the gravit ational ® eld is well-de® ned

on the spacet ime with toroidal space, it is inconvenient to use Eulerian

coordinat es (xa ) and the corresponding gb = ± Cb
t t = ( Èa/ a)xb ; for then one

would have to cover 3 by several overlapping Eulerian coordinat e systems

and use the inhomogeneous transformations to relate the ga -component s

in the overlap regions. It is easier and more elegant to transform the con-

nection components Cb
t t via the geodesic equat ion Èxb ± ( Èa/ a)xb = 0 to

the X a -coordinat es. Since xb = a(t)X b, we obtain ÈX b + 2( Ça/ a) ÇX b = 0,

for arbit rarily moving test part icles (not to be confused with the part icles

following the cosmological ¯ ow). Consequent ly, the non-vanishing com-

ponent s of the gravitational connect ion are Cb
t c = ( Ça/ a) d b

c . This formula

shows immediately that the connect ion passes from 3 to 3 . In fact,

instead of working ª instrinsicallyº on 3 , we may use coordinat es (X b)

on 3 , with the agreement that coordinat e values (X a ) diŒering by in-

tegers (N a ) label the same point of 3 , and provided the relevant ® elds

are periodic. The Cb
tc are not only periodic, but translat ion and rotation

invariant due to the homogeneity and local isotropy of the model. (This

is not obvious in terms of Eulerian component s.)

In subsect ions 3.1.5 and 3.2 we shall consider inhomogeneous models

as ( ® nite) deviat ions from ª Friedmannº -models on 3 , using ª periodicº

Lagrangian coordinat es (X a ). The reason for using 3 instead of 3 is as

follows. We shall set up a sequence of perturbat ion equat ions and show

that on 3 the solution s to these equat ions to any order exist and are

un iquely determined by initial data, in accordance with a non-pert urbat ive

result of Brauer et al. [12]. On 3 , however, the corresponding solut ions
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are determined, at each order, up to harmonic funct ions only, i.e., there

are in ® nitely many solution s for the same data .

Uniqueness can also be achieved on 3 by restrict ing the perturba-

tions to be square-int egrable. Such perturbat ions, however, contradict

large-scale homogeneity. Moreover, it is usual to work with periodic per-

turbat ions, which can convenient ly be represented by (discret e) Fourier

series. In any case, on 3 , but not in general on 3 , it is possible to relate

initial and ® nal perturbation s unambiguously .

R em ark:

We can also discuss this problem from a statistical point of view: If one

represents the typical features of the Universe not by one solut ion, but

by an ensemble, one can maintain statistical homogeneity [3] in terms

of an ensemble consist ing of square-int egrable members, i.e., in terms of

perturbat ions
®
P on 3 (int roduced below) satisfying d3X

®
P 2 (

®
X ) < ¥ .

P lancherel’ s theorem asserts that then the perturbat ions are also square-

int egrable in Fourier space, i.e., d3 k j
®
P j 2 (

®
k) < ¥ . Addit ionally, we may

then choose the power spectrum of the density perturbat ions to obey fall-

oŒcondit ions which guarant ee square-int egrability of the whole random

® eld. Provided that all individua l members of the statistical ensemble are

square-int egrable (not merely statist ical averages) , we can set limits on

the exponent of a power spectrum of power law form µ j
®
k j n : On the

small-scale end ( j k j ® ¥ ) we have to require n < ± 3, and on the large-

scale end ( j k j ® 0), n ³ ± 3 (Here we refer to the relat ions (27a, b) given

below and the well-known relat ion between peculiar-veloc ity and density

contrast in the linear regime.) Actually, the large-scale asymptotics can

be satis® ed easily, where n ~ + 1 according to the COBE observat ions, but

the small-scale asymptotics is logarit hmically divergent for n = ± 3, and

the maximally allowed slope is n ~ ± 3 if the spectrum is, e.g., truncated

exponent ially. The lat ter requirement is at the border of what is allowed

in current structure formation scenarios.

Nevertheless, as we have shown in [23], spat ially closed universes (i.e.,

those which are compact without boundary) are singled out as the only

generic models in which the averaged variables of inhomogeneous ® elds

represent homogeneous solut ions. Thus, the toroidal universe is the sim-

plest among those Newtonian cosmologies.

3.1.4. Average properties of general inhomogeneous cosmological models

Following Buchert and Ehlers [23] we discuss spat ial averages of inhomo-

geneous Newtonian cosmological models by deriving the general expansion

law which is obtained by averaging Raychaudhuri’ s equat ion [59]:

Çh = L ± 4pG . ± 1
3

h2 + 2( x 2 ± s2 ). (17)
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(DiŒerentiat ion of the expansion scalar h with respect to the t ime yields

Çh = v i ,i , t + v j v i , i , j = v i , t , i + (v i ,j v j ) , i ± v i , j v j , i = gi , i + 2 x
2

± 2s
2

±
1
3 h2 . (17 9 )

In view of (12d) we obtain (17) .)

Equat ion (34) shows that if, on one trajectory,
1
2 L + x

2 £ 2pG . + s2

(in part icular, if L = 0 and x = 0) and h(t 9 ) /= 0, then there exists an

instant of time t 9 9 such that sgn (t 9 ± t 9 9 ) = sgn (h(t 9 )), j t 9 ± t 9 9 j £ 3/ ( j h(t 9 ) j ),
lim t ® t 9 9 . (t) = lim t ® t 9 9 j h(t) j = ¥ .

Let us consider an arbit rary ª comovingº (Lagrangian) volume V (t) = :

a3
D (t) of a spat ially compact port ion D(t) of the ¯ uid; it changes according

to

ÇV =
d

dt D( t )

d
3
x =

D( t 0 )

d
3
X ÇJ =

D( t )

d
3
x h ,

which may be written

h h i D =
ÇV

V
= 3

ÇaD

aD
. (18)

Here and in the sequel, h A i D = (1/ V ) D d3 x A denotes the spat ial average

of a (spat ial) tensor ® eld A on the domain D(t) occupied by the amount

of ¯ uid considered, and aD is the scale factor of that domain.

The average of Raychaudhuri’ s equat ion may then be written [23]

3
ÈaD

aD
+ 4pG

M

a3
D

± L =
2

3
( h h

2 i D ± h h i 2
D ) + 2 h x

2
± s

2 i D . (19)

We have used the de® nit ions (6g, h ) . Equat ion (19) shows that the presence

of inhomogeneit ies aŒects the expansion law which only coincides with

Friedmann’ s law (16’ ), aD º a, provided shear, vort icity and ¯ uctuat ions

of the expansion scalar vanish or cancel each other, respectively.

Introducing the averages

Q := h h i D , S i j := h si j i D , V i j := h x i j i D , (20a, b, c)

we de® ne a linear ª background velocity ® eldº
®
V on D by Vi := Hi j x j with

Vi , j = S i j + 1
3 Q d i j + V i j = : H i j . (20d)

(Note that all average variables, like a(t), Q (t), S i j (t) and V i j (t), depend

on content, shape and posit ion of the spat ial domain D.)

While the velocity ® elds
®
v and

®
V depend on the choice of a non-

rotating frame of reference [ cf. eq. (14b) ] and are consequent ly not global
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vector ® elds on a toroidal model, the peculiar velocity ® eld, de® ned as
®
u :=

®
v ±

®
V , always is a global vector ® eld. Split t ing expansion, shear and

vort icity into their (time-dependent) average parts and deviat ions thereof,

h = Q + ĥ, si j = S i j + ŝi j , x i j = V i j + ^x i j , (21a, b, c)

eq. (19) can be cast into the form

3
ÈaD

aD
+ 4pG

M

a3
D

± L = 2(V
2

± S 2
) +

2

3
h ĥ

2 i D + 2 h ^x
2

± ŝ
2 i D . (22)

(The averages h ĥ i D , h ŝi j i D and h ^x i j i D vanish by de® nit ion.)

Using (8b) for the peculiar-velocity gradient (u i , j ),

2
3

ĥ2 + 2( ^x 2 ± ŝ2 ) = Ñ . [
®
u ( Ñ . ®

u ) ± (
®
u . Ñ )

®
u ] ,

we ® nally arrive at the remarkably simple general expansion law

3
ÈaD

aD
+ 4pG

M

a3
D

± L = 2(V
2

± S
2
) + h Ñ . [

®
u ( Ñ . ®

u ) ± (
®
u . Ñ )

®
u ] i D . (23)

The last term in (23) is, via Gauû’ s theorem, a surface integral over the

boundary of D. In case of a toroidal model we may choose D to be the

whole torus. Thus, on the torus, we obtain the global expansion law (in

agreement with the result of Ref. 12) :

3
ÈaD

aD
+ 4pG

M

a3
D

± L = 2(V
2

± S
2
), D =

3 . (23 9 )

This law, combined with the linearity of the velocity ® eld
®
V , can be used

to determine all homogeneous, in general anisot ropic Newtonian models

either on 3 or on 3 , in Eulerian or Lagrangian form (for models on 3

in Eulerian form, see Ref. 42) .

The point of this subsect ion was to show how these models arise by

spat ially averaging arbit rary inhomogeneous models, provided either space

is compact or, if for D ® 3 , the last term in (23) vanishes.

In the remainder of this paper we restrict ourselves to models having

locally isotropic backgrounds, i.e., where S i j = V i j = 0; then, the average

motion is a Hubble ¯ ow whose expansion is described by Friedmann’ s law

(16’ ).
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3.1.5. Inhomogeneous cosmological models as deviations from locally

isotropic ones

We wish to consider periodic or toroidal inhomogeneous models which

are isotropic (and hence irrotational) on average on some large scale. As

shown in the last subsect ion, the requirement of periodicity implies that

the spat ially averaged density

h . i 3 (t) :=
3 d3X

±
.

3 d3X J (
®
X , t)

=
Mt ot

V (t)
=

Mt ot

a3 (t)
(24)

of any such model is related to a(t) by Friedmann’ s equat ion (16) with some

constant s e, L, . H (t0 ) (which are then uniquely determined) . Thus we

can associat e with any inhomogeneous model its toroidal locally isot ropic

backgroun d model de® ned by . H := h . i 3 and a(t) via eqs. (15) , (16) , as

described in subsect ion 3.1.3.

To describe inhomogeneous cosmological models we de® ne the devia-

tion
®
p of the displacement map

®
f of the inhomogeneous model from the

background model
®
f H :

®
f =

®
f H +

®
p(

®
X , t),

®
p(

®
X , t0 ) :=

®
0. (25a, b)

It is convenient to introduce periodic rescaled Eulerian coordinat es,5
®
q :=

®
x/ a( t) and the corresponding deformat ion ® eld

®
F ,

®
q =

®
F (

®
X , t),

®
F (

®
X , t0 ) =

®
X . Then eqs. (25) read

®
F =

®
X +

®
P (

®
X , t),

®
P (

®
X , t0 ) :=

®
0, (26a, b)

where
®
P =

®
p/ a(t) .

®
Pt : 3 ® 3 is periodic and may be interpreted as the

(conformally rescaled) displacement of the part icles of the perturbed ¯ ow

relat ive to those of the unperturbed ¯ ow. It is considered the fundamental

object of Lagrangian perturbat ion theory hereafter.

To ® x the ( ® ctit ious) mean displacem ent of the perturbed ¯ ow rela-

tive to the unperturbed one (ª ident i® cat ion gauge condit ionº ), we require,

without loss of generality, besides (26b) for all t,

3

d
3
X

®
P (

®
X , t) =

®
0. (26c)

It ® xes the choice of T in eq. (14a) and is essential for the uniqueness

of Newtonian solut ions, as we shall see later. Note that (26c) can also

5 I.e., Lagrang ian coordinat es of the background ¯ ow
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be written h . /
±
.

®
P i 3 = 0 so that , if

±
. is nearly constant, h .

®
P i 3 ¼ 0, a

center-of-mass condit ion.

The displacement vector
®
P determines the peculiar -velocity

®
u and the

peculiar-acceleration
®
w by

®
u : =

®
v ±

Ça

a

®
x = a

Ç®
P

±®
u =

Ç®
P ( t0 ) , (27a)

®
w : =

®
g ±

Èa

a

®
x = a

È®
P + 2 Ça

Ç®
P

±®
w =

È®
P (t0 ) + 2 Ça(t0 )

Ç®
P (t0 ) , (27b)

where
±®
u and

±®
w are the init ial data for peculiar-velocity and peculiar-

accelerat ion, respectively. (Note that while
®
P ,

®
u ,

®
w are global vector ® elds

on 3 , the Hubble velocity ( Ça/ a)
®
x and

®
v are de® ned only locally with

respect to some ª originº .)

Below we shall use the corresponding one-forms denoted by U =
±
u i dX i and W =

±
w i dX i , and for the time-dependent perturbat ion P =

Pi dX i .

Let us now write down the equat ions which the displacement
®
P has

to obey. Insert ing (26a) into the once integrated Lagrangian evolut ion

equat ions (13a, b, c) results in

d ÇPi Ù (dX i + dPi ) = a
- 2 ±

x = d(a
- 2

U ). (28a, b, c)

The latter equality follows from (6e) and the fact that the Hubble-velocit y

is assumed to be irrotational. The last equat ion may be rewritten as

d f ÇP + ÇPi dPi ± a
- 2

U g = 0 . (28a, b, c)

Note that there is no cubic term in these equat ions.

Inserting (26a) into (13d), and de® ning the operator D := (d2 / dt2 ) +

2H (d/ dt) and the funct ion b := 3( Èa/ a) ± L, we obtain

b dX 1 Ù dX 2 Ù dX 3 + (D + b)3dP[1 Ù dX 2 Ù dX 3 ]

+ (D + 2b)3dP[1 Ù dP2 Ù dX 3] + (
1

3
D + b)3dP[1 Ù dP2 Ù dP3]

=
± 4pG

±
.

a3
dX 1 Ù dX 2 Ù dX 3 . (28d 9 )

(Remember that expressions of the form 3dA [1 Ù dA2 Ù dA3 ] are equal to

the sum of all cyclic permutations: i j k dA i Ù dA j Ù dAk .)



N e w t on ia n C osm olog y in Lag r an g ian For m u la t ion 7 5 3

Since this equat ion holds for the background, P = 0 , the terms inde-

pendent of
®
P cancel, and we are left with the equat ion

(D + b)3dP[1 Ù dX 2 Ù dX 3] + (D + 2b)3dP[1 Ù dP2 Ù dX 3 ]

+ (
1

3
D + b)3dP[1 Ù dP2 Ù dP3 ] =

± 4pG d
±
.

a3
dX 1 Ù dX 2 Ù dX 3 , (28d)

where d
±
. =

±
. ±

±
. H is the ( ® nite) init ial deviat ion from the homogeneous

density . H =
±
. H a- 3 , 3 d3X d

±
. = 0.

In what follows we shall use the Hodge star operator with respect to

the metric
± ®

dX 2 . Therefore, we indicat e it with a big star (*) to avoid

confusion with the Hodge star operator used in previous equat ions. (The

following ident ities are useful: *d3 X = 1, (*)2 = 1, d*d* = *d*d =

D 0 .)

Operating with * on (28d) and using 4pG d
±
. = *d*W , gives

*d f (D + b)*P + (D + 2b)3P[1 Ù dP2 Ù dX 3 ]

+ ( 1
3 D + b)3P[1 Ù dP2 Ù dP3] ± a- 3

*W g = 0 . (28d)

Here, the linear term is purely longit udinal. Equat ions (28a ± d) with the

init ial condit ions (26b) govern inhomogeneous models.

In more familiar vector notation eqs. (28a ± d) have the form

d

dt
( Ñ 0 £

®
P ) =

®
F ( ¶ ÇPi , ¶ Pj ) + a

- 2 Ñ 0 £
±®
u,

(D + b)( Ñ 0
. ®
P ) = G(Pi , ¶ Pj , ÇPi , ÈPi ) + a

- 3 Ñ 0
.

±®
w .

The r.h.s.’ s contain no terms linear in
®
P or its derivat ives, and they contain

no derivat ives with respect to t or X i of higher order than on the l.h.s.

Therefore, these equat ions lend themselves to solut ion by iterat ion. For

that purpose, the condensed diŒerential form notation is more convenient

than vector notation, however.

3.2. Lagrangian perturbation theory

3.2.1. The perturbation scheme

Since we have only one dynamical ob ject in the problem (the one-form P ),

a Lagrangian perturbat ion scheme on Friedmann± Lemâõ tre backgrounds

can be set up by insert ing into eqs. (28) for P a formal power series,

P =

¥

m = 1

e m
P

( m )
, (29)
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to obtain a sequence of equat ions for the P ( m ) at order m . We thus obtain

the following system of 4m equat ions.

For m = 1 we have

d ÇP
( 1)

= d(a
- 2

U
( 1)

), (30a, b, c; m = 1)

d* f [D + b]P
( 1 ) g = d(a

- 3

*W
( 1)

) . (30d; m = 1)

For m > 1 we have

d f ÇP
( m ) g = dT

( m )
, (30a, b, c; m > 1)

d* f [D + b]P
( m ) g = d*S

( m ) . (30d; m > 1)

The 2m source terms (one-forms) S( m ) and T ( m ) can be read oŒeqs. (28) .

They depend on P ( F ) , F < m :

T
( m )

= ±

m - 1

F = 1

ÇP
( F )

i dP
( m - F )

i + a
- 2

U
( m )

, (31a; m > 1)

*S
( m )

= ±

m - 1

F = 1

(D + 2b)3P
( F )

[1dP
(m - F )

2 Ù dX 3]

±

F + p+ q= m
1· F ,p ,q· m - 2

1

3
D + b 3P

( F )
[1dP

( p )
2 Ù dP

( q)
3 ]

+ a
- 3

*W
( m ) . (31b; m > 1)

Starting at the third order, the source terms contain product s of pertur-

bat ion solut ions of diŒerent orders, [compare Ref. 19, eqs. (4)].

3.2.2. General solution scheme

To solve eqs. (30) with the source terms (31) , we decompose the P ( m ) ’ s as

well as the init ial values U and W non-locally into their longit udinal and

transverse parts (see Appendix C),

P
( m )

= P
( m ) L

+ P
( m ) T

, (32a)

U
( m )

= U
( m ) L

+ U
( m ) T

, (32b)

W
( m )

= W
( m ) L

, (32c)

taking into account that the harmonic parts vanish because of the gauge

condit ion (26c) and eqs. (27) , and remembering that dW = 0 .
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We prescribe, without loss of generality, that the init ial density per-

turbat ion and thus W be of ® rst order,

d
±
. = d

±
. ( 1 )

= :
±
. H

±®
d , W

( 1 )
= W , (33a, b)

where d
±
. denot es the init ial density perturbat ion, and

±®
d the init ial (con-

ventional) density contrast.

Equat ion (26b) requires, for all m ,

P
( m )

(
®
X , t0 ) := 0 . (33c)

Finally we require, also without loss of generality,

ÇP (
®
X , t0 ) = ÇP

( 1)
(

®
X , t0 ) = U (

®
X ). (33d)

The unique solution s of the perturbat ion equat ions having these init ial

data are obtained as follows. Equat ions (30a, b, c; m = 1) say that

A := ÇP
( 1)

T

± a
- 2

U
( 1 )

T

is both closed, dA = 0 , and co-exact , hence it vanishes (see Appendix C);

therefore

P
( 1) T

(
®
X , t) = U

T
(

®
X )

t

t 0

dt 9

a2 (t 9 )
. (34a, b, c)

Equat ion (30d; m = 1) similarly implies

(D + b)P
( 1) L

(
®
X , t) = a

- 3
W (

®
X ). (34d)

The solut ion to this ordinary diŒerential equat ion obeying the init ial con-

dit ions (33) is uniquely determined by the data W (
®
X ) and U L (

®
X ) .

For m > 1 we obtain from (30a, b, c)

P
( m ) T

(
®
X , t) =

t

t 0

dt 9 T
( m ) T

(
®
X , t 9 ), (35a, b, c)

and from (30d)

(D + b)P
( m ) L

(
®
X , t) = S

(m ) L
. (35d)

The solut ions to eqs. (35) are uniquely determined by their sources (31) ,

since they are required to have vanishing init ial values.
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R em arks:

(i) The solut ions at any order m are well-de® ned and unique on £ 3 as

long as the background is free of singularit ies. In general they will develop

ª mult i-dust º regions.

(ii) The solut ions at any order m separate with respect to Lagrangian co-

ordinat es
®
X and time t; P (m ) (

®
X , t) = a A

( m )
a (

®
X )B

( m )
a (t). This property

follows from the structure of the perturbat ion scheme, since the ® rst-order

solut ions separate and, at each step, only linear ordinary diŒerential equa-

tions with respect to t have to be solved. The time-dependent coe� cients

are determined solely by the background, while the
®
X -dependent factors

depend on the init ial data.

(iii) The ® rst-order solut ion depends locally on the data U and W in the

sense that the factors A
( 1)
a (

®
X ) at some value

®
X depend only on U and W

at the same
®
X . On the other hand, W depends non-locally, via a solut ion

of Poisson’ s equat ion, on
±®
d . Each further step involves the determinat ion

of T ( m ) T
and S ( m ) L

from T ( m ) and S ( m ) , respectively, which again re-

quires solving Poisson equat ions. Thus, the
®
X -dependent factors in P ( m )

depend non-locally on the data U and W for m > 1. The trajectory of

each ª dust part icleº at any order of approxim ation depends globally on

the init ial data, even at times close to the init ial t ime, just as in Newto-

nian dynamics of systems of ® nitely many part icles. This is in contrast

to General Relativity, where the evolved ® elds at some spacet ime point

depend only on the init ial data within the causal past of that point . (For

gr ª dustº solut ions this has ® rst been shown in Ref. 36.)

(iv) Since all relevant funct ions are de® ned on 3 , they can be represented

by discrete Fourier series. Since the sources for the higher-order terms are

product s of lower-order ones, the higher-order terms will change on smaller

spat ial scales than the lower-order ones, and their time-dependent factors

will contain (posit ive and negat ive) powers of those of the ® rst-order solu-

tion which generates the higher-order ones.

(v) If the perturbat ion scheme is applied to ® elds on 3 rather than on 3 ,

at each step a harmonic contribut ion to P ( m ) has to be chosen arbit rarily.

(This is due, of course, to the form of eqs. (12) .) Then, there are in® n-

itely many perturbat ive solut ions for given init ial data; hence, it makes no

sense to ask which ® elds evolve from which data .

(vi) Equat ions (34) suggest that it is convenient to introduce a new time-

variable T (taken to be dimensionles s),

dT :=
1

t0

dt

a2 (t)
. (36a)
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This variable has been very useful for the purpose of ® nding solut ions for

ª non-¯ atº backgrounds (see Ref. 66, Ref. 15, Appendix A, Refs. 9,27) .

With this time-variable solut ions of (16) for L = 0 have the simple form

a(T ) =
K 0 + T2

0

K 0 + T2
. (36b)

Also the time-dependent operator in front of the longit udinal part simpli-

® es (L /= 0 here)

t
2
0 (D + b) =

d2

dT 2
± 4pG

±
rH a. (36c)

(Compare Ref. 15, Appendix A, for the Lagrangian equat ions as well as all

relevant cosmological variables and parameters expressed in terms of T .)

3.2.3. Explicit solution s (not in chron ological order of their derivation .

Known solut ions comprise the general ® rst -order solut ion [16] for an ª Ein-

stein± de Sitterº background, which includes rotational ¯ ows and the

ª Zel’ dovich Approximationº [74,75] as the special case U T = 0 , U L =

W t0 .

For irrotational ¯ ows the solut ion for all backgrounds with L = 0 can

be found in [15] including generalizat ions of Zel’ dovich’ s approximat ion

obtained by Shandarin [66].

For most of the background solut ions including a cosmological con-

stant, closed-form expressions are given in [7], where a general procedure

to obtain the ª Zel’dovich Approximat ionº for all backgrounds is outlined.

Interestingly, for restricted init ial data, the ® rst-order solut ions turn

out to be exact three-dimensional solut ions [15] including the general

plane-symmetric solut ion given earlier by Zentsova and Chernin [76].

These solut ions contain caust ics. (For relat ed exact solut ions see

Refs. 14,1,67.)

At second order all irrotational solut ions on an Einst ein± de Sitter

background are known for init ial data which admit a functional dependence

of init ial peculiar-veloc ity and peculiar-gravitational potentials [18]. A

subclass of these solut ions for the special case U T = 0 , U L = W t0 is

discussed in [17]. For the same init ial data the third-order solut ion on an

Einstein± de Sitter background is given by Buchert [19], the fourth-order

solut ion by Vanselow [71]; see Refs. 62,21,22 for reviews.

Lagrangian perturbat ion solut ions and their applicat ions have also

been derived and applied by Bouchet and collaborat ors (for a review see

Ref. 9, where references to solut ions with ª non-parabolicº cosmological

backgrounds at second [8] and third order for the leading time coe� cient

(the part icular solut ions) can be found) . Moutarde et al. [55] gave a
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third-order approxim ation on an Einstein± de Sitter background for special

symmetric init ial data. For these data a (slight ly diŒerent) solut ion has

been derived from the generic solut ion by Buchert et al. [24]. The general

irrotational second-order solut ion for ª non-parabolicº cosmological back-

grounds with zero cosmological constant has been derived by Vanselow

[71]. Also Munshi et al. [56] discuss the leading terms of the third-order

solut ion of Buchert [19], and Catelan [27] derives and discusses the third-

order solut ion for ª non-parabolicº backgrounds.

The main diŒerence between most of these works and our approach

is that we consist ently work within the Lagrangian framework, i.e., we ex-

press all equat ions in terms of the single dynamical ® eld
®
f before solving

them. Hence we avoid mixing Lagrangian and Eulerian representations.

The only perturbed ® eld is
®
f in Lagrangian space; all Eulerian ® elds are

calculat ed therefrom. The velocity ® eld is determined perturbat ively, the

corresponding mass and the vort icity is exact ly conserved in our pertur-

bat ion solut ions.

The fundamental quest ion whether these perturbat ion solut ions con-

verge to or, at least , approxim ate exact solut ions remains open.
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APPENDIX A

Under the assumptions stated at the beginnning of subsect ion 2.1.1,

the map f t : 3 ® 3 ; Î f , g ; t ® xed; (t0 £ t £ t1 ) is a diŒeomor-

phism. We ® rst show that f t is inject ive, and then that it is surject ive.

Since f t is a local diŒeomorphism because of J > 0, this establishes the

claim.

Injectivity follows immediately from the fact that diŒerent integral-

curves of a vector ® eld are disjoint .

To establish surjectivity we notice the following. Since f t is a local

diŒeomorphism, the image f t (
3 ) is open. It is also closed; for let

®
x i =

®
f t (

®
X i ) be a sequence of images which converges to

®
x0 ,

®
x i ® ®

x0 . Then, the

set f
®
X i g is bounded since f ®

xi g is, and distances can change during [t0 , t]

at most by 2V j t ± t0 j . Therefore, a subsequence of f
®
X i g converges to some

point
®
X 0 . Cont inuity of f t then implies that

®
x0 =

®
f t (

®
X 0 ) Î f t (

3 ). Thus,

f t (
3 ) is both open and closed in 3 , hence equal to 3 .
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APPENDIX B

We here give an invariant meaning to the ª time-diŒerent iat ionº of

diŒerential forms which was used in the main text (the reader may consult

standard textbooks on diŒerential forms, e.g., Ref. 64) , and we collect

diŒerent versions of the vort icity conservat ion law Çx = 0 .

Lie-derivative. We de® ned the operator Ç on spat ial diŒerential forms

as part ial diŒerentiat ion with respect to t for ® xed
®
X . In Newtonian

spacet ime £ 3 or £ 3 , a velocity ® eld
®
v [

®
x, t] determines a world

velocity ® eld,
d

dt
=

¶
¶ t

+ v i
¶

¶ x i
. (B .1)

If we use Lagrangian coordinat es (
®
X , t) on spacet ime, the vector ® eld d/ dt

has component s (
®
0, 1). Therefore, in these coordinat es, Lie-diŒerentiat ion

with respect to d/ dt amounts to part ial diŒerent iat ion with respect to t.

This shows that

Ld / d t A = ÇA (B .2)

for all ª spat ialº diŒerential forms, i.e., diŒerential forms not containing dt,

and gives the invariant meaning of Ç . This time-derivat ive commutes with

spat ial exterior diŒerent iat ion, d.

We now list some equivalent versions of the vort icity conservat ion law

Çx = 0 , (B .3a)

since diŒerent versions appear in the literature and are useful for diŒerent

purposes (for all these relat ions it is necessary that the force is conservat ive,

i.e. the gravitational ® eld strength
®
g is irrotational) .

The vector form of (B .3a) reads
.®

x =
®
x . Ñ ®

v ±
®
x Ñ . ®

v . (B .3b)

We can integrate
®
x along the integral-curves

®
f to obtain Cauchy’ s integral

(see, e.g., Refs. 65,16) ,

®
x = (

±
®
x . Ñ 0

®
f ) J

- 1 . (B .3c)

Equat ion (B .3c) shows that the vort icity blows up at points of (formally)

in® nite density (J = 0) for generic init ial data (see Ref. 16 for a proof).

This implies that caust ics are associat ed with strong vort ex ¯ ows in their

vicinity (see also the detailed discussion by Barrow and Saich, Ref. 2).

In terms of kinematical variables, the vort icity law reads

Çx i = ±
2

3
h x i + si j x j . (B 3.d)
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APPENDIX C

In order to make this paper self-contained and to ® x our notation we

here collect some well-known facts about decomposit ions of vector ® elds on
3 and 3 , respect ively, both furnished with the standard ¯ at (Lagrangian)

metric
± ®

dX 2 .

On 3 , any smooth vector ® eld
®
P can be decomposed into a gradient

(longit udinal) part and a curl ( transverse) part ,

®
P =

®
P

L
+

®
P

T
= Ñ 0U + Ñ 0 £

®
A, Ñ 0

. ®
A = 0 . (C.1)

Such a decomposit ion always exists, whether or not
®
P falls oŒat in® nity.

but it is not unique: if
®
H is a harmonic ® eld, i.e., a ® eld satisfying Ñ 0

. ®
H =

0 and Ñ 0 £
®
H =

®
0, then

®
P = ( Ñ 0 U +

®
H ) + ( Ñ 0 £

®
A ±

®
H )

gives another representat ion of the type (C.1), since
®
H = Ñ 0 w = Ñ 0 £

®
B ,

and in this way all such representations are obtained. If
®
P as well as

the parts
®
P L and

®
P T are required to be square integrable ( Î L2 ), i.e.,

d3 X
®
P 2 < ¥ , the decomposit ion (C.1) is unique; square integrable har-

monic ® elds do not exist on 3 [31]. Then one can speak of the longit udinal,

or the transverse part of
®
P , respectively.

On 3 , one has a unique decomposit ion:

®
P = Ñ 0U + Ñ 0 £

®
A +

®
H , (C.2)

where the harmonic part
®
H is constant on 3 (see the remark below) and

given by
®
H =

3

d
3
X

®
P . (C.3)

The potentials U and
®
A can also be ® xed uniquely by requiring

3

d
3
X U = 0,

3

d
3
X

®
A =

®
0, Ñ 0

. ®
A = 0 . (C.4)

Note that , on 3 , being longit udinal means not only that Ñ 0 £
®
P =

®
0, but

in addit ion that d3 X
®
P =

®
0. Similarly, transversali ty requires Ñ 0

. ®
P = 0

and vanishing average.
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It is convenient to re-express these facts in the language of diŒerential

forms rather than that of vector ® elds. Writ ing P = Pi dX i for the one-

form (covector) associat ed with
®
P , the form-analogs are

P = P
L

+ P
T

+ P
H

= dU + *dA + H , (C.2 9 )

where A and H are one-forms, the longit udinal part is an exact form, the

transverse part a co-exact form, and the harmonic part a harmonic form,

which is determined by

3

d
3
X P = H , (C.3 9 )

and one may impose

3

d
3
X U = 0,

3

d
3
X A = 0 , d*A = 0, (C.4 9 )

where in all equat ions * denotes the Hodge star operator with respect to

the metric
± ®

dX 2 .

The integrat ion of the perturbat ion equat ions in subsect ion 3.1.4 is

based on the following two facts: If a co-exact form P T is closed, dP T = 0 ,

it is the zero-form, P T = 0 . If an exact form P L is co-closed, d*P L = 0 , it

is the zero-form, P L = 0 . These facts follow from the foregoing statements

and equat ions.

We also recall that Poisson’ s equat ion,

D 0U = 4pG d , (C.5)

is soluble on 3 if and only if 3 d3X d = 0. The solut ion is then unique

except for an addit ive constant which may be ® xed by demanding

3

d
3
X U = 0 . (C.6)

For proofs see, e.g., Ref. 72.

R em arks:

The only harmonic vector-® elds
®
H are the constant ones. To see this, we

recall the vector-ident ity

D 0

®
H = Ñ 0 £ ( Ñ 0 £

®
H ) ± Ñ 0 ( Ñ 0

. ®
H ). (C.7)
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It shows that a harmonic vector ® eld obeys Laplace’ s equat ion. Then its

component s Hi ( i = 1, 2, 3) are harmonic funct ions. For each component ,

we can apply Green’ s formula,

3

Hi D 0 H i =
3

H i Ñ 0 ( Ñ 0H i ) =
3

f Ñ 0 (Hi Ñ 0H i ) ± ( Ñ 0 Hi )
2 g

=
¶ 3

H i
¶ H i

¶ n
±

3

( Ñ 0 H i )
2 . (C.8)

Since the scalars H i are harmonic, the left-hand-side of the ident ity (C.8)

vanishes. Since the torus 3 has no boundary, we ® nally conclude

3

( Ñ 0 Hi )
2

= 0 , (C.9)

or, Ñ 0 Hi = 0. Hence, Hi = const.
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