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Abstract 

We point out that the inequality det E > 0 distinguishes the kinematical phase space of canonical connection gravity 
from that of a gauge field theory, and characterize the eigenvectors with positive, negative and zero-eigenvalue of the 
corresponding quantum operator in a lattice-discretized version of the theory. The diagonalization of m is simplified 
by classifying its eigenvectors according to the irreducible representations of the octagonal group. @ 1997 Published by 
Elsevier Science B.V. 
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1. Introduction 

It is sometimes stated that the unconstrained phase 
space of pure gravity in the Ashtekar formulation [ 11 
is that of a Yang-Mills theory. This however is not 
quite true. The origin of this subtlety has nothing to 
do with the complexification of the connection form 
in the original formulation, and is indeed also present 
in the purely real connection formulation [ 21, which 
is the subject of this letter. 

Recall that in this Hamiltonian form of Lorentzian 
gravity, the basic canonical variable pair (AL, Ef ) con- 
sists of an su (2) -valued gauge potential A and a den- 
sitized, inverse dreibein E. Denoting the dreibein (the 
“square root of the three-metric”) by ek, ,&ebi = g,b, 
with its inverse eq satisfying efeja = Si, E can be 
expressed as EF = (det e{) ef. Taking the determi- 
nant of this equation, one obtains det EF = (det ei)*, 
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which (for non-degenerate metrics) is always positive 
and non-vanishing (det e$ alone may assume values 
~&%G2. 

However, once one chooses the Ef’s as the basic 
variables, the inequality det E > 0 has to be imposed 
as an extra condition to recover the correct gravita- 
tional phase space. This is analogous to Hamiltonian 
metric formulations for gravity where the condition 
det g > 0 must be imposed on the symmetric 3-tensors 
g,b, constituting half of the canonical variables. Simi- 
lar conditions also appear in other gauge-theoretic re- 
formulations of gravity. One crucial question is how 
such a condition is to be translated to the quantum 
theory. Fortunately this is possible in the case of con- 
nection gravity, at least in a lattice-discretized version 
of the theory. 

If one quantizes connection gravity along the lines 
of a non-abelian gauge field theory, as is usually done, 
and as is suggested by the kinematical resemblance 
of the two, an operator condition like % > 0 is 
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not automatically satisfied. Since det E is classically a 
third-order polynomial in the momenta EF, 

(1.1) 

and since in the Yang-Mills-like quantization the mo- 
menta are represented by i times differentiation with 

respect to A, d=W. > 0 is a differential condition 
for physical wave functions q, and an obvious can- 
didate for a quantization of the classical inequality 
det E > 0. There already exists a well-defined, self- 
adjoint lattice operator with discrete spectrum, which 
is the quantized version of a discretization of the clas- 
sical function det E [ 31. We call this operator B(n), 
where n labels the vertices of a three-dimensional lat- 
tice with cubic topology, and i?(n) is written in terms 
of the symmetrized link momenta @(n, a) as 

b(n) := ~rl,~~~~kB(n,B)i)j(n,s)~k(n,e), (1.2) 

where 

@i(n,a) = i(Xi(?r,&) +X!_(n - l*,L?)), (1.3) 

and Xi(n, ii) denote the left- and right-invariant 
vector fields on the group manifold associated with 
the link I = (n, ii), with commutators [Xi, Xi] = 
f&ikXf. (For convenience we have resealed D(n) 
by a factor of i with respect to the definition in [ 31.) 
The square root of l?j (n) (whenever it is defined) 
is the so-called volume operator, and some of its 
spectral properties have been investigated both on the 
lattice and in the continuum. The latter is relevant 
because it turns out that self-adjoint volume operators 
can be defined in the continuum loop representation 
of quantum gravity [ 4-61. After regularization their 
action on fixed, imbedded spin network states is very 
much like that of a lattice operator. In particular, the 
finite volume operators of [ 5,6] (up to overall factors 
and modulus signs) coincide on suitable geometries 
with ( 1.2) (this is explained in more detail in [ 71) . 
The volume operator and its discretized version have 
emerged as important ingredients in the construction 
of the quantum Hamiltonian constraint. Note that 
the non-polynomial quantities appearing in canonical 
connection gravity can always be rewritten in poly- 
nomial form modulo arbitrary powers of det E. Thus, 

if one can explicitly quantize det E, arbitrary func- 
tions of det E can be quantized in terms of its spectral 
resolution. If inverse powers of det E appear, one in 

addition has to identify the zero-eigenstates of &% 
[81. 

There is therefore clearly a need for a better un- 
derstanding of the spectral properties of the operator 
d=. There exist general formulae for its matrix ele- 
ments, obtained in various preferred orthogonal bases 
of wave functions [ 4,6] . Since one does not expect to 
be able to establish general analytic formulae for the 
spectrum itself, the limits for evaluating it numerically 
are given by the size of the matrices that are to be diag- 
onalized and the computing power available. We will 
below describe a way of reducing the matrix size, by 
establishing a set of superselection sectors on which 
B(n) can be diagonalized separately. They have their 
origin in discrete geometric symmetries of the opera- 
tor and the Hilbert space on which it is defined. 

Our discussion will take place within the lattice the- 
ory, but for the reasons mentioned above, results about 
the lattice spectrum translate, at least partially, into 
results about the continuum spectrum. 

2. Characterization of eigenstates 

It was already noted during earlier investigations of 
the volume spectrum [ 9,3] that non-vanishing eigen- 

values of the operator dz always appear in pairs 
of opposite sign. That this is also true in general 
can be seen as follows (the argument is similar to 
the one used to prove that three-valent spin network 
states necessarily have vanishing volume [ 91) . We 
work on the gauge-invariant sector Kin” of the lat- 
tice gauge-theoretic Hilbert space, whose elements are 
linear combinations of Wilson loops, i.e. of traces of 
closed lattice holonomies. A convenient way of la- 
belling a basis of states is given by Ij,, u, > (so-called 
spin network states), where j, = 0, 1,2, . . . labels the 
su (2) -representation associated with each lattice link 
I= (n, a), and v, is a set of linearly independent inter- 
twiners (contractors of Wilson lines) compatible with 
the jl at each lattice vertex n. Note that these states 
are real functions of the SU( 2) -lattice holonomies. 

Since B(n) only acts locally at n, we need only 
consider the part of Hilbert space associated with 
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the single vertex y1 and the six links intersecting at 
R. Moreover, B(n) leaves the flux line numbers jl 
alone, and therefore acts non-trivially only on the 
finite-dimensional spaces of the linearly independent 
intertwiners labelled by u,. 

Consider an orthogonal basis of states {&} in one of 
these finite-dimensional spaces, and assume that q is 
an eigenstate of B(n), Ij(,)Yr = dq. Since rj(,) is 
a self-adjoint operator, d is a real number. In this basis, 
the decomposition for q reads V! = Ci(ui + ibi)&, 
ai, bi, E R.. Since the explicit operator expression for 
fi (n) is purely imaginary, as can be seen from ( 1.2), 
( 1.3)) it immediately follows from 

6(n) C(Q + ibi)di = d C(ai + ibi)@iv (2.1) 
i i 

by taking the complex conjugate that 

L?(n) x(ai - ibi)& = -d C(Q - ib$$i. (2.2) 
i i 

The consequences can be summarized as follows: if 
q is an eigenstate of B(rr) with eigenvalue d, then 
its complex conjugate Q?* is also an eigenstate, with 
eigenvalue -d. If an eigenstate ? is a purely real or a 
purely imaginary linear combination of spin network 
states, then its eigenvalue must necessarily be d = 0. 

This provides a first characterization of positive-, 
negative- and zero-eigenstates of the operator B(n) . 

That there should be such a one-to-one map between 
states of positive and negative volume is plausible from 
a physical point of view, since for Yang-Mills config- 
urations there is no preferred orientation for triples of 
E-fields. 

A first practical consequence for the computation 
of spectrum and eigenstates of B is the following. Al- 
though B does not commute with complex conjuga- 
tion, its square B2 (which also is a well-defined self- 
adjoint operator) does. Therefore L?* can be diagonal- 
ized already on the subspace of real states. Assume 
now that x is such a real eigenstate of B*, fi2 (n) x = 
u2x, u # 0. It follows immediately that its image under 
Ij is an (imaginary) eigenstate of fi* since l5* (Ijx) = 
u2B,x. Consider the linear combination of these two 
states under the action of b,, 

(2.3) 

Thus, we can read off a recipe for constructing posi- 
tive volume eigenstates: take any eigenstate x of D* 
with non-zero eigenvalue u2, then x + hh)x is an 

eigenvector of b with eigenvalue 1 u I. 

3. The role of the octagonal group 

In order to simplify the task of finding eigenstates 
of fi,, we will construct operators that commute with 
it and among themselves, and can therefore be diago- 
nalized simultaneously. The finite-dimensional matri- 
ces associated with the action of l? on vertex states 
of given flux line numbers decompose into block- 
diagonal form, and the blocks can be diagonalized in- 
dividually. 

The key observation is that the classical lattice func- 
tion D(n) = det E(n) is invariant under the action of 
the discrete group 0 of 24 elements, called the octag- 
onal or cubic group [lo]. They can be thought of as 
the permutations of the three (oriented) lattice axes 
meeting at the intersection IZ which do not change the 
orientation of the local coordinate system they define. 
By contrast, D(n) changes sign under the total space 
reflection T (i.e. under simultaneous inversion of the 
three axes). It is sometimes convenient to consider the 
discrete group of 48 elements 0 x T. 

As a result of this classical symmetry, eigenstates 
of ri (n) can be classified according to the irreducible 
representations of (3. This set-up is familiar to lat- 
tice gauge theorists, because it has been employed in 
analyzing the glueball spectrum of the Hamiltonian 
in four-dimensional SU( 3) -lattice gauge theory [ 111. 
Adapted to the present SU( 2) -context, certain further 
simplifications occur which have to do with how the 
gauge-invariant sector of the lattice theory is labelled 
by the spin network states. 

One way of labelling local spin network states at 
a vertex n is the following. Fix a local coordinate 
system at n and label the three incoming links as 
(-1, -2, -3), and the corresponding outgoing ones 
as ( 1,2,3), and the corresponding link fluxes by ji, 
i = fl, 2,3. (The ji cannot be chosen totally freely 
but must be such that suitable gauge-invariant routings 
of flux lines through the intersection exist.) To take 



230 R. Loll/Physics Letters B 399 (1997) 227-232 

care of the intertwiners, call j,,,n the number of spin- 
&flux lines coming in at link m and going out at link 
IZ. Both m and IZ can take positive and negative values, 
but m = n is excluded, since it corresponds to a triv- 
ial retracing of a link. Since the flux lines appearing 
in spin network states are not sensitive to orientation, 
there are 15 numbers j,,,. They are subject to a num- 
ber of constraints since the total number of flux lines 
ji associated with a given incoming or outgoing link 
is assumed fixed. Our reason for choosing this label 
set for the contractors is their simple transformation 
behaviour under the cubic group. 

This way of labelling still contains a large 
redundancy in the form of so-called Mandel- 
stam constraints. This is partially eliminated by 
choosing a smaller label set: again fix an orien- 
tation of the three axes, and consider only in- 
tertwiners with non-vanishing {j_i,r, j-1,2, j-r,,, 
j-,,l,j-,,,,j--2,3,j-3,1 ,j-s,2,j-s,s}. It can easily be 
shown that all other intertwiners can be written as 
linear combinations of this set, by virtue of the Man- 
delstam identities. Moreover, fi( n) maps the set into 
itself. However, the symmetry group 0 does not leave 
it invariant; only a six-dimensional subgroup (which 
we will call CL)(@) maps the set into itself. Dropping 
the minus signs in front of the negative subscripts of 

the j,, in the reduced g-element set, let us rearrange 
the data in a 3 x 3-matrix J, 

J:= (iii ;i ii). (3.1) 

The non-trivial elements of O(@ in this notation are 
represented by 

Table 1 
Multiplication table for the subgroup O(@ of the octagonal group 

n Rl R2 R3 Sl s2 

n n RI R2 R3 $1 s2 

Rl RI II Sl s2 R2 R3 

R2 R2 s2 n Sl R3 RI 

R3 R3 Sl s2 n Rl R2 

Sl Sl R3 Rl R2 s2 n 

s2 SZ R2 R3 RI n Sl 

We will also use the total space reflection T, 

Since T commutes with all elements of O(@, adjoining 
it we obtain a 12-element group 0(@ x T c O(@ x Z2. 
The multiplication table for the group O(@ is given 
in Table 1. 

It is easy to generate all allowed intertwiner con- 
figurations J, given flux line assignments ji, i = 
-1, -2, -3,l, 2,3, for the in- and outgoing links. 
The elements of the rows and columns of J simply 
have to add up to the appropriate ji, for example, 
Cf=, jr,; = j-r, Cl1 j,i = jr. Another advantage 
of this form is that the still remaining Mandelstam 
constraints can be expressed as simple linear combi- 
nations of J-matrices, and are all of the form 

jll + 1 j12 A3 
j21 j22 + 1 j23 
j31 j32 j33 + 1 

( jll + 1 h2 A3 
- j21 .i22 j23 + 

j31 j32 + 1 j33 

( jll A2 + 1 A3 
- j21+1 j22 .i23 

j31 j32 j33 + 
/ hl A2 + 1 A3 

1 
) 

1 ) 

+ L j21 j22 j23 + 1 
.i31 + 1 j32 j33 ) 
( jil h2 jl3 + 1 

+ j21+1 j22 j23 
j31 .i32 + 1 j33 ) 
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jll .A2 .i13+ 1 
- j21 j22 + 1 j23 =o (3.4) 

j31 + 1 j32 j33 

Obviously, (3.4) is not to be understood as a ma- 
trix equation; the matrices are only labels for Hilbert 
space elements. The operator B is cubic in deriva- 
tives, and can therefore be written as a sum of terms, 
each of which acts on some triplet of spin-i flux lines 
routed through the intersection n. Its explicit form can 
be derived in a straightforward way, but is too long 
to be reproduced here. It can be found in our forth- 
coming publication [ 121. Its form is a linear combi- 
nation (with j,,,,,-dependent coefficients) of matrices 
J whose entries differ at most by A j,, = f 1 from 
the input matrix. This gives us a general formula for 
matrix elements, albeit in a non-orthogonal basis. 

One finds the following relations under conjugation 
with elements of 0(@ x T: 

RihRi = fi,, i = 1,2,3, 

SiBSi =D, i= 1,2, 

TbT = -B. (3.5) 

Next, we are interested in the representation theory 
of these discrete groups. C?(@ contains three conju- 
gacy classes of elements namely, y, { ll}, {RI, R2, R3) 
and {St, Sz}. Following [ lo], one establishes the ex- 
istence of three irreducible representations: two one- 
dimensional ones (called Al and AZ) and one two- 
dimensional one (called E). They can be identified 
by the values of their characters, i.e. the traces of the 
matrices representing the group elements (which only 
depend on the conjugacy class). The enlarged group 
c3(@ x T has six conjugacy classes and six irreducible 
representations, since each of the previous representa- 
tions gives rise to one of positive and one of negative 
parity, denoted by a subscript + or -. The possible 
orbits sizes through single elements J under the ac- 
tion of c3(@ x T are 1,2, 3,6 and 12, and they have a 
well-defined irreducible representation content [ 121. 

It follows from (3.5) that L? obeys the (anti-) com- 
mutation relations 

[b,Ri] ~0, i=1,2,3, 

[a,& +&I =O, [L?,T]+=O. (3.6) 

We conclude that B does not alter the @@-quantum 
numbers, but maps positive- into negative-parity states 

and vice versa. In practice it is convenient to work 
with the operator b2. A maximal subset of operators 
commuting both among themselves and with l?* is, 
for example, {RI + R2 + R3, S1 + SZ , T}. This of course 
implies that B2 may be diagonalized separately on the 
eigenspaces of these operators, reducing the problem 
to a smaller one. 

One further observation turns out to be useful. Since 
parity-odd wave functions are constructed by weighted 
sums (with factors f 1) of spin network states, which 
may sometimes vanish, there are always fewer states 
transforming according to the representations Ai, E-, 
than those transforming according to A:, E+. The 
most efficient way of diagonalizing B is therefore to 
start from the set of wave functions transforming ac- 
cording to one of the negative-parity irreducible rep- 
resentations, diagonalize l?*, construct the images un- 
der fi of the resulting set of states (which all have 
positive parity), and then form complex linear combi- 
nations to obtain eigenstates of &, as explained in the 
previous section. The number of zero-volume states is 
then given by the difference of positive- and negative- 
parity states. 

As an application of this scheme, we have analyzed 
the irreducible representation content of some of the 
Hilbert spaces corresponding to flux line numbers 
(j-1, j-2, j-3, jl, j2, j3) = (j,j,j,j,j,j>, i.e. forgen- 
uine six-valent intersections [ 121. In this case, O(@ x 
T maps the Hilbert space into itself. Matrix sizes are 
reduced considerably when the various superselection 
sectors are considered separately, and the eigenvalues 
of b could be found easily up to flux line numbers 
of order j = 10. For example, considering only the 
@@-invariant sector, solution of the eigenvalue prob- 
lemforj=1,2,3,... requires the diagonalization of 
square matrices of size 1,2,5,8,14,20,30,40,. . ., 
to be compared with a total number of states 
5,15,34,65,111,175,260,369,. . ., if the O(@ x T- 
action is not taken into account. We also found that 
on these subsectors of Hilbert space, all eigenvalues 
already occur in the invariant Al-sector, and are non- 
degenerate, that is, their corresponding eigenvectors 
are automatically orthogonal. Whether the O-invariant 
sector is also distinguished on physical grounds de- 
pends on how the continuum limit of the lattice theory 
is taken, and on how the diffeomorphism symmetry 
is realized, both of which are still unresolved issues. 
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