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Abstract 

We explicitly determine the instanton corrections to the prepotential for N = 2 supersymmetric 
SU(3) Yang-Mills theory with massless hypermultiplets in the weak coupling regions u --~ c~ 
and v ---* oo. We construct the Picard-Fuchs equations for Ny < 6 and calculate the monodromies 
using Picard-Lefschetz theorem for N f  = 2, 4. For all N f  < 6 the instanton corrections to the 
prepotential are determined using the relation between Tr(~b 2) and the prepotential. 

PACS: 11.15.-q; 11.15.Tk; 11.30.Pb 
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1. Introduction 

In the last two years duali ty has become a very important tool in supersymmetric gauge 

theories as well as in string theory. The basic idea was developed by Seiberg and Witten 

[ 1 ] ( for  reviews, see e.g. Refs. [ 2,3 ] ) who found, at the two-derivative level, the exact 

non-perturbative low-energy Wilsonian effective action of  N = 2 supersymmetric gauge 

theory with gauge group SU(2)  by using duality and the self-consistent assumption of  

massless monopoles  and dyons in the strong coupling region of  the moduli  space A4. 

* This work is partially supported by GIF-the German-lsraeli Foundation for Scientific Research, the DFG 
and by the European Commission TMR programme ERBFMRX-CT96-0045, in which H.E, K.E and S.T. are 
associated to HU-Berlin. 
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The main technical point in [ 1 ] is that the moduli space .M coincides with the 
moduli space of  an auxiliary elliptic curve. 1 Subsequently, generalizations to gauge 

groups S U ( N c )  without [6-8]  and with matter (in the fundamental representation) [9 -  
12] have been worked out. Extensions to other groups, SO(Nc)  and S p ( N c )  [13,14] 

as well as to exceptional groups [15,16] are also known. 

The field content of  N = 2 gauge theories for arbitrary gauge group G consists of  an 

N = 2 chiral multiplet which contains a vector field, two Weyl fermions and a complex 

scalar, all in the adjoint representation of  the gauge group. In addition to the gauge sector 

we can have N f  hypermultiplets,  each containing two Weyl fermions and two complex 
bosons, transforming in some representation of G. The theory has fiat directions with 

non-vanishing expectation values for Tr ~b 2, along which the gauge group is generically 
broken to the Cartan subalgebra, e.g. SU(3)  is broken to U(1)  ®2. 

The Wilsonian low-energy effective action is specified by a single holomorphic pre- 

potential f "  and can be expressed in terms of N = 1 chiral multiplets Ai, whose scalar 

component  we denote by ai, and N = 1 U( 1 ) gauge multiplets Wcd ( i  = 1 . . . . .  Nc - 1 ) : 

{/ '/ } •eff = Im d40 Oi.~(A) Ai Af - -~ de0 c3icgjf'(A) wiaw a'i , (1) 

where Oqi., ~ = c3 f ' /c3A i, and 

;8 i o) 
cgiOj.~'(a) = 7 i j (a)  = ~. g2 + (2)  

ij 

is the field dependent coupling constant. The metric on the quantum moduli space .h4, 

ds 2 = Im(daDidai )  where aDi = cgf'/Oai is the magnetic dual of  ai, has singularities 
at which the local effective action breaks down due to certain BPS states becoming 

massless. Loops in moduli space around these singularities yield monodromies of  the 
section H = (a a').  The global monodromy properties fix the bundle. Once we know 

aD(a) ,  the prepotential can be obtained by integration. To obtain a and ao  we use 
the fact that they are period integrals of  a particular meromorphic differential A on a 

hyperelliptic curve whose period matrix is r. In the weak coupling region the prepotential 

is generally given by .T" = f'das.~ + )t'j_jooo + .~]nst [ 16]: 

• Yclass = '/'class Z (o~, a) 2 
2 

aEA+ 

i ( ( a ' a ) 2 " ~ - N  i ( ( w , a )  25 
"T'l-l°°P = 4--'~ ,~AZ (°~'a}2 In \ ~  A2N; "/ Y-ff-~-'~(w'a)21nw \ A2N; ' / ' 

oo  

~ i n s t  = ~ - x  ~ ta.A(2N,._Nr)n 
• . ~ . d ~  n \  ] N f  • (3) 

n=l  

I The appearance of Riemann surfaces in the solution of N = 2 supersymmetric YM theory finds an 
'explanation' in the string theory context [4,51. 
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The sums are over the positive roots A+ of G and the weights of the representation of 

the hypermultiplets, respectively. 
The exact results obtained from duality predict the precise form of the instanton 

corrections to the effective action. In the weak coupling regime various checks of these 
results have been performed by explicit instanton calculations in the microscopic theory 
at the one- and two-instanton level [17-22]. 

In this paper we compute the prepotential for N = 2 supersymmetric SU(3) gauge 
theory with Nf < 6 flavors in the fundamental representation. Although both the per- 
turbative and the non-perturbative instanton corrections can in principle be obtained by 
explicitly doing the period integrals, we are attacking this problem via the Picard-Fuchs 
equations for the periods of the appropriate hyperelliptic curves, following Ref. [7]. The 
period integrals then only have to be solved to leading orders to determine which linear 
combinations of the given system of solutions of the Picard-Fuchs equations correspond 
tO (aDi, ai). Given the periods in one patch of A/[ we then get them everywhere in .A// 
by analytic continuation. It is however often easier to solve the Picard-Fuchs equations 
in various patches and again adjust coefficients by computing the period integrals to 
leading orders. The monodromy can then be read off from the periods and, as a check, 
shown to coincide up to conjugation with the monodromies obtained from the Picard- 
Lefschetz formula [7]. Using the methods outlined above, we explicitly compute the 
periods, the monodromies and the prepotential .Y" for Nf = 2 and N f  = 4. The one- 
and two-instanton contributions will be given explicitly. Our analysis will, however, be 
restricted to the weak coupling regime. We then show, how the instanton corrections 
for the prepotential can alternatively be obtained from the Picard-Fuchs operators and 
the relation between Tr(~b 2) and 5 t', derived in [23,24]. We do this explicitly for all 

X y < 6 .  
While this paper was being proofread, a paper [25] was posted on hep-th which 

treats the same problem by explicitly doing the period integrals. 

2. Picard-Fuchs operators for A2 with Nf .( 6 

We start from the hyperelliptic curves associated with the gauge group A2 with matter 
in the form given in [26]. We restrict ourselves here to the case of massless matter 
where the curves for N f  < 6 are given by 

y2 = W ( x ;  u,  v )  2 - F ( x ;  A N  I )  . (4) 

Here W ( x ;  u,  v )  = x 3 - u x  - v is the A2-type simple singularity with the identification 

u = Tr(~b2) , 

v = Tr(q53 ) (5) 

as the gauge-invariant coordinates on the moduli space .A// [7,6]. Under the anomaly- 
free global subgroup Z a N _ 2 N  I C U ( 1 ) R  they have R charge 4 and 6, respectively. F is 
given by 
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,6--N: ~N:,5 -~ F(x; AN:) =At¢: x -- (6) 

AN/ is the dynamically generated scale of  the theory, which can be matched to the scale 
of  the microscopic theory [22].  In the limit AN: ---+ 0 the curves corresponding to the 
classical moduli space are recovered. 

The singularities of  the quantum moduli space are the zero locus of  the discriminant 
of  the curve. The discriminants are 

AN.:=t = AIs(  - 3125A15 + 256A~u 5 + 22500AI° u . -  I024u6v-43200ASIu2v 2 

+13824 u 3 o 3 - 46656v 5) , (7) 

AN:=2= A~ 2 v2 ( - n a  6 + 12A4u-  12a~u 2 + 4 u  3 -  2702) 

x ( -  4 A ~ -  12A4u-  12A2u 2 - 4 u 3 +  27v2) , (8)  

AN:=3 = a9v3(  - 108A6u 3 - 1024u 6 - 729A9v - 8640A~u3v - 8748A6v 2 

+13824u3v 2 - 34992A~v 3 - 46656v 4) , (9) 

6 4 2 2 4A34 v 18A4 ANf= 4 = A4v (A4u  + 4 u  3 + + u 13 - 2 7 v  2 )  

x (  - a]u 2 - 4 u  3 + 4A34 v + 18a4uv  + 27v2) , (10) 

~aN:=5 = +i~( - +i~ + +i~u + . ) 5 (  _ 20601A~ 2 + 67635A~ ° u  _ 78840.48u 2 

+36288+16u 3 - 5895A4u 4 + l lTA52u 5 - 16u 6 + 62775A9. - 143775+1~u v 

+90045/i~u2v - 17145a~u3. + 36A5/+/4. _ 68121+~6.2 + 71280+i4u .2 

-18495+~u2.  2 + 216 u3v 2 + 12825A~. 3 - 6075+~5 u v3 _ 729 v 4) , ( 11 ) 

where A5 = As~ 12. Obviously the moduli space for odd number of  flavors is much more 
complicated than the one for even flavors where the discriminant factorizes. 

The meromorphic differential on the Riemann surface of genus 2 corresponding to 
the hyperelliptic curve (4) for Nf  < 6 is [27] 

x 
A -  2~iyF (2FW' - WF')  

x .t5.~ 2 u ) } .  
= 2~iy(x  - As ( ( 6  --  N f ) x  3 + ( N f  - 2)ux + g f v  - t~N:,5-~(3X - -  

- ~&N:,5) 
(12) 

The components of  the section H are given as integrals over the meromorphic differ- 
ential 
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ai= f a ,  aDi= f A, (13) 
Ogi [~i 

where o~i and /3i a re  a symplectic basis of  homology l-cycles on the curves (4) ,  i.e. 

ai  A/3j = - / 3  i A oti = 8,.j and (~ i ("1 oQ = /3i I 'q/~i = 0. 
The Picard-Fuchs operators constitute a system of partial differential operators of  

second order for the periods of  a holomorphic differential. A basis of  holomorphic 

differentials on the A•-curves is O,a, O,,h. We now proceed similar to [7] by considering 

first and second derivatives of  a,,A with respect to u and u. This produces expressions 
of  the form q~(x)/y n where ,;b(x) are polynomials in x, u and v. The power of  y 

in the denominator  as well as the degree of  the polynomials in the numerator can be 
reduced by various identities to one and four, respectively. Between these one can find 
two non-trivial linear combinations which vanish up to total derivatives. They give rise 

to the second-order Picard-Fuchs equations £i0,,11 = 0, with Z~ of  the general form 

_-( I ) '~2  , (1)n2 C~I C(I) ,~( l ) - -Cl  Ouu-]-C 20uv-'~- )~u'+" 4 t:)v-'~C~ 1)' (14) 
_(2)a2 ~(2)~2 C~2)Ou C(2)0v _[_ C~2) ,~(2)----Cl ot,v'-{-c 2 rut, q- + , (15) 

where the coefficients c} i) are polynomials in u and v. 

For the reduction procedure one uses an identity derived from the fact that the 
discriminant can be written in the form A = a(x )y2+b(x ) (y2) ,  where a(x)  = y'~i 4 aix i 

and b(x)  = ~---0 bixi. The two identities (up to total derivatives) which were used are 
(i) the power of  l / y  is reduced by two through 

,{ 
Y" ay,,_2 a~b + n - ; (16) 

( i i )  the powers of  x in the numerator can be reduced using 

x '  x k - '  ( ) 
-fT= y t ( 2 _ n l + 2 k )  ( 2 - 1 ) x ~ o + 2 ( k - n + l ) ~ 9  (17) 

for k 4= (nl - 2) /2 ,  where ~p and ~b are defined via y2 = x" + gt(x) and (y2) ,  = 
nx "-l + ~o(x) and n = 6 for the SU(3)  case. 

Since we are treating massless matter, (ao, a) transforms irreducibly under mon- 
odromy. It is therefore possible to find Picard-Fuchs operators £ with &£.iII = ff~iOvH = 
O. If we pull 0,, through ~ i  w e  obtain the following set of  Picard-Fuchs operators: 2 

N f = l :  

£ ( l ) = 1 6 ( 2 5 A S u 2 - 8 4 u 3 v - 4 0 5 v 3 ) o 2 , +  (-625All°+3300ASlUV 

- 3 4 5 6  u 2 v2/]0ut ,2 + 12u(25A~ - 36u u)ar  + 4 ( 2 5 A ~ -  84u v) , ( 1 8) 

2 Picard-Fuchs operators for the curves given in [ 10] were derived in [ 111. 
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= 3 2 (1125ASw 64u 4 - v )a.~ , £(2) 4(25A51 u 2 - 8 4 u 3 U - 4 0 5 v  )cgvv÷ _ 2160u 2 2 

4 - 4 ( -  16u 3 -  135v2)0,,- 180 v. (19) 

N f = 2 :  

£,1) = ( -  8A4u + 8 u 3 ÷  27 v2),gu2. ÷ 6 v ( A  4 -4- 3u2)0:, -4- 2u, (20) 

£(2)= 3v(8u 3 -4- 27 v 2 - 8  a4u)O~, -4- 4(2(A 4 - u 2 )  2 -4- 27u v2)c92u~, 

÷(8u  3 -4- 27122- 8A 4 u)a~, 4- 9/2. (21) 

N f = 3 :  

£(1) = (9A 6 -4- 72A~ v ÷ 64 u3 ÷ 144v2)au2u ÷ 4 u 2 (  - a~ 4-32 v)au2~, 

÷ 4 u ( -  a ~ -  4 v)av-4- 16u, (22) 

£(2) =9v(9 A6 -4- 72A~v -4- 64 u 3 -4- 144 v2)c9~ 2, -4- u(27A 6 -4- 540A~v 4- 256u 3 

÷1728v2)c~Zu~,÷(27A6÷216A~v÷256u3÷432v2)a~,÷36(a~÷4v) • 

(23) 

N f = 4 :  

£( |)  = (4A4 u ÷ 31AZu 2 ÷ 6 0 u  3 ÷ 81t'2),gu2. ÷ 4v(2A 4 -4- 15A42 u ÷ 27u2) 0~v 

÷3v(  - 2A42 - 9u)av-4- 4A] -4- 15 u, (24) 

2 2 (A4u 2 -4- -4- £,2) =v(  4A4u -4- 31aZu 2 -4- 60 u 3 -4- 81v )0,,~; -4- 2 8A24 u3 9a4Zv 2 

.4.16 u4÷ 54uv2)0,~,, -4- (2a]u -4- 16A42u2 ÷ 32u3÷ 27v2)0, , -4- 9t2. (25) 

Nf = 5 • 

£(1) = (1152A 9 -4- 1908A~u -4- 6228A6v - 1860A~u 2 - 4680A~uv -4- 492fi~u 3 

+396zi~v 2 + 1140/i~u2v - 52Asu 4 - 306/i5 uv 2 - 132u3v - 81v3)0u2,, 

+ ( - 4 5 ~  ° - 2070fi.8u - 3960fi.~v -4- 150A6u 2 - 1665A~uv 

+354Aau 3 - 3960fi~4v 2 -4- 1866zi~u2v - 29A 2u4 -4- 2520A2uv 2 - 165A5u 3v 

+270/i5v 3 -  216u2v2)a2,, + ( -  630/i 8 - 4 8 0 / i 6 u -  1755~55v 

÷306A4u 2 -4- 714A~uo - 16/i-~u 3 - 180A52o 2 - 15Asu 2v -4- 81uv2)0,, 

+15/i~ + 48/i~u + 1 2 0 ~ v -  13/i5u 2 - 3 3 u v ,  (26) 
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£~2) = (1152A 9 + 1908AVu + 6228A6v - 1860A~u 2 - 4680A4uv + 492A~u 3 

3 2 +396A~v 2 + 1140AZuZv - 5 2 A 5  u 4  - 306/15 uv 2 - 132u3v - 81v )0,,,, 

+ ( - 4770A~ + 4860A6u - 3285/i~v - 2298A4u 2 + 2538/1~uv + 648A~u 3 

+360AZv 2 - 465/isu2v - 80u 4 - 108 uv 2) 0~,, 

÷ (2340A 6 - 21 lZA4u ÷ 25ZAny 

÷672A2u 2 -  120f lsuv-80u3-27v2)a , ,  ÷ 3 ( 1 8 A ~ -  8 A s u -  3 v ) .  (27) 

For the pure YM case Nf = 0 the Picard-Fuchs equations were determined in [7] 

where it was found that they form an Appell system of type F4. For Nf  v~ 0 we 
could not identify the system of Picard-Fuchs operators with any of  the generalized 
hypergeometric systems discussed in the mathematical literature. 

3. N f = 4  

3.1. Monodromies 

The singularities of  the moduli space are at the zero loci of  the discriminant ANj- = 0. 

Here two or more roots of  the curve y2 = I-I~=l (x - ei) coincide and the associated 
genus-2 Riemann surface becomes singular. That is, some homology cycle v = q -  

te + g •/3 with magnetic charge vector g = (gl,g2) r and electric charge vector q = 
(ql ,  q2)r  vanishes, indicating that dyons with charge vector l, = (g,  q) become massless. 

Monodromies  around these singularities have this charge vector as their left eigenvector 
with eigenvalue one: vM~ = 1,. After the choice of  a fixed base point in the moduli space, 

the monodromies  from loops around various branches ANt = 0 can be calculated from the 

Picard-Lefshetz  formula [7] ,  which says that the monodromy action for a given cycle 

y is determined by the vanishing cycle v of  the singularity as M~ : y --~ y - (y r~ v)v. 
This can easily be calculated after decomposing the vanishing cycles into the homology 
basis a i, fli. This gives the monodromy in matrix form: 

( l + q ~ g  q ® q  ) (28) 
M(g,q) = g ® g  1 - g ® q  

We fix the homology basis as in Fig. 1. 
In the c = l plane in the moduli space .A4Nj=4 we fix the reference point u = - 2  and 

move to the six singular branches (see below),  tracing the motion of  the roots in the 
x-plane. This results in the vanishing cycles shown in Fig. 2. They are 

Vl = ( 1 , 0 , 0 , 0 )  , 

v2 = (0, 1 , - 1 , 2 ) ,  
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012 

Fig. 1. Basic cycles oti and Hi in the x-plane. 

/"3 
b' 5 

/"4 

/"6 

Fig. 2. Vanishing cycles for Ny = 4 

v3 = ( 1 , 0 , 2 , - 1 ) ,  

//4 = (0, 1 ,0 ,0 )  , 

v5 = ( 1 ,  1 ,1 ,0 )  , 

u6 = (1, 1 , 0 , - 1 )  , (29) 

from which one can easily calculate the monodromy using (28).  
In Fig. 3 we give the structure o f  the moduli space Adt¢~-_4. The figure shows the zeroes 

of  the discriminant (10) with I14 = 1 and real v, projected onto the plane I m u  = 0. There 

appear cusps at the points (u, v) = (0, 0) and ( - ½ ,  -t-A) and nodes at (u, v) = ( - ¼ , 0 )  
2 and ( _ 2 ,  + 8_y_~)" The four branches extending to the right of  the vertical axis are real. 

The shown branches which extend to Re u --* - c ~  in fact each represent two branches 

with opposite I m u  ~ O. At the nodes the vanishing cycles do not intersect, that is 

Pi f') P.j - ~  0 and the corresponding monodromies commute [ M~, M.~ ] = O, in accordance 
with the van Kampen relations. This is a necessary condition for two dyons to condense 
simultaneously. They are then mutually local and can be described by a local effective 
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Fig. 3. Moduli space for Nf = 4. 

action. 

We look at two weak-coupling regions of  the moduli space: one has large u for 

v = const., the other has large v with u = const. Making a loop in the first asymptotic 

region, we encircle for generic v six lines, in the second case at u > 0 four lines. 

The monodromies for these regions correspond to going around all singular loci in the 

chosen plane, starting from the fixed base point. The semiclassical monodromy in the 

regions u ~ c~ and v ~ oe are given by 

M . - ~  = r2 • r3 • rl = 
i - 1  - 5  - 0 8 

0 0 

0 - 1  

6 

- 5  

0 

M ~ , ~  = (r3" M~. M~) - I  = 
-,, - ,  o 6 

0 0 0 

0 0 1 

where r l ,  r2, r3 are the classical Weyl group generators: 

rt = M 3 M I  = 

- 1  0 4 

1 1 - 2  

0 0 - 1  

0 0 0 

- 2  

1 

I ' 

1 

(30) 

(31) 

(32) 
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r2 = M2M4 = - 1  - 2  0 1 ' (33) 

0 1 - 

- 1  0 0 
r 3 = M 5 M 6 =  0 0 0 - (34) 

0 0 - 1  

and M~3, M~4 are the monodromies  associated to the vanishing cycles v~ = (0, 1 , 0 , - 2 )  
and v~ = (0, 1 , - 1 , 0 ) ,  where M; denote monodromies associated with branches with 

R e v  < 0. 

3.2. Solution in the semiclassical regions 

We are now going to compute the period integrals in the two semiclassical regions 

v --+ oo and u ~ oo. In each of these regions we find a basis for the solutions of  the 

Picard-Fuchs equations consisting of  two power series and two logarithmic solutions. 

To match them with the four periods we analytically compute the period integrals to 

leading orders. 
For v ~ oo we make the power series ansatz 

co= Z c(n'm)u"+svm+r" (35) 
n)O,m<~O 

One finds ( s , t )  = ( 0 , + 1 ) .  For each set of  indices one can find one power series 
solution and one logarithmic solution of  the form 

a = w l n ~ - ~ +  ~ d(n,m)u"+Sv m+'. (36) 
n)O,m~<O 

a and b are constants to be determined. As we did not find asolu t ion  in closed form of 
the recursion relations for c(n, m) and d(n, m),  we give here only the first few terms 

of  the solutions. 
For (s,  t) = (0, ½) we get the following expansion: 

O.)1 = U1/3 35 A 6 7 ~ U  4 19019 A 12 

104976 vs/3 1944 vs/3A4 11019960576 v 11/3 
A42 u 2 1 U 3 

81 vs/3 81 v5/3 + . . . .  (37) 

s21 = w t  In A43 137 1 56 11 t~t A4 39737 1 A412 
v 209952v'~-7~ 4 1296v5/3 4 -  9183300480v11/3 

A24 u 2 47279 u_.u__Ai0 1 u 3 
27 vs/3 510183360v11/3 4 18 U 5/3 + " '"  (38) 
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and for the second set of  indices (s,  t) = ( 0 , - ½ ) :  

73 

A ] u 385 A48 55 bt A6 279565 A 14 
o92 = v-]7~. 3 + 6v-T~ + 41990~ vv/---3 4" 4-~4 v -gT~ 4 4" 449079842304v13/3 

5 u2 A4 10 u3 A2 
4" ~U-'7 ~ 44-- 8107/3 4 4- . . . .  

__ _ _  103 u 6 9833323 A414 a22 = o92 In A43 + 5273 A] 4, - -  v~7~A4 -4- 
v 1679616 u 7/3 2187 411411861504 v13/3 

7 u2 A4 11 u3 A2 
-4- 27 vT/3 4 "Jr- 18 U 7/3 4 4- . . .  

(39) 

(40) 

Having found the power series and the logarithmic solutions it remains to calculate 

the period integrals to leading orders, to determine the coefficients in ai = Pil o91 4"Pi2 o92 

and aDi = qil o91 4. qi2 o92 -Jr- qi3 ~1 4" qi4 f22. 
The first step in computing the period integrals ai = fa,/I  and aDi = f/3j A is to expand 

the six roots gi of  the curve y2 = 1-ii(x _ ei) around v ~ oo with the result 

A4 
6'1= T 

A4 
e 2 = - ~  - 

A4 
e 3 = ~  - 

l 2 
4"/91/3 4" 9 - - ~ A 4  4" . . . .  

~'2 A 2 . . . .  
4"4-(U1134" 9 ~ 7 5  4 " 

+ (2v113 + 9 ~ 3  A] + . . . .  

A4 Vii3 1 2 
e4 = ----5- q- 4" 9~75 A4 4" . . .  

A4 (2 A 2 . . . .  
e5 = - - T 4 " ~ ' U 1 / 3 4 "  ~ 4 4  " 

A4 ,.2vl/3 sr A2 
e6 = - --~- 4. 4- 4- 9UI/3 4 . . . .  

(41) 

where ( = e 27ri/3. 

The pairs of  roots which correspond to the basic cycles chosen in Fig. 1 are 

Ogl ----+ ( e 5 , e 2 )  , 

42  --+ ( e6 ,  e3 ) , 

fll -+(e5,e4), 

f l 2 - - + ( e l , e s ) .  (42) 

In order to treat the poles of  .,l in the integrals separately we split the integration region 
by introducing an arbitrary parameter ~. At the end of  the calculation the period integrals 

will have to be independent of  s c. Inserting the meromorphic one form (12) ,  the integrals 
are of  the form 

fdx (x3 + ux + 2v) 
1i= ! { H ~ = ' ( x - e / ) } l / 2  

(43) 

I f  we now introduce d l i =  l ( e  1 -4- e4), A2 :k = $(e2-4- e s ) ' ,  Af  = $(e31 ± e s ) ,  Ai+ 34" = _+_Ai ~, 

change variables such that x = pA 7 4. A + and use the expansion (x 3 + ux 4. 2v) = 
3 ~ k ~,--o elep , we get 
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vi 2 ,i=fdpY~.~_-og'l~Pkjl- I { I (I+ o-j .1. )} 
., (/1.+ -- /1+)(1 -- p~.j) 2(1 -- , j p ) 2  . . . .  

1 j¢~i-3 

(44) 

where o-j = A-[ / (A. + - A + ) and E.i = A? / ( A  + -- A +) and Pi -~ ( ~  -- /I 7 ) / / 1 7 .  We can 
now express Ii in terms of basic integrals 

pm 

1 , ; '  = d o  ( p  2 - 1( 1 - cO)"" 
1 

By carefully doing the integrals in the complex plane, we get the following result for 
the periods: 

e5 

a, :2/.:2(;., + ( 4 5 )  

e2 

e3 

az=2f a=2((2wl+l(oJ2), (46) 

e6 

e4 / '{ a m = 2  ,~ = / - - ~  w2 ( - 3 ln(108) (2 + ( )  + i¢r(17( -t- 8)) 

e5 

.1.~1 ( - 54 ln( 108)(1 - ( )  - i7r18( 17( .1. 9) ,1, 108(1 - ( ) )  

.1.2(2 ,1, ()/~2 .1. 36(1 - ()/~l } ,  (47) 

e3 

a., = z f a= i--J-ga {o'.(3ln('08)(( -- ' ) + i:(--'3( -- 9) ) 
el 

.+wi (54 In( 1 0 8 ) ( - (  - 2) .1. 18(4i¢r ,1, 13irr( .1. 6(  .1. 12)) 

+2( 1 - ()/~2 + 36((  + 2)/21 } .  (48) 

Having expressed the periods in terms of power series and logarithmic solutions, we 
can check the monodromies by taking v --+ e2rriv, resulting in 

-1  1 - 5  0 / 
aTL,__+~ -1  0 - 2  3 

0 0 0 1 
0 0 -1  -1  

(49) 

This monodromy is S p ( 4 ,  Z)-conjugate to (31). 
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Similarly, we now construct solutions for the regime u ~ oo. There is one power 
series and one logarithmic solution for the indices (s, t) = (1 /2 ,  0):  

w, = x / u +  1 A~ 3 A~ + 5 A~ 175 A] 3 v 2 
16 x/~ 1024 u3/2 16384 uS~ 2 4194304 uT/2 8 uS~ 2 

(50) 

1 A~ 1 A~ 265 A~ v 2 Ol =wllnA~ 1A~ + - - - - +  
u 8 v/-ff 1024 u3/2 49152 uS~ 2 25165824 uT/2 uS~ 2 + . . . .  

(51) 

and another set of solutions for (s, t) = ( - 1 ,  1): 

v v 3 l) 3 A2 u 5 21 v 5 2 21 v5A4 v 7 
0 ) 2 = - - +  + 7  4 +  -2-ff ffa4 T U  91x4 12U i-6 . . . .  U ~ 3 7 +  + + + 9 0  A ] +  

(52) 

( v S A  6~ 1 v A2 _ 1 v A4 1 v A6 
& = ° ~ 2 i n c - s - / + ~  4 ~ 7  4+Tiff7 4 

1 v A48+ l 1 9 v  3 l v A~o+ (53) 
1024 u 5 6 b/4 nt- 512~ U 6 " ' "  

The roots of  the curve expand in the region u --+ oo as 

U U 2 U U 2 

e l = - - - + ~ A 4 +  . . . .  e4=  A4+  
t/ R U 3 "'" ' 
A4 A4 

e 2 = - T + V ~ +  . . . .  e5 = T + v"ff+ . . . .  

A4 A4 x / ~ +  . . ' e6 = ~ -  - x / - d + . . .  
e 3 -  2 

The integrals for the periods are calculated in the same manner as before, 

(54) 

¢2 

a l 2 l  l ~w2 - o J l )  , 

e5 

e3 

a2 = 2 / A = 2 (~t-o2 -- t, Ol) , 

e6 

el 

/ 2 31n2~ 
oo,=2 + 

e2 

e6 

a 0 2 = 2  "~=i~- o)2 - 2 - - -  

e4 

1 10 , w l ( - 1  + 3 1 n 2 )  - ~ a 2 2 -  ~ i] 

3122 ) 1 1 0  . + W l ( - I  + 3 1 n 2 )  + ~s22 - ~ 1] 

(55) 

(56) 

(57) 

(58) 

The resulting monodromy matrix of  the periods in the regime u --+ oo conjugate to 
Mu~oo (30) is 
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0 -1  - 7  8"~ 
-1  0 8 - 7  

0 0 0 -1  ' 
0 0 -1  0 

(59) 

3.3. Prepotential 

In the previous section we found two power series and two logarithmic solutions of the 
Picard-Fuchs operators for the semiclassical regions u ~ cc and v ~ oo and determined 
the periods ai(u, v) and aDi(U, V). In this section we calculate the prepotential 5r(al, a2) 
by integration. 

Since the periods ai(u, V) are expressed in terms of the Casimirs u and v, the prepo- 
tential is readily obtained by integrating the following two equations: 

a ~  aai(u, v) 
- -  = a D i ( U , V ) - - ,  ( 6 0 )  
0u 0u 

c~____~_~ = aDi( U, V) Oai( u, v) (61) 
?v av 

The integrability condition (aaDi/0v) (Oai/au) -- (aaDi/Ou) (aai/av) = 0 can be used a s  

a check for the period integrals ai and aDi. Integrating (60), (61) yields the prepotential 
~-(u, v) = ~-ctass(U, v) + ~rl_loop(U, v) + .Finst(U, v), which contains power series in u, 
v and A4,  a s  well as logarithmic terms. Our aim is to express the prepotential ~ in 
terms of the periods ai. For that we introduce the central charges Zi = (tei, a) with 
tel E A+(A2) and a = (a l ,a2)r :  

ZI  = 2 a l  - a 2 ,  

Z2 = 2a2 - al , 

Za=Zl +Z2. (62) 

In these variables the prepotential is a homogeneous function of degree two. The classical 
prepotential .T'class is proportional to ~ = l  Z/2 and the one-loop part contains logarithms of 
Zi multiplied with homogeneous polynomials in Zi of degree two. The proportionality 
constants can be found by matching the expressions as functions of u and v against 
: ' ( u ,  v). In this way one obtains simultaneously .~'class and .T'l_loop as functions of al 
and a2. For u --~ ~ we get 

3 
1 

• T'class - 4i7r ~ Z/z' (63) 
i=1 

, 1 
=-4i ' r r  Z Z/2 In + ) In • FI- loop i=1 ~, A4 J ~ L \ 3 k, 3-A4 / 

+ ( ~ + ~ 3 )  ~ ( ~ _ + ~  ~ ( z , + ~  ( z , + ~  
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For v ~ c~ we find the same result up to an overall minus sign. This observation holds 

for all results in this and the following section. 

After subtracting the classical and the one loop part from the prepotential a power 
series in A ] remains which gives the instanton contributions. The individual contributions 

can be summed up in terms of  Zi. Here we give the result for the one- and two-instanton 

corrections, cf. (3) :  

i ( u03" ] (64) 

i ( l u~ 7 u 5 5 U8o ~ 
U 2 = - ~  6A0 6 A  2 + ~ A 0 3 / ,  (65) 

g where uo = a 2 + 02 - ala2 = 1 ~-~i Zi 2 and A0 = 1--[i Z2" 

4. N f = 2  

4.1. Monodromies 

Proceeding similarly to the case N f  = 4 we determine the monodromies for Nf  = 2 

by fixing v = 1, u = - 2  as a base point in the moduli space .A.4Ns=2 and looping around 

the zero loci of  ANj=2. Tracing the motion of  the roots of  the curve in the x-plane leads 

to the vanishing cycles, from which we determine the monodromies. 

If  we take the basic cycles to be the same as in the case N f  = 4, we get the following 

vanishing cycles (see Fig.4): 

V 1 = ( 1 ,  1 , 1 , 0 ) ,  

v2= (1, 1,2, 1 ) ,  

v3 = ( 1 , 0 , 3 , - 1 )  , 

/ - ' 4 - - - - ( 1 , 0 , 1 , 0 ) ,  

v5 = (0, 1 , 0 , - 1 ) ,  

/"6 -- ( 0 ,  1 , - - l ,  1) . (66) 

In the case Nf  = 2 the structure of  the moduli space can easily be read off from (8) ,  

which reads for A2 = 1 

ANI= 2 = v2(4(u + 1) 3 - -27v  2) (4(u  -- 1)3 _ 27v2).  (67) 

There are two cusps at u = 4-1, v = 0 at each of  which six branches meet. In addition 

there are four nodes at the points u = i/x/~, v = 19 (1  + i)/(8,~/3) and u = - i / x / ~ ,  
v = ~z9(1 - i)/(8,~/3).  

The semiclassical monodromy in the region v ---+ cxD is 
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//2 

//4 

//3 

//1 

P5 

Fig. 4. Vanishing cycles for Nf = 2. 

/ / M , , ~ c ~  = (M1 • M 7 "  M ~ .  M ~ ) - 1  = 1 0 6 
0 0 0 

0 0 1 

(68) 

where M7 comes from 1,7 = ( 1 ,1 ,0 ,  - 1 ) and M~ and M~ coincide with M5 and M6. In 

the region u ~ ec we get 

Mu-.oo = M 6  • M5 • M 2  • Ml • M 3  • M 4  = 
- 1  0 8 

0 0 0 

0 0 - 1  

(69) 

4.2. Solution in the semiclassical regions 

The procedure is identical to the one in Section 3.2, we will therefore be brief. Solving 

the recursion relation for v ~ c~ gives one power series and one logarithmic solution 

associated with the indices s = 0 and t = !.  3" 

Wl = U1/3 1 u 4 5 A~ 2 1 u 3 5 u2 A8 
54 v--~ A2 26244 vii~ 3 81 vS/3 1458 v I l/3~2 

10 U 4 A4 
2187 vE~ 3 ~'2 + . . . .  (70) 

.O1 = wl In A32 + 1 u 4 7 A~ 2 1 u 2 A8 
--v-- ~ v  - - ~ A 2  + 26244v11/3 + 3 2 4 0 ~  3 2 + ' - '  (71) 

A second solution can be found for s = 0 and t = -½:  

u 1 A 8 1 u 2 A4 175 u Al2 91 1 a20 
(.02 = O--]-~/3 q-- - -  - -  -~-- q- ~- 216vv/3 ~-~v--q7 ~ 2 104976vl3/3~,2 56~~704vi~/3 2 

1 u 4 175 u 3 A12 35 u5 A4 
+~-~v--~/3 + 17--~6vl-57g 2 -'t- 4374VqT/3~12+ . . . .  (72) 

f22=to21nA23+ 1 A 8 1 U 2 4 1945 u a l  2 l U 4 

9--6 v 7/-----~ + -9 v-~/3A2 + 4 1 9 9 ~  vl-~ g'~2 + 1-8 v7/-----~3 
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85 u 3 A8 
+2ff~2v~-/3 2 + . . .  (73) 

We expand the roots in the semiclassical region v ~ ~ ,  which are needed for 
calculating the integrals, 

A2 + u A2 - u 
el = u 1/3 Jr- 3vl/------- T 4- • • • e4 = O 1/3 - -  + 

' 3v1/3 . . . .  

;2(A2 + u) 
e2 = ; v  1/3 + 3vl/3 + e5 = ; v  1/3 ; 2 ( A 2  --  u )  

. . . .  3vl/3 + . . . .  

e3 = ; 2 v 1 / 3  -q'- ( (A2  + u) ; 2 V 1 / 3  ; (A2  - u) 
3 v U 3  + . . . .  e6 = 3 v , / 3  + . . .  (74) 

The period integrals are calculated in a way parallel to the c a s e  NT = 4 with the 

result: 

e2 

a, = 2 / J = 2 (¢-o1; --t- ~-~-;2) , 

e5 

e3 

e6 

e4 

I l{< aDl ~ 2 A = ~ O91 1 57i7r; - 27i~ + 36(1 - ; )  

e2 

+ 9 1 n ( 1 0 8 ) ( ; -  1) )  

+ o 9 2 ( -  3 1 n 1 0 8 ( ; + 2 )  + 1 9 i ~ ; +  10i~) + 12(1 - ;)s21 

+ ( ;  + 2)4s22},  

(75) 

(76) 

(77) 

e6 

a m = 2 f a = - 9 ~ { o 9 1 ( I n ( 1 0 8 ) 9 ( l + 2 ; ) -  6i~ ' ( ;2  + 2 ; )  + 2 1 i 7 r -  36(1 + 2 ; ) )  

el 

+o92 (3 In 1 0 8 ( ;  + 2) + 2i7r; 2 + 11 iTr;) - 12/21 (1 + 2 ; )  

- 4 0 2 ( 2  + ; ) } .  

They undergo the semiclassical monodromy 

(78) 

(,,, 0 6 4 

M v ~  = 0 0 0 ' (79) 

0 0 1 

which is conjugated to (68) .  
The region u ---, ~ gives rise to a set of  solutions with indices (s  = l ,  t = 0) and 

(s  = - 1 , t  = 1). For s = ½ and t = 0 we get one power series and one logarithmic 

solution: 
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1 a 4 15 a 8 3 O 2 105 A 12 
(.01 = V ~  16 u3/2 1024 u7/2 8 uS~ 2 16384 ull/2 

105 U 2 /14 15015 A 16 

128 u - ~  ll2 4194304 ulS/2 + . . . .  (80) 

A 2 1 A 4 13 A28 1 v 2 
S21 = oJ1 In ~12 + - -  + - -  

u 16 u3/2 2048 uT/2 4 U5/2 

163 a 12 37 V 2 A4 + (81) 
+98304  ull/z 1 2 8  u 9 / 2  " " " 

and a second set of  solutions for s = - 1  a n d  t = 1: 

U 1 g A4 3 u_V_A 8 U 3 5 VAI 2 ~: O 3 A 4  ± 35 v AI 6 
~o2 = - + + + +-,7g~12 r 1 ~ - -  ~ 2 + .  (82) 

In cA3 3 v 4 3 v 8 25 v 3 23 v A12 2 4 1  U 3 A 4  + (83) 
~22=~02 - ~ - + ~ - ~ A 2 + ~ A 2 + - - ~ - ~ - - g + i - ~ 7  2 + " ] - ' 2 U 6 " x 2  " ' "  

For the integration we expand the roots of  the curve in the limit of large u: 

U U 2 U U 2 
el - . . . .  u 3u --~A2 + . . . .  e4 = - -u  + 3 ~-gA 2 + . . . .  

1 ( -A22  + ~ ) + . . .  
e 2 = v /ff + -~ \ v /-ff 

e3 = - v ~ +  ~ \ v / ~  

For the period integrals we find 

es=v + + . . . .  

I ( _ A  2 v )  
e6 = - v / - u +  ~ \ v/if + + . . .  

e2 

al = 2 f  
e5 

e6 a2=2/ 
e3 

e4 

aDl =2f 
e2 

e3 

aD2=2/ 
el 

which leads to 

1 
A = 2 ( - W l -  ~ w 2 ) ,  

1 
A = 2 ( - - o 9 1 +  ~o92),  

 ,n2) - A= ~o1(-2 + 31n2) + w2(1 + ~ 

A = 2 ( w l ( - 2  + 31n2) + o92( - 1 - 

the following monodromy matrix: 

0 - 1  - 7  9 
- 1  0 5 - 3  

0 0 0 - 1  
0 0 - 1  0 

31n2)  _/'21 + a22), 
2 

This is conjugated to (69) .  

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 
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4.3. P r e p o t e n t i a l  

As in the Nf = 4 case, the instanton corrections to the prepotential are obtained by 
subtracting f'cia~s and UHoop from .Y'(u, v). For both weak-coupling regions we find 

3 1 ( ln2"~ 
f d a s s = 2 i ~ . Z  Z2 1 +  3 ) '  (90) 

i=1 

(z, 2 ,s  ,-z22 in + ) l n  
4i~-i=l \~22J ~ 7 \ 3A2 J 

r , 2 + : ,  2 

The coefficients of A~ and AS in the instanton series sum up to 

5~ l -  4iug , (92) 
A0 

i ( 8  u~0 2 ~3 ~ Y 2 = - ~  ~oo-112 +360Ao j ,  (93) 

with u0 and A0 as before. 

5. Instanton corrections by an alternative method 

So far we have seen how to determine the prepotential from the periods ai and aDj. 

This requires knowledge of all four solutions of the Picard-Fuchs equations. However, 
our ansatz for the logarithmic solutions does not work for all N f .  We now present an 
alternative way to derive the prepotential which requires only knowledge of the power 
series solutions of the Picard-Fuchs equations..3 We will apply this method to N f  = l ,  3 

and 5 in the semiclassical region u --~ c~ and check our previous results for N f  = 2 and 
4. 

Classically, i.e. for ANs ~ O, the Casimirs are given by 

3 1 
uo = g Z Z2 = a2 + a2 - a, a2, 

i=1 

vo = a i a 2 ( a l  - a2) . (94) 

Inverting the above equations we get 

al =p+ ÷ p - ,  

a2 = --•p+ -- (2p_ , 

3 This method can also be applied to other patches of the moduli space. 

(95) 
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where 

± 1  4 P:t: ---- ( 2  2~ / -- 4U3)  1/3. 

On the other hand, evaluating ai for uo ~ oc we get a l  ,~ X / ~  ÷ ½tJO/UO and a2 "~ 

- ½vo/.o. 
Since we know that in this region the Picard-Fuchs equations give two power series 

solutions wl and o92 with asymptotic behaviour o91 = v/-ff + . . .  and o92 = v/u ÷ . . . .  the 

periods must be of  the form aj = wl + ½w2 and a2 = w l -  ½o92, differing in normalization 

from our previous conventions for the period integrals by a factor of  ( - 2 ) .  

Now we use a relation between u and 5 t" derived in [23,24,28] to obtain the instanton 

corrections of  the prepotential: 

4i7r (.)c _ 1Z 0 ~  
u ( Z ) -  (2Nc- - -Nf )  2 J-~jjJ 

= Z 2 ÷ 2i7r Z ~-,, . . . .  (2Nc--Nf)n I L ) n./INi 
i=1 n=l 

(96) 

u itself has a power series expansion in  ANs , namely u ( Z )  = uo+Y]~,,~l ~n( ZhA(2Nc-NT)n ] ~ XNf 
with uo defined in (94) .  Summing the series for u by rewriting it in the variables Zi 
yields the instanton corrections to the prepotential. 

For Nf  = 1 . . . . .  5 we determine the two power series wl and w2 again by using the 
Picard-Fuchs equations and find for u 

9 v0 .5 ( 6 3  u 2 135 u5"~AlO O(A[5)  
N f = I :  u = uo -- ~ ~OO A , - -~ A~ 8 -~oo J l + , 

( 1 7 U3o 45 u 6 "~ 1 u02A24+ + ~ ~ 2 J ,  
N f = 2 :  u=uo + ~ A ° -8-Ao 4 A 2 --8-~00 }AS + c'~(a'2' 

3 uol)Oa 3 ( 1 uo 35 U 4 15 U 7 "~a 6 0 ( A 9  ) 
N f = 3 :  u=uo 4 Ao 3 -  2 4 A o + 4 8 A ~  8~oo } 3 +  , 

1 ( 1 -  U3"~A2 (~4 u2 7 U5 5 bt8\ 4 
Nf  = 4 : u = uo - -~ "~00 ]1~4 + + O ( A  6) Ao 24 / I  2 -8-~oo )a4  + ' 

l u2vo ( 5 1 u 3 + 49 u 6 5 u9"~A 2 o ( a ~ )  
N T = 5 :  u=uo 4 --~o A5 - 216 72/1o 43~/1o 2 2 4 ~ o  j 5 +  • 

(97) 

From these equations and (96) we can read off  the one- and two-instanton corrections 
for all Nf .  For the two cases Nf  = 2, 4 calculated at length above we can compare the 
results if we take into account the difference in normalization, which yields u0 = u~/4, 
vo = - v ~ / 8 ,  Ao = A~/64 and b t" = 5re/4,  where E marks the conventions used in the 

first four paragraphs. 
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For example for N f  = 2 we have 

.T.1 e = Gf  4i (gE) 2 
2i7r -- 7r A E ' 

. T ' f -  ; E  i 8 (u~) 3 (u~) 6 
4 i ~ -  7r(A-~ - 1 1 2 ( - ~ - ~ )  2 + 3 6 0 ~ ) ,  

which agrees with (92) .  For Nf  = 4 we find agreement with the results (64) .  

For the one- and two-instanton contributions for Nf = 1,3, 5 we find 

1 9 vo 
N f =  I : .T'l- 

2zri 4 Ao ' 

5t-2 : _ 1__~ (63  Uo 2 
47ri \ 16 A 2 

1 3 u0v0 
N / = 3 :  .~1--  - - ,  

27ri 4 A0 

1 ( 1 uo 
5c2 = - ~ 24 A0 

1 1 u2vo 
N f = 5 :  U l -  27ri4 A~-' 

1( 5 
S'2 = - ~ /  216 

135 u~)  

8 A03 ' 

35 U 4 15 U 7 "x 
+ 

48 8 

1 u 3 + 49 u 6 5 u 9 

72 A0 43~ A g 24 A30)" 

(98) 

(99) 

(1oo) 

(101) 

With both methods we can easily calculate higher-order instanton corrections as well. It 

would be nice to verify these results by explicit instanton calculations. 
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