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Angular momentum at the black hole threshold
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Near the black hole threshold in phase space, the black hole mass as a function of the initial data shows the
“critical scaling” M=C(p—p,)?, wherep labels a family of initial datap, is the value op at the threshold,
and the critical exponent is universal for a given matter model. The black hole ch&@ggbeys a similar law.
To complete the picture, we include the angular momentum as a perturbation. For the black hole angular
momentumL, we find the oscillating behavidr=R¢ (A+iB)(p—p,)*“**]. The assumptions of the calcu-
lation hold for p=p/3 perfect fluid matter, and we calculateu=0.799 and «=0.231.
[S0556-282(98)50312-§

PACS numbe(s): 04.70.Bw, 04.25.Dm, 04.40.Nr

[. INTRODUCTION calculation therefore applies to this particular matter model,
and gives to a quantitative prediction for it.
There has been much interest recently in critical phenom-

ena at the black hole threshold. Take a smooth one- Il. NOTATION
parameter family of smooth, asymptotically flat initial data
for general relativitywith mattey that crosses the black hole
threshold, and fine-tune the parameter, so as to get close
the black hole threshold. For many families, one can mak
arbitrarily small black holes this way. As discovered by
Choptuik [1], the black hole mass near the threshold the

§c_e}les aQ\/I:C_:(p—p*)V, wherep is the parameter of the g, t3c65 of constant be spacelike. If the conformal metric

initial data,p,. is its value at the black hole threshold, apd 9,,=€?7g,, is independent of, then the spacetime is ho-

the “critical exponent,” is a universal constant common to mothetic, or continuously self-simild€S9. In this caser

all one-parameter families, whilé depends on the family.  plays the double role of being the time coordinate and of
In a nutshell, critical phenomena arise because gener@eing the negative logarithm of spacetime scale, wkiis

relativity, for a given matter model and symmetry, admits adimensionless. A simple example of such a coordinate sys-
“critical solution.” By this we understand a strong-field so- tem is7= —In(—t) andx=r/(—t), wheret andr are a stan-

lution that is an attractor of codimension one sitting on thedard choice of time and radial coordinate.
black hole threshold, and whose basin of attraction is the Let Z(7,x,6,¢) stand forg,, plus a suitable set of con-
black hole threshold. Perturbatively, this means that the critiformally rescaled matter variable@or perfect fluid matter,
cal solution has precisely one unstable mode, and that it dder example, these arp=e 27p for the density, andi,
cays into a black hole, or into flat space, depending on the- e’u,, for the four-velocity) Z(7,x, 6, ¢) then symbolizes a
sign of that mode. The critical solutions found so far aresolution of the field equations, whilgy(x, 8, ¢) symbolizes
either static or periodic in timétype I), or continuously or  Cauchy data(To make this notion precise, we have to trans-
discretely self-similar(type 1). Both can arise in the same 5/, fromg,,, to suitably rescaled Cauchy dé’ﬁ@ andK; .)
. . . nv ij
matter mode[2,3]. Here we limit attention to type I, which Finally, let Z(7,x,0,¢)=2Z, (x) stand for the critical solu-
gives rise to the power-law scaling of the mass. For a revieWion, which is both spherically symmetric and CSSVe

of cfritical p”henomena% SIG[@’]', o , e init Ioverlook a trivial & dependence, namely the factor%inin
It a small amount of electric charge is present in the initialy " "o the sake of notation.

data, the black hole chargg obeys a similar power law as “"qr 3 solution that is a general perturbation of a self-

the massM, with a new critical exponenb [5,6]. Black  gjmilar, spherically symmetric background solutidg (x),
holes are completely characterized by their mésselectric o can make the ansatz

chargeQ, and angular momentur. To complete the pic-

The calculation we give here is hardly more than an ap-
%ication of dimensional analysis. Therefore we set up a
compact notation that hides all technical details specific to
%eneral relativity, in order to bring out the essential scaling
argument. Leg,,, be the spacetime metric in the coordinates

7,X,0,¢), with 8 and ¢ the usual Euler angles, and let

ture, here we consider initial data with small angular mo- =1z

mentum. Our calculation assumes the existence, for a given Z(7X,0,0)=Z,(x)+ > 2 >

matter model, of a spherically symmetric self-similar solu- 1=0m==1n=0

tion with exactly one unstable perturbation mode, including X RE Cimn(P) M (X, 00) . )

nonspherical perturbations.

Recently, we have shown for the first time that a spheriBecause the background is spherically symmetric, we can
cally symmetric critical solution, namely that for perfect decompose all linear perturbations into spherical harmonics
fluid matter with equation of statp=p/3, has no unstable labeled byl andm. Because it is independent of the per-
norspherical perturbation modd§]. The present abstract turbation equations of motion separate, and the perturbations
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can be assumed to have a simple exponential dependence scale,e™ ", in the problem, and therefore the black hole
7, where the separation constantg,, and the mode func- mass must be proportional to it. We have
tionsf,, are complex. We assume here that the perturbation

spectrum is countable and (_jlscrete, and label ibbgr each M=Me »=C(p—p,)", 7= 1 ’
value ofl andm. Becaus¢ is real, the\,,,, andf,,,, must Mo
be real or form complex conjugate pairs. Because of spheri-

cal symmetry, the,,, are in fact the same for ath, and are  where M, is a universal constant, an@ is a family-
therefore labelled,,. TheC,,,,, also complex, are the free dependent constant absorbingq, /Jp(p,). This deriva-
parameters of the generic perturbation. Here we want to cortion of the critical scaling of the black hole mass has been
sider one-parameter families of initial data labelled by a pagiven before[8-11]. Collapse simulations show that the
rameterp. The dependence of the solutions pris then a  critical solution is an attractor, and the mass scaliBy
dependence of the free constafls,, on p. Thef,,, corre-  holds, even beyond the strict applicability of the perturbation
spond to rescaled metric and matter perturbations in a suignsatz(1).

able gauge, such as Regge-Wheeler gauge, or in a gauge-

invariant framework. We have addressed the technical details IV. ANGULAR MOMENTUM SCALING

of gauge-fixing elsewherg].

®

Now we generalize the above discussion to initial data
IIl. REVIEW OF MASS SCALING with nonvanishing angular momentum. Our discussion holds
strictly only for initial data which are almost spherically
We now consider the time evolution of initial data that symmetric, so that deviations from spherical symmetry can
start close to the spherically symmetric self-similar criticalbe treated as linear perturbations throughout the evolution. In
solution, so that the expansiéh) applies initially. The criti-  particular, this means that our results hold only for black
cal solution contracts to a curvature singularityratec. As  holes whose angular momentum is much smaller than their
the singularity is approached from the past, witlincreas- mass, so that the final Kerr solution can be treated as a per-
ing, a perturbation grow&ecays$ if the real part of its\ is  turbation of Schwarzschild. If the critical solution turned out
positive (negative. By definition, a critical solution has pre- to be an attractor beyond the linear regime also for non-
cisely one unstable mode. Being unique, this unstable modspherical spherical initial data, our discussion and results
must be spherically symmetric because all higher valués of could then hold also for larger deviations from spherical
are (4 +1)-fold degenerate and itss must be real. We label symmetry.
its mode functionfyy, and its eigenvalua, . A Kerr black hole metric with small angular momentum
Close enough to the singularity, we can neglect all stabl¢L<M?) can be written as a Schwarzschild metric with a
perturbation modes. The unstable perturbation keeps growinear perturbation proportional to. In fact, the gauge can
ing, however, and eventually the solution deviates nonlin-be chosen so that the shift component of the metric is
early from the critical solution. The solution eventually
forms a black hole fop>p, , but disperses fop<p, . As L . d
p—p, from either side, the solution approximates the criti- ngzF sin eﬁ P1+O(L%M®), (6)
cal solution to ever smaller scales, that is to ever larger
This means tha€,, (p) must vanish precisely gi=p, . whereP; is a Legendre polynomial, while all other metric
LinearizingCqq, aroundp=p, , and neglecting all decaying coefficients are those of the Schwarzschild metric in the
perturbations, we have usual Schwarzschild coordinates, plus perturbations of
O(L2/M*) [12]. This result can be verified immediately by
9Coox (P )(P—p, )€ g, (X) ) expanding the Kerr solution in Boyer-Lindquist coordinates
ap Px)(P™ P 00« 12 aroundL=0. The only perturbation to leading order in
therefore has=1 angular dependence and odd parity in the
Regge-Wheeler notation. Here the orientation of the coordi-
nate axes was chosen so that the perturbation is pumnely

Z=Z,(x)+

For p>p, , we definer, as a function ofp by

&Cﬂ (Ps)(P— Py )Mo P=E, (3 =0. For a general orientation &f relative to the coordinate
P axes,m=—1,0,1 will all appear. As a subdominant effect,
wheree is an arbitrary small constant. we therefore include the odd=1 _perturbgtions in.the data
We now consider the Cauchy dafg given by Z, even though they are subdomlnant, with the aim of learn-
ing something about the behavior of the black hole angular
Z(75,%,0,0)=Z, (X)+ €f g0, (X) =Z(X). (4) momentum near criticality.

We only keep the dominant odd=1 mode, that is the
We have choser small enough that the growing mode has one with the largestleast negativereal part of\, and de-
not yet gone nonlined(its exact value does not matteFor  note it by, . Generally\ 1, will not be real, but part of a
larger 7, the linearized ansaid) breaks down, and we know complex conjugate paifl.=1 is also threefold degenerate,
only that the solution forms a black hole and settles down tavith mode functionsf,,, for m=—1,0,1, or the three di-
Schwarzschild. We have defineqd so that the rescaled vari- rections in space. Keeping these modes results in a small
ablesZ are independent gf in the Cauchy datd,. The field  perturbation of the initial datd:
equations themselves are scale-invarigrt asymptotically
scale-invariant on small scajed\s a result, there is only one Z(1p,%, 0,0)=Zo(x)+eR® 1 °OZo(7p,X,0,0),  (7)
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where

1
525-Re 3, Comu(p.)E™ 12 b1 (x,0.6)  (8)

is periodic in7,. As long as its amplitudeR® 1«7 is small
enough, the perturbatiofZ, evolves as a linear perturbation

of the spacetime generated by the spherically symmetric data
Z, all way until the solution has settled down to Schwarzs-
child with a small odd-parity =1 perturbation that turns it
into a slowly rotating Kerr solution. By the black hole no-
hair theorem, no other perturbatioriexcept an electric
charge of the black haolecan survive in the final state. This
justifies our considering odld_:l perturbations, but ngglect— FIG. 1. Schematic plot of the ADM angular momentuithick
ing I>1 and even perturbations altogether. In the linear apgashed lingand the angular momentum of the black hatéck full
proximation, the black hole angular momentlimmust, 0N jing) in axisymmetric collapse in a one-parameter family of axisym-
average inr,, be proportional t@"® 1« 7. Because this is @ metric data crossing the black hole threshqds the parameter of

dimensionless number, we must have the initial data ang, is its value at the black hole threshold. The
envelope(thin dashed lingis the overall power law. There is an
L Re\r. T infinite number of oscillations ag— p, from above.
M2 oc @™ 1x Tp (9)

V. THE AXISYMMETRIC CASE

for the overall scaling of. But there is an interesting modu- . . L .
lation due to the fact tha¥Z, depends periodically on,, as The resu!t(lO) 'S_ partlcula_rly_ S-L-II’pI’ISIng if we consider a
we shall see now. family of strictly axisymmetric initial data. Theh can only

By linearity, the presence of a perturbatierRe f,,,, ,  POInt along the symmetry axis, and the ellipse degenerates
for some smalk, in the initial dataZ, must give a rise to a N0 a line:
small angular momentum compondnt/M?= €A in the fi-
nal black hole, whilee Imf,, gives rise toL,/M?=eB. L=L,=(p—p,)“A codw In(p—p,)+c], (12
Similar proportionalities apply to Ré;,,, and Imf,.,, for
m=*1, and thex andy components of the black hole an-
gular momentum. We absorb the universal, but unknowrivhere A andc are two family-dependent constants. If the
proportionality factors and the family-dependent constantamily of axisymmetric initial data has angular momentum
Cims together into six new constanss and B. Putting all that does not vanish gi=p, , then the angular momentum

the factors together, we obtain the following final result forOf the black hole, as a f“F‘C“O” of the initial data, alternates
the angular momentum vectirof the black hole as a func between parallel and antiparallel to the angular momentum

f the initial . The simpl | ling=
tion of the initial data, for initial data near the black hole of the initial data e simple power-law scalig=(p

. ) — P4 )* one might naively expect would be recovered only if
threshold and near spherical symmetry: N1, was purely real. The oscillating behavior is sketched in

- L o Fig. 1. It is perhaps as dramatic an illustration of the “for-
L=Reg(A+iB)(p—p.)* '], (100 getting” of initial data in critical collapse as the universality

of the critical solution itself.
where

2+Re\, Im Ay VI. DISCRETE SELF-SIMILARITY

0% Here we have considered the effects of a critical solution

. . that is CSS, both for simplicity of notation and because the
and A andB are six family-dependent constants. Note thatone case that our calculation is actually known to apply to
we always haveu>2vy because Ra;, <0 by the assump- (the perfect fluiglis CSS. It is straightforward, however, to
tions of this calculation. generalize our result for the angular momentum scaling to

This is our main result. Ap—p, from above in the hypothetical critical solutions that are DSS instead of CSS.
initial data, the angular momentum vectbr of the final ~ The periodic dependence of the angular momentum in CSS
black hole rotates in space as it decreases. It describescaltical collapse is a simple cosine, because it derives from a
rapidly shrinking ellipse of size—p,)*. This behavior time-dependence exp, 7 of the leading =1 odd perturba-
formally resembles a damped isotropic three-dimensiondlion, with \;, complex. In DSS critical collapse, the back-
harmonic oscillator, with—In(p—p,) playing the role of ground critical solution itself is periodic im, in a nontrivial
“time,” o the frequency, angk the damping. Of coursgg ~ Way, with a periodA. Thereifore, one would expect both
—p, is not in any sense a time, but a measure of the diskinds of periodicity to arise if.. The calculation bearing this
tance, in phase space, of the initial data set labeleglfogm  out is a straightforward generalization of the one for the CSS
the black hole threshold. case, and here we only give its result. It is

— Mo
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- _ RiiBY(n—n \Atio ously known critical solutiorfin spherical symmetpyfor the
L=Re{M[In(p=p,) +C(A+IB)(p—p) b 13) perfect fluid with equation of statp=p/3 [14] was per-
turbed, with the result that, at least perturbatively around
where the only difference is the presence of the complex 3pherical symmetry, it remains the critical solution in the full
X 3 matrix M. It is universal and can in principle be calcu- phase space. The assumptions of the present paper therefore
lated from the mode functions;,, . In the CSS case it can @pply to this matter model. The values, =2.785 and
be assumed to be 1. It is periodic in its argumenpinag, ) )\1*:_—0.2_261 0.644 were found numerically. The value of
with periodA/y. ¢ is a family-dependent constant. The role Mo« 9ives rise to a critical exponent for the black hole mass
of M is similar to that of the fine structure of the black hole ¥=1/Ao, =0.359, in agreement with the value 0.3558 given
mass scaling in the DSS cafkl,13 (where the same pa- previously [8,9]. Therefore, we predict, for this matter

rameterc also appeajs model, for initial data near spherical symmetry and near the
black hole threshold, the oscillatory behavid0), with u
VII. PREDICTIONS FOR THE p=p/3 PERFECT FLUID =0.799 andw=0.231. For axisymmetric critical collapse in

particular(which may be simpler to investigate numerically
We conclude this paper with a quantitative prediction,than the general caphis reduces to the scalind.2) with
based on numerical work reported elsewhéfke The previ- the sameu andw (as\,, is not purely real
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