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Abstract. A new functional calculus, developed recently for a fully non-perturbative treatment
of quantum gravity, is used to begin a systematic construction of a quantum theory of geometry.
Regulated operators corresponding to areas of 2-surfaces are introduced and shown to be self-
adjoint on the underlying (kinematical) Hilbert space of states. It is shown that their spectra
are purely discrete, indicating that the underlying quantum geometry is far from what the
continuum picture might suggest. Indeed, the fundamental excitations of quantum geometry are
one dimensional, rather like polymers, and the three-dimensional continuum geometry emerges
only on coarse graining. The full Hilbert space admits an orthonormal decomposition into finite-
dimensional subspaces which can be interpreted as the spaces of states of spin systems. Using
this property, the complete spectrum of the area operators is evaluated. The general framework
constructed here will be used in a subsequent paper to discuss three-dimensional geometric
operators, e.g. the ones corresponding to volumes of regions.
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It is a pleasure to dedicate this paper to Professor Andrzej Trautman, who was one of the first
to recognize the deep relationship between geometry and the physics of gauge fields [1, 2] which
lies at the heart of this investigation.

1. Introduction

In his celebrated inaugural address, Riemann suggested [3] that the geometry of space
may be more than just a fiducial, mathematical entity serving as a passive stage for
physical phenomena, and may in fact have a direct physical meaning in its own right.
General relativity proved this vision to be correct: Einstein’s equations put geometry on
the same footing as matter. Now, the physics of this century has shown us that matter
has constituents and the three-dimensional objects we perceive as solids in fact have a
discrete underlying structure. The continuum description of matter is an approximation
which succeeds brilliantly in the macroscopic regime but fails hopelessly at the atomic
scale. It is therefore natural to ask if the same is true of geometry. Does geometry also
have constituents at the Planck scale? What are its atoms? Its elementary excitations? Is
the spacetime continuum only a ‘coarse-grained’ approximation? If so, what is the nature
of the underlying quantum geometry?

To probe such issues, it is natural to look for clues in the procedures that have been
successful in describing matter. Let us begin by asking what we mean by quantization of
physical quantities. Let us take a simple example—the hydrogen atom. In this case, the
answer is clear: while the basic observables—energy and angular momentum—take on a
continuous range of values classically, in quantum mechanics their spectra are discrete. So,
we can ask if the same is true of geometry. Classical geometrical observables such as areas

0264-9381/97/SA0055+27$19.50c© 1997 IOP Publishing Ltd A55



A56 A Ashtekar and J Lewandowski

of surfaces and volumes of regions can take on continuous values on the phase space of
general relativity. Are the spectra of corresponding quantum operators discrete? If so, we
would say that geometry is quantized.

Thus, it is rather easy to pose the basic questions in a precise fashion. Indeed, they
could have been formulated soon after the advent of quantum mechanics. Answering them,
on the other hand, has proved to be surprisingly difficult. The main reason, it seems,
is the inadequacy of the standard techniques. More precisely, the traditional approach to
quantum field theory has been perturbative, where onebeginswith a continuum, background
geometry. It is then difficult to see how discreteness would arise in the spectra of geometric
operators. To analyse such issues, one needs a fully non-perturbative approach: geometric
operators have to be constructedab initio without assumingany background geometry.
To probe the nature of quantum geometry, we cannot begin byassumingthe validity of
the continuum picture. We must let quantum gravity itself decide whether this picture is
adequate at the Planck scale; the theory itself should lead us to the correct microscopic
picture of geometry.

In this paper, we will use the non-perturbative, canonical approach to quantum gravity
based on connections to probe these issues. Over the past three years, this approach has been
put on a firm mathematical footing through the development of a new functional calculus
on the space of gauge-equivalent connections [4–11]. This calculus does not use any
background fields (such as a metric) and is therefore well suited to a fully non-perturbative
treatment. The purpose of this paper is to use this framework to explore the nature of
quantum geometry.

In section 2, we recall the relevant results from the new functional calculus and outline
the general strategy. In section 3, we present a regularization of the area operator. Its
properties are discussed in section 4; in particular, we exhibit its entire spectrum. Our
analysis is carried out in the ‘connection representation’ and the discussion is self-contained.
However, at a non-technical level, there is a close similarity between the basic ideas used
here and those used in discussions based on the ‘loop representation’ [12, 13]. Indeed, the
development of the functional calculus which underlies this analysis itself was motivated,
in a large measure, by the pioneering work on loop representation by Rovelli and Smolin
[14]. The relation between various approaches will be discussed in section 5.

The main result of this paper should have ramifications on the statistical mechanical
origin of the entropy of black holes along the lines of [15, 16]. This issue is being
investigated.

2. Preliminaries

This section is divided into three parts. In the first, we will recall [4, 5] the basic structure of
the quantum configuration space and, in the second, that of the Hilbert space of (kinematic)
quantum states [10]. The overall strategy will be summarized in the third part.

2.1. Quantum configuration space

In general relativity, one can regard the spaceA/G of SU(2) connections modulo gauge
transformations on a (‘spatial’) 3-manifold6 as the classical configuration space [17–19].
For systems with only a finite number of degrees of freedom, the classical configuration
space also serves as the domain space of quantum wavefunctions, i.e. as the quantum
configuration space. For systems with an infinite number of degrees of freedom, on the other
hand, this is not true: generically, the quantum configuration space is an enlargement of the
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classical space. In free-field theory in Minkowski space (as well as exactly solvable models
in low spacetime dimensions), for example, while the classical configuration space can be
built from suitably smooth fields, the quantum configuration space includes all (tempered)
distributions. This is an important point because, typically, the classical configuration spaces
are of zero measure; wavefunctions with support only on smooth configurations have zero
norm! The overall situation is the same in general relativity. The quantum configuration
spaceA/G is a certain completion ofA/G [4, 5].

The spaceA/G inherits the quotient structure ofA/G, i.e. A/G is the quotient of the
spaceA of generalized connections by the spaceG of generalized gauge transformations.
To see the nature of the generalization involved, first recall that each smooth connection
defines a holonomy along paths† in 6: hp(A) := P exp

(− ∫
p

A
)
. Generalized connections

capture this notion. That is, each̄A in A can be defined [6, 8] as a map which assigns to
each oriented pathp in 6 an elementĀ(p) of SU(2) such that: (i)Ā(p−1) = (Ā(p))−1

and (ii) Ā(p2 ◦ p1) = Ā(p2) · Ā(p1), wherep−1 is obtained fromp by simply reversing
the orientation,p2 ◦ p1 denotes the composition of the two paths (obtained by connecting
the end ofp1 with the beginning ofp2) and Ā(p2) · Ā(p1) is the composition inSU(2).
A generalized gauge transformation is a mapg which assigns to each pointv of 6 an
SU(2) elementg(x) (in an arbitrary, possibly discontinuous fashion). It acts onĀ in the
expected manner, at the end points of paths:Ā(p) → g(v+)−1 · Ā(p) ·g(v−), wherev− and
v+ are, respectively, the beginning and the end point ofp. If Ā happens to be a smooth
connection, sayA, we haveĀ(p) = hp(A). However, in general,̄A(p) cannot be expressed
as a path-ordered exponential of a smooth 1-form with values in the Lie algebra ofSU(2)

[5]. Similarly, in general, a generalized gauge transformation cannot be represented by a
smooth group-valued function on6.

At first sight the spacesA, G andA/G seem too large to be mathematically controllable.
However, they admit three characterizations, which enables one to introduce differential and
integral calculus on them [4, 5, 7]. We will conclude this subsection by summarizing the
characterization—as suitable limits of the corresponding spaces in lattice gauge theory—
which will be most useful for the main body of this paper.

We begin with some definitions.
An edgeis an oriented, one-dimensional submanifold of6 with two boundary points,

called vertices, which is analytic everywhere, including the vertices. Agraph in 6 is a
collection of edges such that if two distinct edges meet, they do so only at vertices. In
physics terminology, one can think of a graph as a ‘floating lattice’, i.e. a lattice whose
edges are not required to be rectangular. (Indeed, they may even be non-trivially knotted!)
Using the standard ideas from lattice gauge theory, we can construct the configuration space
associated with the graphγ . Thus, we have the spaceAγ , each elementAγ of which assigns
to every edge inγ an element ofSU(2) and the spaceGγ each elementgγ of which assigns
to each vertex inγ an element ofSU(2). (Thus, if N is the number of edges inγ and
V the number of vertices,Aγ is isomorphic with [SU(2)]N and Gγ with [SU(2)]V .) Gγ

has the obvious action onAγ : Aγ (e) → g(v+)−1 · Aγ (e) · g(v−). The (gauge-invariant)
configuration space associated with the floating latticeγ is just Aγ /Gγ . The spacesA,
G and A/G can be obtained as well defined (projective) limits of the spacesAγ , Gγ and
Aγ /Gγ [7, 5]. Note, however, that this limit isnot the usual ‘continuum limit’ of a lattice
gauge theory in which one lets the edge length go to zero. Here, we are already in the

† For technical reasons, we will assume that all paths are analytic. An extension of the framework to allow
for smooth paths is being carried out [20]. The general expectation is that the main results will admit natural
generalizations to the smooth category. In this paper,A has the physical dimensions of a connection,(length)−1

and is thus related to the configuration variableAold in the literature byA = GAold whereG is Newton’s constant.
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continuum and have available to us all possible floating lattices from the beginning. We
are just expressing the quantum configuration space of the continuum theory as a suitable
limit of the configuration spaces of theories associated with all these lattices.

To summarize, the quantum configuration spaceA/G is a specific extension of the
classical configuration spaceA/G. Quantum states can be expressed as complex-valued,
square-integrable functions onA/G, or, equivalently, asG-invariant square-integrable
functions onA. As in Minkowskian field theories, whileA/G is dense inA/G topologically,
measured theoretically it is generally sparse; typically,A/G is contained in a subset set of
zero measure ofA/G [7]. Consequently, what matters is the value of wavefunctions on
‘genuinely’ generalized connections. In contrast with the usual Minkowskian situation,
however,A, G andA/G are allcompactspaces in their natural (Gel’fand) topologies [4–8].
This fact simplifies a number of technical issues.

Our construction can be compared with the general framework of ‘second quantization’
proposed by Kijowski [21]. He introduced the space of states for a field theory by using the
projective limit of spaces of states associated with a family of finite-dimensional theories.
He also suggested, as an example, the lattice approach. The common element with the
present approach is that in our case the space of measures onA is also the projective limit
of the spaces of measures defined on finite-dimensional spacesAγ .

2.2. Hilbert space

SinceA/G is compact, it admits regular (Borel, normalized) measures and for every such
measure we can construct a Hilbert space of square-integrable functions. Thus, to construct
the Hilbert space of quantum states, we need to select a specific measure onA/G.

It turns out thatA admits a measureµ0 that is preferred by both mathematical and
physical considerations [5, 6]. Mathematically, the measureµ0 is natural because its
definition does not involve the introduction of any additional structure: it is induced onA
by the Haar measure onSU(2). More precisely, sinceAγ is isomorphic to [SU(2)]N , the
Haar measure onSU(2) induces on it a measureµ0

γ in the obvious fashion. As we varyγ ,
we obtain a family of measures which turn out to be compatible in an appropriate sense and
therefore induce a measureµ0 on A. This measure has the following attractive properties
[5]: (i) it is faithful; i.e. for any continuous, non-negative functionf on A,

∫
dµ0 f > 0,

equality holding if and only iff is identically zero and (ii) it is invariant under the (induced)
action of Diff[6], the diffeomorphism group of6. Finally, µ0 induces a natural measureµ̃0

onA/G: µ̃0 is simply the push-forward ofµ0 under the projection map that sendsA to A/G.
Physically, the measurẽµ0 is selected by the so-called ‘reality conditions’. More precisely,
the classical phase space admits an (over)complete set of naturally defined configuration and
momentum variables which are real, and the requirement that the corresponding operators
on the quantum Hilbert space be self-adjoint selects for us the measureµ̃0 [10].

Thus, it is natural to useH̃0 := L2(A/G, dµ̃0) as our Hilbert space. Elements of
H̃0 are the kinematic states; we are yet to impose quantum constraints. Thus,H̃0 is the
classical analogue of thefull phase space of quantum gravity (prior to the introduction
of the constraint submanifold). Note that these quantum states can also be regarded as
gauge-invariantfunctions onA. In fact, since the spaces under consideration are compact
and measures normalized, we can regardH̃0 as the gauge-invariantsubspaceof the Hilbert
spaceH0 := L2(A, dµ0) of square-integrable functions onA [6, 7]. In what follows, we
we will often do so.

What do ‘typical’ quantum states look like? To provide an intuitive picture, we can
proceed as follows. Fix a graphγ with N edges and consider functions9γ of generalized
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connections of the form9γ (Ā) = ψ(Ā(e1), . . . , Ā(eN)) for somesmooth functionψ on
[SU(2)]N , wheree1, . . . , eN are the edges of the graphγ . Thus, the functions9γ know
about what the generalized connections do only to those paths which constitute the edges
of the graphγ ; they are precisely the quantum states of the gauge theory associated with
the ‘floating lattice’γ . This space of states, although infinite dimensional, is quite ‘small’
in the sense that it corresponds to the Hilbert space associated with a system with only a
finite number of degrees of freedom. However, if we varyγ through all possible graphs,
the collection of all states that results is very large. Indeed, one can show that it isdensein
the Hilbert spaceH0. (If we restrict ourselves to9γ which are gauge invariant, we obtain
a dense subspace iñH0.) Since each of these states depends only on a finite number of
variables, borrowing the terminology from the quantum theory of free fields in Minkowski
space, they are calledcylindrical functionsand denoted by Cyl. Gauge-invariant cylindrical
functions represent the ‘typical’ kinematic states. In many ways, Cyl is analogous to the
spaceC∞

0 (R3) of smooth functions of compact support onR3 which is dense in the Hilbert
spaceL2(R3, d3x) of quantum mechanics. Just as one often defines quantum operators—e.g.
the position, the momentum and the Hamiltonians—onC∞

0 first and then extends them to an
appropriately larger domain in the Hilbert spaceL2(R3, d3x), we will define our operators
first on Cyl and then extend them appropriately.

Cylindrical functions provide considerable intuition about the nature of quantum states
we are led to consider. These states represent one-dimensional polymer-like excitations
of geometry/gravity rather than three-dimensional wavy undulations on flat space. Just as
a polymer, although intrinsically one-dimensional, exhibits three-dimensional properties in
sufficiently complex and densely packed configurations, the fundamental one-dimensional
excitations of geometry can be packed appropriately to provide a geometry which, when
coarse-grained on scales much larger than the Planck length, lead us to continuum geometries
[12, 22]. Thus, in this description, gravitons can arise only as approximate notions in the
low-energy regime [23]. At the basic level, states inH̃0 are fundamentally different from
the Fock states of Minkowskian quantum field theories. The main reason is the underlying
diffeomorphism invariance: in the absence of a background geometry, it is not possible to
introduce the familiar Gaussian measures and associated Fock spaces.

2.3. Statement of the problem

We can now outline the general strategy that will be followed in sections 4 and 5.
Recall that the classical configuration variable is anSU(2) connection† Ai

a on a 3-
manifold 6, wherei is the su(2)-internal index with respect to a basisτi . Its conjugate
momentumEb

j has the geometrical interpretation of an orthonormal triad with density weight
one [24, 17], the precise Poisson brackets being

{Ai
a(x), Eb

j (y)} = Gδb
aδ

i
j δ

3(x, y), (2.1)

whereG is Newton’s constant. (Recall from the footnote in section 2.1 that the fieldA,
used here, is related toAold used in the literature [25] viaA = GAold.)

Therefore, geometrical observables—functionals of the 3-metric—can be expressed in
terms of this fieldEa

i . Fix within the 3-manifold6 any analytic, finite 2-surfaceS without
boundary such that the closure ofS in 6 is compact. The areaAS of S is a well defined,

† We assume that the underlying 3-manifold6 is orientable. Hence, principalSU(2) bundles over6 are all
topologically trivial. Therefore, we can represent theSU(2) connections on the bundle by ansu(2)-valued 1-form
on 6. The matricesτi are anti-Hermitian, given, for example, by(−i/2)-times the Pauli matrices.
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real-valued function on thefull phase space of general relativity (which happens to depend
only on Ea

i ). It is easy to verify that these kinematical observables can be expressed as

AS :=
∫

S

dx1 ∧ dx2 [E3
i E

3i ]1/2, (2.2)

where, for simplicity, we have used adapted coordinates such thatS is given byx3 = 0,
andx1, x2 parametrizeS, and where the internal indexi is raised by the inner product we
use onsu(2), k(τi, τj ) = −2 Tr(τiτj ).

Our task is to find the corresponding operators on the kinematical Hilbert spaceH̃0 and
investigate their properties.

There are several factors that make this task difficult. Intuitively, one would expect
Ea

i (x) to be replaced by the ‘operator-valued distribution’−ih̄Gδ/δAi
a(x). Unfortunately,

the classical expression ofAS involves square roots of productsof E’s and hence the
formal expression of the corresponding operator is badly divergent. One must introduce
a suitable regularization scheme. Unfortunately, we do not have at our disposal the usual
machinery of Minkowskian field theories and even the precise rules that are to underlie such
a regularization are not cleara priori.

There are, however, certain basic expectations that we can use as guidelines: (i) the
resulting operators should be well defined on a dense subspace ofH̃0; (ii) their final
expressions should be diffeomorphism covariant, and hence, in particular, independent of
any background fields that may be used in the intermediate steps of the regularization
procedure and (iii) since the classical observables are real-valued, the operators should be
self-adjoint. These expectations seem to be formidable at first. Indeed, these demands are
rarely met even in Minkowskian field theories; in the presence of interactions, it is extremely
difficult to establish rigorously that physically interesting operators are well defined and self-
adjoint. As we will see, the reason why one can succeed in the present case is twofold. First,
the requirement of diffeomorphism covariance is a powerful restriction that severely limits
the possibilities. Second, the background-independent functional calculus is extremely well
suited for the problem and enables one to circumvent the various road blocks in subtle ways.

Our general strategy will be the following. We will define the regulated versions of
area and volume operators on the dense subspace Cyl of cylindrical functions and show that
they are essentially self-adjoint (i.e. admit unique self-adjoint extensions toH̃0). This task
is further simplified because the operators leave each subspaceHγ spanned by cylindrical
functions associated with any one graphγ invariant. This in effect reduces the field theory
problem (i.e. one with an infinite number of degrees of freedom) to a quantum mechanics
problem (in which there are only a finite number of degrees of freedom). Finally, we
will find that the operators in fact leave invariant a certainfinite-dimensional subspace of
H0 (associated with extended spin networks, introduced in section 4.2). This powerful
simplification further reduces the task of investigating the properties of these operators;
in effect, the quantum mechanical problem (in which the Hilbert space is still infinite
dimensional) is further simplified to a problem involving spin systems (where the Hilbert
space is finite dimensional). It is because of these simplifications that a complete analysis
is possible.

3. Regularization

Our task is to construct a well defined operatorÂS starting from the classical expression
(2.2). As is usual in quantum field theory, we will begin with the formal expression
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obtained by replacingE3
i in (2.2) by the corresponding operator-valued distributionÊ3

i and
then regulate it to obtain the required̂AS . (For an early discussion of non-perturbative
regularization, see, in particular, [26].) Our discussion will be divided into two parts. In
the first, we introduce the basic tools and, in the second, we apply them to obtain a well
defined operator̂AS .

To simplify the presentation, let us first assume thatS is covered by a single chart
of adapted coordinates. Extension to the general case is straightforward: one mimics the
procedure used to define the integral of a differential form over a manifold. That is, one
takes advantage of the coordinates invariance of the resulting ‘local’ operator and uses a
partition of unity.

3.1. Tools

The regularization procedure involves two main ingredients. We will begin by summarizing
them.

The first involves smearing of (the operator analogue of)E3
i (x) and point splitting of

the integrand in (2.2). Since in this integrand, the pointx lies on the 2-surfaceS, let us
try to use a two-dimensional smearing function. Letfε(x, y) be a one-parameter family of
fields onS which tend to theδ(x, y) asε tends to zero; i.e. such that

lim
ε→0

∫
S

d2y fε(x
1, x2; y1, y2)g(y1, y2) = g(x1, x2), (3.1)

for all smooth densitiesg of weight 1 and of compact support onS. (Thus,fε(x, y) is a
density of weight 1 inx and a function iny.) The smeared version ofE3

i (x) will be defined
to be

[E3
i ]f (x) :=

∫
S

d2y fε(x, y)E3
i (y), (3.2)

so that, asε tends to zero, [E3
i ]f tends toE3

i (x). The point-splitting strategy now provides
a ‘regularized expression’ of area:

[AS ]f :=
∫

S

d2x

[ ∫
S

d2y fε(x, y)E3
i (y)

∫
S

d2z fε(x, z)E3i (z)

]1/2

=
∫

S

d2x
[
[E3

i ]f (x)[E3i ]f (x)
]1/2

, (3.3)

which will serve as the point of departure in the next subsection. To simplify technicalities,
we will assume that the smearing fieldfε(x, y) has the following additional properties for
sufficiently smallε > 0: (i) for any giveny, fε(x, y) has compact support inx which
shrinks uniformly toy and (ii) fε(x, y) is non-negative. These conditions are very mild
and we are thus left with a large class of regulators†.

We now introduce the second ingredient. To go over to the quantum theory, we want to
replaceE3

i in (3.3) by Ê3
i = −iGh̄δ/δAi

3. However, it is not cleara priori that, even after
smearing, [̂E3

i ]f is a well defined operator because (i) our wavefunctions9 are functionals of
generalizedconnectionsĀ, whence it is not obvious what the functional derivative means
and (ii) we have smeared the operator only along two dimensions. Let us discuss these
points one by one.

† For example,fε(x, y) can be constructed as follows. Takeany non-negative functionf of compact support on
S such that

∫
d2xf (x) = 1 and setfε(x, y) = (1/ε2)f ((x − y)/ε). Here, we have implicitly used the given chart

to give fε(x, y) a density weight inx.
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First, let us fix a graphγ and consider a cylindrical function9γ on A,

9γ (Ā) = ψ(Ā(e1), . . . , Ā(eN)), (3.4)

where, as before,N is the total number of edges ofγ and whereψ is a smooth function
on [SU(2)]N . Now, a key fact about generalized connections is that, for any given graph
γ , eachĀ is equivalent to some smooth connectionA [5]: given anyĀ, there exists anA
such that

Ā(ek) = hk[A] := P exp

(
−

∫
ek

A

)
, (3.5)

for all k = 1, . . . , N . (For any givenĀ, the smooth connectionA is of course not unique.
However, this ambiguity does not affect the considerations that follow.) Hence, there
is a one-to-one correspondence between the cylindrical function9γ on A and function
ψ(h1(A), . . . , hE(A)) on the spaceA of smooth connections and we can apply the operator
[Ê3

i ]f to the latter. The result is

[Ê3
i ]f (x) · 9γ (Ā) = −iGh̄

N∑
I=1

∫
S

d2y fε(x, y)

(
δhI

δAi
a(y)

)∣∣∣∣
y3=0

(
∂ψ
∂hI

)
(A)

= i`2
P

∫
S

d2y fε(x, y)

N∑
I=1

[ ∫ 1

0
dt ė3

I (t) δ(y1, e1
I (t))δ(y

2, e2
I (t))δ(0, e3

I (t))

× (
hI (1, t)τ ihI (t, 0)

)A

B

]
∂ψ

∂hI
A
B

(A), (3.6)

where,`P = √
Gh̄ is the Planck length, the indexI labels the edges in the graph, [0, 1] 3

t 7→ eI (t) is any parametrization of an edgeeI , hI (t
′, t) := P exp(−∫ t ′

t
Aa(eI (s))− ėa

I (s) ds)

is the holonomy of the connectionA along the edgeeI from parameter valuet to t ′. Thus,
the functional derivative has a well defined action on cylindrical functions; the first of the
two problems mentioned above has been overcome.

However, because of the presence of the delta distributions, it is still not clear that
[Ê3

i ]f is a genuine operator (rather than a distribution-valued operator). To see explicitly
that it is, we need to specify some further details. Given a graphγ , we can just subdivide
some of its edges and thus obtain a graphγ ′ which occupies the same points in6 asγ but
has (trivially) more vertices and edges. Every function which is cylindrical with respect to
the ‘smaller’ graphγ is obviously cylindrical with respect to the ‘larger’ graphγ ′ as well.
The idea is to use this freedom to simplify the discussion by imposing some conditions
on our graphγ . We will assume that: (i) if an edgeeI contains a segment which lies
in S, then it lies entirely in the closure ofS; (ii) each isolated intersection ofγ with the
2-surfaceS is a vertex ofγ and (iii) each edgeeI of γ intersectsS at most once. (The
overlapping edges are often called edges ‘tangential’ toS; they should not be confused with
edges which ‘cross’S but whose tangent vector at the intersection point is tangent toS.) If
the given graph does not satisfy one or more of these conditions, we can obtain one which
does simply by subdividing some of the edges. Thus these conditions are not restrictive.
They are introduced to simplify the ‘book-keeping’ in calculations.

Let us now return to (3.6). If an edgeeI has no point in common withS, it does not
contribute to the sum. If it is contained inS, ė3

I vanishes identically, hence its contribution
also vanishes. (For a subtlety, see the remark below equation (3.11).) We are thus left with
edges which intersectS at isolated points. Let us first consider only those edges which are
‘outgoing’ at the intersection. Then, at the intersection point, the value of the parametert
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is zero and, for a given edgeeI , ė3
I is positive (negative) ifeI is directed ‘upwards’ along

increasingx3 (‘downwards’ along decreasingx3). Hence, equation (3.6) becomes†:

[Ê3
i ]f (x) · 9γ = i`2

P

2

[ N∑
I=1

[ ∫
S

d2y κIfε(x, y)δ(y1, e1
I (0))δ(y2, e2

I (0))
(
hI τ

i
)A

B

]
∂ψ

∂hI
A
B

= i`2
P

2

N∑
I=1

κIfε(x, eI (0))Li
I · ψ(Ā(e1), . . . , Ā(eN)), (3.7)

where the constantκI associated with the edgeeI is given by

κI =
 0, if eI is tangential toS or does not intersectS,

+1, if eI has an isolated intersection withS and lies aboveS
−1, if eI has an isolated intersection withS and lies belowS

(3.8)

and whereLi
I is the left invariant vector field in theith internal direction on the copy of

SU(2) corresponding to theI th edge

Li
I · ψ(Ā(e1), . . . , Ā(eN)) = (Ā(eI )τ

i)AB
∂ψ

∂(Ā(eI ))
A
B

. (3.9)

If some of the edges are ‘incoming’ at the intersection point, then the final expression of
[Êa

i ]f (x) can be written as

[Ê3
i ]f (x) · 9γ = i`2

P

2

[ N∑
I=1

κIfε(x, vαI
)Xi

I

]
· ψ(Ā(e1), . . . , Ā(eN)), (3.10)

whereXi
I is an operator assigned to a vertexv and an edgeeI intersectingv by the following

formula:

Xi
I · ψ(Ā(e1), . . . , Ā(eN)) =


(Ā(eI )τ

i)AB
∂ψ

∂(Ā(eI ))
A
B

, wheneI is outgoing

−(τ iĀ(eI ))
A
B

∂ψ
∂(Ā(eI ))

A
B

, wheneI is incoming.
(3.11)

Remark. Let us briefly return to the edges which are tangential toS. In this case, although
ė3
I vanishes, we also have a singular termδ(0, 0) (in the x3 direction) in (3.6). Hence,

to recover an unambiguous answer,for these edges, we also need to smear in the third
direction using an additional regulator, saygε′(x3, y3). When this is done, one finds that
the contribution of the tangential edges vanishes even before removing the regulator; as
stated earlier, the tangential edges do not contribute. We did not introduce the smearing in
the third direction right at the beginning to emphasize the point that this step is unnecessary
for the edges whose contributions survive in the end.

The right-hand side again defines a cylindrical function based on the (same) graphγ .
Denote byH0

γ the Hilbert spaceL2(Aγ , dµ0
γ ) of square-integrable cylindrical functions

associated with a fixed graphγ . Sinceµ0
γ is the induced Haar measure onAγ and since

the operator is just a sum of right/left invariant vector fields, standard results in analysis
imply that, with domain Cyl1γ of all C1 cylindrical functions based onγ , it is essentially
self-adjoint onH0

γ . Now, it is straightforward to verify that the operators onH0
γ obtained by

† In the first step, we have used the regularization
∫ ∞

0 dz g(z)δ(z) = 1
2g(0) which follows if theδ(z) is obtained,

in the standard fashion, as a limit of functions which are symmetric about 0.
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varying γ are all compatible† in the appropriate sense. Hence, it follows from the general
results in [8] that [̂E3

i ]f (x), with domain Cyl1 (the space of allC1 cylindrical functions),
is an essentially self-adjoint operator onH0. For notational simplicity, we will also denote
its self-adjoint extension by [̂E3

i ]f (x). (The context should make it clear whether we are
referring to the essentially self-adjoint operator or its extension.)

3.2. Area operators

Let us now turn to the integrand of the smeared area operator (corresponding to (3.3)).
Denoting the determinant of the intrinsic metric onS by gS , we have

[ĝS ]f (x) · 9γ := [E3
i ]f (x)[E3i ]f (x) · 9γ

= −`4
P

4

[ ∑
I,J

κ(I, J )fε(x, vαI
)fε(x, vαJ

) Xi
IX

i
J

]
· 9γ , (3.12)

where the summation goes over all the oriented pairs(I, J ); vαI
andvαJ

are the vertices at
which edgeseI and eJ intersectS; κ(I, J ) = κI κJ equals 0 if either of the two edgeseI

andeJ fails to intersectS or lies entirely inS, +1 if they lie on the same side ofS, and−1
if they lie on the opposite sides. (For notational simplicity, from now on we shall not keep
track of the position of the internal indicesi; as noted in section 2.3, they are contracted
using the invariant metric on the Lie algebrasu(2).) The next step is to consider verticesvα

at whichγ intersectsS and simply rewrite the above sum by re-grouping terms by vertices.
The result simplifies if we chooseε sufficiently small so thatfε(x, vαI

)fε(x, vαJ
) is zero

unlessvαI
= vαJ

. We then have

[ĝS ]f (x) · 9γ = −`4
P

4

[ ∑
α

(fε(x, vα))2
∑
Iα,Jα

κ(Iα, Jα)Xi
Iα

Xi
Jα

]
· 9γ , (3.13)

where the indexα labels the vertices onS andIα andJα label the edges at the vertexα.
The next step is to take the square root of this expression. The same reasoning that

established the self-adjointness of [Ê3
i ]f (x) now implies that [̂gS ]f (x) is a non-negative self-

adjoint operator and hence has a well defined square root which is also a positive-definite
self-adjoint operator. Since we have chosenε to be sufficiently small, for any given point
x in S, fε(x, vα) is non-zero for at most one vertexvα. We can therefore take the sum over
α outside the square root. One then obtains

([ĝS ]f )1/2(x) · 9γ = `2
P

2

∑
α

fε(x, vα)

[ ∑
Iα,Jα

κ(Iα, Jα)Xi
Iα

Xi
Jα

]1/2

· 9γ . (3.14)

Note that the operator is neatly split; thex dependence all resides infε and the operator
within the square root is ‘internal’ in the sense that it acts only on copies ofSU(2).

Finally, we can remove the regulator, i.e. take the limit asε tends to zero. By integrating
both sides against test functions onS and then taking the limit, we conclude that the
following equality holds in the distributional sense:

√̂
gS(x) · 9γ = `2

P

2

∑
α

δ(2)(x, vα)

[ ∑
Iα,Jα

κ(Iα, Jα)Xi
Iα

Xi
Jα

]1/2

· 9γ . (3.15)

† Given two graphs,γ andγ ′, we say thatγ > γ ′ if and only if every edge ofγ ′ can be written as a composition
of edges ofγ . Given two such graphs, there is a projection map fromAγ to Aγ ′ , which, via pull-back, provides
a unitary embeddingUγ,γ ′ of H̃0

γ ′ into H̃0
γ . A family of operatorsOγ on the Hilbert spacesHoγ is said to be

compatible ifUγ,γ ′Oγ ′ = Oγ Uγ,γ ′ andUγ,γ ′Dγ ′ ⊂ Dγ for all g > g′.
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Hence, the regularized area operator is given by

ÂS · 9γ = `2
P

2

∑
α

[ ∑
Iα,Jα

κ(Iα, Jα)Xi
Iα

Xi
Jα

]1/2

· 9γ . (3.16)

(Here, as before,α labels the vertices at whichγ intersectsS and Iα labels the edges of
γ at the vertexvα.) With Cyl2 as its domain,ÂS is essentially self-adjoint on the Hilbert
spaceH0.

Let us now remove the assumption that the surface6 is covered by a single chart of
adapted coordinates. If such a global chart does not exist, we can cover6 with a family
U of neighbourhoods such that for eachU ∈ U there exists a local coordinates system(xa)

adapted to6. Let (ϕU)U∈U be a partition of unity associated withU . We just repeat the
above regularization for a slightly modified classical surface area functional, namely for

AS,U :=
∫

S

dx1 ∧ dx2 ϕU [E3
i E

3i ]1/2 (3.17)

which has support within a domainU of an adapted chart. Thus, we obtain the operator
ÂS,U . Then we just define

ÂS =
∑
U∈U

ÂS,U . (3.18)

The result is again given by the formula (3.16). The reason why the functionsϕU disappear
from the result is that the operator obtained for a single domain of an adapted chart is
insensitive on changes of this chart. This concludes our technical discussion.

The classical expressionAS of (2.2) is rather complicated. It is therefore somewhat
surprising that the corresponding quantum operators can be constructed rigorously and
have quite manageable expressions. The essential reason is the underlying diffeomorphism
invariance which severely restricts the possible operators. Given a surface and a graph, the
only diffeomorphism-invariant entities are the intersection vertices. Thus, a diffeomorphism-
covariant operator can only involve structure at these vertices. In our case, it just acts on
the copies ofSU(2) associated with various edges at these vertices.

We have presented this derivation in considerable detail to spell out all the assumptions,
to bring out the generality of the procedure and to illustrate how regularization can be
carried out in a fully non-perturbative treatment. While one is free to introduce auxiliary
structures such as preferred charts or background fields in the intermediate steps, the final
result must respect the underlying diffeomorphism invariance of the theory. These basic
ideas will be used repeatedly for other geometric operators in the subsequent papers in this
series.

3.3. General properties of operators

3.3.1. Discreteness of the spectrum.By inspection, it follows that the total area operator
ÂS leaves the subspace of Cyl2

γ which is associated with any one graphγ invariant and
is a self-adjoint operator on the subspaceH0

γ of H0 corresponding toγ . Next, recall that
H0

γ = L2(Aγ , dµ0), whereAγ is a compact manifold, isomorphic with(SU(2))N whereN

is the total number of edges inγ . As explained below, the restriction of̂AS to H0
γ is given

by certain commuting elliptic differential operators on this compact manifold. Therefore,
all its eigenvalues are discrete. Now suppose that the complete spectrum ofÂS on H0 has
a continuous part. Denote byPc the associated projector. Then, given any9 in H0, Pc · 9
is orthogonal toH0

γ for any graphγ , and hence to the space Cyl of cylindrical functions.
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Now, since Cyl2 is dense inH0, Pc · 9 must vanish for all9 in H0. Hence the spectrum
of ÂS has no continuous part.

Note that this method is rather general: it can be used to show thatany self-adjoint
operator onH0 which maps (the intersection of its domain with)H0

γ to H0
γ , and whose

action onH0
γ is given by elliptic differential operators, has a purely discrete spectrum on

H0. Geometrical operators, constructed purely from the triad field, tend to satisfy these
properties.

3.3.2. Area element.Note that not only is the total area operator well defined, but in fact it
arises from a local area element,̂

√
gS , which is an operator-valued distribution in the usual

sense. Thus, if we integrate it against test functions, the operator is densely defined onH0

(with C2 cylindrical functions as the domain) and the matrix elements

〈9 ′
γ ′ ,

√̂
gS(x) · 9γ 〉 (3.19)

are two-dimensional distributions onS. Furthermore, since we did not have to
renormalize the regularized operator (3.14) before removing the regulator, there areno
free renormalization constants involved. The local operator is completely unambiguous.

3.3.3. [ĝS ]f versus its square root. Although the regulated operator [ĝs ]f is well defined, if
we let ε to go zero, the resulting operator is in fact divergent: roughly, it would lead to the
square of the two-dimensionalδ distribution. Thus, the determinant of the 2-metric is not
well defined in the quantum theory. As we saw, however, the square root of the determinant
is well defined: we have to first take the square root of theregulatedexpression andthen
remove the regulator. This, in effect, is the essence of the regularization procedure.

To get around this divergence ofĝS , as is common in Minkowskian field theories, we
could have first rescaled [ĝS ]f by an appropriate factor and then taken the limit. Then the
result can be a well defined operator, but it will depend on the choice of the regulator,
i.e. the additional structure introduced in the procedure. Indeed, if the resulting operator
is to have the same density character as its classical analoguegS(x)—which is a scalar
density of weight two—then the operator cannot respect the underlying diffeomorphism
invariance†. There is no metric/chart independent distribution onS of density weight two,
hence, such a ‘renormalized’ operator is not useful to a fully non-perturbative approach.
For the square root, on the other hand, we need a local density of weightone, and the
two-dimensional Dirac distribution provides this; now there is noa priori obstruction to a
satisfactory operator corresponding to the area element to exist. This is an illustration of
what appears to be typical in non-perturbative approaches to quantum gravity: either the
limit of the operator exists as the regulator is removed without the need for renormalization,
or it inherits background-dependent renormalization fields (rather than constants).

3.3.4. Vertex operators.As noted already, in the final expressions of the area element
and area operators, there is a clean separation between the ‘x-dependent’ and the ‘internal’
parts. Given a graphγ , the internal part is a sum of square roots of the operators

4S,vα
:=

∑
Iα,Jα

κ(Iα, Jα)Xi
Iα

Xi
Jα

(3.20)

† If, on the other hand, for some reason, we are willing to allow the limiting operator to have adifferentdensity
character than its classical analogue, one can renormalize [ĝ]f (x) in such a way as to obtain a background-
independent limit. For instance, we may usefε = (1/ε2)θ(|x − x′| − ε/2), and rescale [̂g]f by ε2 before taking
the limit. Then the limit is a well defined, diffeomorphism-covariant operator but it is a scalar density of weight
one rather than two.
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associated with the surfaceS and the vertexvα on it. It is straightforward to check that
operators corresponding to different vertices commute. Therefore, to analyse the properties
of area operators, we can focus on just one vertex operator at a time.

Furthermore, given the surfaceS and a pointv on it, we can define an operator4S,v

on the dense subspace Cyl2 on H0 as follows:

4S,v · 9γ :=


∑
I,J

κ(I, J )Xi
IX

i
J · 9γ if γ intersectsS in v,

0 otherwise,
(3.21)

whereI andJ label the edges ofγ which havev as a vertex. (Recall that every cylindrical
function is associated withsomegraphγ . As before, ifγ intersectsS at v but v is not a
vertex ofγ , one can extendγ just by adding a new vertexv and orienting the edges atv to
outgoing.) It is straightforward to verify that this definition is unambiguous: if a cylindrical
function can be represented in two different ways, say as9γ and9γ ′ , then4S,v · 9γ and
4S,v · 9γ ′ are two representations of the same function onA. There is a precise sense [8]
in which 4S,v can be regarded as a Laplacian operator onH0. The area operator is a sum
over all the pointsv of S of square roots of Laplacians,

ÂS = `2
P

2

∑
v∈S

√−4S,v. (3.22)

(Here the sum is well defined because, for any cylindrical function, it contains only a finite
number of non-zero terms, corresponding to the isolated intersection points of the associated
graph withS.) We will see in the next subsection that this fact is reflected in its spectrum.

3.3.5. Gauge invariance.The classical area element
√

gS is invariant under the internal
rotations of triadsEa

i ; its Poisson bracket with the Gauss constraint functional vanishes.
This symmetry is preserved in the quantum theory: the quantum operator

√̂
gS commutes

with the induced action ofG on the Hilbert spaceH0. Thus,
√̂

gS and the total area operator
ÂS map the space of gauge-invariant states onto itself; they project down to the Hilbert space
H̃0 of kinematic states.

Note, however, that the regulated triad operators [Ê3
i ]f are not gauge invariant; they

are defined only onH0. Nonetheless, they are useful; they feature in an important way in
our regularization scheme. In the loop representation, by contrast, one can only introduce
gauge-invariant operators and hence the regulated triad operators do not exist. Furthermore,
even in the definition (3.3) of the regularized area element, one must use holonomies to
transport indices between the two pointsy andz. While this manifest gauge invariance is
pleasing conceptually, in practice it often makes the calculations in the loop representation
cumbersome; one has to keep track of these holonomy insertions in the intermediate steps
although they do not contribute to the final result.

3.3.6. Overall factors. The overall numerical factors in the expressions of various operators
considered above depend on two conventions. The first is the convention noted in the second
footnote in section 3.1 used in the regularization procedure. Could we not have used a
different convention, setting

∫ ∞
0 dz g(z)δ(z) = cg(0) and

∫ 0
−∞ dz g(z)δ(z) = (1 − c)g(0)

for some constantc 6= 1
2? The answer is in the negative. Since in this case, the constantκI
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would take values

κI =


0, if eI is tangential toS or does not intersectS,

+2c, if eI has an isolated intersection withS and lies aboveS,

−2(1 − c), if eI has an isolated intersection withS and lies belowS.

(3.23)

It then follows that, unlessc = 1
2, the action of the area operatorÂS on a given cylindrical

function would change if we simply reverse the orientation onS (keeping the orientation
on 6 the same). Since this is physically inadmissible, we must havec = 1

2; there is really
no freedom in this part of the regularization procedure.

The second convention has to do with the overall numerical factor in the action,
which dictates the numerical coefficients in the symplectic structure. Here, we have
adopted the convention of [25] (see chapter 9) which makes the Poisson bracket
{Ai

a(x), Eb
j (y)} = Gδb

aδ
i
j δ(x, y), enabling us to expresŝEa

i (x) as−iGh̄δ/δAi
a(x). (Had we

rescaled the action by 1/8π as is sometimes done, in our expressions, Newton’s constant
G would be replaced by 8πG.)

4. Eigenvalues and eigenvectors

This section is divided into three parts. In the first, we derive the complete spectrum of the
area operators; in the second, we extend the notion of spin networks and in the third, we
use this extension to discuss eigenvectors.

4.1. The complete spectrum

We are now ready to calculate the complete spectrum ofÂS . SinceÂS is a sum of square
roots of vertex operators which all commute with one another, the task reduces to that of
finding the spectrum of each vertex operator. Furthermore, since vertex operators map (C2)
cylindrical functions associated with any one graph to(C0) cylindrical functions associated
with the samegraph, we can begin with an arbitrary but fixed graphγ . Then consider a
vertex operator4S,v and focus on the edges ofγ which intersectS at v. Let us divide the
edges into three categories: lete1, . . . , ed lie ‘below’ S (‘down’), ed+1, . . . , eu lie ‘above’
S (‘up’) and let eu+1, . . . , et be tangential toS. (As before, the labels ‘down’ and ‘up’ do
not have an invariant significance; the orientation ofS and of 6 enable us to divide the
non-tangential edges into two parts and we just label one as ‘down’ and the other as ‘up’.)
Let us set

J
(d)
S,v

i

γ := −i (Xi
1 + · · · + Xi

d), J
(u)
S,v

i

γ := −i (Xi
d+1 + · · · + Xi

u),

J
(t)
S,v

i

γ := −i (Xi
u+1 + · · · + Xi

t ), J
(d+u)
S,v

i

γ := J
(d)
S,v

i + J
(u)
S,v

i
(4.1)

whereXi
I is the operator defined in (3.11) assigned to the pointv and an edgeeI at v.

This notation is suggestive. We can associate with each edgee a particle with only a spin
degree of freedom. Then, the operators−iXi

e can be thought of as theith component of
angular momentum operators associated with that particle andJ

(d)
S,v

i
, J

(u)
S,v

i
andJ

(t)
S,v

i
as the

total ‘down’, ‘up’ and ‘tangential’ angular momentum operators at the vertexv.
By varying the graph, we thus obtain a family of operators. It is easy to check that they

satisfy the compatibility conditions and thus define operatorsJ
(u)
S,v

i
, J

(d)
S,v

i
, J

(t)
S,v

i
andJ

(d+u)
S,v

i

on Cyl. It is also easy to verify that they all commute with one another. Hence one can
express the vertex operator4S,v simply as

−4S,v = (J
(d)
S,v

i − J
(u)
S,v

i
)(J

(d)
S,v

i − J
(u)
S,v

i
); (4.2)
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because of the factorκ(I, J ) in (3.21), the edges which are tangential do not feature in this
expression.

The evaluation of possible eigenvalues is now straightforward. It is simplest to express
4S,v as

−4S,v = 2(J
(d)
S,v )

2 + 2(J
(u)
S,v )

2 − (J
(d+u)
S,v )2 (4.3)

and, as in elementary textbooks, go to the representation in which the operators
(J

(d)
S,v )

2, (J
(u)
S,v )

2 and (J
(d+u)
S,v )2 are diagonal. If we now restrict the operators to Cylγ

associated to a fixed graph, it is obvious that the possible eigenvaluesλ of 4S,v are given
by

λS,v = 2j (d)(j (d) + 1) + 2j (u)(j (u) + 1) − j (d+u)(j (d+u) + 1) (4.4)

wherej (d), j (u) andj (d+u) are half-integers subject to the usual condition:

j (d+u) ∈ {|j (d) − j (u)|, |j (d) − j (u)| + 1, . . . , j (d) + j (u)}. (4.5)

Returning to the total area operator, we note that the vertex operators associated with
distinct vertices commute. Although the sum (3.22) is not finite, restricted to any graphγ

and Cylγ it becomes finite. Therefore, the eigenvaluesaS of ÂS are given by

aS = `2
P

2

∑
α

[
2j (d)

α (j (d)
α + 1) + 2j (u)

α (j (u)
α + 1) − j (d+u)

α (j (d+u)
α + 1)

]1/2
(4.6)

whereα labels a finite set of points inS and the non-negative half-integers assigned to
eachα are subject to the inequality (4.5). The question now is if all these eigenvalues are
actually attained, i.e. if, givenany aS of the form (4.6), there are eigenvectors inH0 with
that eigenvalue. In section 4.3, we will show that the full spectrum is indeed realized on
H0.

The area operators map the subspaceH̃0 of gauge-invariantelements ofH0 onto itself.
Hence we can ask for their spectrum oñH0. We will see in section 4.3 that further
restrictions can now arise depending on the topology of the surfaceS. There are three
cases:

(i) The case whenS is an open surface whose closure is contained in6. An example is
provided by the discz = 0, x2 + y2 < r0 in R3. In this case, there is no additional
condition; allaS of (4.6) subject to (4.5) are realized.

(ii) The case when the surfaceS is closed (∂S = ∅) and divides6 into disjoint open sets
61 and62 (i.e. 6 = 61 ∪ S ∪ 62 with 61 ∩ 62 = ∅). An example is given by6 = R3

and S = S2. In this case, there is a condition on the half-integersj (d)
α and j (u)

α that
appear in (4.6) in addition to (4.5):∑

α

j (d)
α = N, and

∑
α

j (u)
α = N ′ (4.7)

for some integersN andN ′.
(iii) The case whenS is closed but not of type (ii). An example is given by6 = S1×S1×S1

andS = S1 × S1. In this case, the additional condition is milder:∑
α

(j (d)
α + j (u)

α ) = N (4.8)

for some integerN .
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Next, let us note some properties of this spectrum ofÂS . By inspection, it is clear that
the smallest eigenvalue is 0 and that the spectrum is unbounded from above. One can ask
for the ‘area gap’, i.e. the value of the smallest non-zero eigenvalue. On the full Hilbert
spaceH0, it is given by

a0
S =

√
3

4
`2

P . (4.9)

This is a special case of the situation when there is only one term in the sum in (4.6) with
j (d) = 0, j (u) = j (d+u) = j . Then

aS = `2
P

2

√
j (j + 1), (4.10)

and, if we choosej = 1
2, we obtain the eigenvaluea0

S . On the Hilbert spacẽH0 of gauge-
invariant states, on the other hand, because of the constraints on the spectrum discussed
above, the area gap is sensitive to the topology ofS:

a0
S =

√
3

4
`2

P if S is of type (i)

a0
S = 2

√
2

4
if S is of type (ii)

a0
S = 2

4
`2

P if S is of type (iii).

(4.11)

Another important feature of the spectrum is its behaviour for largeaS . As noted above,
the spectrum is discrete. However, an interesting question is if it approaches continuum
and, if so, in what manner. We will now show that asaS → ∞, the difference1aS between
aS and its closest eigenvalue satisfies the inequality

1aS 6 (`2
P /2)(`P /

√
aS) + O((`2

P /aS))`
2
P (4.12)

and hence tends to zero (irrespective of the topology ofS). Specifically, given (odd) integers
M andN satisfying 16 M 6 2

√
N , we will obtain an eigenvalueaS,N,M of ÂS such that

for sufficiently largeN , the bound (4.12) is realized explicitly†. Let us label representations
of SU(2) by their dimension,nα = 2jα + 1. Let nα, α = 1, . . . , M be (odd) integers such
that

∑M
α=1 nα = N , and |nα − N/M| < 2. Then, for eachM, we have from (4.10) an

eigenvalueaS,N,M

aS,N,M = `2
P

2

M∑
α=1

√
jα(ja + 1)

= `2
P

4

( M∑
α=1

(
nα − 1

2nα

)
+ O

(
1

N

))
= `2

P

4

(
N − M2

2N
+ kM2

N2
+ O

(
1

N

))
(4.13)

for some integerk ∈ [1, M/2]. As M varies between 1 and 2
√

N , aS,N,M varies between
(`2

P /4)N and (`2
P /4)(N − 2) + 4k/N 6 (`2

P /4)((N − 2) + 4/
√

N). Hence, given a

† This calculation was motivated by the results of Bekenstein and Mukhanov [15] and our estimate has an
interesting implication on whether the Hawking spectrum is significantly altered due to quantum gravity effects.
Because the ‘level spacing’1aS goes to zero asaS goes to infinity, the considerations of [15] do not apply to
large black holes in our approach and there is no reason to expect deviations from Hawking’s semiclassical results.
On the other hand, for small black holes—i.e. the final stages of evaporation—the estimate does not apply and
one expects transitions between area eigenstates to show significant deviations.
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sufficiently largeaS , there exist integersN, M satisfying the conditions given above such
that 1aS := |aS − an,m| satisfies the inequality (4.12).

We will conclude this discussion of the spectrum by providing an alternative form
of the expression (4.4) which holds for gauge-invariant states. This form will be useful
in comparing our result with those obtained in the loop representation (where, from the
beginning, one restricts oneself to gauge-invariant states.) Let9γ be a gauge-invariant
cylindrical function onA. Then, the Gauss constraint implies that, at every vertexv of γ ,
the following condition must hold:∑

I

Xi
I · 9γ = 0, (4.14)

whereI labels the edges ofγ at the vertexv andXi
I is assigned to the pointv and vertex

eI (see equation (3.11)). Therefore,

J
(d)
S,v

i + J
(u)
S,v

i + J
(t)
S,v

i = 0. (4.15)

Hence, one can now express the operator (4.3) in an alternate form,

−4S,v = 2(J
(d)
S,v )

2 + 2(J
(u)
S,v )

2 − (J
(t)
S,v)

2. (4.16)

Furthermore, if it happens thatγ has no edges which are tangential toS atv, equation (4.14)
implies

−4S,v = 4(J
(d)
S,v )

2 = 4(J
(u)
S,v )

2, (4.17)

whence the correspondingrestrictedeigenvalues of̂AS are given by
∑

`2
P

√
j (j + 1), where

j are half-integers.

4.2. Extended spin networks

As a prelude to the discussion on eigenvectors, in this subsection we will generalize the
constructions and results obtained in [9, 10, 27] on spin networks and spin network states.
The previous work showed that the spin network states provide us with a natural orthogonal
decomposition of the Hilbert spacẽH0 of gauge-invariant states intofinite-dimensional
subspaces. Here, we will extend these results to the spaceH0.

We begin by fixing some terminology. GivenN irreducible representationsπ1, . . . , πN

of SU(2), an associatedinvariant tensor cmk+1......mN
m1...mk

is a multi-linear map from⊗k
I=1 πI to

⊗N
I=k+1 5I such that

πk+1(g)nk+1
mk+1

. . . πN(g)nN

mN
cmk+1...mN

m1...mk
π1(g

−1)m1
n1

. . . πN(g−1)nk

mk
= cnk+1...nN

n1...nk
, (4.18)

for arbitrary g ∈ SU(2), whereπI (g) is the matrix representingg in the representation
πI . An invariant tensorcm1...mk

mk+1...mN is also called anintertwining tensorfrom the
representationsπ1, . . . , πk into πk+1, . . . , πN . All the invariant tensors are given by the
standard Clebsch–Gordon theory.

An extended spin networkis a quintuplet(γ, Eπ, Ec, Eρ, EM) consisting of

(i) A graph γ ;
(ii) A labelling Eπ := (π1, . . . , πN) of the edgese1, . . . , eN of that graphγ with irreducible

and non-trivial representations ofSU(2);
(iii) A labelling Eρ := (ρ1, . . . , ρV ) of the verticesv1, . . . , vV of γ with irreducible

representations ofSU(2), the constraint being that for every vertexvα the representation
ρα emerges in the decomposition of the tensor product of representations assigned by
Eπ to the edges intersectingvα;
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(iv) A labelling Ec = (c1, . . . , cV ) of the verticesv1, . . . , vV of γ with certain invariant
tensors, namely, assigned to a vertexvα is an intertwining tensorcα from the
representations assigned to the edges coming tovα andρα to the representations assigned
to the outgoing edges atvα; and,

(v) A labelling EM := (Mα)α=1,...,V = (M1, . . . , MV ) of the verticesv1, . . . , vV of γ which
assigns to every vertexvα a vectorMα in the representationρα.

It should be emphasized that everyπI is necessarily non-trivial whereasρα may be
trivial (i.e. one dimensional). In the gauge-invariant context [9, 10],ρα are all trivial, hence
items (iii) and (v) are unnecessary. The details of these conditions may seem somewhat
complicated but they are necessary to achieve the orthogonal decomposition (4.22).

From spin networks, we can construct states inH0. An extended spin network state
Nγ,Ec, EM is simply aC∞ cylindrical function onA constructed from an extended spin network

(γ, Eπ, Eρ, Ec, EM),

Nγ,Ec, EM (Ā) :=
[

N⊗
I=1

πI (Ā(eI )) ⊗
V⊗

α=1

Mα

]
· [ ⊗V

α=1 cα

]
, (4.19)

for all Ā ∈ A, where, as before,̄A(eI ) is an element ofG associated with an edgeeI

and ‘·’ stands for contracting, at each vertexvα of γ , the upper indices of the matrices
corresponding to all the incoming edges, the lower indices of the matrices assigned to all
the outgoing edges and the upper index of the vectorMα with all the corresponding indices
of cα. (We skip Eπ and Eρ in the symbol for the extended spin network function because
the intertwinersc contain this information.) Thus, for example, in the simple case when
the network has only two vertices, and all edges originate at the first vertex and end at the
second,Nγ,Ec, EM can be written out explicitly as

Nγ,Ec, EM = π1(Ā(e1))
n1
m1

. . . πN(Ā(eN))nN

mN
M

m′
1

1 M
m′

2
2 c

m1...mN

1 m′
1
c2n1...nN m′

2, (4.20)

where indicesmI , nI range over 1, . . . , 2jI + 1 andm′
α ranges over 1, . . . , 2jα+1. Given

any spin network, equation (4.19) provides a function onA which is square-integrable with
respect to the measureµ0. Given an extended spin network function onA, the rangeR(γ )

of the associated graphγ is completely determined. Thus, two spin networks can define
the same function onA if one can be obtained from the other by subdividing edges and
changing the orientations arbitrarily.

It turns out that the spin network states provide a decomposition of the full Hilbert
spaceH0 into finite-dimensional orthogonal subspaces (compare with [9, 10]). Given a
triplet (γ, Eπ, Eρ) defined by (i)–(iii) above, consider the vector spaceHγ,Eπ, Eρ spanned by the
spin network functionsNγ,Ec, EM given by all the possible choices forEc, EM compatible with
fixed labellingsEπ , Eρ. Note that, according to the representation theory of compact groups,
everyHγ,Eπ, Eρ is a finite-dimensional irreducible representation ofG in Cyl. The group acts
there via

Nγ,Ec, EM(g−1Āg) = Nγ,Ec, EM ′(Ā), M ′
α = ρα(g(vα))Mα. (4.21)

Modulo the obvious completions, we have the following orthogonal decomposition:

H0 =
⊕

R(γ ),Eπ, Eρ
Hγ,Eπ, Eρ (4.22)

where, given a graphγ , the labellingsEπ and Eρ range over all the data defined above by
(i)–(iii) whereas forγ in the sum we take exactly one representative from every range of an
analytic graph in6. When Eρ is trivial we skipρ in Hγ,Eπ, Eρ . OnHγ,Eπ , the action of the gauge
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transformations groupG is trivial and we have the following orthogonal decomposition of
the Hilbert space of gauge-invariant cylindrical functions:

H̃0 =
⊕

R(γ ),Eπ
Hγ,Eπ , (4.23)

where we use the same conventions as in (4.22). Thus, we recover the result on spin
network states obtained in [9, 10].

We conclude this subsection with a general comment on spin network states. Consider
trivalent graphs, i.e. graphsγ each vertex of which has three (or less) edges. In this case, the
standard Clebsch–Gordon theory implies that the number of associated gauge-invariant spin
network functions is severely limited: the corresponding subspace ofH̃0 is one dimensional.
Hence, on the subspace Cyl ofH̃0 corresponding only to trivalent graphs, the (normalized)
spin network states provide a natural orthonormal basis. What is remarkable is that these
spin networks were first introduced by Penrose [28] already 25 years ago to probe the
microscopic structure of geometry, although in a different context. Because of the simplicity
(and other attractive properties) of these Penrose spin network states it is tempting to hope
that they might also suffice in the present approach to quantum gravity. Indeed, there were
conjectures that the higher valent graphs are physically redundant. However, it turns out
that detailed physical considerations rule out this possibility; quantum gravity seems to need
graphs with unlimited complexity.

4.3. Eigenvectors

We are now ready to exhibit eigenvectors of the operators4S,v and ÂS for any of the
potential eigenvalues found in section 4.1. We will begin with the full, non-gauge-invariant
Hilbert spaceH0 and consider an arbitrary surfaceS. SinceH0 serves as the (gravitational
part of the) kinematical Hilbert space in theories in which gravity is coupled to spinor fields,
our construction is relevant to that case. In the second part of this subsection, we will turn
to the gauge-invariant Hilbert spacẽH0 and exhibit eigenvectors for the restricted range of
eigenvalues presented in section 4.1.

Fix a pointv in the surfaceS. We will investigate the action of the operators(J
(d)
S,v )

2,
(J

(u)
S,v )

2, (J
(d+u)
S,v )2 and4S,v on extended spin network states. Without loss of generality we

can restrict ourselves to graphs which are adapted toS and containv as a vertex, sayv = v1.
Given a graphγ and labellingEπ and Eρ of its edges and vertices by representations ofSU(2),
we shall denote byCv the linear space of the intertwining tensors which are compatible with
Eπ and Eρ at v in the sense of section 4.2. Let(γ, Eπ, Eρ, Ec, EM) be an extended spin network
andNγ,Ec, EM be the corresponding state. As one can see from equations (4.1), (3.21), each
of the four operators above is given by a linear combination (with constant coefficients) of
gauge-invariant terms of the formbi1...iE X

i1
I1

. . . X
iE
IE

wherebi1...iE is a constant tensor and all
theXs are associated with the pointv and the edges which meet there. OnNγ,Ec, EM the action
of any operator of this type reduces to a linear operatorov acting inCv. More precisely, if
O is any of the above operators, we have

ONγ,Ec, EM = Nγ,Ec′, EM (4.24)

where Nγ,Ec′, EM is again an extended spin network state and the network(γ, Eπ, Eρ, Ec′, EM)

differs from the first one only in one entry of the labellingEc′ corresponding to the vertex
v; c′

α = cα for all the verticesvα 6= v and c′
1 = ovc1. Consequently, the problem of

diagonalizing these operators reduces to that of diagonalizing afinite symmetric matrix of
ov. Note that a constant vectorM assigned tov does not play any role in this action and
hence will just make eigenvectors degenerate.
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In the case of operators(J (d)
S,v )

2, (J
(u)
S,v )

2 and(J
(d+u)
S,v )2, the (simultaneous) eigenstates are

given by the group representation theory. We can now spell out the general construction.
Let us fix a graphγ and arrange the edges that meet atv into three classes as before:

e1, . . . , ed; ed+1, . . . ., eu; eu+1, . . . , et . Let us also fix a labellingπ1, . . . , πt of these edges
by irreducible, non-trivial representations ofSU(2) and an irreducible (possibly trivial)
representationρ which emerges in the decomposition ofπ1 ⊗ . . . ⊗ πt . Now consider the
following ingredients:

(i) irreducible representationsµ(d), µ(u) andµ(d+u);

(ii) invariant tensorsc(d)
m1...mdm′

, c
md+1...mum

′′
(u) and c(u+d) m′m′′ m associated, respectively,

with the representationsπ1, . . . , πd, µ(d), and to πd+1, . . . , πu, µ(u) and finally to
µ(d), µ(u), µ(d+u); and,

(iii) invariant tensorc(t) n

mu+1...mtm associated withµ(d+u), πu+1, . . . , πt , ρ.

From this structure, construct the following invariant tensor:

cm1...mtn := c(d)
m1...mdm′

c(u)
md+1...mum

′′
c(d+u) m′m′′ nc(t) n

mu+1...mtm, (4.25)

associated with the representationsπ1, . . . , πt , ρ. To obtain a non-trivial result in the end,
we need all the tensors to be non-zero. The existence of such tensors is equivalent to the
following two conditions on the data (i)–(iii):

(iv) the representationsµ(d) and µ(u) emerge, respectively, inπ1 ⊗ . . . ⊗ πd and πd+1 ⊗
. . . ⊗ πu; and,

(v) the representationµ(d+u) emerges both inµ(d) ⊗ µ(u) andπu+1 ⊗ . . . ⊗ πt ⊗ ρ.

Finally, introduce an extended spin network(γ, Eπ, Eρ, Ec, EM) such that

Eπ = (π1, . . . , πt , . . . , πN), Eρ = (ρ, ρ2, . . . , ρV ), Ec = (c, c2, . . . , cV ), (4.26)

the remaining entries being arbitrary. Then, the corresponding stateNγ,Ec, EM is an

eigenvector of the operators(J (d)
S,v )

2, (J
(u)
S,v )

2 and(J
(d+u)
S,v )2 with the eigenvaluesj (d)(j (d)+1),

j (u)(j (u) + 1) and j (d+u)(j (d+u) + 1), respectively, where the half-integersj (d), j (u) and
j (d+u) correspond to the representationsµ(d), µ(u) and µ(d+u). Hence, thisNγ,Ec, EM is also
an eigenvector of4S,v with the eigenvalue (4.4), (4.5). It is obvious that for any triple of
representationsµ(d), µ(u) andµ(d+u) satisfying the constraint (4.5) there exists an extended
spin network (4.26).

This construction providesall eigenvectors of4S,v. The key reason behind this
completeness is that, given any choice ofπ1, . . . , πd, . . . , πu, . . . , πt and ρ as above, the
invariant tensors which can be written in the form (4.25) with anyµ(d), µ(u) andµ(d+u) span
the entire spaceCv of invariant tensors atv compatible with those data. Since the defining
formula for a spin network function (4.19) is linear with respect to every component ofEc,
given any spin network(γ, Eπ, Eρ, Ec, EM) it suffices to decompose the componentc1 of Ec at
v1 = v into invariant tensors of the form (4.25) in any manner to obtain a decomposition of
the corresponding spin network function into a linear combination of extended spin network
functions given by (4.25), (4.26). The desired result now follows from the orthogonal
decomposition ofH0 into the extended spin network subspaces.

Let us now turn to the operator̂AS . A basis of eigenvectors can be obtained in the
following way. Since the area operator can be expressed in terms of and commutes with
(J

(d)
S,v )

2, (J
(u)
S,v )

2 and (J
(d+u)
S,v )2 at any pointv in S, we can simultaneously diagonalize all

these operators. Because for every graph the area operator preserves the subspace of spin
network states associated with that graph and for two different graphs the spin network
spaces are orthogonal, it is enough to look for eigenvectors for an arbitrary graphγ . Given
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a graphγ , labellings Eπ , Eρ and EM as in section 4.2, at every vertexv contained in the
surfaceS choose a basis in the spaceCv consisting of invariant tensors of the form (4.25).
The set of the spin network functions (4.19) constructed by varyingγ, Eπ, Eρ, EM and picking
at each vertexv an element of the basis inCv constitutes a basis inH0. (If we restrict the
labellings toρ consisting only of the trivial representations, then the resulting set of spin
network states provide a basis for the spaceH̃0 of gauge-invariant functions.) Each such
state is automatically an eigenvector ofÂS with eigenvalue (4.6).

We conclude the first part of this subsection with a simple example of an eigenvector
of the area operator with eigenvalueaS , whereaS is any real number satisfying (4.5), (4.6).

Example. Suppose(j (d)
α , j (u)

α , j (d+u)
α ), α = 1, . . . , W , is a finite set of triples of half-

integers which for everyα satisfy (4.5). Rather than repeating the construction (i)–(v)
above step by step, we will specify only the simplest of the resulting (extended) spin
networks. InS chooseW distinct pointsvα, α = 1, . . . , W . To every pointvα assign two
finite analytic curvesed,α and eu,α starting atvα, not intersectingS otherwise, and going
in opposite directions toS. For a graphγ take the graph{ed,1, eu,1, . . . , ed,W , eu,W }, the
vertices being the intersection pointsvα and the ends of the edgesed,α andeu,α (the curves
being chosen such that the pointsvα are the only intersections). Label each edgeed,α with
the irreducible representationπd,α corresponding to a givenj (d)

α and every edgeeu,α with
the irreducible representationπu,α defined byj (u)

α . That defines a labellingEπ of γ . (The
absence of edgeset,α is equivalent to introducing these edges in any manner and assigning
to them the trivial representations.) To define a labellingEρ at the verticesvα, assign to
every vertexvα a representationρα defined by a givenj (d+u)

α . Next, to each vertexvα

assign an invariant tensorcmdmum
α associated to the triple of representations(πd,α, πu,α, ρα)

introduced above. The construction of a spin network is completed by: (i) labelling that
end point of eached,α and, respectively, ofeu,α which is not contained inS, with the
representationρd,α := πd,α and, respectively,ρu,α := πu,α; (ii) labelling these ends of
the edges with the unique invariants corresponding to the representationsµ(d),α, ρ(d),α or,
respectively, toµ(u),α, ρ(u),α; (iii) defining a labelling EM of vertices which can be chosen
arbitrarily, provided at a vertexvα the associated vectorMα belongs to the representation
ρ(d+u),α and at an endpoint of either of the edgesed/u,α the associatedMd/u,α belongs to
ρ(d/u),α.

As we noted in section 2, the Hilbert spaceH0 is the quantum analogue of the full
phase space. Now, in the classical theory, the imposition of the Gauss constraint on the
phase space does not restrict the allowed values of the functionalAS of (2.2). It is therefore
of interest to see if this feature persists in the quantum theory: is the spectrum ofÂS on
the full H0 the same as that on its gauge-invariant subspaceH̃0? As was indicated in
section 4.1, the answer is in the affirmative only if the surface is open. IfS is closed, there
are restrictions on the spectrum which depend on topological properties ofS embedded in
6. The second part of this section is devoted to this issue. As indicated in section 4.1, we
need to consider three separate cases.

Case (i): ∂S 6= ∅ (and∂S ⊂ 6). We will modify the spin network of the above example
in such a way as to obtain a gauge-invariant eigenstatewithout changing the eigenvalue of
the area operator. Letγ and the labellingEπ be the ones defined in the example. To each
vertex vα assign one more edgeet,α beginning invα and containedin S. Label it by the
representationπt,α corresponding to a givenj (d+u)

α at that point. The labellingEρ is now taken
to be trivial. To every pointvα assign, as in the example, an invariant tensorcα associated
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now with the representations(πd,α, πu,α, πt,α). Every extension of these data to a spin
network will define a spin network state which is gauge invariant at each of the pointsvα.
Now, we need to define a closed spin network which contains all the edgesed,α, eu,α, et,α

and provides an extension for the labellings already introduced. For this, we use a key
property of the area operator associated with a surface with boundary: vertices which lie on
∂S do not contribute to the action of the operator. Therefore, we can simply extend every
edgeet,α within S to the boundary ofS. Denote the intersection point with∂S by vt,α. Next,
for everyα we extend (in a piecewise analytic way) the edgesed,α andeu,α such that they
end atvt,α. The extended edges form a graphγ ′ = {e′

d,1, e
′
u,1, e

′
t,1, . . . , e

′
d,W , e′

u,W , e′
t,W }.

Let us label each primed edge by the irreducible representation assigned previously to the
edge of which it is an extension. This defines a labellingEπ ′ of γ ′. Finally, assign to
each new vertexvt,α the non-zero invariant tensorc′

t,α mu,md ,mt
(which is unique up to

rescaling) associated with the triplet of representations(πd,α, πu,α, πt,α). This completes
the construction of a gauge-invariant extension of a spin network state constructed in the
example. Thus, for an open surface, the spectrum of the area operatorÂS on H̃0 is the
same as that onH0.

Case (ii): ∂S = ∅ and S splits 6 into two open sets. In this case we cannot repeat the
above construction. SinceS has no boundary, if additional vertices are needed to close
the open spin network, they must now lie inS and can make unwanted contributions to
the action of the area operator. Consequently, there are further restrictions on the possible
eigenvalues of the operators(J (d)

S,v )
2, (J

(u)
S,v )

2 and (J
(d+u)
S,v )2. To see this explicitly, consider

an arbitrary spin network state(γ, Eπ, Ec) given by the construction (i)–(v) of section 4.3.
Let {v1, . . . , vW } be a set of the vertices ofγ contained in the surfaceS. Graphγ can be
split into three graphs:γt which is contained inS, γu which is contained in one side of
S in 6 and γd contained in the other side ofS in 6. The only intersection between the
two parts is the set{v1, . . . , vW } of vertices ofγ which are contained inS. Let γr be one
of the parts ofγ (i.e. r = d or r = u or r = t). According to the construction (i)–(v),
the labellingsEπ and Ec define naturally onγr an extended spin network. The labelling of
the edges ofγr by irreducible representations is defined just by the restriction ofEπ to γr .
The labelling of the vertices by irreducible representations and invariant tensors is defined
in the following way. For the vertices ofγr which are not contained inS, the labellings
are again taken to be the restriction ofEρ (which are all trivial) andEc. To a vertexvα

contained inS we assign the representation corresponding to a givenjr,α and the invariant
tensorcr defined in (ii) (for r = d, u) and (iii) (for r = t) of the construction (i)–(v).
Finally, we complete it by arbitrary non-zero labellingEM of the vertices with vectors in
appropriate representations. The construction (i)–(v) guarantees that a resulting extended
spin network state is not zero. Now, for an extended spin network(γ ′, Eπ ′, Eρ ′, Ec′, EM ′) we
have the following ‘fermion conservation law’:∑

v

jρ ′(v) = N (4.27)

for someinteger N , wherev runs through the vertices of a graphγ ′ and eachjρ(v) is a
half-integer corresponding to a representation assigned tov by Eρ ′. In our case we therefore
obtain the restriction∑

α

jr,α = Nr (4.28)

for r = d, u, d + u which gives the conditions (4.7) listed in section 4.1. (In fact, either
two of the above conditions imply the third one.)
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The conditions (4.28) are also sufficient for an eigenvector to exist. Suppose we are
given a set of half-integers as in the example above, which satisfy the restriction (4.28).
A statement ‘converse to the fermion conservation law’ is that for any set{v1, . . . , vW } of
points inS and any assignmentvα 7→ jα wherejα are non-negative half-integers satisfying
(4.28), there exists an extended spin network(γ ′, Eπ ′, Eρ ′, Ec′, EM ′) such that everyvα is its
index, jα corresponds to the representation assigned tovα by Eρ ′, and for every vertex
v 6= vα, α = 1, . . . , W , of γ ′, the representation assigned byEρ ′ is trivial. From extended
spin networks provided by the above statement it is easy to construct an eigenvector of the
corresponding eigenvalues.

Case (iii): ∂S = ∅ but S does not split6. The only difference between this case and
the previous one is that now a graphγ representing an eigenvector is cut byS into two
components:γt contained inS andγd+u which corresponds to the rest ofγ . Sinceγd+u can
now be connected by the same arguments as above, we prove that a necessary and sufficient
condition for an eigenvector to exist is (4.28) imposed only on the half-integersj (d+u)

α .

5. Discussion

In section 1, we began by formulating what we mean by quantization of geometry: are there
geometrical observables which assume continuous values on the classical phase space but
whose quantum analogues have discrete spectra? In the last two sections, we answered this
question in the affirmative in the case of area operators. In the next paper in this series we
will show that the same is true of other (‘three-dimensional’) operators. The discreteness
came about because, at the microscopic level, geometry has a distributional character with
one-dimensional excitations. This is the case even in semiclassical states which approximate
classical geometries macroscopically [12, 22].

We will conclude this paper by examining our results on the area operators from various
points of view.

5.1. Inputs

The picture of quantum geometry that has emerged here is strikingly different from the one
in perturbative, Fock quantization. Let us begin by recalling the essential ingredients that
led us to the new picture.

This task is made simpler by the fact that the new functional calculus provides the
degree of control necessary to distill the key assumptions. There are only two essential
inputs. The first assumption is that the Wilson loop variables,Tα = Tr P exp

∫
α
A, should

serve as the configuration variables of the theory, i.e. that the Hilbert space of (kinematic)
quantum states should carry a representation of theC?-algebra generated by the Wilson
loop functionals on the classical configuration spaceA/G. The second assumption singles
out the measurẽµ0. In essence, if we assume thatÊa

i is represented by−ih̄δ/δAi
a, the

‘reality conditions’ lead us to the measureµ̃0 [10]. Both these assumptions seem natural
from a mathematical physics perspective. However, a deeper understanding of theirphysical
meaning is still needed for a better understanding of the overall situation†.

† In particular, in the standard spin-2 Fock representation, one uses quite a different algebra of configuration
variables and uses the flat background metric to represent it. It then turns out that the Wilson loops arenot
represented by well defined operators; our first assumption is violated. One can argue that in a fully non-
perturbative context, one cannot mimic the Fock space strategy. Further work is needed, however, to make this
argument water-tight.
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Compactness ofSU(2) plays a key role in all our considerations. Let us therefore briefly
recall how this group arose. As explained in [17, 19], one can begin with the ADM phase
space in the triad formulation, i.e. with the fields(Ea

i , Ki
a) on 6 as the canonical variables,

and then make a canonical transformation to a new pair(Ai
a := (0i

a +Ki
a), E

a
i ), whereKi

a is
the extrinsic curvature and0i

a, the spin-connection ofEa
i . ThenAi

a is anSU(2) connection,
the configuration variable with which we began our discussion in section 2. It is true that,
in the Lorentzian signature, it is not straightforward to express the Hamiltonian constraint in
these variables; one has to introduce an additional step, e.g. a generalized Wick transform
[18]. However, this point is not directly relevant in the discussion of geometric operators
which arise at thekinematicallevel (see, however, below). Finally, we could have followed
the well known strategy [25] of simplifying constraints by using a complex connection
CAi

a := (0i
a − iKi

a) in place of the realAi
a. The internal group would then have been

complexifiedSU(2). However, forreal (Lorentzian) general relativity, the kinematic states
would then have beenholomorphic functionals ofCAi

a. To construct this representation
rigorously, certain technical issues still need to be overcome. However, as argued in [18],
in broad terms, it is clear that the results will be equivalent to the ones obtained here with
real connections.

5.2. Kinematics versus dynamics

As was emphasized in the main text, in the classical theory, geometrical observables are
defined as functionals on thefull phase space; these are kinematical quantities whose
definitions are quite insensitive to the precise nature of dynamics, presence of matter
fields, etc. Thus, in the connection dynamics description, all one needs is the presence
of a canonically conjugate pair consisting of a connection and a (density-weighted) triad.
Therefore, one would expect the results on the area operator presented here to be quite
robust. In particular, they should continue to hold if we bring in matter fields or extend the
theory to supergravity.

There is, however, a subtle caveat: in field theory, one cannot completely separate
kinematics and dynamics. For instance, in Minkowskian field theories, the kinematic field
algebra typically admits an infinite number ofinequivalentrepresentations and a given
Hamiltonian may not be meaningful on a given representation. Therefore, whether the
kinematical results obtained in any one representation actually hold in the physical theory
depends on whether that representation supports the Hamiltonian of the model. In the
present case, therefore, a key question is whether the quantum constraints of the theory can
be imposed meaningfully oñH0†. Results to date indicate (but do not yet conclusively
prove) that this is likely to be the case for general relativity. The general expectation is that
this would also be the case for a class of theories such as supergravity, which are ‘near’
general relativity. The results obtained here would continue to be applicable for this class
of theories.

5.3. Dirac observable

Note that ÂS has been defined forany surfaceS. Therefore, these operators will not
commute with constraints; they are not Dirac observables. To obtain a Dirac observable,
one would have to specifyS intrinsically, using, for example, matter fields. In view of
the Hamiltonian constraint, the problem of providing an explicit specification is extremely

† Note that this issue arises inany representation once a sufficient degree of precision is reached. In
geometrodynamics, this issue is not discussed simply because generally the discussion is rather formal.
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difficult. However, this is true already in the classical theory. In spite of this,in practice
we do manage to specify surfaces and, furthermore, compute their areas using the standard
formula from Riemannian geometry which is quite insensitive to the details of how the
surface was actually defined. Similarly, in the quantum theory,if we could specify a
surfaceS intrinsically, we could compute the spectrum ofÂS using the results obtained in
this paper.

5.4. Comparison

Let us compare our methods and results with those available in the literature. Area
operators were first examined in the loop representation. The first attempt [12] was largely
exploratory. Thus, although the key ideas were recognized, the very simplest of loop
states were considered and the simplest eigenvalues were looked at; there was no claim of
completeness. In the present language, this corresponds to restricting oneself to bivalent
graphs. In this case, apart from an overall numerical factor (which does, however, have
some conceptual significance) our results reduce to that of [12].

A more complete treatment, also in the framework of the loop representation, was
given in [13]. It may appear that our results are in contradiction with those in [13] on two
points. First, the final result there was that the spectrum of the area operator is given by
`2

P

∑ √
jl(jl + 1), wherejl are half-integers, rather than by (4.6). However, the reason

behind this discrepancy is rather simple: the possibility that some of the edges at any given
vertex can be tangential to the surface was ignored in [13]. It follows from our remark
at the end of section 4.2 that, given a surfaceS, if one restricts oneself only to graphs
in which none of the edges is tangential, our result reduces to that of [13]. Thus, the
eigenvalues reported in [13] do occur in our spectrum. It is just that the spectrum reported
in [13] is incomplete. Second, it is suggested in [13] that, as a direct consequence of the
diffeomorphism covariance of the theory, local operators corresponding to volume (and,
by implication, area)elementswould be necessarily ill defined (which makes it necessary
to bypass the introduction of volume (and area) elements in the regularization procedure).
This assertion appears to contradict our finding that the area element

√̂
gS is a well defined

operator-valued distribution which can be used to construct the total area operatorÂS in
the obvious fashion. We understand [29], however, that the intention of the remark in [13]
was only to emphasize that the volume (and area) elements are ‘genuine’ operator-valued
distributions; thus there is no real contradiction.

The difference in the methodology is perhaps deeper. First, as far as we can tell, in [13]
only states corresponding to trivalent graphs are considered in actual calculations. Thus,
even the final expression (equation (48) in [13]) of the area operator after the removal of
the regulator is given only on trivalent graphs. Similarly, their observation that every spin
network is an eigenvector of the area operator holds only in the trivalent case. Second, for
the limiting procedure which removes the regulator to be well defined, there is an implicit
assumption on the continuity properties of loop states (spelled out in detail in [30]). A
careful examination shows that this assumption isnot satisfied by the states of interest
and hence an alternative limiting procedure, analogous to that discussed in section 3.1,
is needed. Work is now in progress to fill this gap [29]. Finally, not only is the level
of precision achieved in the present paper significantly higher, but the approach adopted
is also more systematic. In particular, in contrast to [13], in the present approach, the
Hilbert space structure is knownprior to the introduction of operators. Hence, we can be
confident that we did not just omit the continuous part of the spectrum by excising by fiat
the corresponding subspace of the Hilbert space.
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Finally, the main steps in the derivation presented in this paper were sketched in
appendix D of [10]. The present discussion is more detailed and complete.

5.5. Manifold versus geometry

In this paper, we began with an orientable, analytic, 3-manifold6 and this structure
survives in the final description. As noted in the footnote in section 2.1, we believe that
the assumption of analyticity can be weakened without changing the qualitative results.
Nonetheless, a smoothness structure of the underlying manifold will persist. What is
quantized is ‘geometry’ and not smoothness. Now, in 2+ 1 dimensions, using the loop
representation one can recast the final description in a purely combinatorial fashion (at least
in the so-called ‘timelike sector’ of the theory). In this description, at a fundamental level,
one can avoid all references to the underlying manifold and work with certain abstract
groups which, later on, turn out to be the homotopy groups of the ‘reconstructed/derived’
2-manifold (see, for example, section 3 in [31]). One might imagine that, if and when our
understanding of knot theory becomes sufficiently mature, one would also be able to get rid
of the underlying manifold in the 3+ 1 theory and introduce it later as a secondary/derived
concept. At present, however, we are quite some way from achieving this.

In the context of geometry, however, a detailed combinatorial pictureis emerging.
Geometrical quantities are being computed by counting; integrals for areas and volumes are
being reduced to genuine sums. (However, the sums arenot the ‘obvious’ ones, often used
in approaches thatbegin by postulating underlying discrete structures. In the computation
of area, for example, one does not just count the number of intersections; there are precise
and rather intricate algebraic factors that depend on the representations ofSU(2) associated
with the edges at each intersection.) It is striking to note that, in the same address [3] in
which Riemann first raised the possibility that geometry of space may be a physical entity,
he also introduced ideas on discrete geometry. The current program comes surprisingly
close to providing us with a concrete realization of these ideas.
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