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Angular momentum at the black hole threshold
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Near the black hole threshold in phase space, the black hole mass as a function of the initial data shows the
‘‘critical scaling’’ M.C(p2p* )g, wherep labels a family of initial data,p* is the value ofp at the threshold,
and the critical exponentg is universal for a given matter model. The black hole chargeQ obeys a similar law.
To complete the picture, we include the angular momentum as a perturbation. For the black hole angular

momentumLW , we find the oscillating behaviorLW .Re@(AW 1 iBW )(p2p* )m1 iv#. The assumptions of the calcu-
lation hold for p5r/3 perfect fluid matter, and we calculatem.0.799 and v.0.231.
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PACS number~s!: 04.70.Bw, 04.25.Dm, 04.40.Nr
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I. INTRODUCTION

There has been much interest recently in critical pheno
ena at the black hole threshold. Take a smooth o
parameter family of smooth, asymptotically flat initial da
for general relativity~with matter! that crosses the black hol
threshold, and fine-tune the parameter, so as to get clos
the black hole threshold. For many families, one can m
arbitrarily small black holes this way. As discovered
Choptuik @1#, the black hole mass near the threshold th
scales asM.C(p2p* )g, wherep is the parameter of the
initial data,p* is its value at the black hole threshold, andg,
the ‘‘critical exponent,’’ is a universal constant common
all one-parameter families, whileC depends on the family.

In a nutshell, critical phenomena arise because gen
relativity, for a given matter model and symmetry, admits
‘‘critical solution.’’ By this we understand a strong-field so
lution that is an attractor of codimension one sitting on
black hole threshold, and whose basin of attraction is
black hole threshold. Perturbatively, this means that the c
cal solution has precisely one unstable mode, and that it
cays into a black hole, or into flat space, depending on
sign of that mode. The critical solutions found so far a
either static or periodic in time~type I!, or continuously or
discretely self-similar~type II!. Both can arise in the sam
matter model@2,3#. Here we limit attention to type II, which
gives rise to the power-law scaling of the mass. For a rev
of critical phenomena, see@4#.

If a small amount of electric charge is present in the init
data, the black hole chargeQ obeys a similar power law a
the massM , with a new critical exponentd @5,6#. Black
holes are completely characterized by their massM , electric
chargeQ, and angular momentumLW . To complete the pic-
ture, here we consider initial data with small angular m
mentum. Our calculation assumes the existence, for a g
matter model, of a spherically symmetric self-similar so
tion with exactly one unstable perturbation mode, includ
nonspherical perturbations.

Recently, we have shown for the first time that a sphe
cally symmetric critical solution, namely that for perfe
fluid matter with equation of statep5r/3, has no unstable
nonspherical perturbation modes@7#. The present abstrac
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calculation therefore applies to this particular matter mod
and gives to a quantitative prediction for it.

II. NOTATION

The calculation we give here is hardly more than an
plication of dimensional analysis. Therefore we set up
compact notation that hides all technical details specific
general relativity, in order to bring out the essential scal
argument. Letgmn be the spacetime metric in the coordinat
(t,x,u,w), with u and w the usual Euler angles, and le
surfaces of constantt be spacelike. If the conformal metri
g̃mn[e2tgmn is independent oft, then the spacetime is ho
mothetic, or continuously self-similar~CSS!. In this case,t
plays the double role of being the time coordinate and
being the negative logarithm of spacetime scale, whilex is
dimensionless. A simple example of such a coordinate s
tem ist52 ln(2t) andx5r /(2t), wheret andr are a stan-
dard choice of time and radial coordinate.

Let Z(t,x,u,w) stand forg̃mn plus a suitable set of con
formally rescaled matter variables.~For perfect fluid matter,
for example, these arer̃5e22tr for the density, andũm
5etum for the four-velocity.! Z(t,x,u,w) then symbolizes a
solution of the field equations, whileZ0(x,u,w) symbolizes
Cauchy data.~To make this notion precise, we have to tran
form from g̃mn to suitably rescaled Cauchy datah̃i j andK̃ i j .)
Finally, let Z(t,x,u,w)5Z* (x) stand for the critical solu-
tion, which is both spherically symmetric and CSS.~We
overlook a trivialu dependence, namely the factor sin2u in
gww , for the sake of notation.!

For a solution that is a general perturbation of a se
similar, spherically symmetric background solutionZ* (x),
we can make the ansatz

Z~t,x,u,w!.Z* ~x!1(
l 50

`

(
m52 l

l

(
n50

`

3Re@Clmn~p!el lnt f lmn~x,uw!#. ~1!

Because the background is spherically symmetric, we
decompose all linear perturbations into spherical harmon
labeled byl andm. Because it is independent oft, the per-
turbation equations of motion separate, and the perturbat
R7080 © 1998 The American Physical Society
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can be assumed to have a simple exponential dependen
t, where the separation constantsl lmn and the mode func-
tions f lmn are complex. We assume here that the perturba
spectrum is countable and discrete, and label it byn for each
value of l andm. BecauseZ is real, thel lmn and f lmn must
be real or form complex conjugate pairs. Because of sph
cal symmetry, thel lmn are in fact the same for allm, and are
therefore labelledl ln . TheClmn , also complex, are the fre
parameters of the generic perturbation. Here we want to c
sider one-parameter families of initial data labelled by a
rameterp. The dependence of the solutions onp is then a
dependence of the free constantsClmn on p. The f lmn corre-
spond to rescaled metric and matter perturbations in a s
able gauge, such as Regge-Wheeler gauge, or in a ga
invariant framework. We have addressed the technical de
of gauge-fixing elsewhere@7#.

III. REVIEW OF MASS SCALING

We now consider the time evolution of initial data th
start close to the spherically symmetric self-similar critic
solution, so that the expansion~1! applies initially. The criti-
cal solution contracts to a curvature singularity att5`. As
the singularity is approached from the past, witht increas-
ing, a perturbation grows~decays! if the real part of itsl is
positive~negative!. By definition, a critical solution has pre
cisely one unstable mode. Being unique, this unstable m
must be spherically symmetric because all higher valuesl
are (2l 11)-fold degenerate and itsl must be real. We labe
its mode functionf 00* and its eigenvaluel0* .

Close enough to the singularity, we can neglect all sta
perturbation modes. The unstable perturbation keeps gr
ing, however, and eventually the solution deviates non
early from the critical solution. The solution eventual
forms a black hole forp.p* , but disperses forp,p* . As
p→p* from either side, the solution approximates the cr
cal solution to ever smaller scales, that is to ever larget.
This means thatC00* (p) must vanish precisely atp5p* .
LinearizingC00* aroundp5p* , and neglecting all decaying
perturbations, we have

Z.Z* ~x!1
]C00*

]p
~p* !~p2p* !el0*

t f 00* ~x!. ~2!

For p.p* , we definetp as a function ofp by

]C00*
]p

~p* !~p2p* !el0*
tp[e, ~3!

wheree is an arbitrary small constant.
We now consider the Cauchy dataZ0 given by

Z~tp ,x,u,w!.Z* ~x!1e f 00* ~x![Z0~x!. ~4!

We have chosene small enough that the growing mode h
not yet gone nonlinear~its exact value does not matter!. For
largert, the linearized ansatz~1! breaks down, and we know
only that the solution forms a black hole and settles down
Schwarzschild. We have definedtp so that the rescaled var
ablesZ are independent ofp in the Cauchy dataZ0. The field
equations themselves are scale-invariant~or asymptotically
scale-invariant on small scales!. As a result, there is only on
on
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scale,e2tp, in the problem, and therefore the black ho
mass must be proportional to it. We have

M.M0e2tp.C~p2p* !g, g5
1

l0*
, ~5!

where M0 is a universal constant, andC is a family-
dependent constant absorbing]C00* /]p(p* ). This deriva-
tion of the critical scaling of the black hole mass has be
given before@8–11#. Collapse simulations show that th
critical solution is an attractor, and the mass scaling~5!
holds, even beyond the strict applicability of the perturbat
ansatz~1!.

IV. ANGULAR MOMENTUM SCALING

Now we generalize the above discussion to initial d
with nonvanishing angular momentum. Our discussion ho
strictly only for initial data which are almost spherical
symmetric, so that deviations from spherical symmetry c
be treated as linear perturbations throughout the evolution
particular, this means that our results hold only for bla
holes whose angular momentum is much smaller than t
mass, so that the final Kerr solution can be treated as a
turbation of Schwarzschild. If the critical solution turned o
to be an attractor beyond the linear regime also for n
spherical spherical initial data, our discussion and res
could then hold also for larger deviations from spheric
symmetry.

A Kerr black hole metric with small angular momentu
(L!M2) can be written as a Schwarzschild metric with
linear perturbation proportional toL. In fact, the gauge can
be chosen so that the shift component of the metric is

gtw52
L

r
sin u

]

]u
P11O~L3/M6!, ~6!

whereP1 is a Legendre polynomial, while all other metr
coefficients are those of the Schwarzschild metric in
usual Schwarzschild coordinates, plus perturbations
O(L2/M4) @12#. This result can be verified immediately b
expanding the Kerr solution in Boyer-Lindquist coordinat
aroundL50. The only perturbation to leading order inL
therefore hasl 51 angular dependence and odd parity in t
Regge-Wheeler notation. Here the orientation of the coo
nate axes was chosen so that the perturbation is purelm

50. For a general orientation ofLW relative to the coordinate
axes,m521,0,1 will all appear. As a subdominant effec
we therefore include the oddl 51 perturbations in the data
Z0 even though they are subdominant, with the aim of lea
ing something about the behavior of the black hole angu
momentum near criticality.

We only keep the dominant oddl 51 mode, that is the
one with the largest~least negative! real part ofl, and de-
note it byl1* . Generally,l1* will not be real, but part of a
complex conjugate pair.l 51 is also threefold degenerate
with mode functionsf 1m* for m521,0,1, or the three di-
rections in space. Keeping these modes results in a s
perturbation of the initial dataZ0:

Z~tp ,x,u,w!.Z0~x!1eRel1*
tpdZ0~tp ,x,u,w!, ~7!
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where

dZ05Re (
m521

1

C1m* ~p* !ei Iml1*
tpf 1m* ~x,u,w! ~8!

is periodic intp . As long as its amplitudeeRel1*
tp is small

enough, the perturbationdZ0 evolves as a linear perturbatio
of the spacetime generated by the spherically symmetric
Z0 all way until the solution has settled down to Schwar
child with a small odd-parityl 51 perturbation that turns i
into a slowly rotating Kerr solution. By the black hole no
hair theorem, no other perturbations~except an electric
charge of the black hole! can survive in the final state. Thi
justifies our considering oddl 51 perturbations, but neglect
ing l .1 and even perturbations altogether. In the linear
proximation, the black hole angular momentumL must, on
average intp , be proportional toeRel1*

tp. Because this is a
dimensionless number, we must have

L

M2 }eRel1*
tp ~9!

for the overall scaling ofL. But there is an interesting modu
lation due to the fact thatdZ0 depends periodically ontp , as
we shall see now.

By linearity, the presence of a perturbatione Re f 1m* ,
for some smalle, in the initial dataZ0 must give a rise to a
small angular momentum componentLz /M25eA in the fi-
nal black hole, whilee Imf 1m* gives rise toLz /M25eB.
Similar proportionalities apply to Ref 1m* and Im f 1m* for
m561, and thex and y components of the black hole an
gular momentum. We absorb the universal, but unkno
proportionality factors and the family-dependent consta
C1m* together into six new constantsAW and BW . Putting all
the factors together, we obtain the following final result f
the angular momentum vectorLW of the black hole as a func
tion of the initial data, for initial data near the black ho
threshold and near spherical symmetry:

LW 5Re@~AW 1 iBW !~p2p* !m1 iv#, ~10!

where

m5
21Re l1*

2l0*
, v5

Im l1*
2l0*

, ~11!

and AW and BW are six family-dependent constants. Note th
we always havem.2g because Rel1* ,0 by the assump-
tions of this calculation.

This is our main result. Asp→p* from above in the
initial data, the angular momentum vectorLW of the final
black hole rotates in space as it decreases. It describ
rapidly shrinking ellipse of size (p2p* )m. This behavior
formally resembles a damped isotropic three-dimensio
harmonic oscillator, with2 ln(p2p* ) playing the role of
‘‘time,’’ v the frequency, andm the damping. Of course,p
2p* is not in any sense a time, but a measure of the
tance, in phase space, of the initial data set labeled byp from
the black hole threshold.
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V. THE AXISYMMETRIC CASE

The result~10! is particularly surprising if we consider
family of strictly axisymmetric initial data. ThenLW can only
point along the symmetry axis, and the ellipse degener
into a line:

L5Lz5~p2p* !mA cos@v ln~p2p* !1c#, ~12!

where A and c are two family-dependent constants. If th
family of axisymmetric initial data has angular momentu
that does not vanish atp5p* , then the angular momentum
of the black hole, as a function of the initial data, alterna
between parallel and antiparallel to the angular momen
of the initial data. The simple power-law scalingLz5(p
2p* )m one might naively expect would be recovered only
l1* was purely real. The oscillating behavior is sketched
Fig. 1. It is perhaps as dramatic an illustration of the ‘‘fo
getting’’ of initial data in critical collapse as the universali
of the critical solution itself.

VI. DISCRETE SELF-SIMILARITY

Here we have considered the effects of a critical solut
that is CSS, both for simplicity of notation and because
one case that our calculation is actually known to apply
~the perfect fluid! is CSS. It is straightforward, however, t
generalize our result for the angular momentum scaling
hypothetical critical solutions that are DSS instead of CS
The periodic dependence of the angular momentum in C
critical collapse is a simple cosine, because it derives fro
time-dependence expl1*t of the leadingl 51 odd perturba-
tion, with l1* complex. In DSS critical collapse, the bac
ground critical solution itself is periodic int, in a nontrivial
way, with a periodD. Therefore, one would expect bot
kinds of periodicity to arise inLW . The calculation bearing this
out is a straightforward generalization of the one for the C
case, and here we only give its result. It is

FIG. 1. Schematic plot of the ADM angular momentum~thick
dashed line! and the angular momentum of the black hole~thick full
line! in axisymmetric collapse in a one-parameter family of axisy
metric data crossing the black hole threshold.p is the parameter of
the initial data andp* is its value at the black hole threshold. Th
envelope~thin dashed line! is the overall power law. There is a
infinite number of oscillations asp→p* from above.
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LW 5Re$M@ ln~p2p* !1c#~AW 1 iBW !~p2p* !m1 iv%,
~13!

where the only difference is the presence of the comple
33 matrixM. It is universal and can in principle be calcu
lated from the mode functionsf 1m* . In the CSS case it can
be assumed to be 1. It is periodic in its argument ln(p2p* )
with periodD/g. c is a family-dependent constant. The ro
ofM is similar to that of the fine structure of the black ho
mass scaling in the DSS case@11,13# ~where the same pa
rameterc also appears!.

VII. PREDICTIONS FOR THE p5r/3 PERFECT FLUID

We conclude this paper with a quantitative predictio
based on numerical work reported elsewhere@7#. The previ-
3

,

ously known critical solution~in spherical symmetry! for the
perfect fluid with equation of statep5r/3 @14# was per-
turbed, with the result that, at least perturbatively arou
spherical symmetry, it remains the critical solution in the f
phase space. The assumptions of the present paper ther
apply to this matter model. The valuesl0* .2.785 and
l1* .20.22660.644i were found numerically. The value o
l0* gives rise to a critical exponent for the black hole ma
g51/l0* .0.359, in agreement with the value 0.3558 giv
previously @8,9#. Therefore, we predict, for this matte
model, for initial data near spherical symmetry and near
black hole threshold, the oscillatory behavior~10!, with m
.0.799 andv.0.231. For axisymmetric critical collapse i
particular~which may be simpler to investigate numerical
than the general case! this reduces to the scaling~12! with
the samem andv ~asl1 is not purely real!.
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