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Abstract. We describe how the iterative technique used by Isenberg and Moncrief to verify the
existence of large sets of non-constant mean curvature solutions of the Einstein constraints on
closed manifolds can be adapted to verify the existence of large sets of asymptotically hyperbolic
non-constant mean curvature solutions of the Einstein constraints.
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Professor Andrzej Trautman was one of the first to think carefully about the asymptotic behaviour
of solutions of Einstein’s equations. One of us (JI) very fondly remembers learning about spinors
and their role in general relativity from Professor Trautman during the mid 1970s at the University

of Maryland. We are pleased to honour Professor Trautman on the occasion of his 64th birthday.

1. Introduction

For many years, the Einstein constraint equations have been studied primarily on either
closed manifolds or on open manifolds with asymptotically Euclidean boundary conditions.
Such a concentration makes sense if one focuses on the Cauchy problem for cosmological
spacetimes or on the Cauchy problem for asymptotically flat spacetimes in a neighbourhood
of a Cauchy surface which goes to spacelike infinity.

Recent work by Friedrich [11] has shown that one can very usefully study asymptotically
flat spacetimes using a Cauchy problem based on spacelike hypersurfaces which approach
null infinity rather than spacelike infinity. The prototype for such hypersurfaces is the
‘constant mass’ hyperboloid hypersurface in Minkowski spacetime which has constant
negative intrinsic curvature. More generally, these spacelike hypersurfaces do not have
constant negative curvature, but they necessarily approach (at least locally) a constant
negative curvature hypersurface asymptotically. Hence, in studying the constraint equations
on hypersurfaces of this sort, one imposes asymptotically hyperbolic boundary conditions
(rather than the more familiar asymptotically Euclidean boundary conditions). We shall
discuss these in detail below.

Regardless of the topology or the boundary conditions on the hypersurface, the constraint
equations are much simpler to study for initial data with constant mean curvature (CMC)
than for non-CMC initial data. This is because, in the CMC case, three out of the four
constraint equations are essentially trivial, and so one need only work with one nonlinear
partial differential equation; while in the non-CMC case, there are four coupled PDEs which
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must be handled. As a consequence of this difference, while CMC solutions of the constraint
equations are essentially fully understood (on closed manifolds [9, 12], for asymptotically
Euclidean data [6, 7], and for asymptotically hyperbolic data [2, 3]), it is only during the
past few years that much has been learned about non-constant mean curvature solutions
[8, 14].

In this paper, we discuss results which show that iterative techniques developed by
Isenberg and Moncrief to study and produce non-CMC solutions of the constraint equations
on closed manifolds [14] can be adapted to do the same for non-CMC solutions which
are asymptotically hyperbolic. A careful proof of these new asymptotically hyperbolic
results is presented elsewhere [18]. Here, we discuss a bit more informally how the
adaptation of our techniques from the closed manifold case to the asymptotically hyperbolic
case has been carried out. We start in section 2 with a very brief review of the LCBY
conformal formulation of the Einstein constraint equations, which is the starting point for
all of our analysis. In section 3, we review what we know so far about solutions of the
constraints on closed manifolds, emphasizing how our iterative technique works to verify
the existence of classes of non-CMC solutions on such manifolds. In section 4, we specify
what asymptotically hyperbolic manifolds and geometries are, and we discuss the weighted
Sobolev and weighted dider spaces which we use for our studies of the constraints on
these manifolds. We also discuss in section 4 some key PDE analytical results concerning
certain elliptic operators on these weighted function spaces. Then in section 5, we state
our results concerning asymptotically hyperbolic non-CMC solutions of the constraints and
sketch how these results are proven using the iterative techniques once they are adapted
to asymptotically hyperbolic geometries. We conclude in section 6 with remarks on future
directions for research.

2. A brief review of the conformal formulation of the Einstein constraint equations

The vacuum Einstein constraint equations for initial datak') consisting of a Riemannian
metricy and a symmetri¢3)-tensork take the form

vaKab - Vb(KCc) =0 (]'a)
R— KK+ (K°)?=0 (1b)

whereR is the scalar curvature fgr. To produce solutions of these equations on a given
three-dimensional manifold®, as well as to study and parametrize these solutions, it is
very useful to reformulate equations (1) using the LCBY conformal method, developed by
Lichnerowicz, Choquet-Bruhat and York [9]. The idea is to split the dataK) into two

parts: the first part—the conformal data, o, T)—consists of a Riemannian metrig a
symmetric tensow which is trace-free X,,0*> = 0) and divergence-freeV(,c® = 0)

with respect tox, and a scalar functiom on £3. The second part—the determined data
(W, ¢)—consists of a vector field¥ and a positive-definite scalar functignon £2. Then

to obtain a solution of the constraint equations (1), one first cho@ses ) and one then
attempts to solve the equations

Va(LW)"y = 5¢°Vpt (2a)
V2 = FRp — 5(0” + LW*) (00 + LWap)$™" + $57°¢° (2b)

for W and¢. HereV is the covariant derivative compatible with R is its scalar curvature,
and L is the conformal Killing operator

LW i= VaWy + Vs Wa = 300 Ve WE. ®)



Solutions of the Einstein constraint equations A191

If, for some chosen set of the conformal d&tao, t), one can find a solutiogW, ¢) for
equations (2), then the reconstituted initial data

Yab = ¢4)‘ab (4a)
ch — ¢—10(0_cd + Lch) + %(p_“)\,(-df (4b)

are a solution of the vacuum constraint equations (1).

One readily verifies that the second-order operdor L : W +— V,(LW)%, is
elliptic. Hence, in applying the conformal reformulation to the constraint equations (1),
one transforms them into a manifestly (nonlinear) elliptic system of four PDEs for four
unknown functions.

It is not true that for every choice of the conformal dd#a o, t), there is a solution
(W, ¢) for equations (2). For example, if one works on the closed maniftid= S°, and
if one chooses. to be a round sphere metric with = 8, one chooses identically zero,
and one chooses = +/8, then the system (2) reduces to

Va(LW)ab = 0 (5a)
Vi =¢ — S(LW)’p~" + ¢°. (5b)

The former equation @) implies thatLW = 0, from which it follows that (b) takes the
form

Vi = +¢° Q)
This equation admits no positive-definite solution $h So there is no solution to (2) for
this choice of conformal data.

For which choices of, o, ) does a solution to (2) exist? We review some of what is
known in the next section.

3. A brief review of existence results for solutions of the Einstein constraint equations

As noted in the introduction, studies of the constraint equations have traditionally focused
on two cases: solutions on closed manifolds, and asymptotically Euclidean solutions. In
each of these cases, the existence and the parametrization of solutions is well understood if
the mean curvatur& ¢, is taken to be constant; for non-constant mean curvature, there is
less—but growing—understanding.

With the constant mean curvature condition imposed, the task of determining which
conformal data(), o, t) permit equations (2) to be solved, and therefore which conformal
data maps to a solution of the constraint equations (1), is simplified considerably. This
is because if one choosesto be a constant—a necessary and sufficient condition for the
mean curvaturek <. to be constant—then equational2becomesv, (LW)“, = 0, which
admits (LW),, = 0 as a solution. Consequently, the constraint equations reduce to one
(semi-linear, elliptic) PDE (the ‘Lichnerowicz equation’)

V% = R — 500w ¢ + 1,7°¢° ™
to be solved for the positive-definite functign

In both the closed manifold and the asymptotically Euclidean cases, necessary and
sufficient conditions on the conformal data, o, ) are known for the Lichnerowicz
equation to admit solutions. In both cases, the behaviour of the scalar curiatumder
conformal transformations of is crucial. For asymptotically Euclidean data (defined via
weighted Sobolev spaces), Cantor [7] has shown that the Lichnerowicz equation (with
7 = 0, which must hold for asymptotically Euclidean data if one assumes constant mean
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curvature) admits a solution if and only if there exists a conformal transformation of
which producesk = 0; further, Brill and Cantor [6] give an integral condition for such a
conformal transformation to exist. For closed manifolds, the combined work of Choquet-
Bruhat, York and O’'Murchadha [9] and Isenberg [12] shows that the criteria for existence
depends upon three things: (i) the Yamabe dlas¥*, J° or Y~—of A; (ii) whethert is

zero or not and (iii) whethes? is identically zero or not. For example,ife Y, t #0
ando? = 0, there is no solution; while i € Y=, T # 0 ando? = 0, then there is a
solution. In total, there are 12 possibilities. One finds that for those possibilities which
imply (with ¢ > 0, and withx conformally transformed so tha is constant) a definite
sign for the right-hand side of the Lichnerowicz equation, the equation admits no solution;
otherwise a solution does exist. A careful statement and proof of these results for constant
mean curvature data on a closed manifold is given in [13].

While the case for non-constant mean curvature is much less complete, considerable
progress has been made in recent years, especially for data on closed manifolds. The analysis
is more difficult, because in the non-CMC case one must work with the full, coupled system
(2) rather than just the Lichnerowicz equation (7). However, using a sequence scheme which
we will describe below, Moncrief and Isenberg have been able to show that equation (2)
admits solutions (on a closed manifold) for each of the following classes of conformal data:
() x ey, ?>0and|Vr| < C(x, o), whereC(x, o) is a constant depending anand
o [14]; () » € YT and|Vz| < C(x, o) [15] and (IlI) » € )°, 72 > 0 and|Vr| < C (%, o)

[15].
The sequence method is based on the semi-decoupled sequence of PDEs

Vo (LW, = 5(¢0-1)° V, 7 (8a)
and
V¢, = $Rpy — (0 + (LW,)") (0as + (LW)an) (@) " + HT%(n)°. (8b)

These equations are semi-decoupled in the sense that if one knowshen equation @&)

is a (linear, elliptic) PDE forW, alone and then once one knows,, equation (8) is

a (quasilinear, Lichnerowicz-type) PDE fgr, alone. The idea is to (i) show that there
is a sequence of solutior{$¢,, W,)} to the sequence of equations (8); (ii) show that the
sequencé(¢,, W,)} converges to Somp.., W)} and, finally, (iii) show thaf(¢oo, W)}

is a solution to equations (2) for the chosen set of conformal data.

To set the stage for discussing how the sequence method has been adapted to the study
of equations (2) with asymptotically hyperbolic data, we will describe in a bit more detail
how these three steps are carried out for conformal data on a closed manifold. First we
consider how one shows that the sequef@s, W,)} exists. The choice o, is free
(within certain bounds; see [14]). Ongg is chosen, the vector fielé/; is to be obtained
from equation (&) with » = 1. To show that indeed the linear elliptic equatiora)8
does determindVv; for an arbitrary (sufficiently smooth) choice @f andt, one needs to
verify that the operatoV - L is invertible on the space of vector fields being considered.
Standard elliptic theory (see, e.g., Besse [5]) shows that if one works with either the standard
Sobolev spacer”(E3) or the standard lder spaceg**(x3) of vector fields on a closed
manifold, thenV - L is invertible; so forg¢, andt in appropriate Sobolev or élder spaces
of functions onx3, W, exists. Elliptic theory on closed?® also shows that there exist

1 The Yamabe theorem [20] shows that every metric may be conformally transformed so that the corresponding
scalar curvature is constant. For a given metrione can transform to any constant, with a fixed sign charateristic
of that metric. Hence. is contained in a unique Yamabe clas¥+; )° or Y~—depending upon this sign.
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constant";, C,, C3, andCy4 such that

[Willgy, < CallV - LWillgp + Col| Wil e (9a)
and

[Willctrea < C3l|V - LW1llcra + CallWallco (9b)

hold; moreover, if the metrie. has no conformal Killing vector fields, one can replace
inequalities (9) by

IWallgy, < CsllV - LWall (10a)
and
Willcrrze < CellV - LWl cre (100)

for some constant’s and Cs. Combining these inequalities (10) with appropriate
embedding inequalities (see, e.g., [5]), together with equatial (e obtain the pointwise
inequality

LWl < C(n;gx%)e (max|ve)). (11)

which plays an important role in step (ii) of the sequence method proof.

It should be clear that the same existence and regularity results hold for valwes of
other tham = 1. Thus, given a sufficiently nicg,_1, one obtaing¥, from equation (&),
and W, satisfies (pointwise)

ILW,| < C (rggwn_l)e (n;QXIVrI), (12)

for some constanf independent of:.

Now for a given vector fieldW,, equation (8) is the Lichnerowicz equation, to be
solved for¢,. Hence, keeping in mind that is no longer constant, one may attempt to
use the techniques which work to prove existence for constant mean curvature conformal
data [13]. For conformal data satisfying the three conditions noted earlier in this section,
the sub- and super-solution technique readily applies, so long as the data are contained in
appropriate Sobolev anddttler spaces [14, 15]. Interestingly, we have recently been able
to show that, in fact, foany non-CMC conformal data in appropriate function spaces, a
solutiong, for equation (8) exists [15]. These results rely upon the sub- and super-solution
theorem for equations of the forfi%¢ = f(¢, x) on closed manifolds [14].

Once it is established that the sequefi@g,, W,)} exists, one needs to show that the
sequence converges. The way that this is done, to prove the theorems on closed manifolds,
is via a contraction mapping argument, which proceeds as follows: first, using equdtjon (8
for consecutive values of, we obtain equations of the form

V2 @ni1 — $n) = Fldu—1, bns 1, X] (13)

where F is a non-local functional of,_1, ¢, and¢, 1 (see equations (45), (46) in [14]).
Next, one establishes-independent upper and lower bounds ongall(in practice, this

is done by findingn-independent upper and lower bounds on the sequence of sub- and
super-solutiong((¢_),, (¢+),)} which one uses to prove the existence of the sequepnce

of solutions to equation {8). Then, using these upper and lower bounds together with the
pointwise inequalities (12), one shows that (13) can be written as

VPni1 — On) — Glnt1 — dul = Hldn — Pn-1l (14)
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where

Gldni1 — ¢nl = A@nr1 — &) (15a)
for a constantA which depends upomn alone, and

Hip, — ¢1-1] < OMaxg, - ¢,-1) (150)

where ® is a constant depending on the conformal détac, ). Both A and ® are
independent of:. It then follows from the maximum principle applied to (14) that

®
|¢n+l - ¢n| < X maX|¢n - ¢n—l|- (16)
23

Hence, if the conformal data are such tl@yA < 1, then (16) defines a contraction
mapping, which implies convergence of the sequefige to some positive functiomp,.
Since{¢,} converges, it follows immediately from the linear equatioa)(that the sequence
{W,} converges to some vector fieftV} as well.

So long as the conformal data is chosen with a sufficiently high degree of
differentiability, e.g.» € C3(2%), o € H) andt e H} with p > 3—it is fairly
straightforward to show that the limit&.,, W) of the converging sequendép,, W,)}
satisfy the constraint equations (2). One first shows that, W,,) constitutes a weak
solution; then one uses standard bootstrap arguments to arguethaV,,) is sufficiently
differentiable, i.e C>—that it constitutes a strong solution of (2). This completes the proof
of the existence of solutions corresponding to certain families of conformal data on closed
manifolds.

We would like to show that the sequence method just sketched can be adapted for use
in producing and studying solutions of the constraints which are asymptotically hyperbolic.
Before doing this, we need to carefully define asymptotically hyperbolic geometries and
discuss the relevant function spaces and differential operators on these geometries.

4. Analysis on asymptotically hyperbolic geometries

While the intuitive idea of an asymptotically hyperbolic geometry is that of a Riemannian
metric ¥y on a non-compact manifol@® with y asymptotically approaching a constant
negative curvature metric as one approaches ‘infinity’ oB2, it is more useful to work
with a definition based on conformal compactification:

Definition 1. A Riemannian geometryx3, y) is asymptotically hyperboliéf and only if
there exists a tripl€A3, p, ) where

(i) A3is a smooth manifold with boundary.

(i) p: A® — R is a smooth non-negative function, with(x) = 0 if and only if x € A3
and with g (x) # 0 for x € IAS.

(iii) @ :int(A%) — 22 is a smooth diffeomorphism, with?y*(y) a smooth Riemannian
metric on intA3) which extends smoothly taS.

One readily verifies that ifx2, y) is asymptotically hyperbolic in the sense of this
definition, then indeed the intuitive sense of asymptotically hyperbolic is realized. Note
that the functionoo ! : £3 — R can be used effectively as an ‘inverse radial coordinate’
which approaches zero as one moves toward the asymptotic regiid.olh is sometimes
called the ‘defining function’ for the asymptotic region.

To study differential operators like the Laplacian aRd- L on an asymptotically
hyperbolic geometry(=3, y), one needs to effectively specify boundary conditions on
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the tensor fields upon which the operators act. There are a number of ways in which
this can be done; the most useful way for our work here is through the use of weighted
Holder and weighted Sobolev spaces. These spaces are defined in the usual way, with the
norms containing an indexed weight facjor’, wherep is the defining function discussed
above. That is, if we use to denote a covariant tensor field of fixed rarik,to denote

the y-compatible covariant differential, anfl/ to denote thejth iteration of D, then the
weighted Hblder spacesC; (for any non-negative integérand any reab) are defined via

the weighted norms

k
lulley =) suplp~>Dlul, . (17)
j=0

3

Similarly the weighted Sobolev spacﬁg"‘S are defined via the weighted Sobolev norms

k
el yps =D llp ™ DI a1 (18)
j=0

where| - ||.» indicates theL? norm on(X3, y).

The index 8’ in both C} andH,f"S indicates the required asymptotic fall-off rate fof u.
Specifically, sinceo goes to zero asymptotically, the functipn® blows up asymptotically
for positives; hence sups |p=° D/ ul, is finite for§ > 0 only if |D/u|, goes to zero quickly
enough. Negativé allows |D’u|, to go to zero more slowly, if at all. In general, larger
means that a faster fall-off rate is required.

For carrying out the iteration method proof (especially the bootstrap steps at the end)
it is important to know the embedding theorems for these function spaces, which describe
how they all relate to each other. In summary, for tensor fields on a three-dimensional
manifold, one finds [16]

1 1
(i) H?® c H"* if 1<g<p<oo, I<k, and §—ce¢ >3<—) (19)
q p
(i ¢} c Cf if [<k and e€<$ (19%)
and
(i) H c ¢} if sp> 3. (1%)

One also has the very useful multiplication law for tensor fieldsnd v contained in
weighted subspaces:

||MU||Hkp,S+E < C”MHHI(]JJ ||U||Hkl’-‘ if kp >3 (20)

for some constan€, from which it follows that ifu € H/** andv € H/ and if kp > 3,
thenuv € H,f‘aﬁ,

There are four PDE analytical results which play an important role in the sequence
method proof on closed manifolds, and which we therefore must consider on asymptotically
hyperbolic geometries if we were to extend this method to these geometries: the invertibility
of the operator® - L andV?, the regularity estimates (10) f&- L (leading to the pointwise
estimate (11) fotLW), the maximum principle for the Laplacian, and the sub- and super-
solution theorem for PDEs of the for¥i’¢ = F(¢, x), e.g. the Lichnerowicz equation.

We will now consider each of these issues in turn.

1 Note that for convenience, here we only definéldér spaces with the dider indexa as zero. More general
spaces can be defined, but they are not needed here.



A196 J Isenberg and J Park

The first two—the invertibility and regularity estimates #6r L and V2 on asymptotic
geometries—are closely tied because the proof of the first property depends upon the validity
of a version of the second and because once one verifies the first property the second one
follows. Interestingly, it is only during this past year—through the work of Lee [17]
combined with the earlier work of Andersson and Huiel [2]—that these basic results
have been established to the degree of generality which we need.

The explicit statement of the invertibility result is as follows:

Proposition 1.Let 1 < p < oo and letk > 0.
If 16 —1+2/p| <+/3, then

V-L:H, - H (21a)
is invertible.
If0 <48/24+1/p <1, then
V2 H, - HP? (21b)
is invertible.

What Lee shows [17] is that proposition 1 holds for all valueg @f (1, co) so long as
it holds for p = 2. (Note that the conditions whichis required to satisfy in proposition 1
follow largely from the embedding condition (4R) A key step in establishing the = 2
result is the verification, for the appropriate values ah proposition 1, of the ‘asymptotic
elliptic estimate’ [17]

(A — O(E))”u”HOZ"S():E) < ”DMHHOZ-"'(EE) (22)

for D=vV2andD =V L; hereX, = {x € Z3p(x) < €}, wherep(x) is the defining
function for the asymptotically hyperbolic geometry, an@)orepresents any continuous
function which vanishes as— 0. From equation (22), one obtains [1]

el s < C(IDull s + Nl 2 o) (23)

where W is some compact set i3, Proposition 1 then follows from (23). For more
details, see [18] and the references cited therein.

As noted, once invertibility is established for an elliptic operator, the regularity estimate
is a consequence. So, as a corollary to proposition 1, we havepfor 1 and
6 —1+2/pl <3,

IW gz < CIV - LW s (242)
and, forp >1and|§ —1+2/p| <1,
191l 5 < CIVZP yp. (240)

Let us now consider the maximum principle for the Laplacighon an asymptotically
hyperbolic geometry. The maximum principle can take a number of different forms [12].
The version we need says the following.

Proposition 2.Let £ : ¥ — R be a positive-definite continuous function wix) > m >
0. Letx : % — R be a continuous function with.(x)| < M. If ¢ : ©3 — R is a bounded
C? function in the interior ofz3 and if it satisfies the equation

V2P —EP =2 (2%9)
then we have

w <2 (250)
m
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Note that this result follows fairly directly from a recently proven asymptotic behaviour
lemma of Graham and Lee [10], together with the maximum principle on compact manifolds.

The remaining result we need is a sub- and super-solution theorem for the Laplacian on
an asymptotically hyperbolic geometry. The result is as follows:

Proposition 3.Let 0 < € < 2(1—1/p). Let f be a functional such that for every function
u:X®— Rwithu—1¢e HJ (X%, we havef (u; -) € HY“(2?%). Assume that there exists
a pair of functiongp_ : 3 — R* andy, : £* — R* such that

(i) y_ andy, are both piecewis€? (i.e. they areC? outside of a union of submanifolds
of lower dimension),

(i) (W_—1) e H and(@, — 1) € H,

(iii) W_(x) < Y, (x) for all x € £2 and

(iv) VAQ_ = f(p_ x), V2, < f(Wy,x).

Then, there exists a unique functign: £ — R* such that

() w—1eHy",
(i) Y_(x) < Px) < P, (x) for all x € =3 and
(iiiy V2 = (W, x).

The argument used to provide proposition 3 is much like that used in the proof of
proposition 4.1 in [18]. There is one key extra step one needs for the result here: at
a certain point in the argument—where one wants to show yhathe first element of
the sequence which will converge to the solutipnsatisfies), < y,—one invokes the
maximum principle. In a sense, one seems to need a version of the maximum principle which
would hold for weak solutions of (25). However, one may instead applyCtheaximum
principle (proposition 2) in those regions whepe is C2, and then use continuity to show
thaty, < g, everywhere ors3.

5. Main result

Our main result prescribes conditions on a set of conformal@ata t) which are sufficient

to guarantee that equations (2) can be solve@fand W, and also guarantee that the fields
(y, K), which one obtains by combining., o, t) and(¢, W) as per equations (4), constitute
(constraint-satisfying) asymptotically hyperbolic initial data for a solution of Einstein’s
equations. While we have defined above (definition 1) what an asymptotically hyperbolic
geometry(X2, y) is, we have not yet defined what asymptotically hyperbolic initial data
(23,5, K) is. The idea is that such initial data should correspond to the intrinsic and
extrinsic geometry of a spacelike hypersurface which asymptotically goes to null infinity in
an asymptotically flat spacetime. One finds [2] that the following definition is consistent
with this idea:

Definition 2. A set of initial data(x23, y, K) is asymptotically hyperbolidf

(i) (=83, y) is an asymptotically hyperbolic geometry (in the sense of definition 1).

(i) tr, K is bounded away from zero asymptotically (i.e. outside sgrdeall, tr, K is
non-zero).

(iii) The trace-free part ofk“” is order p® asymptotically (i.e. if K — L(tr,K)y® is
presumed to be differentiable to orderthen K — I(tr, K)y* e C" for § > 3).

Now it is possible that we could choose conformal data with fairly general asymptotic
properties and then seek solutiofs, W) which shift the asymptotic properties of the
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resulting initial data(y, K) so that they match definition 2. However, it is more
straightforward to build the conditions of definition 2 directly into the conformal data, and
then seek solutiong, W) which more or less leave these asymptotic conditions unchanged.
So we will use

Definition 3. A set of conformal dataX?, A, o, 7) satisfies theasymptotically hyperbolic
assumptionif the initial data(x3, 1, o + %Ar) is asymptotically hyperbolic in the sense of
definition 2.

We now state our main result, which describes some additional conditiofis, ent)
which guarantee that we can solve (2) fgr, W) and thereby produce an asymptotically
hyperbolic solution of the Einstein constraint equations:

Theorem 1.Let (22, 1, 0, 7) be a set of conformal data which satisfies the asymptotically
hyperbolic assumption, plus the following additional conditions:

(i) X has scalar curvatur®; < —r for some positive constamt
(i) o € H* for p > 1 and for O< e <2—2/p.

(iii) = has no zeros,t —,/3r € H}* fore < é <2—2/p and Hr —‘/%rHC1 < p for a
certain constang which one can calculate frog3, A, o).

Then, there exists a unique solutigp, W) of equations (2), withp — 1 € Hs‘f’"S fors < e
and W € HY“. The resulting initial data are asymptotically hyperbolic (in the sense of
definition 2).

This theorem has been proven using the sequence method. We now discuss in rough
terms (using the analytic results from section 4) how this works. See [18] for a more
complete discussion of the details of the proof.

The first step, we recall, is to establish the existence of the seqyenceV, )} which
satisfies the sequence of equations (8). One may chppfeely, within bounds we will
note below. It then follows from proposition 1 that for the given conformal data and for
the values ot hypothesized in theorem 1, the opera¥@rL is invertible, and so we obtain
Wi.

To obtaing;, we need to find a solution to equatiorb8vith Wy inserted in the right-
hand side. It follows from the sub- and super-solution theorem (proposition 3) that so long
as we can find a sub-solutidp;)_ and a super-solutiofy,). satisfying the hypotheses of
proposition 3, then we hawg . Using the same calculations as appear in [14] for the closed
manifold case (the hypotheses tht is bounded negative and is bounded away from
zero are needed here), we readily femhstants(m,)_ and (m1),. which satisfy hypotheses
(i) and (iii) in proposition 3 to be sub- and super-solutions. However, these constants do not
have the necessary asymptotic behaviour (as required by hypotheses (ii) in proposition 3).
To fix this, we use

(914 = Min{(m1)+, 1+ p’} (269)
and

(¢1)- = Max{(m1)_, 1 — p*} (260)
and show (see lemma 3.7 of [18])

Claim 1. There existss > 0 such that(¢;)_ and (¢1); belong toH/"“ and hence satisfy
the hypotheses of proposition 3 to be sub- and super-solutions with the desired asymptotic
properties.
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Note that proposition 3 states that if one finds appropriate sub- and super-solutions, then
one has a unique solution to the equation of interest. Hence we aftain

The same arguments work sequentially for allso indeed we obtain the sequence
{(Pn, W)}

We next need to verify that this sequence converges. To do this, we rely upon a
contraction mapping argument very similar to the one used for the claSedase. A
key prerequisite for the contraction mapping argument to work is the existence of upper
and lower bounds on the elements of the sequépgkwhich are independent of. This
is guaranteed by the existence of arindependent upper bound dii¢,).} and ann-
independent lower bound dfi¢,)_}. Since the functions % p* and 1— p* are bounded
above and below for positive and smallp (p is small in the asymptotic region where
1+ p* are used), one only needs to establismandependent bound on the sequences of
constantg(m,) .} and{(m,).}. Butthese sequences of constants are essentially the same as
those which serve as sub- and super-solutiong#g} in the closed manifold case. Hence
the argument used in section 5, step 3 of [14] can be used here to establish these bounds,
which we call¢, and¢_. Note that the bounds within whicfy must be chosen (referred
to earlier) are these constanis and¢_.

Unfortunately, for a number of reasons (including the fact that an asymptotically
hyperbolic geometry does not have a finite volume) the rather straightforward calculation
leading to (12) for the closed case (see section 5, step 1 of [14]) does not work. One can,
however, still prove the following:

Claim 2. For p > 1, there exists a constait = C(p) such that for allW < HZM with
|6 —142/p| < +/3, one has

ILW| < Csup|V - LW]|. (27)

The proof of this claim is fairly intricate; it proceeds as a proof by contradiction, with
the focus being on showing that if one could find a sequence of vector figlds Hz”"‘s

(with |8 — 1+ 2/p| < +/3) for which
sup(|Vil + ILVi]) =1 (289)
»3

yet

lim [sup|V - LVi|] =0 (280)

k—o00
then one would have a contradiction. If such a sequence does not exist, then claim 2 follows.
It should not be a surprise that one could very readily produce a contradiction if we were to
assume that there exists a sequence of pgitssuch that| Vi, (x;)| + |LVi(x)| > % yet
{x¢} is contained in a compact subset Bf. The much harder work comes in examining
what happens if théx;} move out to infinity asymptotically. The proof works because as
one moves towards infinity, the spatial geometry becomes (at least locally) close to a copy
of a piece of hyperbolic half-space. Details of the proof are found in theorem 3.1 of [18].

With then-independent pointwise estimate fdrw, | established, one may proceed with

the contraction mapping argument as in the closed case. One derives equation (14)

V(Gni1 — bn) — Gl — dul = Hldu — Pn_1l (14)

and establishes the estimates (15) ¢bland H. Then one uses the maximum principle
(proposition 2) to deduce that

®
|¢n+l - ¢n| < X ax|¢n - ¢n—l|~ (16)
3
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Hypothesis (iii) of theorem 1, for a certain constgi#-see chapter 3 of [18]—guarantees
that®/A < 1. It then follows that the sequen¢e,} converges. The convergence of the
sequencg W, } immediately follows from the invertibility oV - L.

The last step of the proof of theorem 1 involves showing that the lighit, W) of
the sequencég(¢,, W,)} is a solution of the constraint equations (2), and also showing
that the datay,, = ¢*r., and K¢ = ¢=10( + LW) + %¢*4A“’ T are asymptotically
hyperbolic in the sense of definition 2. To show that we have a solution, we again
rely on standard bootstrap arguments. Note that while the differentiability assumptions
in theorem 1 are weaker than we have used in the closed manifold case (see theorem 1 in
[14]) the regularity results which we cite in section 4 guarantee that— 1) € C2°
and W, € Hy for 0 < § < € < 2—2/p. The contraction mapping argument
for {(¢,, W,)} only guarantees priori that we haveC® convergence of the sequence.
However, given this differentiability for{¢,} and {W,}, we may bootstrapp., into
C?%% and W, into HY“. Thus, after using the derivation df., W) to show that
(¢, Woo) is @ weak solution of (2), we can argue that it constitutes a strong solution
as well.

Since ¢oo —1e C?® with 0<8<2—-2/p, and p>1, we see thatp, — 1
asymptotically. Hence, sina&?, y) is asymptotically hyperbolic, it follows th&a® 2, ¢*1)
is as well. Our assumption that is bounded away from zero by a positive constant
guarantees that,tK = r satisfies the second condition in definition 2. Finally, the third
condition in definition 2 follows from our assumption enin definition 3 together with the
demonstration thaW,, € H)“.

This completes our rough sketch of the proof of our main result, theorem 1.

6. Conclusion

The result we discuss here—theorem 1—demonstrates the existence of a substantial open set
of asymptotically hyperbolic initial data which satisfy the Einstein constraint equations and
have non-constant mean curvature. Theorem 1 does, however, invoke strong restrictions
on the sets of conformal dat&?, 1, o, t) which it shows map to solutions: (i) the scalar
curvature ofA must be negative; (ii) the mean curvaturemust be non-zero; (iii) the
gradient ofz is strongly controlled.

The first of these restrictions is not very severe, since it has been shown [3, 4] that
every asymptotically hyperbolic geometry is conformally related to one with scalar curvature
R = —1. One would like to remove the other two, however. Can one do so, and does some
form of our sequence method serve to prove the existence of solutions?

Some preliminary work indicates that we can, at least, show that the sequénc®,,)}
exists with these restrictions anremoved. Whether we can then show that this sequence
converges is far from clear. Work continues in this direction.

We are also interested in seeing if our method can be used to produce non-CMC
asymptotically hyperbolic solutions of the constraints with the polyhomogeneous behaviour
found by Anderssomet alin the CMC case [3]. There is no reason to suspect that it cannot.

Besides these theoretical questions, we are interested in studying whether our method
might be useful as a practical tool for producing solutions numerically. There is interest
among numerical relativists in considering non-constant mean curvature initial data. It may
be that the sequendeéy,, W,)} could be useful for this.

t We use non-constaritn,)+ and (m,)— in doing this.
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