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Abstract 

We discuss the field theory of 3-brane probes in F-theory compactifications in two configurations, 
generalizing the work of Sen and of Banks, Douglas and Seiberg. One configuration involves 
several parallel 3-brahe probes in F-theory compactified on T4/Z2, while the other involves a 
compactification of F-theory on T6/Z2 z Z2 (which includes intersecting D4 singularities). In 
both cases string theory provides simple pictures of the space-time theory, whose implications 
for the 3-brane world-volume theories are discussed. In the second case the field theory on the 
probe is an unusual N = 1 superconformal theory, with exact electric-magnetic duality. Several 
open questions remain concerning the description of this theory. (~) 1997 Published by Elsevier 
Science B.V. 

PACS: l 1.25; 11.30P 
Keywords: String theory; F-theory; D-branes 

1. Introduct ion  

The s tudy o f  brane  probes in  str ing theory vacua enables  us to connect ,  in  a relat ively 

s imple  way, results  in field theory with results in  str ing theory. The first such example  

invo lv ing  a four -d imens iona l  field theory was described in  [ 1,2]. Sen showed [ 1] that 
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an orbifold limit of F-theory [ 3 ] on K3 was T-dual to type I compactified on T 2, and 
that F-theory provided a consistent description of the smoothing of the orientifold points 
when moving away from the orientifold limit. The mathematical description of the region 
(both in space-time and in moduli space) around an orientifold point was found to be 
exactly the same as Seiberg and Witten's description of the quantum-corrected moduli 
space of the SU(2) N = 2 gauge theory with N f  = 4 [4,5]. Banks, Douglas and Seiberg 
[2] later showed that this similarity was not a coincidence. It arises just by looking 
at the effective field theory on the world-volume of a 3-brane moving in this vacuum, 
and demanding consistency between the quantum corrections in this field theory and in 
the space-time theory (whose fields couple to the 3-brane world-volume). This sort of 
relation (first discussed in [6] ) should presumably hold for any D-brane moving in a 
string theory vacuum, as long as the probe does not modify the vacuum in a substantial 
way. It provides a general relation between string theory, and its low-energy effective 
space-time theories, and the world-volume field theories of D-branes. The D-branes thus 
may serve as probes which enable us to learn more about non-perturbative aspects of 
string theory (and of field theory). When the resolution of the singularities in string 
theory is known, we can use it to learn about the resolution of singularities in field 
theory, and vice versa. This approach has since been generalized to several other cases 
(for instance, in Refs. [7-10] ). 

In this note we wish to analyze two generalizations of this approach. First, in Section 2, 
we discuss the field theory of multiple parallel D-branes as probes, in the same string 
theory vacuum considered in [ 1,2]. In Section 3 we analyze a generalization to six 
dimensions, discussing F-theory on T6/•2 x Z2 (or, more precisely, an orientifold which 

differs from this by discrete torsion). In both cases the string theory (F-theory) "answer" 
is trivially known, and we are looking for the classical field theory on the 3-brane which 
reproduces this "answer" when computing its quantum moduli space. In the first case 
this field theory turns out to be a simple N = 2 field theory, for which it is easy to 
see also directly in field theory that the moduli space decomposes into several copies of 
the Seiberg-Witten moduli space. In the second case we find an N = 1 superconformal 
field theory which does not seem to be known, and which has many unusual properties, 
including an exact electric-magnetic duality. We compute the field content of this theory, 
but we do not know how to write down an explicit superpotential to describe it. In 
Section 4 we give a summary of our results and of the remaining open questions. In 
Appendix A we describe explicitly our calculations of the field content of the 3-brane 
probe theory near an orientifold point in the string theory discussed in Section 3. As 
this paper was being completed, a preprint by Sen [ 11 ] appeared, in which he treats 
a different orientifold, namely a T-dual version of the Gimon-Polchinski [ 12] model. 
The analogous analysis for this model, which leads to a different space-time and also 
world-volume theory, can be easily carried through and one finds that the problems we 
have encountered with our original model are absent there. We have included a brief 
discussion of this model, along the lines exposed in Section 3, at the end of Section 4. 
Further details of this model, in particular the space-time aspects and its non-perturbative 

description, are found in [ 11 ]. 
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2. Multiple 3-branes as probes in eight dimensions 

In this section we analyze a trivial generalization of the approach of Banks, Douglas 
and Seiberg [2],  which involves using k 3-branes as probes instead of a single 3-brane. 
Of course, since there are no forces between parallel 3-branes [ 13 ] (and we will use only 
parallel 3-branes), we expect the result to be the same as the result found by Sen. Each 
3-brahe should see one region of the same vacuum of the string theory, according to its 
space-time position, and the moduli space should be the product of the moduli spaces of 
the different 3-branes (up to an Sk "Weyl group" which permutes the identical 3-branes). 
This expectation will be confirmed by the field theory analysis of the world-volume 
theory on the 3-branes, as we will now show. 

As in [2],  we will begin with the description of this theory as type I on T 2. Instead 

of looking at a single 5-brane wrapped around T 2, we will now take k 5-branes wrapped 
around T 2. When the 5-branes are at the same position, the field theory describing them 
is well-known (see, for example, Ref. [ 14] ). There is an Sp(2k)  gauge group, 6 with a 
hypermultiplet in the antisymmetric representation (which decomposes into an irreducible 
k ( 2 k -  1) - 1 and a singlet). This is an N = 1 theory in 5+1 dimensions, which becomes 
an N = 2 theory in 3+1 dimensions when we reduce it on the torus. The Wilson loops 
of the gauge field around the two compact dimensions become expectation values of the 
two scalar fields of the N = 2 vector multiplets in four dimensions. The scalars in the 

antisymmetric representation hypermultiplet describe the motion of the 3-branes in the 
four non-compact transverse dimensions. In the 10D type I theory there are 32 additional 
half-hypermultiplets in the 2k representation of the Sp(2k)  gauge group (and in the 
fundamental representation of the SO(32) space-time gauge symmetry). As discussed in 
[2], due to an interplay between the SO(32) Wilson loops and the Sp(2k)  Wilson loops, 
four of these hypermultiplets are light when the probe is near an orientifold point. In the 
F-theory these arise from strings connecting the 3-brane probe with the four 7-branes 
which sit at each orientifold point. As in Ref. [ 1 ], we take the torus T 2 to be very large 
and analyze only the region near a single orientifold point, when all fields corresponding 
to the other points are very massive. 

To summarize, the world-volume field theory corresponding to k parallel 3-branes 
moving in this vacuum is an Sp(2k)  N = 2 gauge theory, with four fundamental hy- 
permultiplets and an additional hypermultiplet in the antisymmetric representation. The 
beta function of this theory is zero, as required by the string theory picture which has 
no scale (when the 3-brane is exactly at the orientifold point). The theory has an SO(8) 
global symmetry acting on the "quark" hypermultiplets, which corresponds to the S0(8 )  
gauge symmetry in space-time. The vector multiplet in the 7+l-dimensional space-time 
includes also a complex scalar field in the antisymmetric (adjoint) 28 representation of 
SO(8).  In the world-volume field theory, this corresponds to a mass parameter for the 
quarks in the 2k representation. In the F-theory picture these mass parameters correspond 

6 In this paper we denote by Sp (2k) the symplectic group whose fundamental representation is of dimension 
2k. 
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to the motion of  the 7-branes in the two compact directions. These are the only scalar 
fields in space-time, so they are the only parameters we have in our world-volume theory. 

In the field theory one could also add a mass term for the antisymmetric hypermultiplet, 
which would prevent the 3-branes from moving in the four non-compact directions. It 

would be very interesting to see whether such a mass deformation can be accounted for 
in string theory (so far no string theory realization of  such a term is known)• 

Next, we should analyze the quantum moduli space of  this field theory. As in [2] ,  we 
will analyze only the Coulomb phase of  the theory (the Higgs phase should presumably 

be related to S 0 ( 8 )  instantons in space-time). In this phase, the scalar field in the vector 
multiplet has an arbitrary expectation value, which may be brought (by gauge trans- 
formations) to a diagonal matrix of  the form diag(al ,  a2 . . . . .  a k , - a l , - a 2  . . . . .  - a k ) ,  

where the ai are arbitrary complex numbers. This vev breaks the S p ( 2 k )  symmetry to 
U( 1 )k. The eigenvalues ai correspond (when squared) to the position of  the k 3-branes 
in the 2 compact coordinates, measured from the orientifold point. When we are at an 

arbitrary point in the Coulomb phase, the superpotential (whose form is dictated by 
N = 2 supersymmetry) does not allow an expectation value for the hypermultiplets in 

the fundamental representation. However, the flat directions corresponding to the hyper- 

multiplet in the antisymmetric representation are not all lifted by the adjoint vev, and 
a moduli space of  k dimensions remains flat (one of  these is the singlet component of  

the antisymmetric representation, while the other k - 1 are part of  the k ( 2 k  - 1) - 1 
representation). This corresponds to a vev for the antisymmetric matrix of  the form 

0 0 . . .  0 bl 0 . . .  0 

0 0 . . .  0 0 b2 . . .  0 
• . • , . . . . .  

0 0 . . .  0 0 0 . . .  b~ 

--bl 0 . . .  0 0 0 . . .  0 

0 - b 2  . . .  0 0 0 . . .  0 

0 0 . . .  - -bk 0 0 . . .  0 

(2.1) 

Each of  the four scalars in the antisymmetric hypermultiplet has an independent vev, and 
they all commute so that all of  them can be brought to the form (2.1) simultaneously. 
The simplest way to consider this is to treat the bi above as quaternionic numbers. In the 
absence of  the adjoint vev, the vev (2.1) breaks the S p ( 2 k )  symmetry to SU(2) k. The 
bi correspond to the position o f  the 3-branes in the non-compact transverse dimensions 

(X4, X5, X 6 and x7). However, in N = 2 supersymmetric theories, the moduli space 
decomposes into the product of  the vector multiplet moduli space and the hypermultiplet 
moduli space. Thus, the vector multiplet moduli space cannot depend on the scalars b i 

(which can get vevs at arbitrary points in the Coulomb phase). In particular, the vector 
multiplet moduli space remains the same if  we take all the bi to be very large, flowing to an 
S U ( 2 )  k gauge theory. In this limit nothing (but singlets) remains of  the antisymmetric 
hypermultiplet, and we remain with k copies of  the Seiberg-Witten theory of  SU(2)  
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gauge group with Nf = 4. Globally we should divide this by a discrete Sk symmetry 

(which is a subgroup of the Weyl group of Sp(2k)), since all copies (3-branes) are 

identical. All copies have the same masses for the quark hypermultiplets (corresponding 
to the 7-brane positions in the F-theory description), but have independent values of the 
adjoint vevs (which are the ai above), corresponding to the position of the 3-brane in 
the compact space. Thus, we have recovered the same picture we expected to find from 
the string theory point of view, since there are no interactions between the 3-branes. At 

special points in the moduli space we have enhanced global symmetries, corresponding to 
enhanced gauge symmetries in space-time. The discussion of these is exactly analogous 

to the discussion in [ 1,2]. 
Now that we understand the moduli space of this theory, we can try to learn from it 

about other field theories we can flow to. First, let us look at the case of k = 2, where the 

gauge group is Sp(4) ~ SO(5). From the SO(5) point of view, we have one fundamental 

hypermultiplet and four spinors (the singlet decouples) and (as discussed above) the 

moduli space decomposes into two copies of an SU(2) moduli space. Since we can give 
arbitrary masses to the spinors, the same should also be true for the SO(5) gauge theory 
with a single fundamental hypermultiplet, which was analyzed in the past. However, by 

an argument analogous to the one we used above, it is trivial to see that the Coulomb 
phase of an SO(2r + 1) gauge theory with Nf flavors (one of which is massless) is 

generally the same as the Coulomb phase of an SO(2r) gauge theory with Nf - 1 flavors. 
This is because we can give an arbitrary vev to one fundamental hypermultiplet without 

disturbing the Coulomb phase, and it is corroborated by the explicit form of the curves 

(as written, for instance, in Ref. [ 15] ). 

Another theory we can flow to is the U(k) N = 4 theory, which we can reach by 

taking the 3-branes to be together but far away from the orientifold point [ 16]. In the 
gauge theory description, we reach this limit by taking the modulus u --+ ec in all of the 

SU(2) curves, and we arrive at k copies of the (free) U(1) gauge theory (up to the 
Sk identification). Indeed, this is the correct description of the U(k) N = 4 theory, as 
analyzed by Donagi and Witten [ 17]. We can also show this, as above, by decomposing 
the N = 4 vector multiplet into an N = 2 vector multiplet and hypermultiplet, and giving 
large vevs to the hypermultiplet (which should not affect the vector moduli space), 
breaking the gauge symmetry to U(1) k. 

To summarize, multiple p-branes may also be used to learn from field theory about 

string theory or vice versa. However, in the Coulomb phase of the field theory they just 
lead to k copies (up to global identifications) of the Coulomb phase of the field theory 

found for a single p-brane. We can show, using the string theory, that the moduli space 
of these field theories indeed decomposes in this way, but so far in all the examples it is 
easy to see this also directly from field theory arguments. The superconformal theory at 
the origin of the moduli space is, however, not trivially related to the theory found for a 
single 3-brane. 7 For instance, we can turn on a mass for the antisymmetric hypermultiplet 

in this theory and flow to an N = 2 Sp(2k) gauge theory with Nf = 4, which behaves 

7 We thank N. Seiberg for stressing this point. 
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differently for different values o f  k. Thus, the analysis of  multiple brane probes may 
lead to the discovery of  new superconformal field theories, though their Coulomb phases 

would always be simply related to those of  the single probe theory. 

3. N = 1 4D S C F T s  f rom 3-branes  at intersect ing singularit ies  

In F-theory compactifications to eight dimensions, the 3-brane probe has N = 2 super- 
symmetry. Interesting N = 2 SCFTs arise when the 3-brane is brought to a singularity of  

the compactification manifold. Non-trivial conformal field theories arise when the singu- 

larity is o f  type A0, AI,  A2, D4, E6, E7 or Es. The first four correspond to known N = 2 
SCFTs [ 18] while the other N = 2 SCFTs were recently discussed from various points 
of  view in [ 19,20,10]. Going down to six dimensions, there are many more possibilities 
for singularities in the manifold, and generically the 3-brane field theory has only N = 1 

supersymmetry. In [9] ,  the behavior of  a 3-brahe probe near an ADE singularity fibered 
over the additional two compact dimensions [21] was analyzed, leading to several new 
N = 1 SCFTs. In this section we discuss the behavior of  a 3-brane probe near the 

intersection of  two singularities, which also corresponds to N = 1 SCFFs. 
The only singularity which can occur at a weak (but non-zero) value of  the coupling 

is a D4 singularity [5] ,  so this is the only case where we definitely expect to have a 
lagrangian description of  the probe theory. As in [ 1 ], let us look for compactifications 

of  F-theory on CY manifolds which have a constant value of  r (which we can take to 

correspond to weak coupling).  The simplest case in which this occurs is the elliptic fiber 
over a base CP  I x CP  1 [22].  In general such a fibration is described by an equation of  

the form 

y2 = x3 -t- f (Zl ,  Z2)X -I- g(zl,  ze), (3.1) 

where Zl and z2 label the two Cpls  of  the base. The torus of  the fiber degenerates where 
the discriminant A = 4 f  3 + 27g e vanishes, and in F-theory the solutions to A = 0 are 

the locations of  type IIB 7-branes in the compact dimensions, and r has a non-trivial 

monodromy when going around them. j (r (Zl ,  z2) ) is then proportional to f3 /d ,  and we 
want this to be constant. The simplest choice (though not the most general solution) is 

of  the form 

f ( Z l ,  Z2) = o~t~l (Zl)2q~2 (Z2) 2 , g ( Z l ,  Z2) = till (Zl)3q~2(Z2) 3, (3.2) 

where ~bl and ~b2 are general polynomials of  degree four: 

4 4 

 2 z2)=II(z2-z i') (33  
i=1 i=1 

It is clear that at this point in moduli space r has a constant value depending on a,  as in 

[ 1 ], and that we have D4 singularities at z~ = z(i) and at z2 = z(2 i). 
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In general the space-time field theory at an intersection of two D4 singularities is not 
well understood [21,23]. However, as in Sen's case [1], we can try to interpret this 
point in moduli space as an orientifold of  the type IIB theory, and since it can be weakly 
coupled we can analyze the space-time field theory by perturbative string theory methods. 
Around each of the points Zl = z(i) (for constant z2) we have an SL(2, Z) monodromy 
of 

(;1 -10) . (3.4) 

Locally, we can interpret this as an orientifold of the type IIB theory by (-1)FL . /2, 

as discussed in [ 1 ], which should be accompanied by four 7-branes to cancel the RR 
charge. Each point zl = z(1 i) on the first CP 1 factor carries a deficit angle of ~-, all four of 
them together deforming the CP 1 to T2/Z2. The same is true at the points z2 = z(2 i), and 
altogether it seems that we can write this theory as the type IIB theory on T 4, divided 
by a product of two Z2 symmetries of the form found by Sen [ 1 ], one of which inverts 
zl while the other inverts z2. This corresponds to the orientifold of F-theory on T 6 by 
(Z2) 2, discussed in [24-26],  which can be deformed into the (51,3)  CY manifold (by 
changing the values of  tensor-multiplet scalars). 

However, we should be careful in identifying this orientifold compactification directly 
with the F-theory compactification described by (3 .1)-(3 .3) .  Generally, in F-theory 
compactifications, the 2-form tensor fields of type IIB are assumed to vanish. This is, of 
course, consistent with the SL(2,  Z) monodromies that these fields have around singular- 
ities of the elliptic fibration. However, at the intersection of two D4 singularities that we 
have been discussing, there is the possibility of blowing up the intersection point to get 
an additional 2-cycle [21,23]. When there are vanishing 2-cycles, the possibility arises 
of having discrete 2-form fields concentrated on the vanishing 2-cycle, a phenomenon 
which is related in string theory to discrete torsion [27]. In the naive F-theory compact- 
ification, we assume that these fields are zero, and then one can wrap a 3-brahe around 
the vanishing 2-cycle, giving rise to tensionless strings living on the intersection of the 
D4 singularities. Our orientifold construction, on the other hand, involves a well-defined 
weakly coupled conformal field theory, whose low-energy spectrum is well-defined and 
does not include such tensionless strings, s Thus, we conclude that the orientifold differs 
from the F-theory construction by a discrete 2-form field, which prevents the 3-brane 
from wrapping around the vanishing 2-cycle (a similar phenomenon involving wrapped 
2-branes was described in [28] ). Discrete 7/, z symmetries force the value of both 2-form 
tensor fields (integrated over the vanishing 2-cycle) to be either 0 or 1/2 (modulo 1). 
A non-zero value for either (or both) of these fields breaks the SL(2, Z) symmetry to a 
discrete F ( 2 )  subgroup. For instance, if  both fields equal 1/2, this subgroup is generated 
by S and by T 2 (where S and T are the standard SL(2, Z) generators; note that in the 
cases we are discussing the string coupling ~- equals r = ~1 + o ~ in the field theory, so 

only T 2 is naively guaranteed to be a symmetry, as in [5] ). The other cases are related 

8 We thank E. Witten for emphasizing this point. 
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to this by SL(2,  Z)  transformations. In the remainder of  this section, we will discuss a 

3-brane probe in the orientifold background, which is thus expected to describe an N = 1 

SCFT with a F ( 2 )  electric-magnetic duality symmetry. At the end of  the section we will 
comment on the relation between this theory and the theory of  a probe in the F-theory 
background with no 2-form fields turned on. 

The space-time theory corresponding to the orientifold is an N = 1 supersymmetric 

theory, whose field content was computed in [24-26] .  The untwisted closed string sectors 
give rise to a supergravity multiplet, to one tensor multiplet and to four hypermultiplets. 
The open string sectors give an SO(8) gauge group for each group of  7-branes (i.e. 
each fixed point of  one o f  the Zz 's) ,  for a total gauge symmetry of  S 0 ( 8 )  s. No massless 

states arise from strings between the different groups of  7-branes, but the twisted closed 

string sector gives rise to a tensor multiplet at each intersection of  fixed points (i.e. at 
each fixed point of  both Zz 's) ,  accounting for a total of  16 additional tensor multiplets. 

The space-time theory satisfies all of  the anomaly cancelation requirements. At each 

intersection of  D4 singularities there is a possibility of  blowing up a point to get an 
additional 2-cycle (by turning on the scalar in the corresponding tensor multiplet). After 

all these blow-ups we get F-theory on a smooth (51 ,3)  Calabi-Yau manifold. Note that 
the space-time theory we found (using the orientifold construction) is not the same as 
the theory we supposedly started with, which was F-theory compactified on an elliptic 
fibration over C P  1 x CP  1. It may be possible to reach that theory by performing phase 

transitions which turn the 16 additional tensor multiplets we have into hypermultiplets, 
but we cannot discuss this directly in the orientifold construction. 

We would like to analyze what happens to a 3-brane probe as it moves around in 

this string theory vacuum. Near each fixed line (i.e. a fixed point of  one of  the two 

Z2's) ,  the space-time theory is the same as the one analyzed in [ 1,2] and in the previous 
section. Thus, the theory on the probe should be just an N = 2 SU(2) gauge theory 
with four quark hypermultiplets. Things get more interesting if we move the probe to 

the intersection o f  two of  the fixed lines (which we will take to be at Zl = z2 = 0). 

We expect the probe theory there to have only N = 1 supersymmetry, since the 7-branes 
intersect transversely at this point and each breaks a different half of  the world-volume 

N = 4 supersymmetry. The probe theory should have two deformations, corresponding 
to turning on zl or z2, which should cause it to flow to the N = 2 SU(2) theory. 

In general, it is difficult to analyze the world-volume theory of  a 3-brane probe in 
F-theory vacua when it is adjacent to 7-branes of  different types (which are not just D- 

7-branes). However, since in this case we have an orientifold description of  this vacuum, 
we can use it to compute the states living on the 3-brane. In this way we can compute 
the states on the 3-brane arising from fundamental strings, which will lead to electrically 
charged states on the 3-brane. Since the theory on the probe is manifestly invariant under 
a F ( 2 )  electric-magnetic duality symmetry, we expect that there will also be (p, q) 
strings which give rise to (p, q) dyonic states in the world-volume theory. However, 
since our theory has only N = 1 supersymmetry and no BPS formulas, it is not obvious 
that these states should remain stable also at weak electric coupling (unlike the N = 2 

case). 



O. Aharony et al. /Nuclear Physics B 493 (1997) 177-197 185 

Let us begin by computing the fields corresponding to strings which stretch out from 

a 3-brane and fold back to the same brane. The 3-brane has three images under Z2 x Z2, 
so that every open string state is enhanced to a 4 x 4 matrix (as in Ref. [ 12] ), on which 
we should impose the orientifold restrictions. The y matrices (in the notation of [ 12] ) 

corresponding to each of the generators in the Z2 × Z2 may be chosen to be 

l° i ° ° i i /  - i  0 0 0 0 
Y~I = 0 0 0 , Y~2 = i 0 0 (3.5) 

0 0 - i  - i  0 

and the orbifold matrix is then necessarily 

( !  0 0 ! ) 0  1 - 1  

Y~ = Ya~Ya2 = 1 0 " (3.6) 

1 0 0 

These matrices are hermitian and unitary, and they correctly reflect the two Z2 actions 
on the compact coordinates (za, z2). 

The wave-function matrices of states, M4i, must then satisfy [ 12] conditions of the 
type 

M = ± Y a ,  MTy~211 , 

T --1 M = ' 4 - T a 2 M  Ya2 , 

m = ± T r M T ~  x , (3.7) 

where the signs are determined by the transformation properties of the relevant state. For 
the gauge fields they are - ,  - ,  +,  for the chiral superfield X6,7 they are - ,  + ,  - ,  for X8,9 
they are +,  , and for X4,5 they are + ,  + ,  +. 

Performing this computation, details of which can be found in Appendix A, we find 
that the gauge fields on the 3-brane world-volume give rise to six states, which generate 
an SU(2) x SU(2) algebra. The fields X6,7 and Xs,9 each give rise to four states, which 
are in the (2 ,2)  representation of the gauge group, and which are in N = 1 chiral 
multiplets which we will denote by A and B. As in [2], we will identify the gauge 
singlet A 2 with the zl coordinate of the 3-brane, and B 2 with the z2 coordinate of the 
3-brane. The fields X4,5 give rise to two gauge-singlet chiral multiplets (which we will 
denote $1 and $2). 

There are several interesting things to note about this particle spectrum. First, the 
spectrum we found is manifestly not N = 2 supersymmetric (since there is no chiral 
multiplet in the adjoint representation). Next, we expect that giving a vev to A (B) 
corresponds to moving in the zl (z2) direction, which should lead us to the N = 2 theory. 
And indeed, giving a vev to A (B) breaks the SU(2) × SU(2) gauge group to an SU(2) 
subgroup, three components of A (B) are swallowed by the Higgs mechanism, and we 
remain with an adjoint chiral multiplet (coming from B (A))  and additional singlets, as 
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expected. It is less clear why an additional scalar appears from X4,5 - from the analysis 
it is obvious that this additional scalar is massless only at the intersection point. The 
natural interpretation of this is that at the intersection point the 3-brane can split into 
two half-3-branes which can move independently (this is reasonable since at orientifold 
points the minimum quantum of RR charge is usually halved). 

Next, we consider the 3-7 strings, namely, strings that stretch between the 3-brane 
and a 7-brane, giving rise to fields on the 3-brane world-volume field theory. The 7a  
matrices for the 7-branes were computed in [24,25], and they are all proportional to the 
identity matrix. As shown in the appendix, one group of 7-branes (i.e. 7-branes located 
at a particular value of Zl ) gives rise to eight chiral multiplets in the (2, 1) representation 
of the gauge group, which we will denote by Qi ( i  = 1 . . . . .  8), while the other group 

(i.e. 7-branes located at a particular value of z2) gives rise to eight chiral multiplets in 
the (1, 2) representation; those we will denote by qi (i = 1 . . . . .  8). 

Let us now analyze in detail the world-volume gauge theory at the orientifold point. 
Recall that we expect this theory to be an N = 1 superconformal field theory, which 
should exist for any value of the gauge coupling (at least, any value of the U( 1 ) gauge 
coupling should be possible when we turn on small values of zl and z2). Thus, we expect 
this theory to have a fixed line in the space of couplings, which passes through weak 
coupling. 

The gauge group we found is SU(2) × SU(2). There are two chiral superfields in the 
(2, 2) representation (A and B),  eight chiral superfields Q in the (2, 1) representation 
and eight more chiral superfields q in the (1, 2) representation (this matter content can be 
reinterpreted in terms of an SO(4) gauge symmetry with two vectors and eight spinors). 
In the terminology of N = 1, the theory has N f  = 6 for each SU(2) group factor and 
therefore, the one-loop beta function of the gauge coupling vanishes (as we would expect 
for a theory which has a fixed line passing through weak coupling). 

Next, we should compute the superpotential of this theory. In principle, it is possible 
to compute this superpotential from the string theory analysis, but we have not performed 
this computation. Since we have only N = 1 supersymmetry, the superpotential in general 
receives non-perturbative quantum corrections. However, we will try to guess what the 
superpotential should be by demanding that it reproduces our expectations of this theory. 
There are three main constraints on the superpotential: 
(1) the theory should have (at least) an SO(8) × SO(8) global symmetry (since this 

is the space-time gauge symmetry localized at the intersection point); 
(2) the theory should flow to the N = 2, SU(2),  Ny = 4 theory upon giving a vev to 

A or to B; 
(3) the theory should have a fixed line passing through weak coupling. 

Note that at the orientifold point the 3-brane field theory is conformal, and terms of 
degree higher than 3 in the superpotential may also be important (as in Refs. [29,9] ). 

First, it is easy to see what the superpotential should be for the fields arising from X4,5. 
The field S1 corresponding to the location of the 3-brane in these coordinates should be 
decoupled, while the field $2 (corresponding to splitting the 3-brane at the orientifold 
point) should be massless only when A and B are both zero. Thus, it is natural to guess 
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a superpotential o f  the form W = S2AB. 9 With this superpotential, A and B become 

massive once $2 is turned on, as expected since when the 3-brane has split we cannot 
move it away from the orientifold point. 

The appearance of  such a term in the superpotential is consistent also with the di- 
mension we expect to find for the Coulomb branch of  the theory (the phrase "Coulomb 

branch" here refers to a phase in which A and B may obtain vevs, but the quarks do 
not).  We know that turning on A z and B 2 should correspond to fiat directions of  the 

field theory (when $2 = 0),  since the 3-brane should be free to move in the zl and z2 
directions, but these should be the only fiat directions in the Coulomb phase. Thus, it 

should not be possible to turn on a vev for the gauge singlet AB, and this is exactly the 
effect o f  the superpotential W = S2AB. This superpotential is also consistent with the 

flow to the N = 2 theory upon turning on A or B. I f  we give a vev to A, three of  its 

components are swallowed by the Higgs mechanism, and-the other remains massless and 

parametrizes the flat direction corresponding to the flow (it is the N = 2 partner o f  $1 ). 

Three o f  the components of  B remain massless and become an adjoint field X of  the 
remaining SU(2) ,  but the remaining component, as well as $2, should become massive 
(since we have no corresponding fields in the N = 2 theory),  and this is indeed the case 

if  such a superpotential exists. 
Finally, we should analyze which terms involving the quark field appear in the su- 

perpotential. The requirement o f  an SO(8)  x SO(8) global symmetry (acting on the 

quarks in the obvious way) ,  and of  SU(2) x SU(2) gauge invariance, severely limits the 
possible terms that may appear. In fact, the only possible terms of  degree four or less are 
W = QiABQi (which can be multiplied by some function H(A 2, B 2) ) and W = qiABqi 
(which would then be multiplied by H(B 2, A 2) ). When we give a vev to (say) A, these 
terms flow to the expected N = 2 superpotential qiXqi, up to some function of  A 2 and of  
B z ~ tr(X2).  This function should equal 1 (or flow to 1) when B = 0, so that for large 
A and small B, H ( B  2, A 2) should behave like 1 / v / ~ .  

The superpotential terms we have written fulfill several of  our expectations, but there 

are two questions which we have not yet addressed that do not seem to be answered by 

these superpotentials. First, we expect the quarks qi (Qi) to become massive when we 

give a vev to A (B) ,  so that we will flow to a theory with only eight quark doublets. 
Note that since we are now in an N = 1 theory, there is no BPS mass formula from which 

we can compute  the exact mass of  these fields, but it seems obvious that they should 

become massive for non-zero A (B) :  Unfortunately, it is no t  possible to write down an 
appropriate term in the superpotential that will preserve both the gauge symmetry and 
the global symmetry and that will give such a mass to the fields. For non-zero A and B, 
we can write a superpotential o f  the form 

W = Q i A B Q i / v / ~  + q i a B q i / v / ~  (3.8) 

that flows to the correct N = 2 superpotential and gloves the expected masses to the quarks. 
However, this superpotential is not well defined in the limit of  A --~ 0 (or B ~ 0), and 

9 We thank A. Sen for this simplification to our original suggestion. 
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there do not seem to be any other fields in the world-volume theory which would enable 

us to smooth this singularity. 
A second problem is that we expect the theory to have a fixed line passing through 

weak coupling. To see the implications we follow, e.g., Ref. [29] ,  where it is shown that 

for a theory with no scale dependence we need to require that the scaling coefficients 

Ag=bl + ~-~ T(Ri)"/i, 
i 

1 
Ah,, = ( n -  3) + ~ )--~_, 3/k 

k 

(3.9) 

vanish. Here, the sum in the scaling coefficient Ag for the gauge couplings is over all fields 

in the theory, whereas the sum in Ah,, is over all fields (with multiplicities) appearing 
in a degree-n term in the superpotential; hn is the corresponding coupling constant and 

bl is the one-loop beta-function coefficient bl = 3C2(G) - ~]~i T ( R i ) ,  which vanishes 
in our case. Having a fixed manifold of  dimension higher than zero requires that the 
scaling coefficients are not all independent. In addition, having a fixed line through weak 

coupling, where the anomalous dimensions are expected to vanish, requires d ,  = 3. 

However, in our case it is impossible to write simple polynomial potentials of  degree 3, 
but only superpotentials o f  the form (3.8), whose interpretation is not clear. Note that if  

we use the superpotential (3.8),  the equations in (3.9) are linearly dependent, so a fixed 
line (passing through weak coupling) is expected to exist, but we do not understand how 

such a superpotential may arise. 
As in [9] ,  we can compute the dimensions of  some of  the operators of  the fixed-point 

theory from the string theory metric. The elliptic curve describing the theory near the 
fixed point looks like y2 3 2 2 3 3 X ÷ Z  1 Z 2 X ÷ Z  1 Z 2 , SO that [Zl] + [Z2] = [x] ,  and the equation 
[zl]  + [z2] + [x] - [y]  = 2 [9] leads to [zl]  + [z2] = 4, so that [A] ÷ [B] = 2 
and it is natural to assume that [A] = [B] = 1, so that both fields have no anomalous 
dimension. This is consistent with having a fixed line that goes through weak coupling 

along which the dimensions do not change, as was the case for the N = 2 theory (and 
for the N = 1 theory discussed in [9] ). I f  A and B have no anomalous dimensions, 
then the requirement of  the vanishing of  the beta function (3.9) leads to Q and q having 

no anomalous dimensions either. Then, it is clear that, even if we do not demand that 
the fixed line passes through weak coupling, only dimension-3 superpotentials could 
be relevant at the fixed point. Again, this is consistent with using the superpotential 
(3.8) whose interpretation is not clear, but not, as far as we could see, with any other 

superpotentials. 
To summarize, we have computed by a perturbative string theory analysis the spectrum 

of  the 3-brane probe world-volume theory near an intersection of  two D4 singularities in a 
particular global context (i.e. an orientifold which is equivalent, up to discrete torsion, to 
F-theory compactified on T6 / (Z2  x Z2) ). The field content we have found is consistent 
with our expectations, but we have not been able to write down a superpotential at the 
intersection point that will reproduce all of  our expectations (although we can write a 
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superpotential away from the orientifold points that does seem to be consistent). It seems 
that the field theory at the fixed point cannot be described by a simple (i.e. polynomial) 
superpotential. This could be related to the fact that the theory has massless magnetic and 
dyonic degrees of  freedom as well as electric. However, in the N = 2 case that did not 
prevent a simple superpotential description from existing (of  course, the supersymmetry 
constraints were much stronger in that case). Another possibility, which seems less likely, 
is that in the case we are discussing the fields corresponding to the other orientifold points 
no longer decouple, and must all be included in the analysis. A third possibility is that 
our problems are related to the existence of a tensor multiplet in the space-time theory 
the probe couples to at the intersection point. In principle, we should be able to include 
in our field theory the coupling to the space-time tensor multiplet as well. The scalar in 
this multiplet should correspond to a real scalar parameter of the 3-brane field theory. 
Turning on this scalar corresponds to blowing the point zl = z2 = 0 into a 2-cycle, 
after which the two D4 singularities no longer meet. In the field theory the moduli space 
should change in a similar way, and the origin of moduli space should be blown up. There 
should no longer be a point of unbroken SU(2) x SU(2),  but only non-intersecting lines 
of unbroken SU(2).  Obviously, the appropriate terms are in the K~hler potential and not 
in the superpotential, and we have not analyzed the exact form that they should take. The 
effect of the space-time 2-form field on the world-volume theory is far less clear. 

Another interesting question is the relation between the field theory we discuss, involv- 
ing the 3-brane in the orientifold background, and the field theory describing a 3-brane 
moving in the F-theory background with no 2-form fields turned on. We have not identi- 
fied what the discrete torsion which differentiates between the two theories corresponds 
to in the 3-brane field theory, so the relation between these field theories is not clear. 
As discussed in the next section, the discrete torsion definitely changes the field theory 
at the origin of moduli space, although (since the discrete torsion is concentrated at the 
origin) it does not change the Coulomb branch away from the origin. Thus, the 3-brane 
moving in the F-theory background should be described by a different field theory (which 
should have exact SL(2,  Z) electric-magnetic duality), but the  Coulomb phase of all 
these theories should be identical, In the F-theory background, tensionless strings appear 
in space-time, and the effect these should have on the 3-brane probe field theory is also 
unknown. 

We can easily generalize the analysis of this section to multiple 3-brane probes, as 
in Section 2. We find for k 3-brane probes an Sp(2k)  x Sp(2k)  gauge theory, with 
two chiral superfields in the (2k, 2k) representation from X6,7,8,9, superfields in the 
(k (2k  - 1) - 1, 1) + (1, 1) + ( 1 , k ( 2 k -  1) - 1, 1) + (1, 1) representations from X4,5, 
and eight (2k, 1) and (1 ,2k)  superfields from the 3-7 strings. The Coulomb phase of 
this theory may be easily seen to consist of k copies of the Coulomb phase of the original 
theory (up to an Sk identification), and we run into the same problems when trying to 
write a superpotential describing the theory at the origin of the moduli space. 

At other types of intersection points we also expect to find N = 1 superconformal 
theories with various global symmetries. For instance, at the intersection of two En 
singularities, we should find an N = 1 superconformal theory with E,, x En global 
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symmetry. As in [9],  we can compute the dimensions of some of the operators in these 

N = 1 SCFTs, but so far we do not have a lagrangian that would flow to them, hence we 

cannot say much more about them. 

4. Summary and open questions 

In this paper we discussed two field theories arising from 3-brane probes in F-theory. 
In Section 2 we discussed the field theory corresponding to k parallel 3-brane probes 

in F-theory compactified on T4/Z2. As expected from string theory, we found that the 

Coulomb branch of the corresponding field theory was equivalent to k copies of the 
Coulomb branch of the original k = 1 theory, divided by Sk. We expect this to be the 

general result for multiple D-brane probes. 
In Section 3 we discussed a 3-brane probe at an intersection of two D4 singularities, in 

a particular orientifold vacuum of string theory. By general considerations we expect this 
to correspond to an N = 1 superconformal field theory, which can flow (in two different 

ways) to the Seiberg-Witten N = 2 SU(2) NT = 4 theory. The field content we found on 

the probe was consistent with this expectation, but we have not been able to write down 

an explicit superpotential that would be consistent with everything we know. Specifically, 

we were not able to write down a superpotential that would give masses to some of the 
quarks when we flow to the N = 2 theory, and that would naturally lead to the existence 

of a fixed line in the field-theory moduli space. We are not sure about the meaning of 

this failure. It might be related to the interaction of the probe with a tensor multiplet in 

space-time, which may prevent us from having a simple local description. It would be 
very interesting to understand the resolution of this problem, which could also be related 
to the problems encountered in the space-time description of intersecting singularities. 

Next, we would like to discuss is the correspondence between the space-time fields and 
the parameters on the D-brahe probe theory. It is clear that any space-time field should 

correspond to a parameter in the world-volume theory, since the D-brane couples in a 

consistent way to the space-time theory. However, a relation in the opposite direction 
does not necessarily have to exist. In principle, there could exist parameters of the world- 
volume theory that do not correspond to any space-time fields, and the corresponding 

theories would not be realized in the moduli space of a D-brane moving in the string 
theory vacuum. One example of this phenomenon is the theory we discuss in Section 2, 
where a mass term for the antisymmetric Sp(2k)  field is allowed in the field theory, but 
the corresponding parameter does not exist in string theory (as noted also in [30] ). 

Another example involves the quark masses in the theory we discuss in Section 3. In 
eight dimensions, there was [ 1,2] an exact correspondence between the deformations of 
the space-time theory and the (N = 2 preserving) parameters of the world-volume theory. 
In particular, the SO(8) adjoint scalars in space-time (which were part of the vector 

multiplet), corresponding to moving the 7-branes off the orientifold, were interpreted as 
a mass matrix for the quarks in the world-volume theory. In the 6D generalization we 

considered in Section 3 the situation is different and more complicated, as we will now 
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explain. The orientifold we consider, corresponding to a compactification of F-theory on 
T6/Z2 × Z2, is not connected in any simple way to the elliptic fibration over F0. Instead, 
the orientifold compactification is connected to a compactification of F-theory on a 
Calabi-Yau manifold with Hodge numbers (51,3) [24-26].  In this case the orientifold 
analysis reveals that in 6D space-time we do not have any charged fields. Thus, we 
cannot break the S0(8) gauge symmetry by the appropriate Higgsing and, therefore, we 
do not get quark mass parameters on the 3-brane world-volume theory. Note that at the 
orientifotd point we have altogether 17 tensor multiplets and four hypermultiplets. This 
field content is consistent with the cancelation of 6D anomalies. 10 The tensor multiplet 
localized at each intersection point of groups of seven-branes contains a scalar field, 
which provides a possible deformation of the theory. However, this deformation does not 
resolve the 0 4  singularities, but just separates the two intersecting singularities [23]. 
The four hypermultiplets in space-time correspond to moduli of the compactification 
manifold, and do not affect our analysis near a single orientifold point. Thus, the moduli 
of the orientifold theory do not include fields corresponding to quark mass matrices in 
this case. To get such fields, we should go through phase transitions which would turn 
the 16 extra tensor multiplets into hypermultiplets, taking us to the general curve in 
Weierstrass form [22] which has many (243) parameters. The modulus of the F-theory 
torus, r, will, generically, depend on all these parameters. Some of these parameters will 
presumably correspond to quark mass matrices. It is a challenging problem to understand 
this phase transition (which is similar to the M-theory phase transition in which a 5-brane 
(tensor) is "swallowed" by a 9-brane and turns into a large E8 instanton) and its effects 

on the 3-brane world-volume field theory. 
Finally, we now present a brief analysis of the model of Sen [ 11 ] along the lines of 

Section 3.11 But before doing that, we want to point out some of the differences of the 
two models; for details we refer to [24-26].  Both models can be described as type IIB 
on K3 orientifolds. They differ, however, in the action o f  the orientifold projections on 
the twisted sector and open string states. The model considered by Sen [ 11 ] is T-dual 
to the Gimon-Polchinski model, and thus does not contain any extra tensor multiplets, 
while the model we have considered has extra tensor multiplets and is clearly different (it 
has been constructed explicitly in [24-26] ). From the F-theory point of view, it seems 
that both models correspond to the same elliptic curve (3 .1)- (3 .3) ,  but they differ 
by discrete 2-form fields concentrated at the intersection of the singularities (as in the 
analogous string theory compactifications discussed in [27] ). The two models both have 
such discrete torsion turned on, so that none of them correspond to the naive F-theory 
compactification, but the values of the discrete 2-form fields are different in the two cases. 
In both cases the discrete 2-form fields prevent the 3-brane from wrapping the collapsed 
2-cycle and giving rise to tensionless strings. In Sen's model the low-energy spectrum 

m Note that the disappearance of the SO(8) adjoint field in the orientifold procedure is consistent with the 
anomaly equation for tr(F4), due to the relation tr28F 4 = 3(trsF2) 2 (without any trsF 4 term). 
i i This is an extended version of a note added to our original preprint version. It was sparked by remarks 

of A. Sen, who also suggested that for his model there might be just the right field content on the probe to 
satisfy all the conditions we have required for the superpotentials. This is what we are going to show here. 
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in space-time is also different from the naive F-theory spectrum, suggesting that in this 
case both 2-form fields are turned on, while in the orientifold we discussed in Section 3 
apparently only one of the 2-form fields is turned on. As before, our computation here 
will be in the orientifold theory, and its direct relation to F-theory is not clear. 

It is straightforward to repeat the analysis which leads to the spectrum on the 3-brahe 
probe for the model considered by Sen. There is no change in our discussion of the states 
arising from the 3-3 strings. Since the model considered by Sen is just the T-dual of the 
model studied in detail by Gimon and Polchinski [ 12] - the T-duality acting, say, in the 
89 plane - we can immediately read off the matrices y acting on the 7-brane indices of 
states in the 7-7, 7-7 t, U-7 t sectors and in the 3-7 and 3-U sectors, from the ones given 

in [ 12], by T-dualizing. One finds that 

), (7) ~'2') f21 ~-'~'~ = 1 8 > ( 8  , 

=Y~92 = r ~ l  = - - i 1 4 x 4  0 " 

Note that the y(7) and y(7') matrices are not all proportional to the identity matrix, 
reflecting the fact that the space-time gauge symmetry is no longer SO (8), but in fact the 
subgroup U(4) .  The global symmetry of the probe theory is thus U(4) x U(4) instead 
of SO(8) x SO(8);  see also Ref. [11]. This is part of the U(4) 8 gauge symmetry of 
the space-time theory [ 12,11]. Also, from [ 12] we learn that in the space-time theory 

there are, in addition to the gravity multiplet, the U(4) x U(4) gauge fields and one 
anti-self-dual tensor multiplet, also massless hypermultiplets: 2(6, 1) + 2(1, 6) + (4, 4) 
(which will correspond to mass terms in our probe theory). Redoing our analysis of the 
3-7 and 3-U states with the new 7-brane gamma matrices, we find states in the following 
representations of the local and global symmetry group SU(2) x SU(2) x U(4) x U(4) : 
(2, 1, 4, 1) + ( 1, 2, 71, 1 ) + (2, 1, 1, 4) ÷ ( 1, 2, 1, 4). In addition to these chiral multiplets, 

we still have, as before, the chiral superfields A, B from the 3-3 strings, both transforming 
as (2, 2, 1, 1). Given the field content of this probe theory, we can now easily write 
down a superpotential which satisfies all the conditions described in Section 3. This 
probe theory thus provides the question to which Sen [ 11 ] has given the string theory 
answer. Denoting ( 2 , 1 , 4 , 1 ) ~ Q ,  (1,2,~I, 1 )~Q,  ( 2 , 1 , 1 , 4 ) ~ q ,  ( 1 , 2 , 1 , ~ 1 ) ~  one can 
now write a superpotential of the form W = QAQ + qB~ so that the conditions of 
Ref. [29] for having a fixed line passing through the origin of the space of couplings 
are fulfilled. This provides an explicit realization of an N = 1 supersymmetric theory 
which has an exact electric-magnetic duality, as is evident from the string theory answer. 
The duality group in this case, due to the presence of the discrete torsion, is the F ( 2 )  
subgroup of SL(2, Z).  Turning on an expectation value for A (B) gives masses to the 
Q, Q (q, (/) quarks, and the theory flows to the N = 2 SU(2)o theory of [1]. Recall that 
B transforms under the unbroken SU(2)o as 3 + 1 so that a superpotential of the form 
qX~t, where X is in the adjoint of SU(2)o,  emerges form the qB~ term. 

We are tempted to conjecture that tile difficulties that we encountered in our original 
model, which are absent in the model considered by Sen, are related to the fact that in 
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the former we have extra tensor multiplets which are absent in the latter. As discussed 

above, the two models seem to differ only by discrete 2-form fields concentrated at the 

singularities. Since these 2-form fields can assume only discrete values, one cannot relate 
the two theories simply by changing these fields continuously. It would be interesting 
to understand if the theories could be related by some sort of  phase transition. Such 

a phase transition would obviously need to transform the 16 extra tensor multiplets in 

the first orientifold we analyzed into hypermultiplets in the second orientifold (similar 
to the phase transition related to the small E8 instanton). This issue deserves further 
investigation. 
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Appendix A. Explicit determination of the representations of the vector and ehiral 
superfields 

A.1. Fields from the 3-brane strings 

First we determine the fields that correspond to open strings with both ends on the 

3-brane (or on its images). In flat space the 3-brane field theory involves an N = 4 vector 

multiplet, containing an N = 1 vector multiplet and three N -- 1 chiral multiplets corre- 

sponding to the coordinates X4,5,6,7,8, 9 of  the 3-brane. In the presence of  the orientifold, 
each of  these fields is enhanced into a 4 x 4 matrix with different constraints. 

Vector superfields 

The relations imposed by (3.7) on the components Mq of  gauge fields are 

MI 1 = -M22 = -M33 = M44, 

M14 = M41 = M23 = M32, 

M12 = -M43,  M13 = -M42, 

M21 = -M34,  M31 = --M24. 

A basis of  six matrices that obey these relations is 

(A.1) 
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Zl = 

IO 

1 Wl= 
0 0 

0 0 

0 

0 
w3= 

-i 
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0 - i  0 

It is now straightforward to check that the matrices 

1 1 
W~- = ~ ( W  1 -~- W2),  W 1 = ~ ( W  1 - W2) ,  

1 , Z ±  1 w~- = ~ (w3  - w4) = ~ ( z l  + z2) 

obey the following commutation relations: 

oo ) ( O O O l  
- 1  0 0 0 - 1  0 
0 - 1  , Z2 = 0 - 1  0 0 

0 0 - 1  0 0 0 

l O o°) 0 0 O 0 0 1 
0 1 ' W2= 0 0 

- 1  - 1  0 0 i 0 
0 0 - i  0 0 
0 0 ' W 4 =  0 0 0 " 

0 0 - i  

1 
w + = ~(w3  + w4), 

(A.2) 

[ Z + , W ~ ]  = - i W  +, 

[Z - ,W[-]  =iW~, 

[z+,wT] =o, 

[ Z + , Z  - ] =0 ,  

[w ?, w{-] =o, 

[Z  +, W + ] = iW +, [W~, W + ] = - i Z  +, 

[ Z - , W ~ ]  = - i W  1, [W~-, W~-] = i Z - ,  

[z+,w~ -] =o, [z-,w~] =o, [z-,W] =o, 

[w~,wi-] =o, [w2+,W] =o, 

[W+,W2] = 0 .  (A.3) 

Thus, we see that the gauge fields span an SU(2) x SU(2) algebra. When we take 
Zl to infinity all 1-2, 1-4, 2-3 and 3-4 strings become infinitely massive, so we can drop 

those wave-function matrices with non-zero entries in those positions. This leaves Z1, W2 
and W3, which generate an SU(2)  subalgebra. Likewise, if we take z2 to infinity all 1-3, 
1-4, 2-3 and 2-4 strings become massive, and we are left with Z1, W1 and W4, which 

generate a different SU(2)  subalgebra (which does not commute with the previous one).  
This picture is in accord with the naive expectation following Ref. [ 1 ] of  having just a 

single SU(2)  near zl = 0 or z2 = 0. 

X67 chiral multiplet 
Next consider the implications of  (3.7) on the scalar fields X67. The constraints on 

the matrix components are now 

M l l  -- - M 2 2  -- M33 = - M 4 4 ,  

M14 = --M41 = - M 2 3  = M32, 

Ml2  = q-M43, M13 = M42 = O, 
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M2i = -k-M34, M31 = M24 = 0. 

A basis of hermitian matrices that obey the 

(i ° 
- 1  A2 = A1 = 0 

0 

0 

A3 = 

00) 
0 0 
1 0 ' 

0 - 1  

0 0 
0 0 ' 
0 1 

relations is the following 

195 

(A.4) 

 000 ) 
0 0 - i  
0 i 0 ' 
- i  0 0 

- i  o o (A.5) 
A4 = 0 0 0 i " 

0 0 i 

Note that now if we take zl to infnity (naively) we are left only with A1, while if we 
take z2 to infinity (naively) we remain with A1, A3 and An which are in the adjoint 
representation of the remaining SU(2),  and thus we go over to the picture of  [ 1 ], as 
expected. 

Define now the matrices A_+, A++, A__ and A+_ by the equations A++ = A3 - iA4; 

A_+ = A~ + iA2; A+_ = A1 - iA2 and A__ = A3 + iA4. It can easily be checked that 
A = ( A++, A _ + , A + _ ,  A _ _  ) are in the (2 ,2)  representation of SU(2) x SU(2),  with 
the subscripts corresponding to the charges under Z + and Z -  (note that these matrices 
are not hermitian). For instance, we have 

1 
[ Z + , A _ + ]  = - ~ A _ + ,  

1A {W~-,A_+] = - ~  ++, 

i A [ W + , A - + ]  = - ~  ++ 

1 A [Z+ ,A++]  = ~ ++, 

[ W+, A++] = - I A _ + ,  
2 

i 
[W+,A++] = ~A_+,  

and so on. 

X89 chiral multiplet 

For the relations on the Xs9 chiral superfield we would find similar (but not iden- 
tical) results to those of the previous section, with the second and third rows and 
columns of all matrices interchanged. Thus, this chiral superfield, that we denote by 
B = (B++, B_+, B + _ , B _ _ ) ,  is also in the (2,2)  representation of SU(2) × SU(2) 
(though they are not represented in the same way). 

As a consistency check, we verify that a vev for X67, for instance, indeed breaks the 
gauge symmetry to a diagonal SU(2).  For instance, taking A1 to have a vev would leave 
exactly the matrices Z1, W2 and W3 (given above), which commute with it, as expected. 
The A's would also all become massive except A1 (since they do not commute with 
it), again as expected (since after moving along the flat direction we should have just a 
single scalar). Vevs for both X67 and Xs9 can also be analyzed and they all behave as 
expected from naive considerations. 
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X45 chiraI multiplet  

The relations for X45 are 

Ml l  =M22 = M33 = M44, 

M14 = M41 = --M23 = - M 3 2 ,  

and their solutions are spanned by the two singlets $I and $2, 

(A.6)  

o 

1 0 0 0 --1 
$1 = 0 1 0 ' $2=  - 1  0 (A.7)  

0 0 1 0 0 

A.2. Fields f o rm  the strings between the 3-brahe and 7-branes 

As mentioned in Section 3, the Ya matrices for the 7-branes are all proport ional  to the 

identity matrix [ 24 -26  ]. The constraint on the 7-brane gauge fields is then jus t  M -- - M  r,  

giving an ant i -symmetr ic  matrix corresponding to an S 0 ( 8 )  space-time gauge symmetry, 

since there are eight 7-branes when including the Z2 partners. 

Next, we should use these matrices to analyze the wave function of  the 3-7 strings 

(as in [ 12] ). The 7-brane side is trivial, so the orbi fold/or ient i fo ld  projections just  mix 

the various 3-branes according to the Ya matrices given in (3 .7) ;  for instance taking the 

31-7 state (where  31 is the first 3-brane) via ya,  to i times the 7-32 state (with opposi te  

or ienta t ion!) ,  via y &  to i t imes the 7-33 state, and via TT to minus the 34-7 state. 

A basis for the states going to a specific 7-brahe can thus be chosen to be 

D~ + = ( 1 , 0 , 0 , - 1 ) ,  D ~  = (0, 1, 1 ,0 ) .  (A.S)  

Using the matrices we found above for the gauge fields, it is easy to check that these are 

doublets  under SU(2 )+ ,  and singlets with respect to S U ( 2 ) _ .  The corresponding chiral 

superfields are thus in a (2, 1) representation of  SU(2 )+  x SU(2)  _.  For the other group 

of  7-branes we can then do the same thing, but with minus the identity matrix for some 

of  the relevant 7-7 ys~ matrices (say for y &  and YT). Then, the basis comes out to be 

Dz~- = ( 1 , 0 , 0 ,  1), D d = (0, 1 , - 1 , 0 ) .  

which is in the (1, 2) representation of  SU(2 )+  x S U ( 2 ) _ .  
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