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Abstract

A supermanifold M is canonically associated to any pseudo Riemannian spin
manifold (M0, g0). Extending the metric g0 to a field g of bilinear forms g(p) on
TpM , p ∈ M0, the pseudo Riemannian supergeometry of (M,g) is formulated
as G-structure on M , where G is a supergroup with even part G0

∼= Spin(k, l);
(k, l) the signature of (M0, g0). Killing vector fields on (M,g) are, by definition,
infinitesimal automorphisms of this G-structure. For every spinor field s there
exists a corresponding odd vector field Xs on M . Our main result is that Xs is
a Killing vector field on (M,g) if and only if s is a twistor spinor. In particular,
any Killing spinor s defines a Killing vector field Xs.

1 Introduction to supergeometry

First we introduce the supergeometric language which is needed to formulate the main
result of the paper. Standard references on supergeometry are [M], [L] and [K].

1.1 Supermanifold. We consider pairs (M0,A), where M0 is a C∞-manifold and
A = A0 + A1 is a sheaf of Z2-graded R-algebras; dim M0 = m.

Example 1: We denote by C∞
M0

the sheaf of (smooth) functions of M0. It associates
to an open set U ⊂ M0 the algebra C∞

M0
(U) = C∞(U) of smooth functions on U . Let

E be a (smooth) vector bundle over M0 and E the corresponding locally free sheaf of
C∞

M0
-modules: E associates to an open set U ⊂ M0 the C∞(U)-module E(U) = Γ(U, E)
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of sections of E over U . Conversely, any locally free sheaf E of C∞
M0

-modules defines a
vector bundle E → M0. The exterior sheaf ∧E = ∧evE +∧oddE is a sheaf of Z2-graded
R-algebras on M0.

Definition 1 The pair M = (M0,A) is called a (differentiable) supermanifold of
dimension m|n over M0 if for all p ∈ M0 there exists an open neighborhood U ∋ p
and a rank n free sheaf EU of C∞

U -modules over U such that A|U
∼= ∧EU (as sheaves of

Z2-graded R-algebras). The (local) sections of A are called (local) functions on M .

From Def. 1 it follows that there exists a canonical epimorphism ǫ : A → C∞
M0

, which
is called the evaluation map. Its kernel is the ideal J generated by A1: ker ǫ = J =
〈A1〉 = A1 + A2

1. By the construction of Example 1 to any vector bundle E → M0

we have associated a supermanifold M(E) = (M0,A = ∧E). In this case the exact
sequence

0 → J = 〈E〉 → A = ∧E
ǫ
→ C∞

M0
→ 0

of sheafs of Z2-graded R-algebras has a canonical splitting C∞
M0

→֒ ∧E = C∞
M0

+ 〈E〉.
Let (x1, . . . , xm) be local coordinates for M0 defined on an open set U ⊂ M0

such that A|U
∼= ∧EU , where EU is a rank n free sheaf of C∞

U -modules, cf. Def. 1.
Let θ1, . . . , θn be sections of EU trivializing the vector bundle EU associated to the
sheaf EU . Note that x1, . . . , xm, θ1, . . . , θn can be considered as local functions on the
supermanifold M . Moreover, any local function f ∈ A(U) is of the form

f =
∑

α∈Z
n

2

fα(x1, . . . , xm)θα , fα(x1, . . . , xm) ∈ C∞(U) = C∞
M0

(U) , (1)

where θα := θα1

1 ∧ . . . ∧ θαn
n , α = (α1, . . . , αn).

Definition 2 The tupel (xi, θj) = (x1, . . . , xm, θ1, . . . , θn) is called a local coordi-
nate system for M over U .

The evaluation map applied to a (local) function f = f(x1, . . . , xm, θ1, . . . , θn) with
expansion (1) is given by:

ǫ(f) = f(x1, . . . , xm, 0, . . . , 0) = f(0,...,0)(x
1, . . . , xm) .

Let M = (M0,A) and N = (N0,B) be supermanifolds.

Definition 3 A morphism Φ : M → N is a pair Φ = (ϕ, φ), where ϕ : M0 → N0 is a
differentiable map and φ : B → ϕ∗A is a morphism of sheaves of Z2-graded R-algebras.
Φ is called an isomorphism if ϕ is a diffeomorphism and φ is an isomorphism. An
isomorphism Φ : M → M is called automorphism of M .
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In local coordinate systems (xi, θj) for M and (x̃k, θ̃l) for N a morphism Φ is
expressed by p even functions x̃k(x1, . . . , xm, θ1, . . . , θn), k = 1, . . . , p, and odd q func-
tions θ̃l(x

1, . . . , xm, θ1, . . . , θn), l = 1, . . . , q; where (p, q) = dim N .

1.2 Tangent vector/vector field. Let M = (M0,A) be a supermanifold. For any
point p ∈ M0 the evaluation map ǫ : A → C∞

M0
induces an epimorphism ǫp : Ap → R,

ǫp(f) := ǫ(f)(p), where Ap denotes the stalk of A at p. For α ∈ Z2 = {0, 1} we define

(TpM)α := {v : Ap → R R-linear|v(fg) = v(f)ǫp(g) + (−1)αf̃ ǫp(f)v(g)} ,

where the equation is required for all f, g ∈ Ap of pure degree and f̃ ∈ {0, 1} denotes
the degree of f .

Definition 4 The tangent space of M at p ∈ M0 is the Z2-graded vector space
TpM = (TpM)0 + (TpM)1. The elements of TpM are called tangent vectors. Any
morphism Φ = (ϕ, φ) : M = (M0,A) → N = (N0,B) induces linear maps dΦ(p) :
TpM → Tϕ(p)N , defined by (dΦ(p)v)(f) := v(φp(f)), p ∈ M0, v ∈ TpM , f ∈ Bϕ(p),
where φp : Bϕ(p) → Ap is the morphism of stalks associated to φ : B → ϕ∗A. The map
dΦ(p) is called the differential at p of Φ.

The sheaf DerA of derivations of A over R is a sheaf of Z2-graded A-modules: DerA =
(DerA)0 + (DerA)1, where

(DerA)α = {X : A → A R-linear|X(fg) = X(f)g + (−1)αf̃fX(g)} ,

where the equation is required for all f, g ∈ A of pure degree.

Definition 5 The sheaf TM = DerA is called the tangent sheaf of M = (M0,A).
The sections of TM are called vector fields.

Any local coordinate system (xi, θj) over U gives rise to even vector fields ∂
∂xi and

odd vector fields ∂
∂θj

over U . The action of the vector fields ∂
∂xi ,

∂
∂θj

on a function f

with expansion (1) is given by:

∂f

∂xi
=
∑

α

∂fα(x1, . . . , xm)

∂xi
θα ,

∂f

∂θj

=
∑

α

αj(−1)α1+···+αj−1fα(x1, . . . , xm)θα1

1 ∧ . . . ∧ θ
αj−1
j ∧ . . . ∧ θαn

n .

Any vector field X on M over U can be written as

X =
m∑

i=1

X i(x1, . . . , xm, θ1, . . . , θn)
∂

∂xi
+

n∑

j=1

Y j(x1, . . . , xm, θ1, . . . , θn)
∂

∂θj

,
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where X i, Y j ∈ A(U).
If Φ = (ϕ, φ) : M = (M0,A) → N = (N0,B) is an isomorphism then ϕ−1 and

φ−1 : ϕ∗A → B exist and give rise to an isomorphism A → ϕ−1
∗ B. The induced

isomorphism between the corresponding sheaves of derivations is denoted by

dΦ : TM → ϕ−1
∗ TN

and is called the differential of Φ. For any open U ⊂ M0 the differential dΦ is
expressed by an A(U)-linear map dΦU : TM (U) → TN (ϕ(U)), where the action of
A(U) on TN(ϕ(U)) is defined using the isomorphism A(U)

∼
→ B(ϕ(U)) induced by

φ−1.
Let X be a vector field defined on some open set U ⊂ M0 and p ∈ U . Then we

can define the value X(p) ∈ TpM of X at p:

X(p)(f) := ǫp(X(f)) , f ∈ Ap .

However, unless dim M = m|n = m|0, a vector field is not determined by its values.
Finally, we relate the tangent spaces and tangent sheaves of M and M0. Any even

tangent vector v ∈ (TpM)0 annihilates the ideal J = ker ǫ in the exact sequence

0 → J → A
ǫ
→ C∞

M0
→ 0 (2)

and hence defines a tangent vector to M0. More explicitly, we define a map ǫ : TpM →
TpM0 by the equation

ǫ(v)(ǫ(f)) = v0(f) ,

where v = v0 + v1 ∈ (TpM)0 + (TpM)1, f ∈ Ap and f 7→ ǫ(f) is the evaluation map
of stalks ǫ : Ap → (C∞

M0
)p.

Proposition 1 There is a canonical exact sequence of Z2-graded vector spaces:

0 → (TpM)1 → TpM
ǫ
→ TpM0 → 0 .

In particular, ǫ induces a canonical isomorphism (TpM)0
∼
→ TpM0.

Similarly, on the level of tangent sheaves we define ǫ : TM → TM0
by the equation

ǫ(X)(ǫ(f)) = ǫ(X0(f)) ,

where X = X0 + X1 ∈ (TM(U))0 + (TM (U))1, f ∈ A(U) and U ⊂ M0 open.

Proposition 2 There is a canonical exact sequence of sheaves of A-modules

0 → ker ǫ → TM
ǫ
→ TM0

→ 0 , (3)

where ker ǫ = (TM)1 + J TM . In particular, there is the following exact sequence of
A-modules:

0 → (J TM)0 → (TM)0 → TM0
→ 0 .
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1.3 Frame/frame field/local coordinates.

Definition 6 Let V = V0 +V1 be a Z2-graded vector space of rank m|n, i.e. dim V0 =
m and dim V1 = n. A basis of V is a tupel (b1, . . . , bm+n) such that (b1, . . . , bm) is a
basis of V0 and (bm+1, . . . , bm+n) is a basis of V1. Let M = (M0,A) be a supermanifold
and p ∈ M0. A frame at p is a basis of TpM . A tupel (X1, . . .Xm+n) of vector fields
defined on an open subset U ⊂ M0 is called a frame field if (X1(p), . . .Xm+n(p)) is
a frame at all points p ∈ U . We denote by F(U) the set of all frame fields over U .
The sheaf of sets U 7→ F(U) is called the sheaf of frame fields.

Any local coordinate system (xi, θj) over U gives rise to the frame field ( ∂
∂xi ,

∂
∂θj

) over

U .

1.4 Supergroup. Let A = A0 + A1 be an associative Z2-graded R-algebra with
unit. We will always assume that A is supercommutative, i.e. ab = (−1)ãb̃ba for all
a, b ∈ A0 ∪ A1. Under this assumption any left-A-module carries a canonical right-
A-module structure and vice versa; so we will simply speak of A-modules. For any
supermanifold M = (M0,A) the algebra of functions A(M0) is supercommutative,
associative and has a unit.

For any set Σ and non-negative integers r, s we denote by Mat(r, s, Σ) the set of
r × s-matrices with entries in Σ and put Mat(r, Σ) := Mat(r, r, Σ). Any partition
(r = m + n, s = k + l) defines a Z2-grading on the A-module V = Mat(r, s,A):

V0 = {

(
A B
C D

)
|A ∈ Mat(m, k,A0), D ∈ Mat(n, l, ,A0),

B ∈ Mat(m, l,A1), C ∈ Mat(n, k,A1)} ,

V1 = {

(
A B
C D

)
|A ∈ Mat(m, k,A1), D ∈ Mat(n, l, ,A1),

B ∈ Mat(m, l,A0), C ∈ Mat(n, k,A0)} .

The Z2-graded A-module V = V0 + V1 is denoted by Mat(m|n, k|l,A). Matrix mul-
tiplication turns Mat(m|n,A) := Mat(m|n, m|n,A) into an associative Z2-graded
algebra with unit.

Definition 7 A super Lie bracket on a Z2-graded vector space V = V0 + V1 is a
bilinear map [·, ·] : V × V → V such that for all x, y, z ∈ V0 ∪ V1 we have:

i) ˜[x, y] = x̃ + ỹ,

ii) [x, y] = −(−1)x̃ỹ[y, x] and

iii) [x, [y, z]] = [[x, y], z] + (−1)x̃ỹ[y, [x, z]].
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The pair (V, [·, ·]) is called a super Lie algebra.

The supercommutator

[X, Y ] = XY − (−1)X̃Ỹ Y X , X, Y ∈ Mat(m|n,A)0 ∪ Mat(m|n,A)1

defines a super Lie bracket on the Z2-graded vector space Mat(m|n,A). The super
Lie algebra (Mat(m|n,A), [·, ·]) is denoted by glm|n(A). We put

GLm|n(A) := {g ∈ Mat(m|n,A)0|g is invertible} .

Similarly, if V is a Z2-graded A-module EndA(V ) carries a canonical super Lie algebra
structure, which is denoted by glA(V ). By definition GLA(V ) is the group of invertible
elements of EndA(V ). Finally, we will use the convention glm|n := glm|n(R), gl(V ) :=
gl

R
(V ), GL(V ) := GL

R
(V ).

Definition 8 A supergroup G is a contravariant functor M 7→ G(M) from the
category of supermanifolds into the category of groups. Let H, G be supergroups. We
say that H is a super subgroup of G and write H ⊂ G if H(M) ⊂ G(M) is a subgroup
and H(Φ) = G(Φ)|H(N) for all supermanifolds M , N and morphisms Φ : M → N .

Example 2: The general linear supergroup GLm|n is the supergroup M →
GLm|n(M) obtained as composition of the following two functors:

i) the contravariant functor M = (M0,A) → A(M0) from the category of super-
manifolds into that of asssociative, supercommutative algebras with unit,

ii) the covariant functor A → GLm|n(A) from the category of associative, super-
commutative algebras with unit into that that of groups.

Definition 9 A linear super Lie algebra g is a super Lie subalgebra g ⊂ glm|n (for
some m|n). A linear supergroup is a super subgroup G ⊂ GLm|n (for some m|n).

Example 3: Let g ⊂ glm|n be a linear super Lie algebra. For any associative,
supercommutative algebra with unit A we can consider the super Lie algebra g⊗A ⊂
glm|n(A). Its even part g(A) := (g ⊗ A)0 is a Lie algebra. If A = A(M0) is the
algebra of functions of a supermanifold M = (M0,A) then it is easy to see that the
exponential series

∞∑

n=0

1

n!
Xn , X ∈ Mat(m|n,A) ,

6



converges (locally uniformly) to an element exp X ∈ GLm|n(A). Now let G(A) be
the subgroup of GLm|n(A) generated by exp g(A). then the functor M = (M0,A) 7→
G(M) := G(A(M0)) is a linear supergroup, which we denote by exp g.

1.5 G-structure. Let M = (M0,A) be a super manifold of dim M = m|n. For
any open subset U ⊂ M0 we consider the supermanifold M |U := (U,A|U). The ge-
neral linear supergroup GLm|n induces a sheaf GLM of groups over M0: GLM(U) :=
GLm|n(M |U) = GLm|n(A(U)), U ⊂ M0 open. The group GLM(U) acts naturally (from
the right) on the set F(U) of frame fields over U . This action turns F into a sheaf of
GLM -sets. Now let G ⊂ GLm|n be a linear supergroup and G the corresponding sheaf
of groups, i.e. G(U) = G(M |U) for all open U ⊂ M0. Since G is a sheaf of subgroups
G ⊂ GLM the sheaf F of frame fields of M is, in particular, a sheaf of G-sets.

Definition 10 Let M = (M0,A), dim M = m|n, be a supermanifold and G ⊂ GLm|n

a linear supergroup. A G-structure on M is a sheaf FG of G-subsets FG ⊂ F such
that for all p ∈ M0 there exists an open neighborhood U ∋ p for which G(U) acts
simply transitively on FG(U).

Example 4: For any supermanifold M , dim M = m|n, the sheaf of frame fields F is
a GLm|n-structure.

1.6 Automorphism of G-structure. We denote by Aut(M) the group of all auto-
morphisms of the supermanifold M , see Def. 3. The differential dΦ : TM → ϕ−1

∗ TM of
any Φ = (ϕ, φ) ∈ Aut(M) induces an isomorphism F → ϕ−1

∗ F , again denoted by dΦ.
Now let FG ⊂ F be a G-structure on M , for some linear supergroup G ⊂ GLm|n. For
simplicity we can assume that G = exp g as in Example 3.

Definition 11 Φ = (ϕ, φ) ∈ Aut(M) is called an automorphism of the G-structure
FG if dΦFG ⊂ ϕ−1

∗ FG.

We recall that any p ∈ M0 has an open neighborhood U such that G(U) acts simply
transitively on FG(U). Such open sets U ⊂ M0 will be called small. If U ⊂ M0 is
small then FG(U) = EG(U) for any frame field E ∈ FG(U). Here the right-action of
the group G(U) on FG(U) is simply denoted by juxtaposition.

Proposition 3 Φ ∈ Aut(M) is an automorphism of the G-structure FG iff

dΦU ′E|U ′ ∈ E|ϕ(U ′)G(ϕ(U ′))

for all small U ⊂ M0, E ∈ FG(U) and open U ′ ⊂ U such that ϕ(U ′) ⊂ U .
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For any open set U ⊂ M0 the vector space TM(U)m+n of (m+n)-tupels of vector fields
is naturally a right-module of the associative, Z2-graded algebra Mat(m|n,A(U)). In
particular, it is a right-module of the super Lie algebra g ⊗ A(U) ⊂ gm|n(A(U)).
On the other hand, TM(U) (and hence TM(U)m+n) is naturally a left-module for the
super Lie algebra TM (U) of local vector fields. The action on TM(U) is given by the

adjoint representation, i.e. by the supercommutator adXY = X ◦ Y − (−1)X̃Ỹ Y ◦ X,
X, Y ∈ TM(U) of pure degree. The corresponding action on TM (U)m+n is denoted by
LX (“Lie derivative”):

LXE := ([X, X1], . . . , [X, Xm+n]) , E = (X1, . . . , Xm+n) ∈ TM (U)m+n .

Proposition 3 motivates the following definition.

Definition 12 A vector field X on M is an infinitesimal automorphism of the
G-structure FG if

LX|U
E|U ∈ E|U(g ⊗A(U))

for all small U ⊂ M0, E ∈ FG(U).

2 Supergeometry associated to the spinor bundle

2.1 The supermanifold M(S). Let (M0, g0) be a (smooth) pseudo Riemannian
spinmanifold with spinor bundle S → M0. The corresponding locally free sheaf of
C∞

M0
-modules will be denoted by S; S(U) = Γ(U, S), U ⊂ M0 open. To the vector

bundle S → M0 we associate the supermanifold M : M(S) = (M0,A = ∧S).
Consider the Z2-graded vector bundle TM0 + S∗ → M0 with even part TM0 and

odd part S∗.

Proposition 4 For any p ∈ M0 there is a canonical isomorphism of Z2-graded vector
spaces ιp : TpM0 + S∗

p

∼
→ TpM .

Proof: We define ι−1
p |(TpM)0 := ǫ|(TpM)0, see Prop. 1. Now it is sufficient to con-

struct a canonical isomorphism S∗ ∼
→ (TpM)1. For any section s ∈ Γ(U, S∗) in-

terior multiplication ι(s) by s defines an odd derivation of the Z2-graded algebra
A(U) = Γ(U,∧S), i.e. a vector field Xs := ι(s) ∈ TM (U)1. The value Xs(p) ∈ (TpM)1

depends only on s(p) ∈ S∗
p and we can define ιp(s(p)) := Xs(p). 2

Using the embedding C∞
M0

→֒ ∧S, we can consider TM as a sheaf of C∞
M0

-modules.
Interior multiplication s 7→ ι(s) = Xs defines a monomorphism S∗ →֒ (TM)1 of sheaves
of C∞

M0
-modules. We want to extend this map to ι : TM0

+S∗ → TM . For a local vector
field X ∈ TM0

(U) on M0 we put

ι(X) := ∇X ∈ TM(U)0 ,

8



where ∇ is the canonical connection on ∧S, i.e. the one induced by the Levi-Civita-
connection on (M0, g0).

Proposition 5 The map ι : TM0
+ S∗ → TM is a monomorphism of sheaves of

Z2-graded C∞
M0

-modules. Moreover, ι|TM0
defines a splitting of the sequence (2), i.e.

ǫ ◦ ι|TM0
= id.

Note that given any vector bundle E and connection D on E we can canonically define
ιE,D : TM0

+ E∗ →֒ TM , where M = M(E) and E is the sheaf of local sections of E. In
Prop. 5 we have ι = ιS,∇.

2.2 The coadjoint representation of the Poincaré super Lie algebras. Let
(V0, 〈·, ·〉) be a pseudo Euclidean vector space of signature (k, l), k + l = m, and V1

the spinor module of the group Spin(V0), n := dim V1 = 2[ m
2

]. Put V := V0 + V1. The
vector space p(V ) := spin(V0) + V carries the structure of spin(V0)-module. We want
to extend this structure to a super Lie bracket [·, ·] on p(V ) which satisfies [V0, V ] = 0
and [V1, V1] ⊂ V0. Such an extension is precisely given by a Spin(V0)-equivariant map
π : ∨2V1 → V0; here ∨2 denotes the symmetric square.

Definition 13 The structure of super Lie algebra defined on p(V ) by the map π is
called a Poincaré super Lie algebra.

We denote by ρ : V0 → End(V1) the (standard) Clifford multiplication.

Definition 14 A bilinear form β on the spinor module is called admissible if

1) β is symmetric or skew symmetric. We define the symmetry σ of β to be σ(β) =
+1 in the first case and σ(β) = −1 in the second.

2) Clifford multiplication ρ(v), v ∈ V0, is either symmetric or skew symmetric.
Accordingly, we define the type τ of β to be τ(β) = ±1.

An admissible form β is called suitable if σ(β)τ(β) = +1.

Given a suitable bilinear form β on V1 we define π = πρ,β : ∨2V1 → V0 by

〈π(s1 ∨ s2), v〉 = β(ρ(v)s1, s2), s1, s2 ∈ V1, v ∈ V0 . (4)

The map π is Spin(V0)-equivariant. Hence it defines on the vector space p(V ) the
structure of Poincaré super Lie algebra. The following theorem was proved in [A-C].

Theorem 1 Any Spin(V0)-equivariant map ∨2V1 → V0 is a linear combination of
maps πρ,βi

, βi suitable.
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All admissible bilinear forms on the spinor module were explicitly determined in [A-C].
The spinor module carries a non-degenerate suitable bilinear form β for all values of
m = k+l and s = k−l except for (m, s) = (5, 7), (6, 0), (6, 6) and (7, 7) (mod (8, 8)).
Now we assume that a non-degenerate suitable bilinear form β on V1 is given. The
map π = πρ,β defines on p(V ) the structure of Poincaré super Lie algebra such that
[V1, V1] = V0.

Given a super Lie algebra g the coadjoint representation ad∗ : g → gl(g∗),
x 7→ ad∗

x, is defined by the equation

ad∗
x(y

∗) = −(−1)x̃ỹ∗

y∗ ◦ adx ,

for x ∈ g and y∗ ∈ g∗ of pure degree.

Proposition 6 The coadjoint representation of p(V ) preserves the subspace V ⊥ =
{x∗ ∈ p(V )∗|x∗(V ) = 0} ⊂ p(V )∗ and hence induces a representation α : p(V ) →
gl(V ∗) on V ∗ ∼= p(V )∗/V ⊥. It has kernel ker α = V0 and therefore induces a faithful
representation of the super Lie algebra p(V )/V0 on V ∗.

Once we choose a basis b = (b1, . . . , bm+n) of V ∗, we can identify α(p(V )) ⊂ gl(V ∗)
with a subalgebra α(p(V ))b ⊂ glm|n, where A 7→ Ab denotes the isomorphism gl(V ∗) →

glm|n defined by b. If moreover (b1, . . . , bm) is an orthonormal basis of V ⊥
1

∼= V ∗
0 then

the even part α(p(V ))b
0
∼= spin(k, l) is a canonically embedded spinor Lie algebra, i.e.

α(p(V ))b
0 = spinσ := {

(
A 0
0 σ(A)

)
|A ∈ so(k, l) ⊂ glm} ,

where σ : so(k, l) → gln is equivalent to the spinor representation.
The linear group Spinσ ⊂ GLm|n(R) generated by the Lie algebra spinσ ⊂ (glm|n)0

∼= glm ⊕ gln acts on the set of bases of V ∗ from the right.

Proposition 7 Assume that α(p(V ))b
0 = spinσ and b′ = bg for some g ∈ Spinσ.

Then α(p(V ))b = α(p(V ))b′.

Proof: This follows from the fact that α(p(V ))b
0 = spinσ and α(p(V ))b

1 = α(V1)
b are

invariant under spinσ = α(spin(V0))
b. 2

Now let (e1, . . . , em) be an orthonormal basis of V0 and (θ1, . . . , θn) a basis of V1.
The dual bases of V ∗

0 and V ∗
1 will be denoted by (ei) and (θj).

Proposition 8 With respect to the basis b = (e1, . . . , em, θ1, . . . , θn) of V ∗ ∼= V ∗
0 + V ∗

1

the super Lie algebra α(p(V )) ⊂ gl(V ∗) is identified with

α(p(V ))b = {

(
A 0
C σ(A)

)
|A ∈ so(k, l), Cji = ei(π(s ∨ θj)), s ∈ V1} ,

where C = (Cji), j = 1, . . . , n, i = 1, . . . , m, and σ : so(k, l) → gln is equivalent to
the spinor representation.
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2.3 The (pseudo) Riemannian supergeometry associated to the spinor bun-
dle. Now we carry over the construction of 2.2 to the Z2-graded vector bundle
V := TM0 + S over M0. We assume that M0 is simply connected. The vector
bundle V carries the canonical connection induced by the Levi-Civita connection of
the pseudo Riemannian manifold (M0, g0). The holonomy algebra of V at p ∈ M0 is
a subalgebra of spin(TpM0) ⊂ gl(Vp)0. This implies, in particular, that the bundle of
Spin(TM0)-invariant bilinear forms on S is flat. Let g1 be a parallel non-degenerate
suitable bilinear form on S, see Def. 14 and the remarks following Thm. 1.

The Spin(TM0)-invariant bilinear form g = g0 + g1 on V should be thought of
as a pseudo Riemannian metric for the supermanifold M = M(S). Note that, due
to Prop. 4, g(p) induces a non-degenerate bilinear form on TpM . However, recall
that g1 is symmetric or skew-symmetric. The map π = πρ,g1

: ∨2S → TM0 defines on
p(V ) = spin(TM0)+S ⊂ gl(V ) the structure of bundle of Poincaré super Lie algebras.
p(V ) is a parallel bundle. Now let α : p(V ) → gl(V ∗) be the field of representations
induced by the coadjoint representation, cf. Prop. 6. The image α(p(V )) ⊂ gl(V ∗) is
a parallel bundle of super Lie algebras.

Proposition 9 The frame bundle of V ∗ → M has a subbundle PSpinσ
with struc-

ture group Spinσ ⊂ GLm|n(R), Spinσ
∼= Spin(k, l), such that for all b = (ei, θj) ∈

(PSpinσ
)p:

1) (ei) is an orthonormal basis of T ∗
p M0 and

2 ) α(p(Vp)) is identified via b with the subalgebra g = α(p(Vp))
b ⊂ glm|n(R), where

g0 = spinσ = {

(
A 0
0 σ(A)

)
|A ∈ so(k, l)} and

g1 = {

(
0 0
C 0

)
|C = (Cji), Cji = ei(π(s ∨ θj)), s ∈ Sp}

are independent of b and p. Here (θj) is the basis of Sp dual to (θj).

Proof: This follows from the holonomy reduction and Propositions 7 and 8. 2
We denote by V the sheaf of local sections of V . Identifying TM0 and T ∗M0 via

g0, the map ι of Prop. 5 corresponds to a monomorphism ι : V = T ∗
M0

+ S∗ →֒ TM .
This induces a map

ι : Γ(U, PSpinσ
) → F(U) ,

where F(U) is the set of frame fields of M over the open set U ⊂ M0. The image
of ι generates a Spinσ-structure on M , where Spinσ is now considered as (purely
even) linear supergroup Spinσ ⊂ GLm|n. More precisely, recall that Spinσ(A(U)) is

11



the group generated by exp spinσ(A(U)) ⊂ GLm|n(A(U)). It acts on F(U) from the
right. Put

FSpinσ
(U) := ι(Γ(U, PSpinσ

))Spinσ(A(U)) .

Proposition 10 FSpinσ
is a Spinσ-structure on M .

Denote by G the linear supergroup defined by the linear super Lie algebra g, see
Example 3. Since spinσ ⊂ g ⊂ glm|n(R), we have the following inclusions of linear
supergroups:

Spinσ ⊂ G ⊂ GLm|n . (5)

Put FG(U) := FSpinσ
(U)G(A(U)) for all open U ⊂ M0.

Proposition 11 FG is a G-structure on M .

Definition 15 A Killing vector field on (M, g) is an infinitesimal automorphism
of the G-structure FG, see Def. 12.

2.4 Twistor spinors as Killing vector fields.

Definition 16 A section s of the spinor bundle S → M0 is called a twistor spinor
if there exists a section s̃ of S such that

∇Xs = ρ(X)s̃ (6)

for all vector fields X on M0. Here ρ(X) : S → S is Clifford multiplication. A twistor
spinor s is called a Killing spinor if s̃ = λs for some constant λ ∈ R

Remark: From (6) it follows that s̃ = − 1
m

Ds, where D is the Dirac operator.

The non-degenerate bilinear form g1 on S induces the isomorphism

S
∼
→ S∗, s 7→ s∗ := g1(s, ·) .

Recall that ι|S∗ : S∗ →֒ TM is simply given by interior multiplication, s. 2.1. To any
spinor field S we associate the odd vector field Xs := ι(s∗) on M . Now we can state
the main result of this paper.

Theorem 2 Let (M0, g0) be a pseudo Riemannian spin manifold with spinor bundle
(S, g1); g1 a parallel non-degenerate suitable bilinear form on S, see Def. 14 and 2.3.
Consider the supermanifold M = M(S) with the bilinear form g = g0 + g1 and let s be
a section of S. The vector field Xs is a Killing vector field on (M, g) iff s is a twistor
spinor, see Def. 15 and 16.
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Corollary 1 A Killing vector field Xs for an extension g of g0 is a Killing vector field
for any other extension; the extensions beeing as in 2.3.

Lemma 1 For all sections s∗, t∗ of S∗ and X of TM0 we have:

i) [ι(s∗), ι(t∗)] = 0,

ii) [ι(s∗), ι(X)] = [ι(s∗),∇X ] = −ι((∇X)∗).

Proof: i) By definition of the supercommutator [·, ·] on TM , we have [ι(s∗), ι(t∗)] =
ι(s∗) ◦ ι(t∗) + ι(t∗) ◦ ι(s∗) = 0.
ii) Recall that s∗ = g1(s, ·). If t is a section of S we have [ι(s∗), ι(X)](t) = s∗(∇Xt) −
∇Xs∗(t) = g1(s,∇Xt) −∇Xg1(s, t) = −g1(∇Xs, t) = −(∇Xs)∗(t). 2

Proposition 12 Let s be a twistor spinor. For all vector fields X and spinor fields t
on M0 we have:

i) [ι(s∗), ι(X)] = −ι((ρ(X)s̃)∗) = −τ(g1)ι(ρ(X)∗s̃∗), where τ(g1) ∈ {±1} is the
type of g1, see Def. 14.

ii) [ι(s∗), ι(X)](t) = −g1(ρ(X)s̃, t) = −g0(π(s̃ ∨ t), X).

Proof: The first equation of i) follows from Lemma 1 ii), since ∇Xs = ρ(X)s̃. Now
the second equation of i) and the first equation of ii) follow from the definition of the
type τ : (ρ(X)s̃)∗(t) = g1(ρ(X)s̃, t) = τ(g1)g1(s̃, ρ(X)t). The last equation of ii) is
simply the definition of π = πρ,g1

, cf. (4). 2

Proof (of Theorem 2): Let (ei, θj) ∈ Γ(U, PSpinσ
), U ⊂ M0 open, and (ei, θ

j) the
dual local frame for V = TM0 + S. Put

E := (ι(ei), ι(θj)) ∈ Γ(U,FSpinσ
) ⊂ Γ(U,FG) .

Since (ei) is orthonormal, i.e. g0(ei, ej) = εiδij , εi ∈ {±1}, we have ei = εig0(ei, ·).
Hence, by definition of ι on T ∗

M0
, we have ι(ei) = εiι(ei). Therefore by Lemma 1 for

any s ∈ Γ(U, S) we have

LXs
E = ([Xs, ι(e

i)], [Xs, ι(θj)]) = (−εiι((∇ei
s)∗), 0) , (7)

(∇ei
s)∗(θj) = g1(∇ei

s, θj) . (8)

From this computation it follows that LXs
E ∈ E(g⊗A(U)) iff there exists a t ∈ Γ(U, S)

such that
LXs

E = ECt , where (9)
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Ct =

(
0 0

(Cji
t ) 0

)
∈ g ⊗A(U) , Cji

t = ei(π(t ∨ θj)) , (10)

see Prop. 8. By (7), (8) and (10) equation (9) is equivalent to

g1(∇ei
s, θj) = −εie

i(π(t ∨ θj)) , i = 1, . . . , m, j = 1, . . . , n. (11)

The right-hand-side is

− εie
i(π(t ∨ θj)) = −g0(π(t ∨ θj), ei) = −g1(ρ(ei)t, θ

j) , (12)

hence (11) is equivalent to the twistor equation (6) with s̃ = −t. 2
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14


