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Abstract. A new functional calculus, developed recently for a fully non-perturbative treatment

of quantum gravity, is used to begin a systematic construction of a quantum theory of geometry.
Regulated operators corresponding to areas of 2-surfaces are introduced and shown to be self-
adjoint on the underlying (kinematical) Hilbert space of states. It is shown that their spectra
are purely discrete, indicating that the underlying quantum geometry is far from what the
continuum picture might suggest. Indeed, the fundamental excitations of quantum geometry are
one dimensional, rather like polymers, and the three-dimensional continuum geometry emerges
only on coarse graining. The full Hilbert space admits an orthonormal decomposition into finite-
dimensional subspaces which can be interpreted as the spaces of states of spin systems. Using
this property, the complete spectrum of the area operators is evaluated. The general framework
constructed here will be used in a subsequent paper to discuss three-dimensional geometric
operators, e.g. the ones corresponding to volumes of regions.

PACS numbers: 0460, 0240

It is a pleasure to dedicate this paper to Professor Andrzej Trautman, who was one of the first
to recognize the deep relationship between geometry and the physics of gauge fields [1, 2] which
lies at the heart of this investigation.

1. Introduction

In his celebrated inaugural address, Riemann suggested [3] that the geometry of space
may be more than just a fiducial, mathematical entity serving as a passive stage for
physical phenomena, and may in fact have a direct physical meaning in its own right.
General relativity proved this vision to be correct: Einstein’s equations put geometry on
the same footing as matter. Now, the physics of this century has shown us that matter
has constituents and the three-dimensional objects we perceive as solids in fact have a
discrete underlying structure. The continuum description of matter is an approximation
which succeeds brilliantly in the macroscopic regime but fails hopelessly at the atomic
scale. It is therefore natural to ask if the same is true of geometry. Does geometry also
have constituents at the Planck scale? What are its atoms? Its elementary excitations? Is
the spacetime continuum only a ‘coarse-grained’ approximation? If so, what is the nature
of the underlying quantum geometry?

To probe such issues, it is natural to look for clues in the procedures that have been
successful in describing matter. Let us begin by asking what we mean by quantization of
physical quantities. Let us take a simple example—the hydrogen atom. In this case, the
answer is clear: while the basic observables—energy and angular momentum—take on a
continuous range of values classically, in quantum mechanics their spectra are discrete. So,
we can ask if the same is true of geometry. Classical geometrical observables such as areas
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of surfaces and volumes of regions can take on continuous values on the phase space of
general relativity. Are the spectra of corresponding quantum operators discrete? If so, we
would say that geometry is quantized.

Thus, it is rather easy to pose the basic questions in a precise fashion. Indeed, they
could have been formulated soon after the advent of quantum mechanics. Answering them,
on the other hand, has proved to be surprisingly difficult. The main reason, it seems,
is the inadequacy of the standard techniques. More precisely, the traditional approach to
guantum field theory has been perturbative, wherelmggnswith a continuum, background
geometry. Itis then difficult to see how discreteness would arise in the spectra of geometric
operators. To analyse such issues, one needs a fully non-perturbative approach: geometric
operators have to be constructa initio without assumingany background geometry.

To probe the nature of quantum geometry, we cannot begiadsymingthe validity of

the continuum picture. We must let quantum gravity itself decide whether this picture is
adequate at the Planck scale; the theory itself should lead us to the correct microscopic
picture of geometry.

In this paper, we will use the non-perturbative, canonical approach to quantum gravity
based on connections to probe these issues. Over the past three years, this approach has been
put on a firm mathematical footing through the development of a new functional calculus
on the space of gauge-equivalent connections [4-11]. This calculus does not use any
background fields (such as a metric) and is therefore well suited to a fully non-perturbative
treatment. The purpose of this paper is to use this framework to explore the nature of
guantum geometry.

In section 2, we recall the relevant results from the new functional calculus and outline
the general strategy. In section 3, we present a regularization of the area operator. Its
properties are discussed in section 4; in particular, we exhibit its entire spectrum. Our
analysis is carried out in the ‘connection representation’ and the discussion is self-contained.
However, at a non-technical level, there is a close similarity between the basic ideas used
here and those used in discussions based on the ‘loop representation’ [12, 13]. Indeed, the
development of the functional calculus which underlies this analysis itself was motivated,
in a large measure, by the pioneering work on loop representation by Rovelli and Smolin
[14]. The relation between various approaches will be discussed in section 5.

The main result of this paper should have ramifications on the statistical mechanical
origin of the entropy of black holes along the lines of [15, 16]. This issue is being
investigated.

2. Preliminaries

This section is divided into three parts. In the first, we will recall [4, 5] the basic structure of
the quantum configuration space and, in the second, that of the Hilbert space of (kinematic)
guantum states [10]. The overall strategy will be summarized in the third part.

2.1. Quantum configuration space

In general relativity, one can regard the spatg; of SU(2) connections modulo gauge
transformations on a (‘spatial’) 3-manifold as the classical configuration space [17-19].

For systems with only a finite number of degrees of freedom, the classical configuration
space also serves as the domain space of quantum wavefunctions, i.e. as the quantum
configuration space. For systems with an infinite number of degrees of freedom, on the other
hand, this is not true: generically, the quantum configuration space is an enlargement of the
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classical space. In free-field theory in Minkowski space (as well as exactly solvable models
in low spacetime dimensions), for example, while the classical configuration space can be
built from suitably smooth fields, the quantum configuration space includes all (tempered)
distributions. This is an important point because, typically, the classical configuration spaces
are of zero measure; wavefunctions with support only on smooth configurations have zero
norm! The overall situation is the same in general relativity. The quantum configuration

spaceA/G is a certain completion ofl/G [4, 5].

The spaced/G inherits the quotient structure of/G, i.e. A/G is the quotient of the
spaceA of generalized connections by the spatef generalized gauge transformations.

To see the nature of the generalization involved, first recall that each smooth connection
defines a holonomy along path® %: £,(A) 1= Pexp(— f,; A). Generalized connections
capture this notion. That is, eachin 4 can be defined [6, 8] as a map which assigns to
each oriented patlp in ¥ an elementA(p) of SU(2) such that: ()A(p~1) = (A(p))?!

and (i) A(p2 o p1) = A(p2) - A(p1), where p~* is obtained fromp by simply reversing

the orientation,p, o p; denotes the composition of the two paths (obtained by connecting
the end ofp; with the beginning ofp,) and A(p») - A(py) is the composition inSU (2).

A generalized gauge transformation is a mapvhich assigns to each point of ¥ an

SU(2) elementg(x) (in an arbitrary, possibly discontinuous fashion). It actsAin the
expected manner, at the end points of pathép) — g(v,)~1- A(p)-g(v_), wherev_ and

v, are, respectively, the beginning and the end poinpofif A happens to be a smooth
connection, sayl, we haveA(p) = h,(A). However, in generald(p) cannot be expressed

as a path-ordered exponential of a smooth 1-form with values in the Lie algelsi (@)

[5]. Similarly, in general, a generalized gauge transformation cannot be represented by a
smooth group-valued function on.

At first sight the spaced, G and.4/G seem too large to be mathematically controllable.
However, they admit three characterizations, which enables one to introduce differential and
integral calculus on them [4, 5, 7]. We will conclude this subsection by summarizing the
characterization—as suitable limits of the corresponding spaces in lattice gauge theory—
which will be most useful for the main body of this paper.

We begin with some definitions.

An edgeis an oriented, one-dimensional submanifoldsofwith two boundary points,
called vertices which is analytic everywhere, including the vertices.gfaphin ¥ is a
collection of edges such that if two distinct edges meet, they do so only at vertices. In
physics terminology, one can think of a graph as a ‘floating lattice’, i.e. a lattice whose
edges are not required to be rectangular. (Indeed, they may even be non-trivially knotted!)
Using the standard ideas from lattice gauge theory, we can construct the configuration space
associated with the gragh Thus, we have the spagg,, each elememt,, of which assigns
to every edge iry an element of§U (2) and the spacg, each elemeng, of which assigns
to each vertex iny an element ofSU(2). (Thus, if N is the number of edges in and
V the number of verticesd, is isomorphic with fU(2)]" and G, with [SU(2)]".) G,
has the obvious action od,: A, (e) — glvy)™t- A, (e) - g(v2). The (gauge-invariant)
configuration space associated with the floating latjices just A, /G,. The spaces4,

G and.A/G can be obtained as well defined (projective) limits of the spatgsg, and
A, /G, [7, 5]. Note, however, that this limit isot the usual ‘continuum limit’ of a lattice
gauge theory in which one lets the edge length go to zero. Here, we are already in the

1 For technical reasons, we will assume that all paths are analytic. An extension of the framework to allow
for smooth paths is being carried out [20]. The general expectation is that the main results will admit natural
generalizations to the smooth category. In this pagehas the physical dimensions of a connectidangth—1

and is thus related to the configuration varialilgy in the literature byA = G Aqlq whereG is Newton’s constant.
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continuum and have available to us all possible floating lattices from the beginning. We
are just expressing the quantum configuration space of the continuum theory as a suitable
limit of the configuration spaces of theories associated with all these lattices.

To summarize, the quantum configuration spaté is a specific extension of the
classical configuration spacd/G. Quantum states can be expressed as complex-valued,
square-integrable functions ad/G, or, equivalently, asG-invariant square-integrable
functions onA. As in Minkowskian field theories, whilel/G is dense ind/G topologically,
measured theoretically it is generally sparse; typicallyg is contained in a subset set of
zero measure ofd/G [7]. Consequently, what matters is the value of wavefunctions on
‘genuinely’ generalized connections. In contrast with the usual Minkowskian situation,
however,A, G and.A/G are allcompactspaces in their natural (Gel'fand) topologies [4-8].
This fact simplifies a number of technical issues.

Our construction can be compared with the general framework of ‘second quantization’
proposed by Kijowski [21]. He introduced the space of states for a field theory by using the
projective limit of spaces of states associated with a family of finite-dimensional theories.
He also suggested, as an example, the lattice approach. The common element with the
present approach is that in our case the space of measurédssoalso the projective limit
of the spaces of measures defined on finite-dimensional spgces

2.2. Hilbert space

Since A/G is compact, it admits regular (Borel, normalized) measures and for every such
measure we can construct a Hilbert space of square-integrable functions. Thus, to construct
the Hilbert space of quantum states, we need to select a specific measdy& on

It turns out thatA admits a measurg® that is preferred by both mathematical and
physical considerations [5, 6]. Mathematically, the measufeis natural because its
definition does not involve the introduction of any additional structure: it is induced on
by the Haar measure o$U(2). More precisely, sinced, is isomorphic to fU (2)]", the
Haar measure 08U (2) induces on it a measuaeg in the obvious fashion. As we vaty,
we obtain a family of measures which turn out to be compatible in an appropriate sense and
therefore induce a measurd on A. This measure has the following attractive properties
[5]: (i) it is faithful; i.e. for any continuous, non-negative functighon A, [ du® f >0,
equality holding if and only iff is identically zero and (ii) it is invariant under the (induced)
action of Diff[x], the diffeomorphism group of. Finally, «° induces a natural measugié
on A/G: i°is simply the push-forward qi° under the projection map that sendgo A4/G.
Physically, the measurg® is selected by the so-called ‘reality conditions’. More precisely,
the classical phase space admits an (over)complete set of naturally defined configuration and
momentum variables which are real, and the requirement that the corresponding operators
on the quantum Hilbert space be self-adjoint selects for us the mea8yi®].

Thus, it is natural to usé{® := L?(A/G,di°) as our Hilbert space. Elements of
HO are the kinematic states; we are yet to impose quantum constraints. ARus,the
classical analogue of thiull phase space of quantum gravity (prior to the introduction
of the constraint submanifold). Note that these quantum states can also be regarded as
gauge-invariantfunctions onA. In fact, since the spaces under consideration are compact
and measures normalized, we can regdfdas the gauge-invariasubspacef the Hilbert
spaceH? := L?(A, du®) of square-integrable functions o# [6, 7]. In what follows, we
we will often do so.

What do ‘typical’ quantum states look like? To provide an intuitive picture, we can
proceed as follows. Fix a graphwith N edges and consider functiods, of generalized
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connections of the formb, (A) = W(A(ey), ..., A(ey)) for somesmooth functiony on
[SU@2)]Y, whereey, ..., ey are the edges of the graph Thus, the functionsk, know

about what the generalized connections do only to those paths which constitute the edges
of the graphy; they are precisely the quantum states of the gauge theory associated with
the ‘floating lattice’y. This space of states, although infinite dimensional, is quite ‘small’

in the sense that it corresponds to the Hilbert space associated with a system with only a
finite number of degrees of freedom. However, if we varthrough all possible graphs,

the collection of all states that results is very large. Indeed, one can show thdeitssin

the Hilbert space®. (If we restrict ourselves t@, which are gauge invariant, we obtain

a dense subspace #°.) Since each of these states depends only on a finite number of
variables, borrowing the terminology from the quantum theory of free fields in Minkowski
space, they are callegylindrical functionsand denoted by Cyl. Gauge-invariant cylindrical
functions represent the ‘typical’ kinematic states. In many ways, Cyl is analogous to the
spaceCy® (R®) of smooth functions of compact support & which is dense in the Hilbert
spacel.?(R3, dx) of quantum mechanics. Just as one often defines quantum operators—e.g.
the position, the momentum and the Hamiltonians—€gnh first and then extends them to an
appropriately larger domain in the Hilbert spat&R3, d®x), we will define our operators

first on Cyl and then extend them appropriately.

Cylindrical functions provide considerable intuition about the nature of quantum states
we are led to consider. These states represent one-dimensional polymer-like excitations
of geometry/gravity rather than three-dimensional wavy undulations on flat space. Just as
a polymer, although intrinsically one-dimensional, exhibits three-dimensional properties in
sufficiently complex and densely packed configurations, the fundamental one-dimensional
excitations of geometry can be packed appropriately to provide a geometry which, when
coarse-grained on scales much larger than the Planck length, lead us to continuum geometries
[12, 22]. Thus, in this description, gravitons can arise only as approximate notions in the
low-energy regime [23]. At the basic level, statesAfi are fundamentally different from
the Fock states of Minkowskian quantum field theories. The main reason is the underlying
diffeomorphism invariance: in the absence of a background geometry, it is not possible to
introduce the familiar Gaussian measures and associated Fock spaces.

2.3. Statement of the problem

We can now outline the general strategy that will be followed in sections 4 and 5.

Recall that the classical configuration variable is $li(2) connection Al on a 3-
manifold X, wherei is the su(2)-internal index with respect to a basts Its conjugate
momentumE? has the geometrical interpretation of an orthonormal triad with density weight
one [24, 17], the precise Poisson brackets being

{AL(), EJ ()} = G8818%(x, y), (2.1)

where G is Newton’s constant. (Recall from the footnote in section 2.1 that the fAeld
used here, is related tdyq used in the literature [25] vid = GAqqg.)

Therefore, geometrical observables—functionals of the 3-metric—can be expressed in
terms of this fieldE¢. Fix within the 3-manifoldx any analytic, finite 2-surfacg without
boundary such that the closure ®fin X is compact. The ared; of S is a well defined,

T We assume that the underlying 3-manifdilis orientable. Hence, principalU (2) bundles overz are all
topologically trivial. Therefore, we can represent i€ (2) connections on the bundle by am(2)-valued 1-form
on . The matriceg; are anti-Hermitian, given, for example, I§y-i/2)-times the Pauli matrices.
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real-valued function on th&ll phase space of general relativity (which happens to depend
only on E¢). It is easy to verify that these kinematical observables can be expressed as

As ::/dxl/\dxz[E?Egi]l/z, (2.2)
N

where, for simplicity, we have used adapted coordinates suchStiaigiven byx® = 0,
andx?!, x? parametrizeS, and where the internal indexis raised by the inner product we
use onsu(2), k(t;, t;) = =2 Tr(t;j).

Our task is to find the corresponding operators on the kinematical Hilbert §fhaad
investigate their properties.

There are several factors that make this task difficult. Intuitively, one would expect
E¢(x) to be replaced by the ‘operator-valued distributierii G5/8 A’ (x). Unfortunately,
the classical expression ofg involves square roots of productef E’s and hence the
formal expression of the corresponding operator is badly divergent. One must introduce
a suitable regularization scheme. Unfortunately, we do not have at our disposal the usual
machinery of Minkowskian field theories and even the precise rules that are to underlie such
a regularization are not clearpriori.

There are, however, certain basic expectations that we can use as guidelines: (i) the
resulting operators should be well defined on a dense subspag#;ofii) their final
expressions should be diffeomorphism covariant, and hence, in particular, independent of
any background fields that may be used in the intermediate steps of the regularization
procedure and (iii) since the classical observables are real-valued, the operators should be
self-adjoint. These expectations seem to be formidable at first. Indeed, these demands are
rarely met even in Minkowskian field theories; in the presence of interactions, it is extremely
difficult to establish rigorously that physically interesting operators are well defined and self-
adjoint. As we will see, the reason why one can succeed in the present case is twofold. First,
the requirement of diffeomorphism covariance is a powerful restriction that severely limits
the possibilities. Second, the background-independent functional calculus is extremely well
suited for the problem and enables one to circumvent the various road blocks in subtle ways.

Our general strategy will be the following. We will define the regulated versions of
area and volume operators on the dense subspace Cyl of cylindrical functions and show that
they are essentially self-adjoint (i.e. admit unique self-adjoint extensiof®Yo This task
is further simplified because the operators leave each sub$paspanned by cylindrical
functions associated with any one graplinvariant. This in effect reduces the field theory
problem (i.e. one with an infinite number of degrees of freedom) to a quantum mechanics
problem (in which there are only a finite number of degrees of freedom). Finally, we
will find that the operators in fact leave invariant a certfinite-dimensional subspace of
HO (associated with extended spin networks, introduced in section 4.2). This powerful
simplification further reduces the task of investigating the properties of these operators;
in effect, the quantum mechanical problem (in which the Hilbert space is still infinite
dimensional) is further simplified to a problem involving spin systems (where the Hilbert
space is finite dimensional). It is because of these simplifications that a complete analysis
is possible.

3. Regularization

Our task is to construct a well defined operatoy starting from the classical expression
(2.2). As is usual in quantum field theory, we will begin with the formal expression
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obtained by replacingff‘ in (2.2) by the corresponding operator-valued distriburfifnand
then regulate it to obtain the requireﬁg. (For an early discussion of non-perturbative
regularization, see, in particular, [26].) Our discussion will be divided into two parts. In
the first, we introduce the basic tools and, in the second, we apply them to obtain a well
defined operatoAs.

To simplify the presentation, let us first assume tNails covered by a single chart
of adapted coordinates. Extension to the general case is straightforward: one mimics the
procedure used to define the integral of a differential form over a manifold. That is, one
takes advantage of the coordinates invariance of the resulting ‘local’ operator and uses a
partition of unity.

3.1. Tools

The regularization procedure involves two main ingredients. We will begin by summarizing
them.

The first involves smearing of (the operator analogueEfox) and point splitting of
the integrand in (2.2). Since in this integrand, the pairtes on the 2-surface, let us
try to use a two-dimensional smearing function. lfetx, y) be a one-parameter family of
fields onS which tend to thes(x, y) ase tends to zero; i.e. such that

|imof d?y £t x5yt yDg (vt vP) = g(xt x?), B.1)
€—> S

for all smooth densitieg of weight 1 and of compact support ¢h (Thus, f.(x, y) is a
density of weight 1 inc and a function iny.) The smeared version &?(x) will be defined
to be

[E3);(x) = fs A2y fo(x, V) ER(), (3.2)

so that, as tends to zero, £7]; tends toE3(x). The point-splitting strategy now provides
a ‘regularized expression’ of area:

1/2
[As]y = / dzx[ / Ay fo(x, V) EE() / o?z fe(x,z)E&(z)}
S S S

= fg ox [[E3],; ()IE¥]; (0], (3.3)

which will serve as the point of departure in the next subsection. To simplify technicalities,
we will assume that the smearing fiefd(x, y) has the following additional properties for
sufficiently smalle > 0: (i) for any giveny, f.(x,y) has compact support im which
shrinks uniformly toy and (ii) f.(x, y) is non-negative. These conditions are very mild
and we are thus left with a large class of regulaitors

We now introduce the second ingredient. To go over to the quantum theory, we want to
replaceE? in (3.3) bybff = —iGh8/8AL. However, it is not cleaa priori that, even after
smearing, Ef’] r is awell defined operator because (i) our wavefunctireze functionals of
generalizedconnectionsd, whence it is not obvious what the functional derivative means
and (ii) we have smeared the operator only along two dimensions. Let us discuss these
points one by one.

1 For example f. (x, y) can be constructed as follows. Ta&my non-negative functiory of compact support on
S such thatf dzxf(x) =1 and setf. (x,y) = (1/ez)f((x —y)/¢). Here, we have implicitly used the given chart
to give fc(x, y) a density weight inx.
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First, let us fix a graphy and consider a cylindrical functiow, on A,
W, (A) = Y(A(ew), ..., Alen)), (3.4)

where, as beforely is the total number of edges ¢f and where is a smooth function

on [SU(Z_)]N. Now, a key fact about generalized connections is that, for any given graph
y, eachA is equivalent to some smooth connectidr{5]: given anyA, there exists am

such that

Aler) = hi[A] := Pexp( —f A), (3.5)
forallk =1,..., N. (For any givenA, the smooth connectiod is of course not unique.

However, this ambiguity does not affect the considerations that follow.) Hence, there
is a one-to-one correspondence between the cylindrical funakipron A and function
W(hi(A), ..., hg(A)) on the spaced of smooth connections and we can apply the operator

[£3]; to the latter. The result is
oy
(ah><A>
y3=0 !

R . o 8h
5 L 2 !
[E3)f(x) - W, (A) = |Gh; /S dy fe(x, y) <8A;(y))
N 1
_ie2 /S &y £y [ fo dr &3(1) 8(y*, e7(1)8(y7, €(1))8(0, €3 (1))
I=1
oy

dhi%

x (hy (L, 0T hy (@, 0))2] (A), (3.6)
where,¢p = /G is the Planck length, the indek labels the edges in the graph, [ >

t — e;(t) is any parametrization of an edgg h,;(t', t) := Pexp(—ft’ Aq(er(s))—éf(s)ds)

is the holonomy of the connectiof along the edge; from parameter valueto . Thus,

the functional derivative has a well defined action on cylindrical functions; the first of the
two problems mentioned above has been overcome.

However, because of the presence of the delta distributions, it is still not clear that
[Ef’]f is a genuine operator (rather than a distribution-valued operator). To see explicitly
that it is, we need to specify some further details. Given a ggaplve can just subdivide
some of its edges and thus obtain a grgphvhich occupies the same pointsihasy but
has (trivially) more vertices and edges. Every function which is cylindrical with respect to
the ‘smaller’ graphy is obviously cylindrical with respect to the ‘larger’ grapt as well.

The idea is to use this freedom to simplify the discussion by imposing some conditions
on our graphy. We will assume that: (i) if an edge; contains a segment which lies

in S, then it lies entirely in the closure of; (ii) each isolated intersection of with the
2-surfaceS is a vertex ofy and (iii) each edge; of y intersectsS at most once. (The
overlapping edges are often called edges ‘tangentiaf’ titney should not be confused with
edges which ‘crossS but whose tangent vector at the intersection point is tangest) téf

the given graph does not satisfy one or more of these conditions, we can obtain one which
does simply by subdividing some of the edges. Thus these conditions are not restrictive.
They are introduced to simplify the ‘book-keeping’ in calculations.

Let us now return to (3.6). If an edgg has no point in common witl§, it does not
contribute to the sum. If it is contained & ¢3 vanishes identically, hence its contribution
also vanishes. (For a subtlety, see the remark below equation (3.11).) We are thus left with
edges which intersect at isolated points. Let us first consider only those edges which are
‘outgoing’ at the intersection. Then, at the intersection point, the value of the parameter
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is zero and, for a given edgs, éf is positive (negative) ig; is directed ‘upwards’ along
increasingr® (‘downwards’ along decreasing’). Hence, equation (3.6) beconies

. i , 3

[EXy(x) - @, = P[ > [ f &y k1 fe e, 1S €] (0)8 (Y, e§(0)>(h1r’);?} ‘“A

2 [ = Ls ohyy

i Y S B}

=5 D Kkifex.erO)L] - W(Ale), ..., Alen)), (3.7)
=1
where the constant; associated with the edgg is given by
0, if e; is tangential taS or does not intersed,
kr =14 +1, if e; has an isolated intersection withand lies aboves (3.8)
-1, if e; has an isolated intersection wishand lies belowS

and whereL}, is the left invariant vector field in théth internal direction on the copy of
SU(2) corresponding to théth edge

oy
d(A(en)y
If some of the edges are ‘incoming’ at the intersection point, then the final expression of
[Ef]s(x) can be written as

Ly -W(A(er), ..., Alen)) = (Aler)t))4 (3.9)

. P02 & A . .
[E?]f(-x) : "IJ}/ = IZPI:ZKIfG(xa UOtI)Xl[:| : qJ(A(el)v sy A(eN))» (310)
I=1

whereX! is an operator assigned to a verteand an edge; intersecting by the following
formula:

A iyA oY : :
(Ale)t g ——, whene; is outgoing
i T x d(A(er))p
X7 -Y(A(er), ..., Alen)) = oy (3.11)
_(T'A A 3 h . ina.
(t'Aer)) 78(A(e,))‘§’ whene; is incoming

Remark. Let us briefly return to the edges which are tangentia.tdn this case, although

e? vanishes, we also have a singular tes®, 0) (in the x2 direction) in (3.6). Hence,

to recover an unambiguous answéor these edgeswe also need to smear in the third
direction using an additional regulator, sgy(x2, y3). When this is done, one finds that

the contribution of the tangential edges vanishes even before removing the regulator; as
stated earlier, the tangential edges do not contribute. We did not introduce the smearing in
the third direction right at the beginning to emphasize the point that this step is unnecessary
for the edges whose contributions survive in the end.

The right-hand side again defines a cylindrical function based on the (same)jgraph
Denote byH? the Hilbert spacel.?(A,,du9) of square-integrable cylindrical functions
associated with a fixed graph Since,ug is the induced Haar measure of) and since
the operator is just a sum of right/left invariant vector fields, standard results in analysis
imply that, with domain ij of all C* cylindrical functions based on, it is essentially

self-adjoint on+®. Now, it is straightforward to verify that the operators &8 obtained by
Y

1 In the first step, we have used the regulariza;f§f1 dz g(2)8(z) = %g(O) which follows if theé(z) is obtained,
in the standard fashion, as a limit of functions which are symmetric about 0.
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varying y are all compatiblg in the appropriate sense. Hence, it follows from the general
results in [8] that Ef]f(x), with domain Cyt (the space of alC?! cylindrical functions),

is an essentially self-adjoint operator ®f. For notational simplicity, we will also denote
its self-adjoint extension byé[?] r(x). (The context should make it clear whether we are
referring to the essentially self-adjoint operator or its extension.)

3.2. Area operators

Let us now turn to the integrand of the smeared area operator (corresponding to (3.3)).
Denoting the determinant of the intrinsic metric Srby g5, we have

[8s]r(x) - W, = [EZ,(O[E¥]; (x) - W,

74 o
= —:[qu, ) fe (¥, Va,) fe(x, va) X}X;] 22 (3.12)
1,J

where the summation goes over all the oriented pdird); v,, andv,, are the vertices at
which edges; ande; intersectS; « (I, J) = «k;x; equals O if either of the two edges
ande; fails to intersectS or lies entirely inS, +1 if they lie on the same side ¢f, and—1

if they lie on the opposite sides. (For notational simplicity, from now on we shall not keep
track of the position of the internal indicés as noted in section 2.3, they are contracted
using the invariant metric on the Lie algebtia2).) The next step is to consider vertices

at whichy intersectsS and simply rewrite the above sum by re-grouping terms by vertices.
The result simplifies if we choose sufficiently small so thatf (x, vq,) fe(x, vy,) IS zero
unlessv,, = v,,. We then have

4
[8s]/(x) - ¥, = —ﬂz (fe@.va)® Y k(Lo JQ)X',QX;H] LW, (3.13)
o 1y,Jy

where the indexx labels the vertices 0§ and I, and J, label the edges at the vertex

The next step is to take the square root of this expression. The same reasoning that
established the self-adjointness ﬁﬂ[f(x) now implies that §s](x) is a non-negative self-
adjoint operator and hence has a well defined square root which is also a positive-definite
self-adjoint operator. Since we have chogeto be sufficiently small, for any given point
xin S, f.(x, vy) is non-zero for at most one vertex. We can therefore take the sum over
« outside the square root. One then obtains

2 1/2
(812 (x) - v, = %” > el w)[ > k. J@X’,ax;a} W, (3.14)
o 1y, Jy

Note that the operator is neatly split; thedependence all resides ifs and the operator
within the square root is ‘internal’ in the sense that it acts only on copiedaR).

Finally, we can remove the regulator, i.e. take the limi¢ &snds to zero. By integrating
both sides against test functions éhand then taking the limit, we conclude that the
following equality holds in the distributional sense:

. 2 S qY2
Vas) Wy =2 89, va)[zfc(la,fwxxxg} W, (315)

Iy, Jo

1 Given two graphsy andy’, we say that, > y’ if and only if every edge of’ can be written as a composition
of edges ofy. Given two such~ graphs,}here is a projection map frdmto A/, which, via pull-back, provides
a unitary embedding/, , of 2, into HO. A family of operatorsO, on the Hilbert space#l,, is said to be

. . : v v Y
compatible ifv, , O, = O, U, ,» andU, , D, C D, forall g > ¢'.
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Hence, the regularized area operator is given by

. 22 N
As- W, = 7P > [ > k. Ja)X’,aleﬂ] v, (3.16)
o 1y,Jy

(Here, as beforey labels the vertices at which intersectsS and I, labels the edges of
y at the vertexv,.) With Cyl? as its domainAg is essentially self-adjoint on the Hilbert
spaceH’.

Let us now remove the assumption that the surfaces covered by a single chart of
adapted coordinates. If such a global chart does not exist, we can Eowgth a family
U of neighbourhoods such that for eabhe U/ there exists a local coordinates systéxfi)
adapted toX. Let (py)yey be a partition of unity associated witlh. We just repeat the
above regularization for a slightly modified classical surface area functional, namely for

Asy :=/dx1Adx2<pU[E?E3"]1/2 (3.17)
N

which has support within a domaiti of an adapted chart. Thus, we obtain the operator
As.uy. Then we just define

As=) Agy. (3.18)
Ueld
The result is again given by the formula (3.16). The reason why the funapigrsappear
from the result is that the operator obtained for a single domain of an adapted chart is
insensitive on changes of this chart. This concludes our technical discussion.

The classical expressioAs of (2.2) is rather complicated. It is therefore somewhat
surprising that the corresponding quantum operators can be constructed rigorously and
have quite manageable expressions. The essential reason is the underlying diffeomorphism
invariance which severely restricts the possible operators. Given a surface and a graph, the
only diffeomorphism-invariant entities are the intersection vertices. Thus, a diffeomorphism-
covariant operator can only involve structure at these vertices. In our case, it just acts on
the copies ofSU (2) associated with various edges at these vertices.

We have presented this derivation in considerable detail to spell out all the assumptions,
to bring out the generality of the procedure and to illustrate how regularization can be
carried out in a fully non-perturbative treatment. While one is free to introduce auxiliary
structures such as preferred charts or background fields in the intermediate steps, the final
result must respect the underlying diffeomorphism invariance of the theory. These basic
ideas will be used repeatedly for other geometric operators in the subsequent papers in this
series.

3.3. General properties of operators

3.3.1. Discreteness of the spectrunBy inspection, it follows that the total area operator
Ag leaves the subspace of @yWhich is associated with any one graphinvariant and

is a self-adjoint operator on the subspéﬁf% of H° corresponding tg,. Next, recall that

HY = L?(A,, du®), whereA, is a compact manifold, isomorphic willsU (2))" whereN

is the total number of edges in As explained below, the restriction dfs to Hg is given

by certain commuting elliptic differential operators on this compact manifold. Therefore,
all its eigenvalues are discrete. Now suppose that the complete spectimoofH° has

a continuous part. Denote b¥. the associated projector. Then, given ainyn H°, P. . &

is orthogonal toH‘; for any graphy, and hence to the space Cyl of cylindrical functions.
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Now, since Cyi is dense ifH°, P.- W& must vanish for allv in H°. Hence the spectrum
of AS has no continuous part.

Note that this method is rather general: it can be used to showathaself-adjoint
operator onH° which maps (the intersection of its domain wirrof, to H°, and whose
action onHS is given by elliptic differential operators, has a purely discrete spectrum on
HC. Geometrical operators, constructed purely from the triad field, tend to satisfy these
properties.

3.3.2. Area element. Note that not only is the total area operator well defined, but in fact it
arises from a local area elemeqtgs, which is an operator-valued distribution in the usual

sense. Thus, if we integrate it against test functions, the operator is densely defited on
(with C? cylindrical functions as the domain) and the matrix elements

(W, Vgs(x) - W) (3.19)
are two-dimensional distributions o.  Furthermore, since we did not have to
renormalize the regularized operator (3.14) before removing the regulator, there are
free renormalization constants involved. The local operator is completely unambiguous.

3.3.3.[gs]y versus its square root. Although the regulated operatqg;|; is well defined, if

we lete to go zero, the resulting operator is in fact divergent: roughly, it would lead to the
square of the two-dimensionaldistribution. Thus, the determinant of the 2-metric is not
well defined in the quantum theory. As we saw, however, the square root of the determinant
is well defined: we have to first take the square root of ibgulatedexpression andhen
remove the regulator. This, in effect, is the essence of the regularization procedure.

To get around this divergence 6f, as is common in Minkowskian field theories, we
could have first rescaleg ] by an appropriate factor and then taken the limit. Then the
result can be a well defined operator, but it will depend on the choice of the regulator,
i.e. the additional structure introduced in the procedure. Indeed, if the resulting operator
is to have the same density character as its classical analggug—which is a scalar
density of weight two—then the operator cannot respect the underlying diffeomorphism
invarianceg. There is no metric/chart independent distributionSof density weight two,
hence, such a ‘renormalized’ operator is not useful to a fully non-perturbative approach.
For the square root, on the other hand, we need a local density of waighand the
two-dimensional Dirac distribution provides this; now there isanpriori obstruction to a
satisfactory operator corresponding to the area element to exist. This is an illustration of
what appears to be typical in non-perturbative approaches to quantum gravity: either the
limit of the operator exists as the regulator is removed without the need for renormalization,
or it inherits background-dependent renormalization fields (rather than constants).

3.3.4. Vertex operators.As noted already, in the final expressions of the area element
and area operators, there is a clean separation between-tlepéndent’ and the ‘internal’
parts. Given a graph, the internal part is a sum of square roots of the operators

Asu, =Y k(la, J) X} X', (3.20)
10(5‘]0(

1 If, on the other hand, for some reason, we are willing to allow the limiting operator to hdifeegentdensity
character than its classical analogue, one can renormaliz€x) in such a way as to obtain a background-
independent limit. For instance, we may uge= (1/e2)8(|x — x'| — €/2), and rescaled] s by €2 before taking

the limit. Then the limit is a well defined, diffeomorphism-covariant operator but it is a scalar density of weight
onerather than two.
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associated with the surface and the vertex, on it. It is straightforward to check that
operators corresponding to different vertices commute. Therefore, to analyse the properties
of area operators, we can focus on just one vertex operator at a time.

Furthermore, given the surfaceand a pointv on it, we can define an operatars ,
on the dense subspace €gin H° as follows:

> kU DHX|XY v, if y intersectsS in v,
Asy- W, =1 17 (3.21)
0 otherwise,

wherel andJ label the edges of which havev as a vertex. (Recall that every cylindrical
function is associated wittkomegraphy. As before, ify intersectsS at v but v is not a
vertex ofy, one can exteng just by adding a new vertex and orienting the edges atto
outgoing.) It is straightforward to verify that this definition is unambiguous: if a cylindrical
function can be represented in two different ways, sayasand ¥, , thenAg, - ¥, and
As., - W, are two representations of the same function4nThere is a precise sense [8]
in which Ag, can be regarded as a Laplacian operatof-yn The area operator is a sum
over all the pointa of S of square roots of Laplacians,

~ L2
As = EP Z\/ —Ag . (3.22)

ves

(Here the sum is well defined because, for any cylindrical function, it contains only a finite
number of non-zero terms, corresponding to the isolated intersection points of the associated
graph withS.) We will see in the next subsection that this fact is reflected in its spectrum.

3.3.5. Gauge invariance.The classical area elemeyfgy is invariant under the internal
rotations of triadsEj’; its Poisson bracket with the Gauss constraint functional vanishes.
This symmetry is preserved in the quantum theory: the quantum opeggipcommutes
with the induced action of on the Hilbert spacé(®. Thus,,/gs and the total area operator
Ag map the space of gauge-invariant states onto itself; they project down to the Hilbert space
HO of kinematic states.

Note, however, that the regulated triad operatcﬁ,%] [ are not gauge invariant; they
are defined only ori°. Nonetheless, they are useful; they feature in an important way in
our regularization scheme. In the loop representation, by contrast, one can only introduce
gauge-invariant operators and hence the regulated triad operators do not exist. Furthermore,
even in the definition (3.3) of the regularized area element, one must use holonomies to
transport indices between the two pointsaindz. While this manifest gauge invariance is
pleasing conceptually, in practice it often makes the calculations in the loop representation
cumbersome; one has to keep track of these holonomy insertions in the intermediate steps
although they do not contribute to the final result.

3.3.6. Overall factors. The overall numerical factors in the expressions of various operators

considered above depend on two conventions. The first is the convention noted in the second

footnote in section 3.1 used in the regularization procedure. Could we not have used a
. . . 0

different convention, settlngoC>o dz g(z)8(z) = cg(0) and f_oo dz g(z)8(z) = (1 —¢c)g(0)

for some constant # %? The answer is in the negative. Since in this case, the constant
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would take values

0, if e; is tangential toS or does not intersect,
k; = 1§ +2c, if ¢; has an isolated intersection withand lies aboves, (3.23)
-2(1-o¢), if ¢; has an isolated intersection withand lies belows.

It then follows that, unless = % the action of the area operatdg on a given cylindrical
function would change if we simply reverse the orientationSotkeeping the orientation
on X the same). Since this is physically inadmissible, we must ha#e%; there is really
no freedom in this part of the regularization procedure.

The second convention has to do with the overall numerical factor in the action,
which dictates the numerical coefficients in the symplectic structure. Here, we have
adopted the convention of [25] (see chapter 9) which makes the Poisson bracket
{Al (x), E]’?(y)} = Géﬁ&;ﬁa(x, y), enabling us to express? (x) as—iGhs/S A (x). (Had we
rescaled the action by/87 as is sometimes done, in our expressions, Newton's constant
G would be replaced bys8G.)

4. Eigenvalues and eigenvectors

This section is divided into three parts. In the first, we derive the complete spectrum of the
area operators; in the second, we extend the notion of spin networks and in the third, we
use this extension to discuss eigenvectors.

4.1. The complete spectrum

We are now ready to calculate the complete spectrumofSinceAs is a sum of square
roots of vertex operators which all commute with one another, the task reduces to that of
finding the spectrum of each vertex operator. Furthermore, since vertex operator€ fap (
cylindrical functions associated with any one grapi@8) cylindrical functions associated
with the samegraph, we can begin with an arbitrary but fixed grgph Then consider a
vertex operator\g , and focus on the edges @fwhich intersectS at v. Let us divide the
edges into three categories: gt ..., e, lie ‘below’ S (‘down’), esy1, ..., ¢, lie ‘above’
S (‘up’) and lete, .1, ..., e, be tangential taS. (As before, the labels ‘down’ and ‘up’ do
not have an invariant significance; the orientationSond of ¥ enable us to divide the
non-tangential edges into two parts and we just label one as ‘down’ and the other as ‘up’.)
Let us set
SO =X XD, I = i X e XD, @)
IO = K XD IO = I8 g
where X' is the operator defined in (3.11) assigned to the poirtnd an edge; at v.
This notation is suggestive. We can associate with each edgparticle with only a spin
degree of freedom. Then, the operatersX’ can be thought of as thi#h component of
angular momentum operators associated with that particle/&fid /&' and J{"" as the
total ‘down’, ‘up’ and ‘tangential’ angular momentum operators at the vertex

By varying the graph, we thus obtain a family of operators. It is easy to check that they
satisfy the compatibility conditions and thus define operaifts, Ji', 7" and J{*H"
on Cyl. It is also easy to verify that they all commute with one another. Hence one can
express the vertex operatar , simply as

—Bsw = (5 = IS =I5 (4.2)
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because of the factar(Z, J) in (3.21), the edges which are tangential do not feature in this
expression.

The evaluation of possible eigenvalues is now straightforward. It is simplest to express
AS,U as

—Asy =282 4+ 200897 — ()2 (4.3)

and, as in elementary textbooks, go to the representation in which the operators
(J$N2, (J¢? and (J§)? are diagonal. If we now restrict the operators to Cyl
associated to a fixed graph, it is obvious that the possible eigenvalogg s , are given

by

s =2/DGD D +2jW G + 1) = jEIGE 1) (4.4)
where j@, j® and j“** are half-integers subject to the usual condition:
R e A Y A A S (4.5)

Returning to the total area operator, we note that the vertex operators associated with
distinct vertices commute. Although the sum (3.22) is not finite, restricted to any graph
and Cyl, it becomes finite. Therefore, the eigenvalugsof A are given by

e d) ) A (dtu 1/2
as = 2 Y [2067GE + D +2j G + D = OG0 + 1) / (4.6)

where« labels a finite set of points if and the non-negative half-integers assigned to
eacha are subject to the inequality (4.5). The question now is if all these eigenvalues are
actually attained, i.e. if, giveany as of the form (4.6), there are eigenvectors#? with

that eigenvalue. In section 4.3, we will show that the full spectrum is indeed realized on
HO.

The area operators map the subspBfenf gauge-invarianelements of° onto itself.
Hence we can ask for their spectrum @f. We will see in section 4.3 that further
restrictions can now arise depending on the topology of the suac&here are three
cases:

(i) The case wher$ is an open surface whose closure is containe®@ inAn example is
provided by the disg = 0, x?> + y? < rp in R3. In this case, there is no additional
condition; allas of (4.6) subject to (4.5) are realized.

(il) The case when the surfacgis closed §S = ¢) and dividesX into disjoint open sets
Y1 andX; (i.e. ¥ = £, USU X, with 1N 25 = #). An example is given by = R®
and S = S2. In this case, there is a condition on the half-integgf$ and j that
appear in (4.6) in addition to (4.5):

Y =N, and =N 4.7)

for some integersv and N'.
(iii) The case whers is closed but not of type (ii). An example is given By= S x §* x §*
and S = S x St. In this case, the additional condition is milder:

Y UL+ =N (4.8)

for some integeiv.
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Next, let us note some properties of this spectrumi gf By inspection, it is clear that

the smallest eigenvalue is 0 and that the spectrum is unbounded from above. One can ask
for the ‘area gap’, i.e. the value of the smallest non-zero eigenvalue. On the full Hilbert
spaceH?, it is given by
V3
4
This is a special case of the situation when there is only one term in the sum in (4.6) with
j(d) — 0, j(u) — j(d+u) — ] Then

2
“p
2
and, if we choosg = % we obtain the eigenvalug). On the Hilbert spacé{® of gauge-

invariant states, on the other hand, because of the constraints on the spectrum discussed
above, the area gap is sensitive to the topologs:of

\fﬁi if S is of type (i)

ad=""¢2, (4.9)

as =

JG+D, (4.10)

Q
©“o
Il

24‘/2 if S is of type (i) (4.11)

2
= EZ‘Z" if S is of type (ii).

Another important feature of the spectrum is its behaviour for laggeAs noted above,
the spectrum is discrete. However, an interesting question is if it approaches continuum
and, if so, in what manner. We will now show thatgs— oo, the differenceAag between
as and its closest eigenvalue satisfies the inequality

Aas < (£5/2)(p//as) + O((E5 /as)) 5 (4.12)
and hence tends to zero (irrespective of the topology) oSpecifically, given (odd) integers
M and N satisfying 1< M < 2+/N, we will obtain an eigenvalueg y j Of AS such that
for sufficiently largeN, the bound (4.12) is realized explicitlyLet us label representations
of SU(2) by their dimensionp, = 2j, + 1. Letn,, « =1, ..., M be (odd) integers such
that fozlna = N, and|n, — N/M| < 2. Then, for eachM, we have from (4.10) an
eigenvaluezs y

as.N.mM =

=f(ﬁ< )0(§)>

e M?  kM? 1
=P(N-—_ -+~ +0[ = 4.13
i (- +o(y) (@19

for some integek € [1, M/2]. As M varies between 1 andv@N, as vy Varies between
2/HN and ((2/H(N — 2) + 4k/N < (L3/4) (N — 2) + 4/+/N). Hence, given a

N‘ﬁl\)

1 This calculation was motivated by the results of Bekenstein and Mukhanov [15] and our estimate has an
interesting implication on whether the Hawking spectrum is significantly altered due to quantum gravity effects.
Because the ‘level spacingias goes to zero asg goes to infinity, the considerations of [15] do not apply to
large black holes in our approach and there is no reason to expect deviations from Hawking's semiclassical results.
On the other hand, for small black holes—i.e. the final stages of evaporation—the estimate does not apply and
one expects transitions between area eigenstates to show significant deviations.
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sufficiently largeag, there exist integer®/, M satisfying the conditions given above such
that Aas := |as — a,.»| Satisfies the inequality (4.12).

We will conclude this discussion of the spectrum by providing an alternative form
of the expression (4.4) which holds for gauge-invariant states. This form will be useful
in comparing our result with those obtained in the loop representation (where, from the
beginning, one restricts oneself to gauge-invariant states.) W,.ebe a gauge-invariant
cylindrical function onA. Then, the Gauss constraint implies that, at every vertek y,
the following condition must hold:

> oXi-w, =0, (4.14)
1

where! labels the edges of at the vertexv and X/ is assigned to the point and vertex
e; (see equation (3.11)). Therefore,

IO+ I8+ =0, (4.15)
Hence, one can now express the operator (4.3) in an alternate form,
—As = 20007+ 200802 = (J$)2. (4.16)

Furthermore, if it happens thathas no edges which are tangentialtat v, equation (4.14)
implies

—Asy = HISN2 = 402, (4.17)

whence the correspondimgstrictedeigenvalues ofig are given by) E?,«/j(j + 1), where
j are half-integers.

4.2. Extended spin networks

As a prelude to the discussion on eigenvectors, in this subsection we will generalize the
constructions and results obtained in [9, 10, 27] on spin networks and spin network states.
The previous work showed that the spin network states provide us with a natural orthogonal
decomposition of the Hilbert spac® of gauge-invariant states intfinite-dimensional
subspaces. Here, we will extend these results to the shéce

We begin by fixing some terminology. Givevi irreducible representations, ..., 7y
of SU(2), an associatednvariant tensor ¢”-"~, . is a multi-linear map from
®’_17r to @Y., T1; such that

-1 -1
7Tk+1(g):lyf,:rll <. TN (8)%,5"”1 mle...mk 771(8 )’nﬂll ... TN (g )ka = (" nan...nkv (418)

for arbitrary ¢ € SU(2), wherer;(g) is the matrix representing in the representation
;. An invariant tensorc,, ., ™" is also called anintertwining tensorfrom the
representation®y, ..., m; into w41, ..., wy. All the invariant tensors are given by the
standard Clebsch—Gordon theory. _

An extended spin netwoik a quintuplet(y, 7, ¢, 5, M) consisting of

(i) A graphy;

(i) A labelling 7 := (mq, ..., my) Of the edgee;, ..., ey of that graphy with irreducible
and non-trivial representations 61/ (2);

(i) A labelling g = (p1,...,py) of the verticesvy,...,vy of y with irreducible
representations &fU (2), the constraint being that for every vertexthe representation
0« €merges in the decomposition of the tensor product of representations assigned by
7 to the edges intersecting;
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(iv) A labelling ¢ = (cy,...,cy) of the verticesvy, ..., vy of y with certain invariant
tensors, namely, assigned to a vertex is an intertwining tensorc, from the
representations assigned to the edges comimg &md o, to the representations assigned
to the outgoing edges a; and,

(V) A labelling M := (My)o=1...v = (M4, ..., My) of the verticesvy, ..., vy of y which
assigns to every vertex, a vectorM, in the representatiop,.

It should be emphasized that every is necessarily non-trivial whereas, may be
trivial (i.e. one dimensional). In the gauge-invariant context [9, pQ]are all trivial, hence
items (iii) and (v) are unnecessary. The details of these conditions may seem somewhat
complicated but they are necessary to achieve the orthogonal decomposition (4.22).

From spin networks, we can construct statesHih An extended spin network state
Nyygﬂ is simply aC* cylindrical function onA constructed from an extended spin network

-

(V’ﬁv )O,E, M)!
N

14
N,z (A) = [(X) 71(Aler) ® ®Ma] 8V cal. (4.19)
a=1

I=1 =

for all A € A, where, as befored(e;) is an element ofG associated with an edgg

and “’ stands for contracting, at each vertex of y, the upper indices of the matrices
corresponding to all the incoming edges, the lower indices of the matrices assigned to all
the outgoing edges and the upper index of the vekfowith all the corresponding indices

of ¢,. (We skip7 and g in the symbol for the extended spin network function because
the intertwinersc contain this information.) Thus, for example, in the simple case when
the network has only two vertices, and all edges originate at the first vertex and end at the
second,V, ; j; can be written out explicitly as

N,z = 1A .. v (Alen), MY MY 5™ Conyomymss (4.20)

where indicesn,, n; range over 1...,2j; + 1 andm’, ranges over 1..,2j,.1. Given

any spin network, equation (4.19) provides a functionowhich is square-integrable with
respect to the measure. Given an extended spin network function dn the ranger (y)

of the associated graph is completely determined. Thus, two spin networks can define
the same function ond if one can be obtained from the other by subdividing edges and
changing the orientations arbitrarily.

It turns out that the spin network states provide a decomposition of the full Hilbert
space™? into finite-dimensional orthogonal subspaces (compare with [9, 10]). Given a
triplet (y, 77, p) defined by (i)—(iii) above, consider the vector spé&tg; ; spanned by the
spin network functions\/y,aﬁ} given by all the possible choices for M compatible with
fixed labellings, 5. Note that, according to the representation theory of compact groups,
everyH, ; ; is a finite-dimensional irreducible representationgoin Cyl. The group acts
there via

N,z ii(g tAg) = N, ; iy (A), M'y = po(8(Ve)) Mo (4.21)
Modulo the obvious completions, we have the following orthogonal decomposition:
H= P Hyzs (4.22)
R(y).7.p

where, given a graply, the labellings7 and g range over all the data defined above by
(i)—(iii) whereas fory in the sum we take exactly one representative from every range of an
analytic graph int. Whenp is trivial we skipp in H, 7 ;. On'H, z, the action of the gauge
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transformations groug is trivial and we have the following orthogonal decomposition of
the Hilbert space of gauge-invariant cylindrical functions:

= P Hys (4.23)
R(y).7
where we use the same conventions as in (4.22). Thus, we recover the result on spin
network states obtained in [9, 10].

We conclude this subsection with a general comment on spin network states. Consider
trivalentgraphs, i.e. graphg each vertex of which has three (or less) edges. In this case, the
standard Clebsch—Gordon theory implies that the number of associated gauge-invariant spin
network functions is severely limited: the corresponding subspa#€ @ one dimensional.
Hence, on the subspace Cyl'AP corresponding only to trivalent graphs, the (normalized)
spin network states provide a natural orthonormal basis. What is remarkable is that these
spin networks were first introduced by Penrose [28] already 25 years ago to probe the
microscopic structure of geometry, although in a different context. Because of the simplicity
(and other attractive properties) of these Penrose spin network states it is tempting to hope
that they might also suffice in the present approach to quantum gravity. Indeed, there were
conjectures that the higher valent graphs are physically redundant. However, it turns out
that detailed physical considerations rule out this possibility; quantum gravity seems to need
graphs with unlimited complexity.

4.3. Eigenvectors

We are now ready to exhibit eigenvectors of the operatogs and Ag for any of the
potential eigenvalues found in section 4.1. We will begin with the full, non-gauge-invariant
Hilbert space° and consider an arbitrary surfase Since° serves as the (gravitational
part of the) kinematical Hilbert space in theories in which gravity is coupled to spinor fields,
our construction is relevant to that case. In the second part of this subsection, we will turn
to the gauge-invariant Hilbert spa@¢® and exhibit eigenvectors for the restricted range of
eigenvalues presented in section 4.1.

Fix a pointv in the surfaceS. We will investigate the action of the operatc(lcss(d))2
(J&N2, (J¢M)2 and A, on extended spin network states. Without loss of generality we
can restrict ourselves to graphs which are adaptedand contairv as a vertex, say = v;.
Given a graphy and labellingT andp of its edges and vertices by representationSof2),
we shall denote b¢, the linear space of the intertwining tensors which are compatible with
7 andp atv in the sense of section 4.2. Let, 7, 5, ¢, M) be an extended spin network
andN i be the corresponding state. As one can see from equations (4.1), (3.21), each
of the four operators above is given by a linear combination (with constant coefficients) of
gauge-invariant terms of the forip,__;, X’1 X’L whereb;, ;. is a constant tensor and all
the X's are associated with the pom'and the edges which meet there. Np the action
of any operator of this type reduces to a linear operajaacting inC,. More preC|ser if
O is any of the above operators, we have

ON, i =N, i (4.24)

Vs Vs

where NV, - ;; is again an extended spin network state and the netwerk, 5, ¢, M)
differs from the first one only in one entry of the labelliaggcorresponding to the vertex
v; ¢ = ¢, for all the verticesv, # v andc¢’; = o,c1. Consequently, the problem of
diagonalizing these operators reduces to that of diagonalizitgjta symmetric matrix of
0,. Note that a constant vectdf assigned ta does not play any role in this action and
hence will just make eigenvectors degenerate.
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In the case of operatordy”)?, (J§)? and(J{")?, the (simultaneous) eigenstates are
given by the group representation theory. We can now spell out the general construction.
Let us fix a graphy and arrange the edges that meet amto three classes as before:
€1, ..., €05 €qil, .. €4 i, ..., e. Letus also fix a labellingry, ..., 7, of these edges
by irreducible, non-trivial representations 61/(2) and an irreducible (possibly trivial)
representatiop which emerges in the decompositionef ® ... ® w;. Now consider the

following ingredients:

(i) irreducible representatlorys(d) ) andu(dﬂ,),

(i) invariant tensorsc g, """ oy ™" and Cutaymm™ associated, respectively,
with the representatlonsrl,...,nd,u(d), and to w41, ..., T, L and finally to
Hdys M) Md+uy; @nd,

(iii) invariant tensorc, ,"+"™ associated Witht(g+u), Tu+1, - - - » Tty P-

From this structure, construct the following invariant tensor:
ml,,,mdmrc(u) m”c(d+u)m/m”nc(t)nmwlmmlm’ (425)

associated with the representations. .., n;, p. To obtain a non-trivial result in the end,
we need all the tensors to be non-zero. The existence of such tensors is equivalent to the
following two conditions on the data (i)—(iii):

mq..nmn mq4a...my,

c =C)

(iv) the representationg ) and i, emerge, respectively, imn ® ... ® m; and 741 ®
..®m,; and,
(v) the representatiop4+,) emerges both iw(d) ® nw andm,11 Q... 1, ® p.

Finally, introduce an extended spin netwdik 7, g, ¢, M) such that

T =T, ..., ..., TN), 0 =100,02,...,0v), c=(c,co...,cy), (4.26)
the remaining entries being arbitrary. Then, the corresponding 3‘0@ng is an
eigenvector of the operatofgy”)?, (J§)2 and(J{%)? with the eigenvalueg@ (@ +1),
j®(® 4+ 1) and j@+o(j@+0 4 1), respectively, where the half-integejé”, j® and
](‘”“) correspond to the representationg, i) and a+.. Hence, this\, - ; is also
an eigenvector of\g , with the eigenvalue (4.4), (4.5). It is obvious that for any triple of
representationg ), ;L) and 4y Satisfying the constraint (4.5) there exists an extended
spin network (4.26).

This construction providesll eigenvectors ofAg,. The key reason behind this
completeness is that, given any choicemgf ..., n,,...,m,, ..., 7, and p as above, the
invariant tensors which can be written in the form (4.25) with any. @) andugt,) span
the entire spacé€, of invariant tensors at compatible with those data. Since the defining
formula for a spin network function (4.19) is linear with respect to every componeft of
given any spin networky, 7, 5, ¢, M) it suffices to decompose the componeniof ¢ at
v1 = v into invariant tensors of the form (4.25) in any manner to obtain a decomposition of
the corresponding spin network function into a linear combination of extended spin network
functions given by (4.25), (4.26). The desired result now follows from the orthogonal
decomposition of° into the extended spin network subspaces.

Let us now turn to the operatoks. A basis of eigenvectors can be obtained in the
following way. Since the area operator can be expressed in terms of and commutes with
(J$2, (J§)? and (J¢%F")? at any pointv in S, we can simultaneously diagonalize all
these operators. Because for every graph the area operator preserves the subspace of spin
network states associated with that graph and for two different graphs the spin network
spaces are orthogonal, it is enough to look for eigenvectors for an arbitrary graplven
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a graphy, labellingsz, p and M as in section 4.2, at every vertexcontained in the
surfaceS choose a basis in the spaCge consisting of invariant tensors of the form (4.25).
The set of the spin network functions (4.19) constructed by varying, o, M and picking
at each vertex an element of the basis @@, constitutes a basis i°. (If we restrict the
labellings top consisting only of the trivial representations, then the resulting set of spin
network states provide a basis for the spat®of gauge-invariant functions.) Each such
state is automatically an eigenvector&; with eigenvalue (4.6).

We conclude the first part of this subsection with a simple example of an eigenvector
of the area operator with eigenvalug, whereay is any real number satisfying (4.5), (4.6).

Example. Suppose(j@, ji, jd+wy o = 1 ..., W, is a finite set of triples of half-
integers which for everyr satisfy (4.5). Rather than repeating the construction (i)—(v)
above step by step, we will specify only the simplest of the resulting (extended) spin
networks. InS chooseW distinct pointsv,, « = 1,..., W. To every pointy, assign two
finite analytic curves,, ande, , starting atv,, not intersectingS otherwise, and going

in opposite directions t&. For a graphy take the grapHey.1, eu1,--.,€aw,esw}, the
vertices being the intersection poinis and the ends of the edges, ande, , (the curves
being chosen such that the pointsare the only intersections). Label each edgg with

the irreducible representatiory , corresponding to a givej’” and every edge, , with

the irreducible representation, , defined by;’. That defines a labelling of y. (The
absence of edges, is equivalent to introducing these edges in any manner and assigning
to them the trivial representations.) To define a labellihgt the verticesy,, assign to
every vertexv, a representatiop, defined by a givenjt*. Next, to each vertex,
assign an invariant tensef<"«™ associated to the triple of representatiéng,. 7,.«, Oa)
introduced above. The construction of a spin network is completed by: (i) labelling that
end point of eacte,, and, respectively, o, , which is not contained inS, with the
representatiorp, , := m,;, and, respectivelyp, , = m,q; (ii) labelling these ends of
the edges with the unique invariants corresponding to the representatigns o).« O,
respectively, touw .o, Pw).«o; (i) defining a Iabelling]\71 of vertices which can be chosen
arbitrarily, provided at a vertex, the associated vecta, belongs to the representation
P+, and at an endpoint of either of the edges, . the associated/,,, , belongs to
Pd/u),o-

As we noted in section 2, the Hilbert spag€ is the quantum analogue of the full
phase space. Now, in the classical theory, the imposition of the Gauss constraint on the
phase space does not restrict the allowed values of the functignail (2.2). It is therefore
of interest to see if this feature persists in the quantum theory: is the spectrdm af
the full H° the same as that on its gauge-invariant subspa®® As was indicated in
section 4.1, the answer is in the affirmative only if the surface is ope$i.idfclosed, there
are restrictions on the spectrum which depend on topological propertieeoribedded in
3. The second part of this section is devoted to this issue. As indicated in section 4.1, we
need to consider three separate cases.

Case ():0S # ¢ (andaS C X). We will modify the spin network of the above example
in such a way as to obtain a gauge-invariant eigenstéteout changing the eigenvalue of
the area operator. Let and the labellingr be the ones defined in the example. To each
vertexv, assign one more edgeg, beginning inv, andcontainedin S. Label it by the
representation, , corresponding to a givej{** at that point. The labelling is now taken

to be trivial. To every poinb, assign, as in the example, an invariant tengoassociated
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now with the representationgr, «, 7.4, o). Every extension of these data to a spin
network will define a spin network state which is gauge invariant at each of the pgints
Now, we need to define a closed spin network which contains all the egges, », €.«

and provides an extension for the labellings already introduced. For this, we use a key
property of the area operator associated with a surface with boundary: vertices which lie on
dS do not contribute to the action of the operator. Therefore, we can simply extend every
edgee, , within S to the boundary of. Denote the intersection point with§ by v, ,. Next,

for everya we extend (in a piecewise analytic way) the edgges ande, , such that they

end atv; ,. The extended edges form a graph={¢/;1,¢'v1, €11, ..., €'aw, € uw,€rw}.

Let us label each primed edge by the irreducible representation assigned previously to the
edge of which it is an extension. This defines a Iabelliﬁgof y’. Finally, assign to

each new vertex,, the non-zero invariant tensat, o, m,n, (Which is unique up to
rescaling) associated with the triplet of representations,, 7., 7). This completes

the construction of a gauge-invariant extension of a spin network state constructed in the
example. Thus, for an open surface, the spectrum of the area opdraton 7{° is the

same as that of°.

Case (ii): 9S = ¢ and S splits ¥ into two open sets. In this case we cannot repeat the
above construction. Sincg& has no boundary, if additional vertices are needed to close
the open spin network, they must now lie $hand can make unwanted contributions to
the action of the area operator. Consequently, there are further restrictions on the possible
eigenvalues of the operatofgg”)?, (J{)? and (J§)2. To see this explicitly, consider

an arbitrary spin network statg/, 7, ¢) given by the construction (i)—(v) of section 4.3.

Let {v1,..., vy} be a set of the vertices gf contained in the surfacg. Graphy can be

split into three graphsy, which is contained inS, y, which is contained in one side of

S in X andy, contained in the other side ¢f in . The only intersection between the
two parts is the sefvy, ..., vy} of vertices ofy which are contained ii§. Let y, be one

of the parts ofy (i.e.r =d orr = u or r = t). According to the construction (i)—(v),

the labellingsz and¢ define naturally ony, an extended spin network. The labelling of
the edges of, by irreducible representations is defined just by the restrictiofi td y,.

The labelling of the vertices by irreducible representations and invariant tensors is defined
in the following way. For the vertices of. which are not contained i, the labellings

are again taken to be the restriction @f(which are all trivial) andé. To a vertexv,
contained inS we assign the representation corresponding to a gjvgrand the invariant
tensorc, defined in (i) (forr = d,u) and (iii) (for » = ) of the construction (i)—(v).
Finally, we complete it by arbitrary non-zero labellidg of the vertices with vectors in
appropriate representations. The construction (i)—(v) guarantees that a resulting extended
spin network state is not zero. Now, for an extended spin netwetkz’, 5', &, M') we

have the following ‘fermion conservation law’:

Y ivwy =N (4.27)

for someinteger N, wherev runs through the vertices of a grapt and eachj,, is a
half-integer corresponding to a representation assignedotog’. In our case we therefore
obtain the restriction

er,a =N, (428)

for r = d, u,d + u which gives the conditions (4.7) listed in section 4.1. (In fact, either
two of the above conditions imply the third one.)
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The conditions (4.28) are also sufficient for an eigenvector to exist. Suppose we are
given a set of half-integers as in the example above, which satisfy the restriction (4.28).
A statement ‘converse to the fermion conservation law’ is that for anywget. ., vy} of
points in$ and any assignment, — j, where j, are non-negative half-integers satisfying
(4.28), there exists an extended spin network 7/, o', ¢/, M’) such that every, is its
index, j, corresponds to the representation assigned,tdy p’, and for every vertex
V£, a=1...,W, of y/, the representation assigned BYis trivial. From extended
spin networks provided by the above statement it is easy to construct an eigenvector of the
corresponding eigenvalues.

Case (iii): S = ¢ but S does not splitx. The only difference between this case and

the previous one is that now a graphrepresenting an eigenvector is cut Byinto two
componentsy; contained inS andy,., which corresponds to the rest pf Sincey,,, can

now be connected by the same arguments as above, we prove that a necessary and sufficient
condition for an eigenvector to exist is (4.28) imposed only on the half-intgifét¥.

5. Discussion

In section 1, we began by formulating what we mean by quantization of geometry: are there
geometrical observables which assume continuous values on the classical phase space but
whose quantum analogues have discrete spectra? In the last two sections, we answered this
guestion in the affirmative in the case of area operators. In the next paper in this series we
will show that the same is true of other (‘three-dimensional’) operators. The discreteness
came about because, at the microscopic level, geometry has a distributional character with
one-dimensional excitations. This is the case even in semiclassical states which approximate
classical geometries macroscopically [12, 22].

We will conclude this paper by examining our results on the area operators from various
points of view.

5.1. Inputs

The picture of quantum geometry that has emerged here is strikingly different from the one
in perturbative, Fock quantization. Let us begin by recalling the essential ingredients that
led us to the new picture.

This task is made simpler by the fact that the new functional calculus provides the
degree of control necessary to distill the key assumptions. There are only two essential
inputs. The first assumption is that the Wilson loop variablgs= Tr Pexp/, A, should
serve as the configuration variables of the theory, i.e. that the Hilbert space of (kinematic)
guantum states should carry a representation ofGh@lgebra generated by the Wilson
loop functionals on the classical configuration spat&j. The second assumption singles
out the measurg®. In essence, if we assume théﬁ is represented by-ih§/SA!, the
‘reality conditions’ lead us to the measui€ [10]. Both these assumptions seem natural
from a mathematical physics perspective. However, a deeper understanding phttseial
meaning is still needed for a better understanding of the overall sitgation

1 In particular, in the standard spin-2 Fock representation, one uses quite a different algebra of configuration
variables and uses the flat background metric to represent it. It then turns out that the Wilson loops are
represented by well defined operators; our first assumption is violated. One can argue that in a fully non-
perturbative context, one cannot mimic the Fock space strategy. Further work is needed, however, to make this
argument water-tight.
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Compactness adfU (2) plays a key role in all our considerations. Let us therefore briefly
recall how this group arose. As explained in [17, 19], one can begin with the ADM phase
space in the triad formulation, i.e. with the fields;, K!) on ¥ as the canonical variables,
and then make a canonical transformation to a new(pgir= (I', + K!), E¢), whereK' is
the extrinsic curvature and’, the spin-connection af¢. ThenA! is anSU(2) connection,
the configuration variable with which we began our discussion in section 2. It is true that,
in the Lorentzian signature, it is not straightforward to express the Hamiltonian constraint in
these variables; one has to introduce an additional step, e.g. a generalized Wick transform
[18]. However, this point is not directly relevant in the discussion of geometric operators
which arise at th&inematicallevel (see, however, below). Finally, we could have followed
the well known strategy [25] of simplifying constraints by using a complex connection
CAl .= (T! —iK!) in place of the reald!. The internal group would then have been
complexifiedSU (2). However, forreal (Lorentzian) general relativity, the kinematic states
would then have beeholomorphicfunctionals of“Al. To construct this representation
rigorously, certain technical issues still need to be overcome. However, as argued in [18],
in broad terms, it is clear that the results will be equivalent to the ones obtained here with
real connections.

5.2. Kinematics versus dynamics

As was emphasized in the main text, in the classical theory, geometrical observables are
defined as functionals on thielll phase space; these are kinematical quantities whose
definitions are quite insensitive to the precise nature of dynamics, presence of matter
fields, etc. Thus, in the connection dynamics description, all one needs is the presence
of a canonically conjugate pair consisting of a connection and a (density-weighted) triad.
Therefore, one would expect the results on the area operator presented here to be quite
robust. In particular, they should continue to hold if we bring in matter fields or extend the
theory to supergravity.

There is, however, a subtle caveat: in field theory, one cannot completely separate
kinematics and dynamics. For instance, in Minkowskian field theories, the kinematic field
algebra typically admits an infinite number ofequivalentrepresentations and a given
Hamiltonian may not be meaningful on a given representation. Therefore, whether the
kinematical results obtained in any one representation actually hold in the physical theory
depends on whether that representation supports the Hamiltonian of the model. In the
present case, therefore, a key question is whether the quantum constraints of the theory can
be imposed meaningfully of°. Results to date indicate (but do not yet conclusively
prove) that this is likely to be the case for general relativity. The general expectation is that
this would also be the case for a class of theories such as supergravity, which are ‘near’
general relativity. The results obtained here would continue to be applicable for this class
of theories.

5.3. Dirac observable

Note thatAs has been defined fomny surfaceS. Therefore, these operators will not
commute with constraints; they are not Dirac observables. To obtain a Dirac observable,
one would have to specif§ intrinsically, using, for example, matter fields. In view of

the Hamiltonian constraint, the problem of providing an explicit specification is extremely

1 Note that this issue arises iany representation once a sufficient degree of precision is reached. In
geometrodynamics, this issue is not discussed simply because generally the discussion is rather formal.
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difficult. However, this is true already in the classical theory. In spite of thigractice

we do manage to specify surfaces and, furthermore, compute their areas using the standard
formula from Riemannian geometry which is quite insensitive to the details of how the
surface was actually defined. Similarly, in the quantum thedryye could specify a
surfaces intrinsically, we could compute the spectrum 4§ using the results obtained in

this paper.

5.4. Comparison

Let us compare our methods and results with those available in the literature. Area
operators were first examined in the loop representation. The first attempt [12] was largely
exploratory. Thus, although the key ideas were recognized, the very simplest of loop
states were considered and the simplest eigenvalues were looked at; there was no claim of
completeness. In the present language, this corresponds to restricting oneself to bivalent
graphs. In this case, apart from an overall numerical factor (which does, however, have
some conceptual significance) our results reduce to that of [12].

A more complete treatment, also in the framework of the loop representation, was
given in [13]. It may appear that our results are in contradiction with those in [13] on two
points. First, the final result there was that the spectrum of the area operator is given by
23" /G + 1), where j; are half-integers, rather than by (4.6). However, the reason
behind this discrepancy is rather simple: the possibility that some of the edges at any given
vertex can be tangential to the surface was ignored in [13]. It follows from our remark
at the end of section 4.2 that, given a surfateif one restricts oneself only to graphs
in which none of the edges is tangential, our result reduces to that of [13]. Thus, the
eigenvalues reported in [13] do occur in our spectrum. It is just that the spectrum reported
in [13] is incomplete. Second, it is suggested in [13] that, as a direct consequence of the
diffeomorphism covariance of the theory, local operators corresponding to volume (and,
by implication, areaplementsvould be necessarily ill defined (which makes it necessary
to bypass the introduction of volume (and area) elements in the regularization procedure).
This assertion appears to contradict our finding that the area eleggnis a well defined
operator-valued distribution which can be used to construct the total area opégator
the obvious fashion. We understand [29], however, that the intention of the remark in [13]
was only to emphasize that the volume (and area) elements are ‘genuine’ operator-valued
distributions; thus there is no real contradiction.

The difference in the methodology is perhaps deeper. First, as far as we can tell, in [13]
only states corresponding to trivalent graphs are considered in actual calculations. Thus,
even the final expression (equation (48) in [13]) of the area operator after the removal of
the regulator is given only on trivalent graphs. Similarly, their observation that every spin
network is an eigenvector of the area operator holds only in the trivalent case. Second, for
the limiting procedure which removes the regulator to be well defined, there is an implicit
assumption on the continuity properties of loop states (spelled out in detail in [30]). A
careful examination shows that this assumptiomds satisfied by the states of interest
and hence an alternative limiting procedure, analogous to that discussed in section 3.1,
is needed. Work is now in progress to fill this gap [29]. Finally, not only is the level
of precision achieved in the present paper significantly higher, but the approach adopted
is also more systematic. In particular, in contrast to [13], in the present approach, the
Hilbert space structure is knowgrior to the introduction of operators. Hence, we can be
confident that we did not just omit the continuous part of the spectrum by excising by fiat
the corresponding subspace of the Hilbert space.
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Finally, the main steps in the derivation presented in this paper were sketched in
appendix D of [10]. The present discussion is more detailed and complete.

5.5. Manifold versus geometry

In this paper, we began with an orientable, analytic, 3-manifBldand this structure
survives in the final description. As noted in the footnote in section 2.1, we believe that
the assumption of analyticity can be weakened without changing the qualitative results.
Nonetheless, a smoothness structure of the underlying manifold will persist. What is
guantized is ‘geometry’ and not smoothness. Now, i 2 dimensions, using the loop
representation one can recast the final description in a purely combinatorial fashion (at least
in the so-called ‘timelike sector’ of the theory). In this description, at a fundamental level,
one can avoid all references to the underlying manifold and work with certain abstract
groups which, later on, turn out to be the homotopy groups of the ‘reconstructed/derived’
2-manifold (see, for example, section 3 in [31]). One might imagine that, if and when our
understanding of knot theory becomes sufficiently mature, one would also be able to get rid
of the underlying manifold in the 3 1 theory and introduce it later as a secondary/derived
concept. At present, however, we are quite some way from achieving this.

In the context of geometry, however, a detailed combinatorial picisiremerging.
Geometrical quantities are being computed by counting; integrals for areas and volumes are
being reduced to genuine sums. (However, the sumsaarthe ‘obvious’ ones, often used
in approaches thategin by postulating underlying discrete structures. In the computation
of area, for example, one does not just count the number of intersections; there are precise
and rather intricate algebraic factors that depend on the representatitis 2)f associated
with the edges at each intersection.) It is striking to note that, in the same address [3] in
which Riemann first raised the possibility that geometry of space may be a physical entity,
he also introduced ideas on discrete geometry. The current program comes surprisingly
close to providing us with a concrete realization of these ideas.

Acknowledgments

Discussions with John Baez, Bernd Bruegman, Don Marolf, Jose Mourao, Roger Picken,
Thomas Thiemann, Lee Smolin and especially Carlo Rovelli are gratefully acknowledged.
Additional thanks are due to Baez and Marolf for important information they communicated

to JL on symmetric tensors in the representation theory. This work was supported in part
by the NSF grants PHY93-96246 and PHY95-14240, the KBN grant 2-P302 11207 and by
the Eberly fund of the Pennsylvania State University. JL thanks the members of the Max
Planck Institute for their hospitality.

References

[1] Trautman A 1984 Differential geometry for physicistéony Brook Lecture§Naples: Bibliopolis)
[2] Trautman A 1970Rep. Math. Physl 29
[3] Riemann B 1854)ber die Hypothesen, welche der Geometrie zugrunde liegen (University of Gottingen)
[4] Ashtekar A and Ishaa C J 1992Class. Quantum Gra® 1433
[5] Ashtekar A and Lewandowski J 1994 Representation theory of analytic holor@msigebrasknots and
Quantum Gravityed J Baez (Oxford: Oxford University Press)
Ashtekar A and Lewandowski J 1995 Math. Phys36 2170



6

(7]
(8]
El

(10]
(11]
[12]
(23]
[14]
[15]
[16]
(17]

(18]

[19]
[20]

[21]
[22]
(23]

[24]

(25]

(26]
(27]

(28]
[29]
(30]
(31]

Quantum theory of geometry: |. Area operators A81

Baez J 1994 ett. Math. Phys31 213; 1994 Diffeomorphism invariant generalized measures on the space of
connections modulo gauge transformations hep-th/93080d&. Conf. on Quantum Topologd D Yetter
(Singapore: World Scientific)

Marolf D and Mou&o J M 1995Commun. Math. Phy<.70583

Ashtekar A and Lewandowski J 1996 Geom. Physl7 191

Baez J Spin network states in gauge theAdv. Math.at press

Baez J 1995 Spin networks in non-perturbative quantum gr&rigprint gr-qc/9504036

Ashtekar A, Lewandowski J, Marolf D, Moao J and Thiemann T 1995 Math. Phys36 6456

Ashtekar A 1996J. Funct. Anal.135519

Ashtekar A, Rovelli C, Smolin L 199Phys. Rev. Lett69 237

Rovelli C and Smolin L 199%3ucl. PhysB 442593

Rovelli C and Smolin L 199ucl. Phys.B 33180

Bekenstein J and Mukhamo/ F Spectroscopy of quantum black holeeeprint gr-qc/9505012

Carlip S Statistical mechanics and black-hole entrBpsprint gr-qc/9509024

Ashtekar A Polymer geometry at Planck scale and quantum Einstein’s equations CGPG-$5&dribt
hepth 9601054

Thiemann T Reality conditions inducing transforms for quantum gauge field theory and quantum gravity
CGPG-95/11-#Preprint

Ashteka A A generalized Wick transform for gravity CGPG-95/12teprint

Baez J and Sawin S, Functional integration on spaces of connections, g-alg/9507023

Lewandowski J and Thiemann T in preparation

Kijowski J 1976Rep. Math. Physl1 97

Ashtekar A and Bombelli L in preparation

Iwasaki J and Rovelli C 19981t. J. Mod. PhysD 1 533

lwasaki J and Rovelli C 199€lass. Quantum Gravil 2899

Ashtekar A 198™Mathematics and General Relativiég J Isenberg (Providence, RI: American Mathematical
Society)

Ashtekar A 1987Phys. RevD 36 1587

Ashtekar A 1991Lectures on Non-perturbative Canonical Gravilyotes prepared in collaboration with
R S Tate (Singapore: World Scientific)

Bruegman B and Pullin J 1998ucl. Phys.B 390399

Rovelli C and Smolin L Spin networks and quantum gravity CGPG-95Rteprint

Thiemann T Inverse loop transform, CGPG-95/4-1

Penrose R 197Quantum Theory and Beyoredi T Bastin (Cambridge: Cambridge University Press)

Rovelli C Private communication to AA

Smolin L 1992Quantum Gravity and Cosmologd J Rrez-Mercadeet al (Singapore: World Scientific)

Ashtekar A 1995Gravitation and Quantizationed B Julia and J Zinn-Justin (Amsterdam: Elsevier)



