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Abstract 

The frequency response of Michelson- and Sagnac-based interferometers are evaluated and compared, considering the 

application for gravitational-wave detection. It is shown that Sagnac-based interferometers have some interesting features, 
but in general do not offer advantages over Michelson-based ones for the detection of gravitational waves. 
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1. Introduction 

Precise position measurements using interferometry of- 
ten adopt a configuration based on the Michelson interfer- 
ometer. This is, however, not the only possibility of mak- 

ing two-beam interferometers; there are also other choices, 
such as the Sagnac interferometer. 

Among the most sensitive interferometers currently de- 
veloped are those for gravitational-wave detection [l-3]. 
In this field, several modifications of the basic Michelson 
interferometer have been proposed in order to achieve the 

extremely high phase sensitivity required (- IO-‘rad). 
These include the use of multiple reflections [4] or optical 

cavities [5] in the arms, power recycling [S], signal recy- 
cling [6], and resonant sideband extraction [7,8]. 

Recently, making such a gravitational-wave detector 
based on the Sagnac interferometer is proposed again as an 
alternative approach (see Ref. [9] and references therein). 
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So far, however, its behavior is not investigated as thor- 

oughly as that of the Michelson one. In this paper, we 
discuss the feasibility of Sagnac-based interferometers, 
with particular attention paid to applying the enhancement 
schemes that are proposed for Michelson-based interferom- 

eters. 

2. Optical measurement of gravitational waves 

Suppose a gravitational wave propagates along the 
z-axis, whose polarization axes coincide with the x- and 
y-axes. Then the light (of angular frequency w,) traveling 
through an optical path of length L along the x-axis 

acquires a phase delay [ IO,81 

h(t) dr’+ O(h’). (I) 

Here the strain amplitude h of the gravitational wave is 
expected to be extremely small ( Ih( K lo-” ) and thus 

higher order effects can be ignored. The second, time-vary- 
ing term (which we refer to as the phase shif 64) 

represents the effect of the gravitational wave. 
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For light traveling along the y-axis, the polarity of the frequency domain by taking the Laplace transform of each 
side: 

T{W(t)} 

phase shift is opposite due to the quadrupole nature of the 
gravitational waves. The differential phase shift between 
the two orthogonal arms will be measured interferometri- 
tally. 

Each Fourier component of the phase shift, with an 
angular frequency os, can be considered as a phase modu- 
lation that produces upper and lower sidebands at wO f ws. 
Amplitude and phase of each sideband are determined by 
the optical configuration. They are represented by the 
optical response G(o), where o is the frequency offset 
from the carrier, i.e. + ws for the upper and lower side- 

bands, respectively. 
The sum of these two sidebands is the signal we finally 

extract from an interferometer [8,11]. In order to compare 
the best sensitivities achievable using various kinds of 
interferometers, the sideband amplitudes at the output for 
given input light power must be compared. (It is not 
necessarily true that one can always achieve this optimum 
sensitivity; but this is an issue different from the compari- 
son of optical configurations done here.) 

The normalized response F is defined as the transfer 
function from gravitational wave amplitude h to the sum 
of upper- and lower-sideband am litudes normalized by 

the injected light amplitude (a P PO ): 

F(mg) =Gint(wg) + GiEt(-wg) 

where * denotes the complex conjugate. (This definition 

assumes that the phase-modulation component is detected, 
which is the best scheme for broad-band responses and is 
commonly used. See Refs. [8,11] for more detail.) 

In the following discussion, we assume the shot noise 

to be the limiting noise source in the frequency range of 
interest. Then, by using this normalized response, the 
sensitivity of an interferometric detector to gravitational 
waves is represented as [8,12] 

or by the normalized scale used in the figures (see the 

caption of Fig. l), 

R( CO*/274 = 
1.1 x lOP/& 

normalized gain 

Here ?1 represents the linear spectral density of the gravita- 
tional-wave amplitude that gives unity signal-to-noise ra- 
tio, and 1) is the efficiency of the photo-detector. 

The time domain formula in Eq. (1) is converted to the 

o. 1- e-sL/c 
=- 

2 s 2{h(t)) (5) 

The transfer function X from gravitational wave amplitude 

h to phase shift 64 is defined as the ratio of their Laplace 
transforms, thus 

x = p{W(t)1 = 00 1 - emsL” 

P{h(t)) 2 s . 
(6) 

h-S+ 

(In order to obtain the frequency response, the Laplace 
parameter s must be replaced by i w.) 

The optical response G is the sideband amplitude rela- 
tive to the injected carrier amplitude a, a fi . Each 
(upper or lower) sideband produced by a (weak) phase 
modulation with an index &#J has an amplitude of 

a,J,(S+> = aoh)/ where J, is the first order Bessel 
function. Thus, the optical response G,, for one arm of 
optical path length L can be written as 

o. 1 _ e-sL/c 

G,,=P,,~ 
S 

(7) 

Here pa, _ < 1 represents the amplitude attenuation factor 
during the round trip in the arm. 

3.0 , I 

0.0 0.5 1.0 1.5 2.0 
normalized frequency ( f I fo ) 

2.5 3.0 

Fig. 1. Response of Michelson and Sagnac interferometers, both 
having a single bounce in each arm. The vertical scale is the gain 

IFI, normalized so that the DC gain of a (non-power-recycled) 

Michelson interferometer with N transits in one arm will be N. 

(Note that N = 2 for a single bounce case. See Eq. (4) to convert 

this to the sensitivity.) The horizontal scale is the frequency 

normalized by f0 = c/21 3 SOkHzX[ 1/3km-‘. The same 

scales are used in the following frequency response figures (ex- 

cept for the horizontal scale of Fig. 11). 
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Note that the magnitude of G_ at DC increases 
proportional to the optical path length L: 

G_-+ p,,o” f- as s+O. 
4 ( (8) 

Thus, a long optical path is desirable for our purpose. How 

to realize it is discussed in the following sections. 

3. Multiple reflections in the arms 

For purely differential phase shifts, the effects on the 
light in the two arms of an interferometer have the same 
amplitude but opposite polarity. Thus the optical response 
of a simple (i.e. single bounce) Michelson interferometer 
with the optical path length L is the same as that for one 
arm given in Eq. (7). ignoring the constant factor that 
comes from the existence of the two arms. (This factor is 
included in the definition of Eq. (3).) Note that the optical 
path length L for one arm of a Michelson interferometer is 
twice the armlength f, i.e. L = 21. 

In the case of a Sagnac interferometer with the same 
path length L in one arm, the light exiting from one arm 

will experience an additional round trip in the other arm. 
Since we are assuming a very weak modulation, we can 
neglect higher order effects, i.e. the modulation of the 

sidebands. Thus, the total amount of a single sideband is 
the sum of that produced in the first arm and that in the 
second arm. 

The carrier entering the second arm has experienced a 
finite loss in the first arm, which is represented by the 
amplitude attenuation factor oar,,,. On the other hand, the 

sideband produced in the first arm experiences loss and 
phase shift in the second arm. Considering these effects, 
the optical response of the Sagnac interferometer to gravi- 
tational waves can be written as 

(9) 

Fig. 1 shows the gain 1 F(. the magnitude of the normal- 
ized responses, of a Michelson and of a Sagnac interferom- 
eter. assuming that both have the same optical path length 
L in one arm. Both responses have zeros (of order 1 in the 

Michelson and of order 2 in the Sagnac case) at multiples 
of f, = c/L. The Michelson response has its peak at DC, 
whereas the Sagnac one has a zero at DC and the peak 
gain at N 0.371.f,. The peak gain of the Sagnac response 
is about 1.45 times higher than that of the Michelson. The 

bandwidths s measured at the - 3 dB points are 0.443s, 

3 
Here we measure strictly at - 3 dB of the gain at the peak for 

an accurate comparison, although 0.5f, is more commonly used 

for the bandwidth of a Michelson. The Sagnac bandwidth is 

shown in two numbers that represent the upper and lower cut-off 

frequencies. respectively. 

(4 

(b) 

MsR!: -’ _a d PD 

Fig. 2. Schematics of (a) Michelson and (b) Sagnac layout using 

multiple reflections in the arms. Positions for possible power- and 

signal-recycling mirrors (MpR. MS,) are also shown (in dashed 

lines). 

for the Michelson and (0.581 - O.l82)f, = 0.399f, for the 
Sagnac. 

As mentioned earlier, a long optical path is desirable 
for our purpose. The armlength is, however, limited by 

practical considerations such as cost, at least for ground- 
based detectors. In order to realize a longer path length L 

within a given armlength I, the use of multiple reflections 
in an arm (as shown in Fig. 2) was proposed [4] and is 
commonly adopted. This does not change the characteristic 

shape of the frequency response, but alters the scaling of 
both axes: the overall height increases by b = N/2 where 
N is the number of transits in one arm, and the frequency 
scale decreases by the same factor, i.e. the first zero f, 

becomes c/N1 instead of c/22 (=fa in the figures). 
There is, however, a limitation on the optical path 

length achievable due to the finite size of the beam. The 
Gaussian radius of the beam at the mirror in the symmetric 
confocal case is given by 

where A = 2~c/ws is the wavelength of the light. This is 

the minimum radius of max( w , , w *) for a given armlength 

1, where w, and wa are the beam radii at each end, 
respectively. 
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One needs a safety factor of > 3 for mirror radii in 
order to reflect most of the light power. Thus, the mirror 
surface area required is 

Al =O.O3m’X[$--J[&] (‘1) 

per reflection. When all the reflection spots are (more or 
less) separated, one needs a mirror surface of bA, = 0.5 mz 
X [L/ 100 km]. This value does not depend much on how 
the multiple reflections are realized (see Ref. [ 131 for more 
detail). 

This limitation is an even more serious problem in a 
Sagnac interferometer, since its gain is poor below the 
lower cut-off frequency of O.l82f,. When an optical path 
length of 100 km is chosen, the lower cut-off frequency is 
546 Hz and the peak frequency is 1 .l 1 kHz. A longer 
optical path length is required if one aims at lower fre- 
quencies; but the value quoted above is already close to 
the limitation of the vacuum tubes for the planned large 
interferometers. 

4. Power recycling 

The advantage of the higher peak gain of the Sagnac 
response is for the most part coming from the fact that the 
carrier light travels through b&r of the arms before 

recombination. This means that the amount of light energy 
stored in the optical system is twice that of a Michelson 
interferometer, under the assumption that the light power 

hitting the beamsplitter is the same in both cases. 
In practice, however, all the planned interferometric 

gravitational-wave detectors will employ power recycling 
[5] in order to achieve the required high sensitivity. As can 
be seen in Eq. (3), the sensitivity improves with the square 
root of light power (for a given interferometer). The use of 
power recycling effectively enhances the light power hit- 

ting the beamsplitter by forming a cavity with the interfer- 
ometer as one of the cavity mirrors (see Figs. 2, 4). As we 
will see shortly, the power enhancement achievable by 

power recycling differs between the two types of interfer- 

ometers. 
When power recycling is optimized for the maximum 

power enhancement, the equivalent power enhancement 
factor .Yra is determined by the loss of the interferometer 

as 

by choosing the power reflectivity p;R of the power 
recycling mirror to be 

piR=(l -L$,*)(l-&&)‘= 1 -(ZZ5”t+2.$R). 

(13) 

Here dint is the power loss in the interferometer and dPR 
is the power loss of the power recycling mirror. Since the 
sideband amplitude is proportional to the carrier amplitude, 
the sensitivity improves proportional to the square root of 
the power enhancement factor .YPR. 

Due to the fact that the carrier light travels through 
both arms of a Sagnac interferometer, the loss in the 
Sagnac interferometer is expected to be twice that in a 
Michelson, provided that the loss is dominated by the 
losses in the arms. (This may not be true if the loss of the 
interferometer is dominated by that at the beamsplitter, e.g. 
by bad interference.) Thus, the power enhancement factor 
achievable in a Sagnac interferometer is expected to be 
half that in a Michelson interferometer. In the end, the 
amount of light energy stored in the optical system will not 
be different in the two cases. 

This is a natural consequence of the fact that the light 
experiences at least one reflection from a mirror with finite 
loss after each transit of the armlength. Thus, the total 

amount of light energy B that can be stored in an optical 
system depends only on the armlength 1, the minimum loss 
per reflection dmi,, and the injected light power Pa, as [8] 

=2cJJX [&][&I[$$ (14) 

not depending on the configuration employed. (The quoted 
values are typical design parameters of planned large 
interferometers.) 

Fig. 3 shows a comparison of the two types of interfer- 
ometers, with and without power recycling. Since the 
effect of power recycling is equivalent to the use of a light 
source with higher power, the characteristic shape of each 

1200 , 

0.05 0.10 0.15 1 
normalized frequency ( f I fo ) 

Fig. 3. Response of Michelson and Sagnac interferometers with 

multiple reflections in the arms (N= 30). Those with (upper 

curves) and without (lower curves) power recycling are shown. 
When power recycling is adopted, the peak gains of the two types 
of interferometers become very similar. 
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lb) 

Fig. 4. Schematics of (a) Michelson and (b) Sagnac layout using 

an optical cavity in each arm. Positions for possible power- and 

signal-recycling (extraction) mirrors (M,, , M,, ) are also shown 

(in dashed lines). 

response does not change. When power recycling is 

adopted, however, the overall height can be increased by a 
significant factor ( _ 30). The peak height of the Sagnac 
interferometer comes very close to that of the Michelson. 

due to the difference in power recycling factor. In Fig. 3. 

N = 30 transits in each arm are assumed. 
As can be seen in Fig. 3, the improvement in gain due 

to power recycling will be substantial. Thus, in the follow- 
ing discussion we assume that power recycling is always 
adopted and optimized for the maximum power enhance- 

ment. 

5. Optical cavities in the arms 

In the case of Michelson interferometers. the use of an 

optical cavity (either Fabry-Perot type or ring type) in each 
arm was proposed [S] as an alternative means to realize 
long storage times in the arms. The same scheme can be 
used for Sagnac interferometers, and we consider it here 

(see Fig. 4). 

Another fact to be noted is that the carrier which enters 
the second cavity is that reflected by the first cavity. There 
is not only the amplitude loss factor but also the phase 

shift upon reflection. When ‘over-coupled’ cavities ’ are 
used (as expected in interferometric gravitational-wave 
detectors), the carrier experiences a phase shift of T. 

There is a multiple interference inside a cavity which 4 A cavity in which the power transmittance 

complicates the analysis. The optical response of a Fabry- mirror dominates the total loss inside the cavity. 

Perot cavity can be obtained through a detailed analysis 

[81: 

where p,. TV, p, represent the amplitude reflectivity and 
transmittance of the coupling mirror and the reflecting 
mirror, respectively, and t, is the round-trip time in the 
cavity (t, = 2//c for a Fabry-Perot cavity with length I). 
For ring-type cavities, p, pr must be replaced by the total 

amplitude attenuation during a round trip. 
In the case of a Michelson with a cavity in each arm. 

the effects on the light in the two arms are the same (with 

opposite polarity). Thus, the optical response is the same 
as that of the cavity in one arm. It turns out that the effect 
of the cavity is similar to that of multiple reflections: a 
cavity with finesse Y and length 1 yields similar gain and 
bandwidth to an effective optical path length of 

using the effective number of transits (see Fig. 5). 

For the Sagnac with an optical cavity in each arm, the 
sidebands produced in the first and the second arm must be 
added in a way similar to the multiple-reflection Sagnac. 
In this case, they are added at the coupling mirror of the 
second cavity. The sidebands produced in the first cavity 

are reflected by the second cavity, with a certain amplitude 
reflectivity as well as a certain phase shift upon the 
reflection. 

This is represented by a complex rejlecticity of a cavity 
which is given as 

Pw(4l) = 
P, - (1 --%AJp~e-‘C 

1 -pcp,e-‘$ 
(17) 

Here $ is the tuning of the cavity at that frequency, 

$=@o+or,, (18) 

where I,!Q is the amount of &tuning (the tuning at the 
carrier frequency, usually set to &, = 0) and w is the 
frequency offset from the carrier (positive for the upper 

sideband and negative for the lower sideband). 

of the coupling 
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Combining the above relations, the frequency response excepting the one at DC (which comes from the Sagnac 
of a Sagnac interferometer with optical cavities in the arms characteristics). This makes the response broader when 
can be written as measured at the - 3 dB points. 

Gcavsag = I P,,“(O) - P,,“( Q) CL” 1 (19) 

where both arm cavities are assumed to be resonant with 
the carrier frequency. 

It is also possible to make comparisons with conditions 
different from Eq. (16). Thus we do not make any definite 
conclusion here and postpone that to after evaluating other 
types of responses in the coming sections. 

(There is actually an additional parameter, that is the 
path length from one arm cavity to another. It is assumed 
from practical considerations that this length is short com- 
pared with the arm cavity length. If there is significant 
distance L, between the two cavities, there will be an 
additional factor exp{ - i wL&c] in front of the second 
term in Eq. (19j.l 

6. Signal recycling 

6.1. Principle of signal recycling 

Fig. 5 shows the response of (power-recycled) Michel- 
son and Sagnac interferometers with cavities in the arms, 
together with the response of those with multiple-reflection 
arms. The finesse of the cavities is assumed to be 9 = 200. 
(The multiple-reflection responses are shown for compari- 
son, although for kilometer-class interferometers L = IV1 = 
(4/7r)Y81 = 764km X [C/3 km] is quite unrealistic.) 

In the case of Michelson-based interferometers, the use 
of cavities gives a peak gain similar to the equivalent 
multiple-reflection case but with a slightly narrower band- 

width (when compared at the - 3 dB points), provided that 
Eq. (16) is satisfied. On the other hand, the cavity response 
has no zeros within f < f,, = c/2 I, resulting in a better 
sensitivity around the zeros in the multiple-reflection re- 

sponse. 

Another scheme proposed for Michelson interferome- 
ters to improve the low frequency performance is signal 
recycling [6]. Its effect is to increase the peak sensitivity at 
the expense of narrowing the detector bandwidth. Another 
benefit of this scheme is that one can alter the frequency of 
the peak sensitivity, which is, however, in general worse 

than the DC case by a factor of fi (for the same band- 
width). 

In the Sagnac case, the peak gain with cavities in the 
arms is about 0.7 times that with multiple-reflection arms, 
assuming the relations in Eq. (16). In addition, the peak is 
located at a slightly lower frequency. These results come 

from combining the characteristics of a Sagnac interferom- 
eter and of cavities in the arms. As in the case of the 
Michelson, there are no zeros in the cavity response, 

The scheme of signal recycling is especially valuable 
for interferometers with multiple reflections in the arms, 
since the mirror size problem mentioned earlier practically 
limits the low-frequency performance of these interferome- 
ters. When the interferometer employs cavities in the arms, 

the additional mirror (MS, in Fig. 4) forms a coupled 
cavity with the arm cavities of the interferometer [8,11]. 
This results in the effect of signal recycling or resonant 

sideband extraction, depending on the tuning condition of 

that additional mirror. 
To implement signal recycling, the additional mirror 

(signal recycling mirror, MS, in Figs. 2, 4) is positioned 
so as to form a cavity with the interferometer in a way 
similar to the case of power recycling, but this time at the 
detection port (see Figs. 2, 4). The sidebands produced by 
a differential modulation of the interferometer will be 
stored in this cavity (‘signal cauity’ for simplicity). Due to 

the multiple interference inside this cavity, the sidebands 
that are resonant with this cavity are enhanced, thus im- 
proving the sensitivity. On the other hand, the sidebands 

that are off-resonant are suppressed by the same mecha- 
nism. 

0.005 0.010 0.015 
nonalized frequency ( f / to ) 

Fig. 5. Response of Michelson and Sagnac interferometers with 

cavities in the arms (9 = 200). Power recycling is optimized. 

Those with multiple-reflection arms (N = (4/7r)9 = 254) are 

also shown for comparison. 

This enhancement or suppression is expressed by the 
signal recycling factor given as 

H= 
7s 

1 -PsPinte-iJI’ (20) 

Here pint is the (possibly complex) amplitude reflectivity 
of the interferometer, ps and rs are the amplitude reflec- 

tivity and transmittance of the signal recycling mirror, and 
Cc, is the tuning of the signal cavity at that frequency, given 

by 

*=*o+wrs, (21) 
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3000 

2500 
I\ no detunlng 

1 

Fig. 6. Response of a power-recycled Michelson interferometer 

with multiple-reflection arms (N = 20) and a signal recycling 

mirror (1 psi’ = 0.7). Each curve represents a different tuning 

condition of the signal recycling mirror. The response without the 

signal recycling mirror is also shown for comparison. 

where I,$, is the amount of detuning and fs is the round-trip 

time in the signal cavity. 
When cavities are used in the arms, the interferometer 

has a frequency-dependent amplitude reflectivity as well as 

a frequency-dependent phase shift upon reflection. This is 
represented by using a complex reflectivity similar to that 

mentioned in Section 5. 

6.2. Signul recycling n’ith multiple-rejlection arms 

Fig. 6 shows some examples for the response of a 
multiple-reflection (N = 20) Michelson interferometer with 

signal recycling. When there is no detuning (Go = 0). the 
gain peak is located at DC, with a higher but narrower 

peak than that without signal recycling. Outside this peak, 
the gain is lower than that without signal recycling. 

When there is a finite detuning I&, the response has 
two peaks within 0 <f rf, = c/Nl: at (t+$,/2rr)fi and 
( 1 - 1,4,/29r)f,. This is the result of superimposing the 

responses for the upper and lower sidebands to a single 
(positive) frequency (see Eq. (2)). As shown in Fig. 7, one 
of the peaks is for the upper sideband and the other is for 
the lower one, the distance between the two being the 

-0.05 0.00 0.05 
normalized frequency ( f / fa ) 

Fig. 7. The same response as Fig. 6, but shown as ‘single 

sideband’ response in the positive (upper sideband) and negative 

(lower sideband) frequencies. 

3000 

2500 

.E 2000 

i%l 
P g 1500 

i 
1000 

500 

/ 
0 

r. 
:: 
/j ii 

v”=n;: ii no detuning 
;; :: 
: : : : ii 
; : i ! j i 
i jO6tl; 0.33x; i 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 
normalized frequency ( f / fo ) 

Fig. 8. Response of a power-recycled Sagnac interferometer with 

multiple-reflection arms (N = 20) and a signal recycling mirror 

(I PSI2 = 0.7). Each curve represents a different tuning condition 

of the signal recycling mirror. The response without signal recy- 

cling mirror is also shown for comparison. 

FSR” (given by c/N1 =f,) of the signal cavity. (When the 
detuning is (to = r, the two peaks coincide and compose 
one single peak.) 

These two peaks are higher by the same factor than the 

response without signal recycling. The one closer to DC is, 
however, higher than the other because the response with- 

out signal recycling is higher at that frequency. Since we 
are usually interested in a single frequency range, we can 
neglect the smaller peak and adjust the higher one (at the 
lower frequency) for the particular purpose. 

When the same signal recycling mirror is used in 
different detuning conditions, even the higher peak in the 

detuned case is about half in height of that in the non-de- 
tuned case, whereas the width of each peak is twice that of 
the non-detuned case. These differences come from the 

fact that in the non-detuned case the two sides of a peak 
(located at w = 0) are superimposed to compose one single 
peak. 

A similar, but slightly different, effect can be obtained 
when signal recycling is used with Sagnac-based interfer- 

ometers. Since ‘one round trip’ inside the signal cavity in 
this case includes both arms, the round-trip time is twice 
that in the Michelson case (assuming the optical path 

length in one arm to be the same in the two cases). Thus, 
the FSR in the signal cavity is c/2 Nl = fJ2, half that of 
the Michelson case. 

Fig. 8 shows some examples for the response of a 
multiple-reflection (N = 20) Sagnac interferometer with 
signal recycling. When there is no detuning, a single peak 

appears at f= 0.5f,, with a height and width similar to the 

’ The FSR (free-spectral-range) of a cavity is given by c/L,, 
where L, is the path length in a round trip. 
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Michelson (non-detunedl case. This is not surprising 
knowing the result without signal recycling. 

When there is finite detuning, four instead of two peaks 
will appear within 0 <f<f, (though not all of them are 
significant). This is a consequence from the FSR being 
half that of the Michelson case. The peak frequencies are 

(0.5 + &,/47rlf,, (4%J47rlfz, and (1 - &,/4~>f~, re- 
spectively. When the detuning is 7~, two of the peaks 
coincide and compose a single peak at f= 0.25f,, again 
with a height and width similar to the Michelson (and 
non-detuned) case. 

6.3. Signal recycling with caky arms 

When optical cavities are used in the arms of an 

interferometer, its reflectivity, pint in Eq. (20). will be a 
frequency-dependent complex reflectivity, as mentioned 
earlier. In the case of a Michelson-based interferometer, it 

will be the complex reflectivity of the arm cavity, shown 
in Eq. (17). For a Sagnac-based one, the round trip of an 
interferometer contains the reflections from the &JO cavi- 

ties in series. Thus, the complex reflectivity of the interfer- 
ometer is the square of Eq. (17), provided the path length 
between the two cavities is short compared with the arm- 

length. 
Fig. 9 shows the response of a cavity Michelson with 

signal recycling, with different tuning conditions. When 

there is no dehming, an effect similar to the multiple-re- 
flection case is obtained: a narrower but higher peak at 

DC. When the amount of detuning is changed, the peak 
frequency moves to a different frequency, and the height 
as well as the width of the peak varies. When the detuning 
is n, there is no significant peak and a flat, broad response 

is obtained. 

3500 
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Fig. 9. Response of a power-recycled Michelson interferometer 
with cavity arms (9 = 120) and a signal recycling mirror (1 psi* 
= 0.5). Each curve represents a different tuning condition of the 
signal recycling mirror. The response without signal recycling 
mirror is also shown for comparison. 

0.01 0.02 0.03 
nonalized frequency ( f I fo ) 

Fig. 10. Response of a power-recycled Sagnac interferometer with 
cavity arms (F = 120) and a signal recycling mirror (1 psi2 = 0.5). 
Each curve represents a different tuning condition of the signal 
recycling mirror. The response without signal recycling mirror is 
also shown for comparison. 

The last case is classified as resonant sideband extruc- 
tion [7,8,11], where the bandwidth of the arm cavities 
should be set narrower than the frequency range of inter- 
est. In any case, the response shown in Fig. 9 should be 
taken as examples to show the characteristics of the re- 
sponse in a qualitative way. The actual parameters will be 

chosen so that the resultant response is best adapted for the 

observation purpose. 
The response of a cavity Sagnac with signal recycling 

is shown in Fig. 10. When there is no detuning, the peak 
height improves at the expense of a narrower bandwidth, 

without changing the peak frequency. When the detuning 
is rr radians, a flat response is obtained, similar to the 
resonant sideband extraction in the Michelson case. 

With other tuning conditions, the peak is split into two 

smaller ones, at both sides of the original peak frequency. 
It is interesting to note that these two peaks have the same 

height but different widths, which are opposite to the 
multiple-reflection case. It may also worth mentioning that 

in logarithmic scale (not shown) these two peaks appear 
symmetric at the both sides of the original peak. However. 
such a response with two peaks is not expected to be very 

useful. 
Thus, the only reasonable choice of detuning is $a = 0 

or rr. In the latter case, the lower cut-off frequency 
becomes so low that the response is not different from 

other broad band responses (e.g. resonant sideband extrac- 
tion). The non-detuned response has a high peak at a 
frequency that is determined by the finesse of the arm 
cavity. Again, a similar response can be obtained also by 

other configurations (e.g. signal recycling). Considering its 
complex layout, there is no reason to prefer the cavity 
Sagnac with signal recycling. Thus, we neglect this config- 
uration in the following discussion. 
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7. Choice of parameters 

7.1. Concerning shot noise 

With the above results, we consider the application of 
these interferometers for gravitational-wave detection. Al- 
though we do not know the exact waveform we should 
expect. the desired response for typical applications would 
be: a relatively broad (_ 1 kHz) response for burst-like 
signals. one optimized at low frequency ( _ 100 Hz) for 
‘chirp’ signals from coalescing binary stars, and a nar- 
rowed one at a well-defined frequency for the signal from 
a known pulsar. 

For a broad-band type response with multiple-reflection 
arms, the biggest problem is the mirror size required. Even 
with 100 km path length. the sensitivity of a Sagnac inter- 
ferometer below 500Hz is poor, as mentioned earlier. In 

the case of a Michelson-based interferometer, the less- 
than-optimum path length can be compensated by using 
(non-detuned) signal recycling. For a Sagnac-based one, 
however, one absolutely needs to realize a long path length 
in the arms in order to bring the lower cut-off frequency 
O.l82c/L below the frequency range of interest. 

One straightforward way to make a longer path length 
with the given mirror size is the use of a light source with 
shorter wavelength. The area of the mirror surface required 
is proportional to the wavelength of the light, as can be 

seen from Eq. (1 I). On the other hand, the light power 
available and the losses of optical components depend on 
the wavelengths. 

The shot-noise-limited sensitivity to gravitational waves 

(for a fixed detector bandwidth) is proportional to dm- 
where 77 is the efficiency of the photo-detector, and K is 

the amount of light energy stored [8,12]. Assuming that 
power recycling is optimized and that the loss of the 
interferometer is dominated by the losses in the arms, the 
amount of light energy stored will be close to that in Eq. 
(14). Thus, the ‘figure of merit’ in the choice of the 
wavelength is 

V(h) P,(A) 

/+ ~~“‘,,,il( A) 
(22) 

The light source must be chosen to maximize this quantity, 

as far as the shot noise is concerned. It is possible, 
however, that other noise sources are more important in 
the choice, once the light power available becomes high 
enough. 

When cavities are used in the arms, the peak sensitivity 
of a Sagnac-based interferometer is worse than that of a 
Michelson-based one, if both use the same arm cauities. It 
is possible to use a higher finesse for the Sagnac in order 
to achieve a higher peak sensitivity. When one chooses the 

finesse for the Sagnac twice that for the Michelson, a 

response with height and width similar to those of Michel- 
son one is obtained (see Fig. 11). 

In addition, the peak is located not at DC but slightly 
away from it, depending on the finesse of the arm cavities. 
This is advantageous, since the sensitivity at the low- 
frequency end (f< 50Hz) will anyway be dominated by 
noise sources other than shot noise (seismic, pendulum 
thermal, gravity gradient). When the lower cut-off fre- 
quency of the Sagnac response is close to this low- 
frequency end, one can make use of the whole bandwidth 
of the detector. Since the finesse of the arm cavities 
determines the bandwidth as well as the lower cut-off 
frequency of the detector (i.e. they are not independent), a 
reasonable choice of the finesse results in a response with 
a peak around 100 to 200Hz. This is quite suitable for the 
‘low frequency’ purpose mentioned earlier. 

As a drawback, one is likely forced to use ring cavities 

rather than Fabry-Perot cavities in a Sagnac interferometer 
in order to separate incoming and outgoing beams. This 
means more surfaces and thus more losses in the round trip 
of an arm, which results in less light energy stored in the 
arms. (This effect is not included in Fig. 11.) 

Fig. 11 shows some of the examples optimized for 100 
to 200Hz, assuming an armlength of 3 km. The four 
configurations shown are: a Michelson with cavity arms 
(the ‘standard’ configuration), a Sagnac with cavity arms, 
a four-bounce Michelson with signal recycling, and reso- 

nant sideband extraction. As discussed above, the Sagnac 
one is somewhat better than the standard configuration in 
the frequency range of interest. However, a similar re- 

sponse can also be obtained by using either signal recy- 
cling or resonant sideband extraction, which may be some- 
what advantageous both in sensitivity and in flexibility. 

f&c detuned SR”” ““‘. 

0 50 100 150 200 250 300 350 400 450 500 
frequency (Hz) 

Fig. 11. Response optimized for 100 to 2OOH2, assuming 3 km 

armlength. The curves are: a Michelson with cavity arms (F = 

125), a Sagnac with cavity arms C.9 = 250). a multi-reflection 

Michelson with detuned signal recycling (N = 4, pf = 0.977 and 

I,/J~ = 0.23 rad), and resonant sideband extraction (arm cavity F = 

5000 and pz = 0.9, the signal extraction mirror is placed 3 km 

away from the beamsplitter and zero detuning). It might worth 

mentioning that a Michelson with cavity arms shows better sensi- 

tivity than others at frequencies higher than those shown here. 
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A narrow-band response can be obtained from a 
Sagnac-based interferometer by using signal recycling. The 
detuning must, however, be chosen to be either 0 or rr to 
achieve a high peak. Then the storage time in the arms (set 
either by multiple reflections or by cavities) uniquely 
determines the peak frequency. It is possible to have a 
peak at other frequencies by using other detuning condi- 
tions, but the peak height in this case is somewhat lower 
than in the optimum case. In any case, the storage time in 
the arms must be chosen reasonably long, either by multi- 
ple reflections or by cavities, to have a peak at a relatively 
low frequency. 

7.2. Other issues 

One of the advantages of a Sagnac-based interferometer 
is its alleged insensitivity to low-frequency fluctuations of 
the arm lengths, which eliminates the necessity of control- 
ling the mirror positions [9]. This is true, but only for 

non-recycled, multiple-reflection ones. Once cavities are 
used either in the arms or for power- or signal-recycling, 
the relative position must be controlled precisely by using 
active feedback control (although the number of degrees to 

be controlled may decrease by one). The control signal is 
in general obtained optically from the interferometer. The 
frequency response of a Sagnac-based interferometer is, 
however, not as simple as that of a Michelson-based one 
and may complicate the control task. 

Another virtue of a non-recycled, multiple-reflection 
Sagnac interferometer is that it is insensitive to variations 

of light frequency, which makes it possible to use light 
with reduced coherence length [9] in order to overcome the 

scattered-light problem [ 141. Again, this meets a difficulty 
once cavities are used. Although it may in principle be 
possible to modulate the cavity lengths synchronously to 
the light frequency, it will be very difficult to avoid the 

coupling to the measurement bandwidth. 
The lack of power recycling can, of course, be compen- 

sated by the use of a higher-power light source. Once the 
light power is strong enough so that the sensitivity is 
determined by other sources rather than shot noise, there is 
no necessity for power recycling. The typical power recy- 
cling factor planned is 30 to 100 (depending on the storage 
time in the arms). This means that one would require 
z+ 1 kW laser with quite high stability in order to make an 

interferometer of the desired sensitivity without power 
recycling. 

8. Conclusion 

The frequency response of Sagnac-based interferome- 
ters with multiple reflections or cavity arms is evaluated 
and compared with that of Michelson-based ones. The 
effects expected from power and signal recycling are also 
considered. In order to achieve a good sensitivity at a 

relatively low frequency (5 1 k&l, a reasonably long 
storage time in one arm (either by multiple reflections or 
by a cavity) is required. In the Sagnac case, the use of the 
signal recycling scheme cannot help the less-than-optimum 
storage time in the arms. The mirror size problem may 
limit the application of the multiple-reflection choice, un- 
less a suitable light source with a short wavelength be- 
comes available. 

The most promising configuration based on a Sagnac 
interferometer will be the one with cavity arms, optimized 
for relatively low frequencies (100-300Hz). In general, 
however, the authors do not see particular advantages in 
Sagnac-based interferometers over Michelson-based ones 
for the purpose of gravitational-wave detection. 
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