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We study the radiation from a collision of black holes with equal and opposite linear momenta. Results are
presented from a full numerical relativity treatment and are compared with the results from a “close-slow”
approximation. The agreement is remarkable, and suggests several insights about the generation of gravita-
tional radiation in black hole collision§S0556-282197)05902-X

PACS numbd(s): 04.70.Bw, 04.30.Nk

I. INTRODUCTION ary holes. The success of these estimates suggests, among
other things, that to a large extent the role of the early weak-

The collision of two black holes is now being studied field phase of the evolution is to only to determine what the
extensively via the techniques of numerical relativity. momentum of the holes will be when they start to interact
Collisions are of great importance as the most interestingionlinearly.
source of gravitational waves that might be observable with With that suggestion as one of our motivations, we con-
interferometric detectorf2]. The study is also of great in- sider here equal mass holes which are initially moving to-
herent interest to relativity theory in that supercomputers alwards each other with equal and opposite momerfurwe
low us to investigate strong field gravity effects without sym-analyze the problem with an approximation simple enough to
metries which might preclude interesting or crucial allow insight, and we present, for comparison, the results of
phenomena. In dealing with such a daunting problem, usefuull numerical relativity for the same initial black hole con-
checks, guidelines, and insights have been provided by anfiguration. In a certain sense, this study complements that of
lytical approximations, in particular by the close-limit ap- Ref. [7]. The initial data sets being studied are representa-
proximation[3]. In principle, this method applies when the tions of the same physical system; in Rgf] the data were
holes are initially very close together. In this case, the hori-‘€xact” (up to numerical errgrsolutions to the initial value
zon is initially only slightly nonspherical and the spacetimeproblem, however, in the current study we have more control
that evolves outside the horizon can be treated as a perturb@yer the approximations implicit in the perturbative analysis.
single black hole. The highly nonspherical nature of theln Sec. Il we present the general formalism for the problem
spacetime inside the horizon is causally disconnected frorand briefly discuss the full numerical solution. In Sec. Il we
the exterior, and from the generation of outgoing gravita-describe an approximation based on the close lani on
tional waves. The exterior spacetime can be evolved forwarglow initial motion. Results of both methods are presented
in time from the initial data hypersurface with the linearizedand discussed in Sec. IV. Throughout the paper we use units
equations of perturbation theory. in which c=G=1, and M represents the total Arnowitt-

This method turns out to be remarkably succesgfule].  Deser-MisnerfADM) mass on the initial hypersurface.
The details of this success may give insights into the nature
of collisions of holes. For holes that are initially momentarily II. INITIALLY MOVING HOLES
stationary, the close-limit predictions of radiated energy and L ] o
wave forms are quite godde., in agreement with the results ~ The initial value equations for general relativity 464
of numerical relativity even when the initial horizon is

highly distorted, violating the assumptions underlying the V&(Kap—gabk) =0, @)
method. The close limit has been used by Abrahams and 3 ab. L2
Cook[7] for the head-on collision of holes with initial mo- R—KapK* +K*=0, )

menta towards each other. This momentum causes horizons

to form when the holes are at larger separation and makes tieheregay, is the spatial metrid<,y, is the extrinsic curvature,
exterior spacetime more spherical, so it is not surprising thand °R is the scalar curvature of the three metric. One pro-
the close limit should be successful for these cases. PuzzligPses a three metric that is conformally fgt,= ¢*Gap,
results emerge, however, when close-limit calculations ar&ith Gap @ flat metric, andp* the conformal factor, and one
combined with Newtonian trajectories to estimate the radilses a _decomposition of the extrinsic curvature
ated energy for initiallyjarge separations of initially station- Ka,=¢ 2K,,. The constraints become
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vag | — dure is to create a solution which corresponds to two
VoKap=0, @Q , :
identical asymptotically flat universes connected by two
. 1 o Einstein-Rosen bridges. The nature of this symmetrization
V2h=— = K, K2, (4 process, and the boundary condition it provides for &g,
8 affects the mass of the holes being represented. Ctii 7]
has also used this approach to develop codes to compute

whereV is a flat-space covariant derivative. , symmetric initial data solutions for axisymmetric and full
In describing how Eqs(3) and(4) and the 3-1 evolution  three-dimensional3D) data.

equations are solved numerically, it is useful to have at hand The Hamiltonian constraint is solved by linearizing equa-
three different coordinate systems. Of greatest relevance g (4) around a solutionp; so thatd= ¢, + 5¢, discretiz-
the numerical method are theadezcoordinates, a system ng to second order the resulting linear elliptic equation,
which is particularly well-suited for the collision of two gglying the matrix equation fobé with a multigrid method,

black holes and which has been used extensively in numerian jterating the procedure until a convergence tolerance of
cal studied9,10]. These coordinates are spherical near thess/ s <1071 js achieved. It has been verified that for

throatg of .bOIh hOIGS. an_d in the asymptotic wave zone, S%ab=0, the solution forp converges quadratically with cell
they simplify the application of both inner and outer bound-Size to the time-symmetric Misner datal]

ary conditions. It is useful also to refer to two coordinatiza- The symmetrized initial data fop and i‘orK . are now

. R . a

tlo?s of the ﬂa(ljt tﬁongprrr;]al .thrfkapﬁ.ce' ;:)ilmdncg] Cf?ord"used as the starting point for numerical integration. The evo-
natesp,z, ¢, and the pispherical-iike |.sn¢ ]cqor INAES 1 tion employs maximal time slices and the shift is deter-
#.7,¢. The fact that the problem is axisymmetric, of COUrSe,inaq py an elliptic condition that forces the three-metinc
reduces the spatial computational grid to a two dlmensmna{:adez coordinatesinto diagonal form[5]. The numerical

one. By choosmg to consider only equal mass holes W'”lerrors inherent in the methdtb be described elsewhegrare
equal and opposite momenta, we have a further symmetr,

hich red the si £ th tational arid d¥imilar to those in Ref[5]. We have verified that the con-
which reduces the size ot the computational grid 1o a qua vergence rate for the total radiated energy scales quadrati-
rant, (¢=0,2>0). We characterize the separation of the

. . cally with grid spacing and that differences in the dominant
holes with the Misner parametgto, and construct the coor- /% \yave forms are on the order of a few percent at the
dinate grid independently for each choice if. Details of 4 resolutions used here. The errors are small on the scale
the grid computation are given in R_e[é.z,l?g. of Fig. 2, and do not affect any conclusions to be drawn from

To solve the momentum constrai(® we follow the pre- y ¢ fiare. The methods used for the numerical evolution are
scription of York and co-worker$l4] and Cook[15,16.

hi ith Ut h H described in detail in Ref10]; we modified only slightly the
This starts with a solution to E43) that represents the Mo~ e gescribed there for evolving the time symmetric Misner
mentum of one hole:

data.

~ 3
Kab=5;2[2P(aNp) = (825 Nalp) PNc]. (5 Ill. APPROXIMATION METHOD

: . . L The close-limit approach can be applied to the CObK
Here the hole is associated with some point in the flat CoN; ial data, as has been done in Rfl. But the Cook initial

formal spacey is the vector from that point, amtis the unit  so|ytion is numerical. To facilitate insights we make a fur-
vector in ther direction. The next step is to modify E() to  ther approximation. We assume that the black holes are ini-
represent holes centered &t * cothu,, the centers of the tially close, and that the initial momentuf is small. Our
circles u=*pu, in the conformally flat metric. Since the sojution for the extrinsic curvaturé,, is K% from Eq. (6),
momentum constrain@) is linear, one can simply add two  the simple superpositiofwithout symmetrization; this effect

expressions of the forr(b): will be discussed latgof two one-hole solutions. We denote
N N by n* and n~ the normal vectors corresponding, respec-
K}‘j’v": K{"(z—z— cothuo) tively, to the one hole solutions at=+L/2 and at—L/2,
- and we defindR to be the distance to a field point, in the flat
*+Kjj (z—z+cothug,P——P). (6) conformal space, from the point midway between the holes.

-, 7
For convenience, the initial data is forced to obey anf©r largeR, the normal vectorsi™ andn™ almost cancel

isometry condition, i.e., we operate on the momentum conkF18]. More specificallyn™ = —n~+O(L/R). A consequence
straint solution with a reflection procedure equivalent to addof this is that the total initiaK2® is first order inL/R, and its
ing image charges in electrostatics. The result of this proce(R, §,¢ coordinate basjscomponents can be written as

—4cog0 0 0
0 R2(1+cos6) 0 ) (7)
0 0 R2sirf6(3cog6—1)

N 3PL
Kav™2R%
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In addition to being first order i, the solution fork3® is  standard Schwarzschild coordinates,,¢. Even-parity
first-order inP and therefore the source term on the right inperturbations are then described by a Zerilli functipnAc-
the Hamiltonian constrain#) is quadratic inP. If we limit cording to the general prescription given in R&f] the value
ourselves to a solution to first order lwe can ignore this of  on at=0 initial hypersurface is found from the initial
guadratic source terngln Sec. IV, a more thorough discus- value of the three geometry. Our initial geometry, to first
sion will be given for this step of ignoring the source term. order inP, is exactly the same as the zdPasolution in Ref.
Without the source term the Hamiltonian constraint reduce$4], where the Zerilli function is denoteg,., and is given
to the zero momentum case, the Laplace equation. The synn Eq. (4.29, along with (4.10, (4.27), and (4.28. In that
metric solution to this(i.e., the solution for two identical reference it is shown that in the close limit, the quadrupole
asymptotically flat universess the Misner solutiofill], and  contribution dominates, with contributions fat>2 higher
this is the solution we take. The Misner geometry is characerder in the separation parameter. Here we shall consider
terized by a dimensionless parametgrwhich describes the only the/ =2 contribution, and shall denote the Zerilli func-
separation of the throats. We must, of course, chgwge tion, corresponding to this Misndr.e., P=0) problem, as
appropriate to the parameters of the extrinsic curvature wes(r,t).
are using. We choose therefore a Misner geometry charac- The initial value ofy, the time derivative of the Zerilli
terized by the same value &f as in Eq.(7). SinceL there  fynction, follows from the extrinsic curvature as explained in
represents not the physical distance, in any sense, betwees) The extrinsic curvature is given, in our approximation,
the holes, but the formal distance in t.he conformally flatb multiplying Kab in Eq. (7) by the squared reciprocal of
space, we choose a Misner geometry with the same value @fe conformal factor for the Schwarzschild geometry,
L in the_ conformally_flat part of the Misner metric. The re- becn= 1+ M/2R. We must map the coordinates of the ini-
lationship ofL to u, is (see, €.g.[4]) tial value solution to the coordinates for the Schwarzschild
1 background. To do this, we use the same mapping used for
(8)  theinitial value ofy in [4]: we interpret theR of Eq. (7) as

the isotropic radial coordinate of a Schwarzschild spacetime,
This completes the description of the initial data to first order2nd We relate it to the usual Schwarzschild radial coordinate
in L and to first order irP (the close, slow approximation ' by R=(\r+\r—2M)>?4. From this we arrive at the fol-
We now view the spacetime exterior to the horizon as dOWwing expression for thé¢Schwarzschild coordinate bakis
perturbation of a single Schwarzschild hole described iffomponents of the extrinsic curvature:

cothug B
HM= 2% E l=r121 sinmug

—4cog6 0
3PL| 1-2M/r
Kab=73 0 r2(1+co<6) 0 ' ©)
0 0 r2sirf6(3cog6—1)
|
Here we have used the fact that wherer, =r+In(r/l2M —1) and the Zerilli functiony is a
coordinate invariant combination of the perturbed metric co-
dr efficients; the/=2 “potential” V(r) can be seen in Ref.

1
42 2 e p__ -
¢2~¢Mis~¢8chw_r/R_ /—1—2M/I’ dR’ (10) [4].

The evolvedys can be decomposed into two components
From Eq.(9), which contains both monopole and quadrupole

parts, we can project out th€=2 part and read off the Y= dnis+ Ymom- (13
g\eltlal value of the time derivative of the Zerilli function to The first term is the solution of Eq12) for Cauchy data

= is(r,t=0) andy=0 att=0. The second term is the

. 1-2M/r A 3M solution fort=0 Cauchy datay=0, and with given by
Pli—o=—24PL~ Z2+amin N5 14T T) : Eq. (11). The two contributions are respectively zero order in
(11 P and first order inP; the decomposition then represents a
separation into parts af due to the masses, and to the mo-
Along with |- o= is(r,t=0), this completes the specifi- menta. The radiated energy is given [}
cation of the Cauchy data fap.
Given this Cauchy data, the time evolution is obtained by Eo LJ“ 2t
evolving the Zerilli equation, 3841, e,

(14

PPl =Pl ar2 +V(r) =0, (120 and can be written, in terms of the decomposition above, as
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FIG. 1. The anticorrelation between the two components of the
perturbation s and ¥,om. leads to the negative coefficient in the

energy vs momentum relation. FIG. 2. Energy as a function of initial momentum. Hétés the

energy radiated during coalescenBes the initial momentum, and
1 >, ®. >, M is the initial ADM mass. Curves shown are for fixed parameter
E= 3840 J;) 'r’fMisdefo IwmtisPmondt+ fo Pmondt |- wo, corresponding to separation of the holes in conformal space.
(15) The curves clearly show the “dip” effect, and the good agreement,
even for large values of the momentum.
The first term gives the same result as in the momentarily
stationary case; it is simply the radiation for the Misner ini-tions which make no approximations. The agreement be-
tial geometry, as computed in Ré#]. The second term is tween the numerical results and the results of the approxima-
linear in the momentum of each hole. The coefficient of it istion is remarkably good, even at rather large values of
given by the “correlation” of ¥is and ¥mom. As can be P/M.
seen in Fig. 1, this “correlation” integral is negative. The
anticorrelation is compatible with previous simulations done
by Ref. [7] using numerical initial datdsee Figs. 3a,b in IV. RESULTS
their pape). This means that for small values Bf the radi- Two features of Fig. 2 stand out. The first is “momentum
ated energydecreaseswith increasing momentum. The ef- dominance:” the radiated energy is dominated by the third
fect is clearly visible in Fig. 2 where we show the radiatedintegral in Eq.(15) unless the momentum is very small. The

energy as a function of the momentum, second obvious feature is that the approximation method
Note that the first term is simply a function of the Misner works very well even for sizeable values BfM .
parameteruo. The second term depends @iy, but also To understand the implications of these features, let us

depends oh. andP. We can writel. in terms ofuo with EQ.  start by reviewing the difference between the exact, nonlin-
(8) to express all dependencies in Efj5) only in terms of  ear numerical computation, and the approximation scheme of
o and P/M. With the correct numerical factors we get the Sec. III. In the exact method we start with an exact solution
final result of the close-slow approximation, a simple for-to the initial value equations described by two parameters,
mula for the radiated energy simply and explicitly expressetne a dimensionless measure of the separation of the holes,
in terms of the parameters of the collision: the other a dimensionless measure of the momentum. The
process of generating the solution consists of four stéps:

M(E) One starts with a very simple prescription fér,, con-

3 M structed by superposing two solutions of forfs) corre-
cothug!| 2 P |2 sponding to two coordinate positions in the conformally flat
_°> ( ) i (16) spacefii) Eq. (4) is then solved for the conformal factor and

2 hence for the three geomettij ) the solution for the extrin-
sic curvature and the initial geometry is then “symmetrized”
by an iterative process equivalent to adding image charges;
o )2 (iv) this solution is numerically evolved off the initial hyper-
kol ) = 1 (C‘?t to) _ (17 surface with the full nonlinear Einstein equations.

200 (43 )3 sinmpug By contrast, the steps for the approximate solution(gre
the (conforma) extrinsic curvature is taken to be the unsym-
In Fig. 2, we plot the radiated energy computed from Eq.metrized superposition of two contributions with the form of
(16) for several values of initial separatigny, and for a Eg. (5), (ii) the conformal factor, and therefore the three
wide range ofP/M . On this plot, also, are presented the geometry, is taken to be the symmetrized solution corre-
results for radiated energy from numerical results computasponding to throats located at the same points in the confor-

E —2 2 — 2
7 =2:51¢ 10" 2k ( o) — 2.06¢ 10

-3
+5.37X10 ( M

wherek,, as defined in Ref5], is
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— T proximation scheme deals with ordersifIn the computa-

4 tion of ¢ the scheme explicitly omits corrections of order
P2 in Eq. (4). Formally, then, we should only be able to keep
terms of first order irP in Eq. (15). But it is the apparently
inconsistentP? terms, of course, which dominate at most
points in Fig. 2(“momentum dominance” in generation of
radiation. Not only do theP? terms agree with the results of
numerical relativity, but the agreement remains good for
rather high values oP/M. This raises the following ques-
tion: just what momentum contributions has our approxima-
tion really omitted?

The momentum enters into the construction of the initial
data in only two direct ways. First, it is an overall scaling
parameter folK,,. The expression in Eq7) is an approxi-
mation for smallL, but it is exact inP. The process of
e L Lo e L i b symmetrizing does not change this. Up to a conformal factor,

10 0 (lto_to_r)fﬁ 80 then, the extrinsic curvature is exactly linearfn Second,
P enters the determination of the conformal factor through

FIG. 3. Radiated energy as a function of time for two different EQ. (4). The success of the slow approximation must be di-
initial value sets. The first is for equal mass holes falling from restrectly ascribed to the relatively unimportant role played by
at up=2.2. The second shows the result of a boosted collisiorthe right-hand side of Eq4).
starting from a separation paramejes=1.406 and a momentum Further work will be needed for a real understanding of
P/M=0.23. The second set of initial data can be considered to b¢his, but some reasonable speculations can already be made.
an approximation to a constanslice of the spacetime that evolves Due to momentum dominance the details of the initial three
from the first set. The time scale is tlitat spacg retarded time  geometry are not crucial, so any quadrupolar distortion in-
with zero corresponding to the time of apparent horizon formationy,ceqd bykab at largeP will be insignificant compared to the
The energy scale of the,=2.2 curve has been offset to zero at the 5 jiation generated by the extrinsic curvature. The “slow”
time of apparent horizon formation. approximation, of course, is not perfect; at sufficiently high

A o ~ momentum it begins to fail. We speculate that the reason for
mally flat space as the points Ky, and(iii) this approxi-  his fajlure is not primarily due t& ,, generating quadrupo-
mate initial data is then treated as initial data for thejy, gistortions of the initial three geometry. Rather, it is the
nonspherical perturbations of a Schwarzschild hole, and thgfect of that source on the monopole part of the conformal
perturbations are evolved with the linearized Einstein €qQUasactor, and hence on the ADM massvi*” that is used to
tions. , , L scale physical quantities. When we do a comparison in Fig. 2

The difference in evolution off the initial hypersurface pepyeen the numerical relativity results and those of the ap-
(full Einstein equations in one case, linearized equations IBroximation, we are comparing two cases for the sarmge
the othey is not a major source of error in the interesting (i.e., the same coordinate separation in conformal S
cases, those with high momentum. As momentum increaseﬁ)r the two cases we compai/M at a given value of
the location of .the horizon in the initial geometry moves P/M. We are therefore placing on an equal footing the true
outward. The_ high momentum cases, therefore, corrgspoqgalue of M in the numerical relativity solution, and the
to throats which, on the |_n|t|al hyper_surface_, are we_II |n5|_dep_>o value of M in the approximation. It should be pos-
an all-encompassing horizon. This is the situation in Wh'ChsibIe, in principle, to correct for this and, in effect, reduce the

the” ftl(.)se'll'm't tappro>_<|mat|t(r)]ntmetlhod ShOUId. V\.’Otrk (\j/erydapproximation to one in which we have only ignored the
well. It is also not surprising that no large error is introduce quadrupolar part of the source in Ed).

by the failure, in the approximation method, to symmetrize The present results greatly help us to understand the suc-

the extrinsic curvature. One way of understanding this is 19655 of the results of Reff7]. That success seems to require

hote that_wmqm lacks the _Image contr_|but|ons needed for ftwo things about the generation of gravitational radiation in
symmetrization. These images only influence the form o

} collisions from large distances$i) There must be negligible
Kap very close to the holes. As the separation between theagiation during the early motion, when the holes are in each
holes gets smaller the horizon moves further from the throatgiher's weak field region(ii) The only important conse-
and the effect of the images dfy;, outside the horizon di- quence of the early, weak-field, motion must be to give the
minishes. We have checked numerically that the differencéioles momentum when each reaches the strong field region
between the symmetrized and unsymmetrikegl, for all  of the other. The first requirement is relatively easy to check.
cases considered, is negligibly small outside the horizon. In Fig. 3 we plot radiated energy, computed by methods of
These two aspects of the approximation method rely omumerical relativity, as a function of time, first for initial data
the throats being “close” in some sense, an approximatiorrepresenting two black holes falling from large separation.
that seems well justified. What remains to be explained igThe oscillations are due to the fact that almost all the energy
how the slow-limit approximation does such a good job ofcomes off as “quasinormal ringing” of the final hole
approximating the very “unslow” correct initial data. We formed) We also show the result of a second calculation.
must also justify the apparent inconsistency in how the ap€ook[17] initial data are taken corresponding to the separa-
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tion and momentum that the black holes would have after There is strong motivation for carrying out such studies.
falling to a fairly close separation. A comparison of the The results so far achieved, both by numerical relativity and
curves verifies that the early stage of motion does not prowith the close and the slow approximation, are limited to
duce a significant contribution to the total outgoing radiation.head-on collisions. The situation of astrophysical interest, of
Our present results, and in particular momentum domicourse, is very different: the coalescence of orbiting holes. If
nance, strongly support the second requirement for the sughe |ast few orbits in a coalescence are to be studied with
cess of the ideas of Ref7]. Since ymom is the source of  numerical relativity, it will be crucial to understand what
essentially all the radiation, one can see that what is impormitial data are to be used to start the computation. Studies
tant about the early stages of the coalescence is only thgith the head-on collision provide a useful starting point to
development of extrinsic curvature. This does not, of courseynderstanding the sensitivity of the radiation generation to
explain why there seems to be insensitivity to the details othe details of the initial data.
the extrinsic curvature(Surely, the Bowen-York extrinsic A rather different, and more speculative, motivation for a
curvature, symmetrized or not, is not actually the extrinsichetter understanding of these issues, is the hope that our
curvature that evolves from earlier stationary conditions approximation methods might be as successful with orbital
Yet, it seems to be adequate to give good predictoAs. problems as with head-on coalescence. These results might
more satisfactory answer to this question means that we MUBfovide “easy” approximate answers over a reasonable

understand the relationship between data on an initial hypekange of orbital coalescences, and may therefore serve as a
surface and how this evolves to data on subsequent hypeguide to the numerical studies.

surfaces. We must also understand the importance of confin-
ing ourselves to conformally flat data on hypersurfaces.
Progress on these questions will probably require compa-
rable results from four distinct classes of initial data sets.
These arda) Misner data with large hole separatidh) the This work was supported in part by Grants No. NSF-
nonconformally flat data with close holes that evolves fromPHY-9423950, No. NSF-PHY-9396246, No. NSF-PHY-
(@), (c) boosted conformally flat data with close holes, and9207225, No. NSF-PHY-9507719, No. NSF-PHY-9407882,
(d) boosted conformally-flat data in the close-slow approxi-research funds of the Pennsylvania State University, the Uni-
mation. In addition, one requires reasonable measures okrsity of Utah, the Eberly Family research fund at PSU, and
physical separation and momentum so that corresponden&sU’s Office for Minority Faculty development. J.P. ac-
can be drawn between disparate initial data sets. knowledges the support of the Alfred P. Sloan Foundation.
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