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We study the radiation from a collision of black holes with equal and opposite linear momenta. Results are
presented from a full numerical relativity treatment and are compared with the results from a ‘‘close-slow’’
approximation. The agreement is remarkable, and suggests several insights about the generation of gravita-
tional radiation in black hole collisions.@S0556-2821~97!05902-X#
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I. INTRODUCTION

The collision of two black holes is now being studied
extensively via the techniques of numerical relativity@1#.
Collisions are of great importance as the most interesting
source of gravitational waves that might be observable with
interferometric detectors@2#. The study is also of great in-
herent interest to relativity theory in that supercomputers al-
low us to investigate strong field gravity effects without sym-
metries which might preclude interesting or crucial
phenomena. In dealing with such a daunting problem, useful
checks, guidelines, and insights have been provided by ana-
lytical approximations, in particular by the close-limit ap-
proximation@3#. In principle, this method applies when the
holes are initially very close together. In this case, the hori-
zon is initially only slightly nonspherical and the spacetime
that evolves outside the horizon can be treated as a perturbed
single black hole. The highly nonspherical nature of the
spacetime inside the horizon is causally disconnected from
the exterior, and from the generation of outgoing gravita-
tional waves. The exterior spacetime can be evolved forward
in time from the initial data hypersurface with the linearized
equations of perturbation theory.

This method turns out to be remarkably successful@4–6#.
The details of this success may give insights into the nature
of collisions of holes. For holes that are initially momentarily
stationary, the close-limit predictions of radiated energy and
wave forms are quite good~i.e., in agreement with the results
of numerical relativity! even when the initial horizon is
highly distorted, violating the assumptions underlying the
method. The close limit has been used by Abrahams and
Cook @7# for the head-on collision of holes with initial mo-
menta towards each other. This momentum causes horizons
to form when the holes are at larger separation and makes the
exterior spacetime more spherical, so it is not surprising that
the close limit should be successful for these cases. Puzzling
results emerge, however, when close-limit calculations are
combined with Newtonian trajectories to estimate the radi-
ated energy for initiallylarge separations of initially station-

ary holes. The success of these estimates suggests, among
other things, that to a large extent the role of the early weak-
field phase of the evolution is to only to determine what the
momentum of the holes will be when they start to interact
nonlinearly.

With that suggestion as one of our motivations, we con-
sider here equal mass holes which are initially moving to-
wards each other with equal and opposite momentumP. We
analyze the problem with an approximation simple enough to
allow insight, and we present, for comparison, the results of
full numerical relativity for the same initial black hole con-
figuration. In a certain sense, this study complements that of
Ref. @7#. The initial data sets being studied are representa-
tions of the same physical system; in Ref.@7# the data were
‘‘exact’’ ~up to numerical error! solutions to the initial value
problem, however, in the current study we have more control
over the approximations implicit in the perturbative analysis.
In Sec. II we present the general formalism for the problem
and briefly discuss the full numerical solution. In Sec. III we
describe an approximation based on the close limitand on
slow initial motion. Results of both methods are presented
and discussed in Sec. IV. Throughout the paper we use units
in which c5G51, andM represents the total Arnowitt-
Deser-Misner~ADM ! mass on the initial hypersurface.

II. INITIALLY MOVING HOLES

The initial value equations for general relativity are@8#

¹a~Kab2gabK !50, ~1!

3R2KabK
ab1K250, ~2!

wheregab is the spatial metric,Kab is the extrinsic curvature,
and 3R is the scalar curvature of the three metric. One pro-
poses a three metric that is conformally flatgab5f4ĝab ,
with ĝab a flat metric, andf

4 the conformal factor, and one
uses a decomposition of the extrinsic curvature
Kab5f22K̂ab . The constraints become
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¹̂aK̂ab50, ~3!

¹̂2f52
1

8
f27K̂abK̂

ab, ~4!

where¹̂ is a flat-space covariant derivative.
In describing how Eqs.~3! and~4! and the 311 evolution

equations are solved numerically, it is useful to have at hand
three different coordinate systems. Of greatest relevance to
the numerical method are the Cˇ adežcoordinates, a system
which is particularly well-suited for the collision of two
black holes and which has been used extensively in numeri-
cal studies@9,10#. These coordinates are spherical near the
throats of both holes and in the asymptotic wave zone, so
they simplify the application of both inner and outer bound-
ary conditions. It is useful also to refer to two coordinatiza-
tions of the flat conformal three space: cylindrical coordi-
natesr,z,w, and the bispherical-like Misner@11# coordinates
m,h,w. The fact that the problem is axisymmetric, of course,
reduces the spatial computational grid to a two dimensional
one. By choosing to consider only equal mass holes with
equal and opposite momenta, we have a further symmetry
which reduces the size of the computational grid to a quad-
rant, (w50,z.0). We characterize the separation of the
holes with the Misner parameterm0, and construct the coor-
dinate grid independently for each choice ofm0. Details of
the grid computation are given in Refs.@12,13#.

To solve the momentum constraint~3! we follow the pre-
scription of York and co-workers@14# and Cook@15,16#.
This starts with a solution to Eq.~3! that represents the mo-
mentum of one hole:

K̂ab
one5

3

2r 2
@2P~anb!2~dab2nanb!P

cnc#. ~5!

Here the hole is associated with some point in the flat con-
formal space,rW is the vector from that point, andnW is the unit
vector in therW direction. The next step is to modify Eq.~5! to
represent holes centered atz56cothm0, the centers of the
circles m56m0 in the conformally flat metric. Since the
momentum constraint~3! is linear, one can simply add two
expressions of the form~5!:

K̂ i j
two5K̂ i j

one~z→z2cothm0!

1K̂ i j
one~z→z1cothm0 ,P→2P!. ~6!

For convenience, the initial data is forced to obey an
isometry condition, i.e., we operate on the momentum con-
straint solution with a reflection procedure equivalent to add-
ing image charges in electrostatics. The result of this proce-

dure is to create a solution which corresponds to two
identical asymptotically flat universes connected by two
Einstein-Rosen bridges. The nature of this symmetrization
process, and the boundary condition it provides for Eq.~4!,
affects the mass of the holes being represented. Cook@16,17#
has also used this approach to develop codes to compute
symmetric initial data solutions for axisymmetric and full
three-dimensional~3D! data.

The Hamiltonian constraint is solved by linearizing equa-
tion ~4! around a solutionf1 so thatf5f11df, discretiz-
ing to second order the resulting linear elliptic equation,
solving the matrix equation fordf with a multigrid method,
then iterating the procedure until a convergence tolerance of
df/f1,10210 is achieved. It has been verified that for
K̂ab50, the solution forf converges quadratically with cell
size to the time-symmetric Misner data@11#.

The symmetrized initial data forf and forKab are now
used as the starting point for numerical integration. The evo-
lution employs maximal time slices and the shift is deter-
mined by an elliptic condition that forces the three-metric~in
Cadez coordinates! into diagonal form@5#. The numerical
errors inherent in the method~to be described elsewhere! are
similar to those in Ref.@5#. We have verified that the con-
vergence rate for the total radiated energy scales quadrati-
cally with grid spacing and that differences in the dominant
l 52 wave forms are on the order of a few percent at the
grid resolutions used here. The errors are small on the scale
of Fig. 2, and do not affect any conclusions to be drawn from
that figure. The methods used for the numerical evolution are
described in detail in Ref.@10#; we modified only slightly the
code described there for evolving the time symmetric Misner
data.

III. APPROXIMATION METHOD

The close-limit approach can be applied to the Cook@17#
initial data, as has been done in Ref.@7#. But the Cook initial
solution is numerical. To facilitate insights we make a fur-
ther approximation. We assume that the black holes are ini-
tially close, and that the initial momentumP is small. Our
solution for the extrinsic curvatureK̂ab is K̂ab

two from Eq. ~6!,
the simple superposition~without symmetrization; this effect
will be discussed later! of two one-hole solutions. We denote
by nW 1 and nW 2 the normal vectors corresponding, respec-
tively, to the one hole solutions atz51L/2 and at2L/2,
and we defineR to be the distance to a field point, in the flat
conformal space, from the point midway between the holes.
For largeR, the normal vectorsnW 1 and nW 2 almost cancel
@18#. More specificallynW 152nW 21O(L/R). A consequence
of this is that the total initialK̂ab is first order inL/R, and its
(R,u,w coordinate basis! components can be written as

K̂ab5
3PL

2R3 F 24cos2u 0 0

0 R2~11cos2u! 0

0 0 R2sin2u~3cos2u21!
G . ~7!
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In addition to being first order inL, the solution forK̂ab is
first-order inP and therefore the source term on the right in
the Hamiltonian constraint~4! is quadratic inP. If we limit
ourselves to a solution to first order inP we can ignore this
quadratic source term.~In Sec. IV, a more thorough discus-
sion will be given for this step of ignoring the source term.!
Without the source term the Hamiltonian constraint reduces
to the zero momentum case, the Laplace equation. The sym-
metric solution to this~i.e., the solution for two identical
asymptotically flat universes! is the Misner solution@11#, and
this is the solution we take. The Misner geometry is charac-
terized by a dimensionless parameterm0 which describes the
separation of the throats. We must, of course, choosem0

appropriate to the parameters of the extrinsic curvature we
are using. We choose therefore a Misner geometry charac-
terized by the same value ofL as in Eq.~7!. SinceL there
represents not the physical distance, in any sense, between
the holes, but the formal distance in the conformally flat
space, we choose a Misner geometry with the same value of
L in the conformally flat part of the Misner metric. The re-
lationship ofL to m0 is ~see, e.g.,@4#!

L/M5
cothm0

2S1
, ( 1[ (

n51

1

sinhnm0
. ~8!

This completes the description of the initial data to first order
in L and to first order inP ~the close, slow approximation!.
We now view the spacetime exterior to the horizon as a
perturbation of a single Schwarzschild hole described in

standard Schwarzschild coordinatest,r ,u,f. Even-parity
perturbations are then described by a Zerilli functionc. Ac-
cording to the general prescription given in Ref.@3# the value
of c on a t50 initial hypersurface is found from the initial
value of the three geometry. Our initial geometry, to first
order inP, is exactly the same as the zeroP solution in Ref.
@4#, where the Zerilli function is denotedcpert, and is given
in Eq. ~4.29!, along with ~4.10!, ~4.27!, and ~4.28!. In that
reference it is shown that in the close limit, the quadrupole
contribution dominates, with contributions forl .2 higher
order in the separation parameter. Here we shall consider
only thel 52 contribution, and shall denote the Zerilli func-
tion, corresponding to this Misner~i.e., P50) problem, as
cMis(r ,t).

The initial value ofċ, the time derivative of the Zerilli
function, follows from the extrinsic curvature as explained in
@3#. The extrinsic curvature is given, in our approximation,
by multiplying K̂ab in Eq. ~7! by the squared reciprocal of
the conformal factor for the Schwarzschild geometry,
fSchw511M /2R. We must map the coordinates of the ini-
tial value solution to the coordinates for the Schwarzschild
background. To do this, we use the same mapping used for
the initial value ofc in @4#: we interpret theR of Eq. ~7! as
the isotropic radial coordinate of a Schwarzschild spacetime,
and we relate it to the usual Schwarzschild radial coordinate
r by R5(Ar1Ar22M )2/4. From this we arrive at the fol-
lowing expression for the~Schwarzschild coordinate basis!
components of the extrinsic curvature:

Kab5
3PL

2r 3 F 24cos2u

122M /r
0 0

0 r 2~11cos2u! 0

0 0 r 2sin2u~3cos2u21!

G . ~9!

Here we have used the fact that

f2'fMis
2 'fSchw

2 5r /R5
1

A122M /r

dr

dR
. ~10!

From Eq.~9!, which contains both monopole and quadrupole
parts, we can project out thel 52 part and read off the
initial value of the time derivative of the Zerilli function to
be

ċu t505224PLA 122M /r

r 2~213M /r !
A4p

5 S 41
3M

r D .
~11!

Along with cu t505cMis(r ,t50), this completes the specifi-
cation of the Cauchy data forc.

Given this Cauchy data, the time evolution is obtained by
evolving the Zerilli equation,

]2c/]t22]2c/]r
*
2 1V~r !c50, ~12!

where r *5r1 ln(r/2M21) and the Zerilli functionc is a
coordinate invariant combination of the perturbed metric co-
efficients; thel 52 ‘‘potential’’ V(r ) can be seen in Ref.
@4#.

The evolvedc can be decomposed into two components

c5cMis1cmom. ~13!

The first term is the solution of Eq.~12! for Cauchy data
c5cMis(r ,t50) andċ50 at t50. The second term is the
solution for t50 Cauchy datac50, and with ċ given by
Eq. ~11!. The two contributions are respectively zero order in
P and first order inP; the decomposition then represents a
separation into parts ofc due to the masses, and to the mo-
menta. The radiated energy is given by@5#

E5
1

384pE0
`

ċ2dt, ~14!

and can be written, in terms of the decomposition above, as
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E5
1

384p S E
0

`

ċMis
2 dt12E

0

`

ċMisċmomdt1E
0

`

ċmom
2 dtD .

~15!

The first term gives the same result as in the momentarily
stationary case; it is simply the radiation for the Misner ini-
tial geometry, as computed in Ref.@4#. The second term is
linear in the momentum of each hole. The coefficient of it is
given by the ‘‘correlation’’ ofcMis and cmom. As can be
seen in Fig. 1, this ‘‘correlation’’ integral is negative. The
anticorrelation is compatible with previous simulations done
by Ref. @7# using numerical initial data~see Figs. 3a,b in
their paper!. This means that for small values ofP, the radi-
ated energydecreaseswith increasing momentum. The ef-
fect is clearly visible in Fig. 2 where we show the radiated
energy as a function of the momentum,

Note that the first term is simply a function of the Misner
parameterm0. The second term depends onm0, but also
depends onL andP. We can writeL in terms ofm0 with Eq.
~8! to express all dependencies in Eq.~15! only in terms of
m0 andP/M . With the correct numerical factors we get the
final result of the close-slow approximation, a simple for-
mula for the radiated energy simply and explicitly expressed
in terms of the parameters of the collision:

E

M
52.5131022k2

2~m0!22.0631022
cothm0k2~m0!

S1
S PM D

15.3731023S cothm0

S1
D 2S PM D 2, ~16!

wherek2, as defined in Ref.@5#, is

k2~m0![
1

~4S1!
3(
n51

`
~cothnm0!

2

sinhnm0
. ~17!

In Fig. 2, we plot the radiated energy computed from Eq.
~16! for several values of initial separationm0, and for a
wide range ofP/M . On this plot, also, are presented the
results for radiated energy from numerical results computa-

tions which make no approximations. The agreement be-
tween the numerical results and the results of the approxima-
tion is remarkably good, even at rather large values of
P/M .

IV. RESULTS

Two features of Fig. 2 stand out. The first is ‘‘momentum
dominance:’’ the radiated energy is dominated by the third
integral in Eq.~15! unless the momentum is very small. The
second obvious feature is that the approximation method
works very well even for sizeable values ofP/M .

To understand the implications of these features, let us
start by reviewing the difference between the exact, nonlin-
ear numerical computation, and the approximation scheme of
Sec. III. In the exact method we start with an exact solution
to the initial value equations described by two parameters,
one a dimensionless measure of the separation of the holes,
the other a dimensionless measure of the momentum. The
process of generating the solution consists of four steps:~i!
One starts with a very simple prescription forK̂ab con-
structed by superposing two solutions of form~5! corre-
sponding to two coordinate positions in the conformally flat
space;~ii ! Eq. ~4! is then solved for the conformal factor and
hence for the three geometry;~iii ! the solution for the extrin-
sic curvature and the initial geometry is then ‘‘symmetrized’’
by an iterative process equivalent to adding image charges;
~iv! this solution is numerically evolved off the initial hyper-
surface with the full nonlinear Einstein equations.

By contrast, the steps for the approximate solution are~i!
the ~conformal! extrinsic curvature is taken to be the unsym-
metrized superposition of two contributions with the form of
Eq. ~5!, ~ii ! the conformal factor, and therefore the three
geometry, is taken to be the symmetrized solution corre-
sponding to throats located at the same points in the confor-

FIG. 2. Energy as a function of initial momentum. HereE is the
energy radiated during coalescence,P is the initial momentum, and
M is the initial ADM mass. Curves shown are for fixed parameter
m0, corresponding to separation of the holes in conformal space.
The curves clearly show the ‘‘dip’’ effect, and the good agreement,
even for large values of the momentum.

FIG. 1. The anticorrelation between the two components of the
perturbation,cMis andcmom, leads to the negative coefficient in the
energy vs momentum relation.
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mally flat space as the points inK̂ab , and~iii ! this approxi-
mate initial data is then treated as initial data for the
nonspherical perturbations of a Schwarzschild hole, and the
perturbations are evolved with the linearized Einstein equa-
tions.

The difference in evolution off the initial hypersurface
~full Einstein equations in one case, linearized equations in
the other! is not a major source of error in the interesting
cases, those with high momentum. As momentum increases,
the location of the horizon in the initial geometry moves
outward. The high momentum cases, therefore, correspond
to throats which, on the initial hypersurface, are well inside
an all-encompassing horizon. This is the situation in which
the ‘‘close-limit’’ approximation method should work very
well. It is also not surprising that no large error is introduced
by the failure, in the approximation method, to symmetrize
the extrinsic curvature. One way of understanding this is to
note thatcmom lacks the ‘‘image’’ contributions needed for
symmetrization. These images only influence the form of
K̂ab very close to the holes. As the separation between the
holes gets smaller the horizon moves further from the throats
and the effect of the images onK̂ab outside the horizon di-
minishes. We have checked numerically that the difference
between the symmetrized and unsymmetrizedK̂ab , for all
cases considered, is negligibly small outside the horizon.

These two aspects of the approximation method rely on
the throats being ‘‘close’’ in some sense, an approximation
that seems well justified. What remains to be explained is
how the slow-limit approximation does such a good job of
approximating the very ‘‘unslow’’ correct initial data. We
must also justify the apparent inconsistency in how the ap-

proximation scheme deals with orders ofP. In the computa-
tion of c the scheme explicitly omits corrections of order
P2 in Eq. ~4!. Formally, then, we should only be able to keep
terms of first order inP in Eq. ~15!. But it is the apparently
inconsistentP2 terms, of course, which dominate at most
points in Fig. 2~‘‘momentum dominance’’ in generation of
radiation!. Not only do theP2 terms agree with the results of
numerical relativity, but the agreement remains good for
rather high values ofP/M . This raises the following ques-
tion: just what momentum contributions has our approxima-
tion really omitted?

The momentum enters into the construction of the initial
data in only two direct ways. First, it is an overall scaling
parameter forK̂ab . The expression in Eq.~7! is an approxi-
mation for smallL, but it is exact inP. The process of
symmetrizing does not change this. Up to a conformal factor,
then, the extrinsic curvature is exactly linear inP. Second,
P enters the determination of the conformal factor through
Eq. ~4!. The success of the slow approximation must be di-
rectly ascribed to the relatively unimportant role played by
the right-hand side of Eq.~4!.

Further work will be needed for a real understanding of
this, but some reasonable speculations can already be made.
Due to momentum dominance the details of the initial three
geometry are not crucial, so any quadrupolar distortion in-
duced byK̂ab at largeP will be insignificant compared to the
radiation generated by the extrinsic curvature. The ‘‘slow’’
approximation, of course, is not perfect; at sufficiently high
momentum it begins to fail. We speculate that the reason for
this failure is not primarily due toK̂ab generating quadrupo-
lar distortions of the initial three geometry. Rather, it is the
effect of that source on the monopole part of the conformal
factor, and hence on the ADM mass ‘‘M ,’’ that is used to
scale physical quantities. When we do a comparison in Fig. 2
between the numerical relativity results and those of the ap-
proximation, we are comparing two cases for the samem0
~i.e., the same coordinate separation in conformal space! and
for the two cases we compareE/M at a given value of
P/M . We are therefore placing on an equal footing the true
value of M in the numerical relativity solution, and the
P→0 value ofM in the approximation. It should be pos-
sible, in principle, to correct for this and, in effect, reduce the
approximation to one in which we have only ignored the
quadrupolar part of the source in Eq.~4!.

The present results greatly help us to understand the suc-
cess of the results of Ref.@7#. That success seems to require
two things about the generation of gravitational radiation in
collisions from large distances:~i! There must be negligible
radiation during the early motion, when the holes are in each
other’s weak field region.~ii ! The only important conse-
quence of the early, weak-field, motion must be to give the
holes momentum when each reaches the strong field region
of the other. The first requirement is relatively easy to check.
In Fig. 3 we plot radiated energy, computed by methods of
numerical relativity, as a function of time, first for initial data
representing two black holes falling from large separation.
~The oscillations are due to the fact that almost all the energy
comes off as ‘‘quasinormal ringing’’ of the final hole
formed.! We also show the result of a second calculation.
Cook @17# initial data are taken corresponding to the separa-

FIG. 3. Radiated energy as a function of time for two different
initial value sets. The first is for equal mass holes falling from rest
at m052.2. The second shows the result of a boosted collision
starting from a separation parameterm051.406 and a momentum
P/M50.23. The second set of initial data can be considered to be
an approximation to a constantt slice of the spacetime that evolves
from the first set. The time scale is the~flat space! retarded time
with zero corresponding to the time of apparent horizon formation.
The energy scale of them052.2 curve has been offset to zero at the
time of apparent horizon formation.
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tion and momentum that the black holes would have after
falling to a fairly close separation. A comparison of the
curves verifies that the early stage of motion does not pro-
duce a significant contribution to the total outgoing radiation.

Our present results, and in particular momentum domi-
nance, strongly support the second requirement for the suc-
cess of the ideas of Ref.@7#. Sincecmom is the source of
essentially all the radiation, one can see that what is impor-
tant about the early stages of the coalescence is only the
development of extrinsic curvature. This does not, of course,
explain why there seems to be insensitivity to the details of
the extrinsic curvature.~Surely, the Bowen-York extrinsic
curvature, symmetrized or not, is not actually the extrinsic
curvature that evolves from earlier stationary conditions.
Yet, it seems to be adequate to give good predictions.! A
more satisfactory answer to this question means that we must
understand the relationship between data on an initial hyper-
surface and how this evolves to data on subsequent hyper-
surfaces. We must also understand the importance of confin-
ing ourselves to conformally flat data on hypersurfaces.
Progress on these questions will probably require compa-
rable results from four distinct classes of initial data sets.
These are~a! Misner data with large hole separation,~b! the
nonconformally flat data with close holes that evolves from
~a!, ~c! boosted conformally flat data with close holes, and
~d! boosted conformally-flat data in the close-slow approxi-
mation. In addition, one requires reasonable measures of
physical separation and momentum so that correspondence
can be drawn between disparate initial data sets.

There is strong motivation for carrying out such studies.
The results so far achieved, both by numerical relativity and
with the close and the slow approximation, are limited to
head-on collisions. The situation of astrophysical interest, of
course, is very different: the coalescence of orbiting holes. If
the last few orbits in a coalescence are to be studied with
numerical relativity, it will be crucial to understand what
initial data are to be used to start the computation. Studies
with the head-on collision provide a useful starting point to
understanding the sensitivity of the radiation generation to
the details of the initial data.

A rather different, and more speculative, motivation for a
better understanding of these issues, is the hope that our
approximation methods might be as successful with orbital
problems as with head-on coalescence. These results might
provide ‘‘easy’’ approximate answers over a reasonable
range of orbital coalescences, and may therefore serve as a
guide to the numerical studies.

ACKNOWLEDGMENTS

This work was supported in part by Grants No. NSF-
PHY-9423950, No. NSF-PHY-9396246, No. NSF-PHY-
9207225, No. NSF-PHY-9507719, No. NSF-PHY-9407882,
research funds of the Pennsylvania State University, the Uni-
versity of Utah, the Eberly Family research fund at PSU, and
PSU’s Office for Minority Faculty development. J.P. ac-
knowledges the support of the Alfred P. Sloan Foundation.

@1# Proceedings of the November 1994 meeting of the Grand
Challenge Alliance to study black hole collisions may be ob-
tained by contacting E. Seidel~unpublished!.

@2# A. A. Abramovici et al., Science256, 325 ~1992!; K. S.
Thorne, inParticle and Nuclear Astrophysics and Cosmology
in the Next Millennium, Snowmass 94, Proceedings of the
Summer Study, edited by E. W. Kolb and R. Peccei~World
Scientific, Singapore, 1995!.

@3# A. Abrahams and R. Price, Phys. Rev. D53, 1963~1996!.
@4# R. Price and J. Pullin, Phys. Rev. Lett.72, 3297~1994!.
@5# P. Anninos, R. H. Price, J. Pullin, E. Seidel, and W.-M. Suen,

Phys. Rev. D52, 4462~1995!.
@6# A. Abrahams and R. Price, Phys. Rev. D53, 1972~1996!.
@7# A. M. Abrahams and G. B. Cook, Phys. Rev. D50, R2364

~1994!.
@8# J. Bowen and J. York, Phys. Rev. D21, 2047~1980!.
@9# L. L. Smarr, Ph.D. dissertation, University of Texas at Austin,

1975.

@10# P. Anninos, D. Hobill, E. Seidel, L. Smarr, and W.-M. Suen,
Phys. Rev. Lett.71, 2851 ~1993!; Phys. Rev. D52, 2044
~1995!.

@11# C. Misner, Phys. Rev.118, 1110~1960!.
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