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Adaptive mesh and geodesically sliced Schwarzschild spacetime in 311 dimensions

Bernd Brügmann*
Max-Planck-Institut fu¨r Gravitationsphysik, Schlaatzweg 1, 14473 Potsdam, Germany

~Received 21 August 1996!

We present the first results obtained with a~311!-dimensional adaptive mesh code in numerical general
relativity. The adaptive mesh is used in conjunction with a standard ADM code for the evolution of a dynami-
cally sliced Schwarzschild spacetime~geodesic slicing!. We argue that the adaptive mesh is particularly natural
in the context of general relativity, where apart from adaptive mesh refinement for numerical efficiency one
may want to use the built in flexibility to do numerical relativity on coordinate patches.
@S0556-2821~96!02724-5#
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I. INTRODUCTION

One of the stepping stones towards unrestricted~311!-
dimensional numerical general relativity is the study
Schwarzschild spacetime. Spacetime singularities are on
the two characteristic features of vacuum general relativ
the other being gravitational waves. We certainly have
learn how to deal with a single, static black hole numerica
if we want to treat astrophysically more interesting scena
such as the collision of two black holes, the final stage
which is again a single static black hole.

Static, spherically symmetric Schwarzschild space-ti
turns into a rather challenging test case for standard~311!-
dimensional numerical evolution schemes if one does
make use of the spherical symmetry other than in the in
data, if one uses Cartesian coordinates, and if one use
freedom in the 311 decomposition to define hypersurfac
on which the metric components evolve in time. This is wh
we implement here, following closely the work of Annino
et al.on 311 @1#, which in turn is based on Bernsteinet al.
on 111 @2# ~by n11 we denote the use of one time andn
space variables!.

‘‘Adaptive mesh’’ refers to a general technique for n
merical evolution problems based on discrete grids, the b
idea being that one puts the points where one needs them
a given numerical accuracy. While traditionally the doma
of numerical computation is taken to be a single, fixed re
angular grid~with several field variables per point!, the sug-
gestion is to monitor the numerical errors, and wherever
whenever the error becomes too large, an additional fi
grid is introduced. Similarly, if the error is small enough, t
grids are adjusted and possibly removed altogether. Since
error is changing dynamically, this results in a dynamica
changing structure of several levels of nested grids.

Of course, the idea of adapting the resolution to the
served numerical error has a long history, and is now co
monplace in many areas of numerical computation. For s
ing initial value problems for ordinary differential equation
there are Runge-Kutta methods with adaptive step-size
trol or the Bulirsch-Stoer algorithm@3#. Adaptive multigrid
methods were promoted already in the 1970s by Brandt
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the solution of elliptic problems in any number of dime
sions @4#. For hyperbolic systems the basic reference is
work by Berger and Oliger on adaptive mesh refinement@5#.
In the context of general relativity, adaptive mesh refinem
has been made famous by Choptuik’s pioneering work on
collapse of a spherically symmetric scalar field@6,7#. In or-
der to resolve all the details of the Choptuik effect in 111
dimensions, a refinement by a factor on the order of 107 over
the initial resolution is required. Clearly, if one were to r
peat these calculations for more than one spatial variable
efficiency of adaptive mesh becomes essential.

Perhaps it is appropriate to ask at this point why adap
mesh, which is such an obvious and simple idea, is no
widespread use in general relativity. There are two main r
sons.~As of 1996, we feel it is no longer justified to lis
limited computer resources as a main reason.!

First, one does have to be able to solve the equation
interest on a uniform grid. This turns out to be a rather h
problem in general relativity, where only a handful of cod
in 311 has been developed@8# due to general relativistic
problems related to spacetime singularities and the choic
lapse and shift.

Second, programming an adaptive mesh is rather com
cated, and it is of a different nature than other programm
tasks in numerical relativity because it involves dynamica
changing data structures.

In this paper we address both these problems. Based
prior experience with dynamical data structures~in dynami-
cal triangulations for Monte Carlo simulations in fou
dimensional Euclidean quantum gravity@16#!, it was not too
difficult to implement an adaptive mesh code in two a
three spatial dimensions. The code was tested as an e
adaptive mesh for a given error function and for the sca
wave equation in flat space.

As a concrete test case in general relativity, we settled
a 311 Schwarzschild spacetime in geodesic slicing. Let
emphasize that this is not a showcase for the capabilitie
our adaptive mesh code, as only up to three nested grids
involved. But having a general adaptive mesh package av
able allowed us to automatically use a coarse grid in
outer regions and finer grids near the interior of the bla
hole. The gain in efficiency in turn allowed us to perfor
computations on a small workstation that compare well w
7361 © 1996 The American Physical Society
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7362 54BERND BRÜGMANN
those that the NCSA group performed on various superc
puters@1#.

Let us spell out briefly what constitutes the core of o
test runs. Given appropriate initial data for the Schwarzsc
spacetime at the moment of time symmetry in spatially i
tropic, Cartesian coordinatesx, y, and z, the evolution in
time t is computed using the standard Arnowitt-Des
Misner ~ADM ! equations and an explicit finite differenc
scheme~double leapfrog!, where we choose lapsea[1 and
shift ba[0, which induces geodesic slicing. A point startin
at initial Schwarzschild radiusr52M reaches the singularity
at r50 after proper timet5pM , whereM is the mass of
the black hole. We also evolve the data up to aboutt56M
by using the apparent horizon as the inner boundary@17#.
The resulting dynamical evolution of, for example, the s
metric coefficients can be directly compared to the anal
solution.

The adaptive mesh code can, to a certain extent,
thought of as a black box. The user has to supply just
external input, a routine that evolves data on a uniform g
with a given boundary. While the outer boundary can
incorporated easily into this routine, for the case of an
parent horizon boundary condition it was simpler to custo
ize the adaptive mesh itself, i.e., to incorporate grids w
‘‘holes.’’

The author is aware of two other adaptive mesh refi
ment packages that are currently under development and
are planned to be applied to 311 numerical relativity:DAGH
of the American Grand Challenge Collaboration@18# and a
code by Wild@19#. It is interesting to note that the problem
independent design ofDAGH does not include grids with
holes, but for reasons similar to ours that are specific
general relativity, this feature will be added.

Finally, we want to draw attention to how naturally ada
tive mesh fits into general relativity. While the numeric
point of view leads us to drive the adaptivity of the adapt
mesh technique by the numerical errors, general relati
gives us a physical reason to split the domain of computa
into several grids, namely, simply that one of the main ch
acteristics of general relativity is that spacetime is a ma
fold, which generically can only be covered by several cha
and which can be covered by charts in which the metric
almost flat. This leads us to discuss ‘‘numerical relativity
patches’’ below. In fact, some of the features that make g
desic slicing unattractive for numerical relativity may lo
their impact when combined with adaptive mesh. To und
score our point of view we deviate from common termin
ogy and use the term ‘‘adaptive mesh’’ as opposed to the
general ‘‘adaptive mesh refinement.’’

The paper is organized as follows. In Sec. II, we introdu
various coordinate systems for the Schwarzschild space
and the standard 311 decomposition. In Sec. III, we describ
our uniform ADM code. In Sec. IV, we discuss some issu
related to adaptive mesh in general, while in Sec. V,
present our particular implementation. In Sec. VI, we disc
results obtained for adaptive mesh and Schwarzschild sp
time in geodesic slicing. We conclude with Sec. VII.

II. SCHWARZSCHILD SPACETIME
AND GEODESIC SLICING

The line element for a single static black hole
Schwarzschild coordinates is given by
-
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ds252S 12
2M

r Ddt21S 12
2M

r D 21

dr21r 2dV2, ~1!

whereM is the mass,r the radius, anddV2 the standard line
element on the unit two-sphere. We define spatially isotro
coordinates by introducing a new radial coordinater̄ , such
that

r5 r̄ S 11
M

2r̄ D
2

, ~2!

ds252a~ r̄ !2dt21c~ r̄ !4~dr̄21 r̄ 2dV2!, ~3!

a~ r̄ !5S 12
M

2r̄ D /S 11
M

2r̄ D , ~4!

c~ r̄ !511
M

2r̄
. ~5!

This allows us to introduce the Cartesian spatial coordina
that we use in the numerical computations:

dx21dy21dz25dr̄ 21 r̄ 2dV2, r̄5~x21y21z2!1/2.
~6!

The spatially isotropic coordinates possess an isometry a
throat atr̄5M /2 for r̄↔ r̄ 85M2/(4r̄ ), e.g.,r ( r̄ )5r ( r̄ 8) and
a( r̄ )52a( r̄ 8). The isotropic coordinates forr̄P@M /2,`#
and r̄P@M /2,0# cover the same range of the Schwarzsch
radius,rP@2M ,`#.

In the standard 311 decomposition of the Einstein equa
tions~e.g.,@20#!, the line element can be written in general

ds252~a22baba!dt
212badtdx

a1gabdx
adxb, ~7!

wherea is the lapse function,ba the shift vector, andgab the
three-metric. The Einstein equations decompose into
Hamiltonian and diffeomorphism constraint equations, a
the evolution equations for thegab and their canonically con-
jugate momenta, the extrinsic curvatureKab :

] tgab522aKab1Dabb1Dbba , ~8!

] tKab52DaDba1a~Rab1KabK
c
c22KacK

c
b!

1bcDcKab1KacDbb
c1KcbDab

c, ~9!

whereRab is the three-Ricci tensor, andDa the covariant
derivative defined for the three-metric.

The generic evolution problem is, given some initial da
for gab andKab ~solving constraints!, a prescription fora
andb, and boundary conditions, construct the spacetime.
make the following choices. For coordinatest, x, y, andz,
we define the initial three-metric att50 by

~3!ds25c~ r̄ !4~dx21dy21dz2!, ~10!

where the conformal factorc is defined in Eq.~5!. The initial
data for the extrinsic curvature are determined by mak
t50 the moment of time symmetry,Kab50. These initial
data are a solution to the constraints.

There are several methods to fix the freedom in the d
nition of the 311 decomposition, and making a good choi
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54 7363ADAPTIVE MESH AND GEODESICALLY SLICED . . .
is essential because otherwise the evolution will break do
due to physical or coordinate singularities after a short tim
In particular, a lot of work has been carried out o
singularity-avoiding slicing conditions~e.g., @1# and refer-
ences therein!. Here we choose geodesic slicinga[1 and
ba[0, so that points with constant spatial coordinates f
low geodesics andt becomes the proper time. The initial da
correspond to observers or test particles that are initially
rest and then start falling towards the singularity~no singu-
larity avoidance!. For a discussion of problems related
geodesic slicing, see Sec. IV. To test our code we a
checked that choosing vanishing shift and the lapse of
quasi-isotropic coordinates, Eq.~4!, the configuration does
not change@which considering Eq.~9! is a nontrivial numeri-
cal problem#.

We now have to specify the boundary conditions. As
outer boundary we consider the limit in whichr̄→`. In gen-
eral, there does not exist something like a ‘‘purely outgo
wave condition’’ at finite radius for nonlinear equations su
as the Einstein equations, because in general purely outg
waves are not an exact solution~there always is backscatte
ing!. Some approximation is usually the simplest way to p
ceed, and in our case, similar to@1#, it is sufficient to set all
fields equal to their initial value at the outer boundary,
long as it is located atr̄ sufficiently large. More elaborate
procedures are certainly possible, but in conjunction w
adaptive mesh not necessary for our problem, since adap
mesh allows us to go out to sufficiently large values ofr̄ .

We define an inner boundary for intermediater̄ by either
using the isometry at the throat,r̄5M /2 @1#, or by cutting off
the spacetime at the horizon,r52M @17,21#. In the former
case, the isometry defines a simple coordinate transforma
from which one can compute the values of the fields
r̄,M /2 once the fields are known forr̄.M /2. Note that
r̄5M /2 refers to an unchanging location in our coordinat
but r52M defines a curver̄5 r̄ ah(t) for the location of the
~apparent! horizon. The apparent horizon boundary conditi
derives from the fact that the horizon is a null surface, so t
the exterior is causally disconnected from the interior.

As in @1#, to reduce the computational effort by a factor
8, most computations are carried out on the octant of posi
x, y, z only, and the reflection symmetry of spherical sym
metry at thex50, y50, andz50 planes is used to deriv
boundary values via a simple coordinate transformation.
did check the code also on the full grid, and it seems qu
unlikely that enforcing symmetry only on these planes s
fices to ensure spherical symmetry everywhere.

Given the precise evolution problem just stated, what
we know about the resulting spacetime? A convenient f
ture of geodesic slicing is that the result can be directly co
pared to the analytic solution. It is somewhat amusing to n
that the two previous numerical papers on the topic do
make use of the well-known analytic solution, but in@2# on
111 the validity of the numerical results is establish
mostly from internal consistency~apart from the crash test!,
and@1# on 311 check their results against@2#. Of course, in
general it is much more useful to be able to check a c
without having the analytical solution available, but since
happens to be available in this case, we use it here.

Unit lapse and vanishing shift define Gaussian normal
ordinates, which in the context of the Schwarzschild spa
n
.
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time are called Novikov coordinates@22,23#. These are the
comoving coordinates in which radially moving freely fal
ing test particles are at rest and the time coordinate meas
proper time. Starting from Schwarzschild coordinates, th
are several natural coordinate transformations. One can
a transformation to spatially isotropic coordinates, to u
light cones~Kruskal!, or to proper time, but of course no
simultaneously to proper time and spatial isotropy.

In Schwarzschild coordinates, a radial geodesic start
r50 and performs a cycloidal motion out to some maxim
radiusrmax and back tor50. The Schwarzschild geometr
in Novikov coordinates is given in terms of a new rad
coordinateR* by

R*5S rmax2M
21D 1/2, ~11!

ds252dt21
R* 211

R* 2 S ]r

]R* D
2

dR* 21r 2dV2, ~12!

wherer5r (t,R* ) is implicitly given by the following rela-
tion obtained from integrating the geodesic equation:

t

2M
56~R* 211!S r

2M
2

@r /~2M !#2

R* 211 D 1/21~R* 211!3/2

3arccosF S r /~2M !

R* 211D 1/2G . ~13!

To actually computer (t,R* ) we have to invert a relation o
the typey5x1sin(x), which can only be done numerically
but in a very simple manner~e.g., by bisection!.

An important property of Gaussian normal coordinates
that the geodesics that define the coordinates remain
thogonal to all constant time hypersurfaces. Therefore,
coordinate transformation betweenr̄ andR* obtained by in-
serting Eq.~2! into Eq. ~11! is time independent. On the
other hand, sincer is a function of time, the data do no
remain isotropic.

To explicitly compute interesting quantities such as t
metric coefficients forM51, R*.0, andt.0, we find it
convenient to use the maximal Schwarzschild radial coo
natermax, for which

rmax52~R* 211!5
~112r̄ !2

4r̄
, ~14!

t5rmaxF r2 S 12
r

rmax
D G1/212S rmax2 D 3/2arccosF S r

rmax
D 1/2G ,

~15!

and, by implicit differentiation,

]r

]rmax
5
3

2
2

r

2rmax
1
3

2 S rmaxr
21DarccosF S r

rmax
D 1/2G .

~16!

For example, transforming fromR* to r̄ leads to a simple
formula for the radial metric component,
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7364 54BERND BRÜGMANN
g r̄ r̄ ~t, r̄ !5c~ r̄ !4S ]r

]rmax
D 2~r „t,rmax~ r̄ !…,rmax~ r̄ !!,

~17!

where as beforeg r̄ r̄ depends on time throughr , which is
given implicitly by Eq. ~15! as r (t,rmax). Considering that
the ~time-independent! conformal factorc( r̄ )511M /(2r̄ )
diverges atr̄50, it is natural to computegab /c

4 to focus on
the dynamical features in the metric rather than on the st
1/r̄ singularity, as is done in@1# and as we often do below
Equation~17! justifies this approach.

Figure 1 shows a plot of lines of constantr based on Eq.
~13! to depict the Schwarzschild geometry in Novikov coo
dinates~compare with the qualitative picture in@23#!. Note
that from Eq.~13! we have for the horizont/2M'R* 3 for
larget, as opposed to Kruskal coordinates in which the h
rizon is a unit light cone. The horizontal lines show the
cation of grids with and without apparent horizon bounda
conditions.

An initial grid at t50 covering 2M<r<r 0 or, equiva-
lently, 0<R*<R* 0 or M /2< r̄< r̄ 0, moves upwards unti
the innermost point that started on the horizon reaches
r50 singularity after time

tcrash5pM . ~18!

In numerical ‘‘crash tests’’@1,2# one indeed finds for this
scenario thattcrash5(3.160.2)M @1#, and our 311 code re-
produces this result. One can also track how the radial me
componentg r̄ r̄ (t, r̄ ) ~constructed fromgab) diverges with
time with an exploding peak developing at the throat
r̄5M /2 @1,2#. Indeed, from the analytic solution we find fo
t53M that at the throatg r̄ r̄ 520.486 compared to 20.2 i
111 and 23.4 in 311 @1#.

As a test of our numerical code and in order to pres
some novel data, we plotg r̄ r̄ „t, r̄ ah(t)…, i.e., how the radial
metric component develops with time, in Sec. VI. Havi
summarized the analytic aspects and some of the nume

FIG. 1. Novikov coordinates for the Schwarzschild geometr
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history of the Schwarzschild spacetime in Gaussian nor
coordinates, we now discuss the actual implementation
our code.

III. ADM CODE FOR UNIFORM GRIDS

The evolution equations~8! and ~9! for gab andKab are
rather elegant and concise, but since the indices run fro
to 3, writing out each term explicitly leads to a problem of
size that makes the use of computer algebra highly rec
mended, if not essential for the added flexibility. We wrote
simpleMATHEMATICA script that takes Eqs.~8! and ~9! di-
rectly as input, together with formulas for lapse and sh
and also some control quantities such as the constra
translates the derivatives into finite differences, and outp
C code for the basic routine that evolves data on a unifo
grid. A typical implementation leads to about 1520 summ
tions, 969 multiplications, and 322 divisions for 18 bas
fields.

We choose to perform an unconstrained evolution us
explicit finite difference schemes. The schemes tested
Lax-Wendroff, double leapfrog, and Brailovskaya, with a
without artificial dissipation~see @2# for a comparison of
schemes!. As far as data storage is concerned, only
double leapfrog scheme really requires two and not one le
of preceding data, that is, the same field at two earlier tim
Although this is an additional complication for the adapti
mesh code, we implemented it in order not to introduce
limitation. Most production runs are performed with th
double leapfrog scheme.~Compare with@1# where a particu-
lar version of staggered leapfrog with extrapolation for t
inhomogeneous terms is used.! Second order spatial deriva
tives are differenced symmetrically with centered diffe
ences, which seems to maintain spherical symmetry ra
well, although from experience with the Laplace opera
and elliptic equations one might expect that some asymm
ric differencing is a better choice~e.g.,@24#!.

In @1#, it was observed that for a stable evolution it w
crucial to perform differencing of the scaled metr
gab /c

4, which Anninoset al. called conformal differencing.
We also had to apply this technique. Since one might ar
that the generality of the evolution scheme is compromi
by building in knowledge about the initial data~recall that at
leastc does not change with time!, let us add a few com-
ments. Clearly, approximating the limiting 1/r̄ dependence
with finite differences, i.e., essentially with polynomials,
problematic. But as a matter of principle, there always is
issue whether an approximation method works in a giv
function space. To reduce the problem dependence of c
formal differencing, we tested a somewhat more gene
method, where a given type of test function, e.g., a ratio
function, is fitted to the data. The result of the fit is used a
basis for ‘‘scaled’’ differencing. For a perfect fit, one is le
with finite differencing a constant. For the problem at han
however, the simple conformal rescaling was quite sufficie

As already discussed, at the inner boundary we impo
either the isometry condition or the apparent horizon bou
ary condition@21#. Not only the field values near the bound
ary that are needed for the finite difference molecules, bu
points in the interior can be obtained by the isometry m
from the data that was evolved outside. Since interior po
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54 7365ADAPTIVE MESH AND GEODESICALLY SLICED . . .
are in general mapped to points falling between the ou
grid points, a polynomial interpolation is performed, taki
due care near the border that no data are accessed befor
are available.

For the apparent horizon condition we have postponed
implementation of a general 311 apparent horizon finder
and simply define a surface by the equationr52M leading
to r̄5 r̄ ah(t). Following @21# on 111, we evolve everywhere
outside r̄ ah(t) minus some small buffer zone. At variou
times the innermost points are obtained by second or t
order polynomial~or rational function! extrapolation. The
basic algorithm can deal with a convex surface which is s
ficiently flat on the scale of the grid points. With some fin
tuning, the inner boundary remains stable with a buffer zo
of about 2.8 grid spacings. In@21# a minimal size of 5 and
recommended size of 20 grid spacings are reported.

Note that for geodesic slicing all light cones are uprig
and so the Courant condition~which requires the physica
domain of dependence to be contained in the numerical
main of dependence! reduces to the condition that the ang
between the physical characteristics and thet coordinate
lines is not too large. At larger̄ , the light cones approach th
unit cone (45° forc51), and it is simple to see that near th
horizon the light cones become narrower in the radial dir
tion but wider in the constant radius directions (gtt521,
g r̄ r̄ increases, and for the polar angleu, guu5r 2 decreases!.

The numerical domain of dependence is related to
physical one by the factor by which the temporal grid sp
ing is smaller than the spatial grid spacing. For the fin
difference schemes considered, a relative factor of 0.25
used, although a factor of 0.1 made the evolution sligh
more accurate~but slower!. We did not encounter the prob
lem that the light cones become too narrow or too wide.

IV. NUMERICAL RELATIVITY ON PATCHES

Before getting into the details of the adaptive mesh co
we would like to discuss a few issues related to numer
relativity and adaptive mesh in general. As explained in
Introduction, the basic idea is to put points where they
needed for a given accuracy, but in the general relativi
setting a more general viewpoint is possible.

A typical textbook introduction to general relativity ma
proceed as follows. First one learns that gravitational phy
is really about a manifold with a metric. In the neighborho
of any point the manifold looks likeR4, but in the generic
case one needs an atlas of coordinate patches to cove
manifold. Furthermore, there always exist coordinates ne
point in which the metric is close to the flat Minkows
metric. To borrow a picture from Einstein’s discussion of t
principle of general covariance@23#, consider the gravita-
tional field of the Earth. Everywhere around the Earth we c
construct freely falling frames of reference which appro
mate Minkowski spacetime, but no single set of coordina
exists in which space time is everywhere flat. So the sp
time structure with its locally flat patches is a key feature
general relativity, and let us emphasize that, apart from g
bal ~topological! issues, it is also a key feature in a practic
sense if we look for coordinates in which the metric is
cally flat.

Ironically, the next step is to completely ignore or,
r
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least, circumvent the patch work character of general rela
ity. One learns a lot about beautiful work where a single o
few coordinate patches are constructed in an ingenious m
ner to cover all the interesting regions of spacetime@26#.
Typically this involves using special symmetries of th
model. What is perhaps more relevant for generic~311!-
dimensional numerical relativity without symmetries, f
simple initial data the original coordinate system stays go
for at least some time close to the initial hypersurface, and
again one might try to make do with one coordinate syst
rather than changing coordinates.

Numerical relativity has been traditionally built upon on
or a few handcrafted grids, mostly fixed for the whole ev
lution. There are very well-known examples for problem
associated with rigid boxes, to name just one, the steep
dients in the metric developing for maximal slicing of th
Schwarzschild spacetime@1#, with a promising solution be-
ing the apparent horizon boundary condition where the g
adapts itself to the apparent horizon and is not strictly fix

What we want to suggest is that the adaptive mesh te
nique encompasses the necessary flexibility to actu
implement numerical relativity on patches. Namely, it m
be possible to drive the automatic distribution of grids n
only by numerical error estimates, but also by some phys
measure. For example, such that the new grids correspon
coordinate patches in which the metric is nearly flat or h
some other convenient property such as minimal distortio

Let us emphasize that to us this suggestion appears t
of the type nobody would object to, as long as one can p
duce a concrete and useful implementation. This is not d
here, except perhaps for one aspect discussed below. Bu
want to develop the idea a little bit further in an illustrativ
thought experiment for the ADM formalism and for geodes
slicing.

The main idea is displayed in Fig. 2. Suppose we
given initial data that are well represented according to so
criterion such as local flatness of the metric. For a brief tim
this criterion does not lead us to regrid, and the data evo
in the rectangular spacetime patches that are drawn nea
x axis in Fig. 2. Now suppose that Fig. 2 corresponds in
rough sense to a black hole in that in the course of evolu
the light cones are tilted inwards toward thet axis and that
freely falling observers follow an inward curving path. Th
flatness criterion could lead at later times to the second

FIG. 2. Schematic example for numerical relativity on patche
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of patches, where the initial boxes have been adapted to
inward tilt.

Several comments are in order. Note that the origi
work by Berger and Oliger@5# already contains the concep
of rotating boxes~to track shock fronts!, although only in
spatial directions. Here the suggestion is to construct boo
data by similar interpolation techniques.

Also note that the data structures are often based o
strict nesting property. Here boxes of equal refinement
allowed to overlap, a feature which one also needs if area
refinement are to be covered by several small boxes@5#.

A technical problem that arises is that in general one
to define the coordinates for each box in an intrinsic man
since there might not exist a single top level parent grid fr
which all child grids can derive their coordinates. If th
spacetime is too warped to be adequately covered by a s
grid, several overlapping top level grids are required~com-
pare Fig. 2!. A concrete way to implement such parentle
grids is to define transition functions between them that m
exist since we are dealing with a manifold.

Finally note that no adaptive mesh refinement might
involved at all; i.e., all grids could have the same grid sp
ing, although one needs a coordinate-independent measu
the grid spacing to make this statement meaningful.

In terms of the standard 311 decomposition of Einstein’s
equations, the above example amounts to a particular ch
of both lapse and shift. Introducing a shift vector so that
light cones are upright is the subject of what is called cau
differencing@17# or causal reconnection@25#. The difference
is that for the particular patches just introduced, the caus
correct differencing is discrete on the scale of the grid si
and not on the scale of the grid spacing. In Sec. III,
discussed that even when the light cones are upright, one
has to adjust lapse and/or temporal and spatial grid spac
In three spatial dimensions, upright light cones intersect
hypersurfaces in a nonspherical manner, and on the pat
one might want to define coordinates such that the cr
sections approximate spheres.

To complement this qualitative discussion of numeri
relativity on patches, let us conclude the section with a f
comments on how the transition from a single, fixed dom
of computation to varying patches might be of help for t
two main problems that are associated with geodesic slic
Gaussian normal coordinates have the intrinsic problem
freely falling observers tend to fall into physical singulariti
and that coordinate singularities develop due to geodesic
cusing.

Suppose we had some stable method to stop computin
points where the data become infinite. If all one is given i
fixed finite grid, the grid may have to be unfeasibly large
one wants to cover a given period of time before all poi
have hit the singularity. But, considering the Schwarzsch
spacetime in Fig. 1, even if the outermost points are
enough outside to only move a negligible distance in
time of interest, the innermost points fall in, leading to g
stretching near the horizon. Adaptive mesh is helpful in t
regard since it has the built-in capability to introduce n
points near the horizon.

For a schematic picture of geodesic focussing, cons
Fig. 3. Schwarzschild spacetime is special since all ra
geodesics meet atr50. The crucial point is that one has t
he
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determine by some means, e.g., by evaluating curvature
lars, whether one approaches a physical or a coordinate
gularity. If there is a physical singularity, then the adapti
mesh can insert finer and finer grids and avoid the singu
ity, if we decide that this is the feature we want to resol
rather than, for example, to impose an apparent hori
boundary condition~if a horizon covers the singularity!.
Adaptive mesh, of course, cannot change the underly
physics. If there is a coordinate singularity—and this is t
pathological feature of Gaussian normal coordinates we w
to address—then quantities such as curvature scalars wil
pear more and more constant as we approach the interse
of geodesics. The adaptive mesh solution is to regrid, tha
to redistribute points on a coarser grid on a different hyp
surface because the finer resolution is not needed since
is no physics to resolve.

We do not seriously want to suggest that geodesic slic
is a universally good choice. For example, having a non
nishing shift vector might be crucial. But, given a guidin
physical principle, adaptive mesh offers the possibility
resolving the problems of geodesic slicing with its built-
capability to add in points where needed when others
into a physical singularity and to remove points that oth
wise would lead to a coordinate singularity. Put the oth
way around, while on a fixed grid geodesic slicing is ce
tainly problematic, on adaptive meshes these problems
not unavoidable.

The numerical work of this paper can also be conside
as a step towards a demonstration that adaptive mesh ca
in points for grids that move and stretch towards a singu
ity. As the horizon moves outwards, the innermost grid e
pands to cover the outer regions where points are missin
achieve the given accuracy.

V. IMPLEMENTING ADAPTIVE MESH REFINEMENT
IN TWO AND THREE SPATIAL DIMENSIONS

All current implementations of adaptive mesh in gene
relativity derive from Berger and Oliger@5#, and are moti-
vated and influenced by Choptuik@6#. We refer to these pa
pers for more technical information, but comment on imp
tant features of our code. We should mention that there i
least one nonstandard approach, by Schutz and Wild@19#,
where the units of refinement are not grids but single poin
Our main focus is on 311, but some features are tested
211 for simplicity. For a visual impression of how the in
tuitive idea of adaptive mesh translates into various evolv
grids that follow some data, see Fig. 4, which is discus
below.

FIG. 3. Geodesic focusing.
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FIG. 4. Empty adaptive mesh
displaying various possible regrid
dings.
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The central design issue is how to organize the dynam
data structures. While the basic idea of structuring the g
based on some given error estimate is very simple, it tu
out to be a rather complicated matter to have access to al
necessary information at all times. We use linked lists oc
structures describing rectangular grids which are referen
by c pointers. This description still leaves a lot of freedo
whether one maintains pointers to all or none of the par
grids, the child grids, neighboring grids~we work in three
spatial dimensions!, equal level grids, and so forth. Depen
ing on the actual physics problem, it becomes a trade
between the cost to maintain all these pointers versus ga
overall speed. For simplicity, we settled on one choice w
out worrying about optimization, and for 311 numerical
relativity, most time is spent during uniform evolution.

A very helpful idea for testing turned out to be the co
cept of an empty adaptive mesh. Instead of considering
evolution based on a differential equation, one could c
sider some fake evolution, for which one also specifies a f
error function. But all that the adaptive mesh is adapting t
the error function, and so we are considering empty adap
meshes which track the evolution of some predetermi
error function without reference to any data.

Figure 4 shows two regions of error circling each other
211 dimensions. This models the situation of a neutron s
binary, for which we might also expect the error to be lar
where the density is high~although this is not necessarily th
case!. The color coding is normalized separately for ea
grid to set off the subgrids. The fine grids follow the pea
al
s
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boxes of equal refinement merge and split, and finer bo
are inserted and removed.

One part of the adaptive mesh code is to find appropr
boxes around volumes where the error is beyond a cer
threshold or, equivalently, to find the bounding box f
flagged points among unflagged points. To find rectangu
bounding boxes, we start with a seed and let each of its fa
move outwards in turn as long as there are flagged points
it, and since the volume grows, we have to repeatedly c
sider each surface. The optimal performance is obtained
sets of flagged points which form solid boxes, since start
with any seed, it is a linear process to walk out to the surfa
and in order to decide that the final surface does not con
flagged points,O(N2) operations are required for a box o
volumeN3. Actually, even if we had to look at each sing
point inside the final box a few times, the time spent
finding boxes would be negligible compared to on the or
of 1000N3 floating point operations carried out per poi
during evolution. Note that this algorithm will group discon
nected regions when appropriate~e.g., nonconvex regions
whose bounding boxes overlap!, which is a big advantage
over certain flood-fill algorithms.

Note also that putting an upper limit on the volume
which a seed may grow offers a simple way to break up la
regions into several small boxes. We have not implemen
this yet, but this certainly is a good way to improve ef
ciency once storage for on the order of 100 reasonably s
boxes is available~as opposed to a current limit of about 5
311!. For example, the black hole space time we consi
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FIG. 5. The metric componentg r̄ r̄ at the horizon.
ne
nd
e-
o
s

p
ti
s
he

pt
a
fo

o
th
se
tw
t
re
iv
on

e
e
th
I
n

par-
en
do-
ted
ed
er-
or
ill
ere
ce

em
ge,
o-
tly
gh
not

esic
nt

oth
poses the problem to cover a spherical shell, the region
the horizon, which contains far fewer points than the bou
ing box. Referring to Sec. IV, spatially nonuniform refin
ment can be useful, but since the refinement factor is c
stant in each grid, one needs a larger number of boxe
adequately break up large nonuniform regions.

One aspect of adaptive mesh that is not testable in em
adaptive mesh by its very definition is how the error es
mates are obtained. As usual, we compute the Richard
truncation error, which involves comparing data from t
evolution on coarse and fine grids.

Another very important issue not adressed with em
adaptive mesh is the question of how to obtain the bound
data for the interior subgrids. We refine the grid spacing
both space and time by the same factor~any integer larger
than 1!, and so there are time steps for which a grid is n
covered by a coarser grid at equal time from which
boundary could be interpolated. But evolving the coar
grids first, any subgrid is always sandwiched between
coarser grids in time. The coarsest grid is only allowed
have outer boundaries, which have to be treated by diffe
means anyway. In our examples it has worked well to der
the boundary for the finer grids by polynomial interpolati
of order no higher than 3 from the two coarser grids. W
tested the interpolation first for a scalar field in 211 and 311
dimensions~planar and spherical waves! before proceeding
to the black hole case.

It is not clear whether the interior boundaries introduc
by the adaptive mesh can be treated completely indep
dently of the evolution scheme as we do it here with
above interpolation scheme. As already mentioned in the
troduction, we found it useful to open up the black box co
ar
-

n-
to

ty
-
on
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o
o
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e

e

d
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cept for adaptive mesh somewhat by incorporating the ap
ent horizon boundary condition as boxes with holes, ev
though the apparent horizon is an outer boundary of the
main of computation. Also recall that we have experimen
only with explicit difference schemes for an unconstrain
evolution. Whenever a nonlocal operation has to be p
formed, for example, in an implicit difference scheme
when solving an elliptic boundary value problem, it is st
possible to evolve the coarse grid first for the region wh
the coarse data are valid. But the nonlocality might introdu
a new source of noise into the system.

Regridding noise is the one additional numerical probl
introduced by adaptive mesh. Every time the grids chan
there will be an unavoidable numerical error due to interp
lation and injection of data. In our examples, a sufficien
fine grid spacing kept the regridding noise at small enou
levels. Artificial dissipation reduces the noise, but was
essential.

VI. ADAPTIVE MESH AND GEODESICALLY SLICED
SCHWARZSCHILD SPACETIME

In this section we present results of our 311 ADM adap-
tive mesh code for the Schwarzschild space time in geod
slicing. In Fig. 5 we plot the unscaled metric compone
g r̄ r̄ at time t on the horizon at radiusr̄ ah(t). The data is
taken on the diagonal of the first octant. We setM51 in this
section. Five different data sets are plotted. The solid smo
line is the analytical result. At time 0,r̄ ah5

1
2 andg r̄ r̄ 516

@compare Eqs.~5! and ~10!#. Initially, there is a drop in
g r̄ r̄ as the horizon moves away from the 1/r̄ singularity in
the conformal factor, while at late times,r̄ ah}t2/3 and also
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FIG. 6. Metric components a
levels 1 and 2 at timet51.0.
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g r̄ r̄ }t2/3, so thatg r̄ r̄ } r̄ ah. These estimates are valid fo
r̄ ah large enough so thatc( r̄ ah)'1, but note that at the righ
edge of Fig. 5,r̄ ah(7)52.8 andc@ r̄ ah(7)#

451.9. The hori-
zon moves out, but so does ther50 singularity, and it just
so happens that the horizon marks a value on the flank o
r50 singularity in the radial metric that moves to infini
increasing linearly with the radial coordinate of the metri

The main result of this paper is the line slightly above t
analytic curve. It is obtained on the finest level of a thr
level adaptive mesh with grid spacings 0.07, 0.21, 0.63~re-
finement factor 3!. The computations are performed in th
first octant with double leapfrog and conformal differencin
and without artificial dissipation. At the inner boundary
apparent horizon boundary condition is used with th
he

e

,

e

buffer points, and the coarse grids reach far enough to h
the data constant at the outer boundary.

In Figs. 6 and 7 we plot for the same run two-dimension
cuts of g r̄ r̄ , gxx , and gxy scaled byc4 at t51.0 and
t55.5, respectively. The two finest levels are shown. Le
0 does not extent further than level 1 and is just maintain
for the truncation error estimate. The data inside the hori
minus buffer are arbitrarily set to zero since no evolution
computed there. Note that att55.5 the horizon has almos
reached the border of the level-2 grid. A small inaccuracy
visible at the boundary of the level-1 grid att55.5 due to
the constant outer boundary condition. There is a co
sponding deviation from zero in the Hamiltonian constrai
which propagates through the whole domain of integrat
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FIG. 7. Metric components a
levels 1 and 2 at timet55.5.
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but remains small. Experience shows that it is far fro
simple to obtain a stable evolution for the gradients
level-1 at t55.5. But this is one of the problems that
reduced by adaptive mesh, since as usual the data from
level-2 grid have been injected.

The curve that deviates wildly from the analytic solutio
at late times in Fig. 5 belongs to a single level run und
identical conditions as defined above except that no coa
grids are introduced. There are two further runs plotted
Fig. 5, which fall just slightly below the analytic curve. The
correspond to uniform grids with spacing 0.05 and analy
data at the outer boundary. One of the runs was perform
with the Brailovskaya scheme, which in our implementati
the

r
er
n

c
ed

is twice as slow as double leapfrog and does not impr
accuracy as opposed to@2#.

The key limiting factor of all these runs is comput
memory. Typical runs involve one or two boxes with abo
403 points on a 24 Mflop machine~linpack.c! with 80MB
RAM taking 10 h ~compared to gigaflops, gigabytes, an
about the same time at NCSA@1#!. Having 40 points in any
one direction is ridiculously little compared to what is ava
able for lower dimensional problems. In conjunction wi
adaptive mesh it is clearly much more efficient to have
boxes of size 403 rather than one box of 503, for which the
total number of points is about the same. In@1#, for geodesic
slicing a grid of size 1283 is used with grid spacing 0.05 to
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cover about the same range ofx50–6 as in Figs. 6 and 7
Up to 2003 was manageble in@1#. We find it surprising how
well one can do with so few points per direction and a g
spacing which by no means is ‘‘much smaller’’ than 1.

The apparent horizon boundary condition is working we
Even with only about three points as a buffer zone, d
directly at the horizon are not significantly affected on th
scale, which is apparent in Fig. 5, and which we a
checked by comparing with runs for analytic inner bounda

There are several reasons why the runs in Fig. 5 canno
continued to later times, all of them related to size limi
tions. The truncation errors that drive the adaptivity a
spherically distributed, and given the current resolution
do not attempt to cover spheres by several grids; so all g
are concentric aboutr̄50. Hence, given some maximal vo
ume such as 403, the grid spacing determines the position
the outer boundary. Referring to Fig. 1 for Schwarzschild
Novikov coordinates, it is clear that at late times there is
room for the three-point buffer necessary for the appar
horizon condition. Even before that, the steep increase in
metric coefficients makes the evolution unstable. So in th
coordinates at this resolution we are squeezed out at aro
t56.

In @1#, evolution times of aroundt515–50 have been
obtained, which is the best one has achieved in 311 dimen-
sions, but for different coordinates~various implementations
of maximal and algebraic slicing, horizon locking shift!. For
the accurate extraction of gravitational waves, on the or
t51000 would be nice. Geodesic slicing is not well suit
for a code that is supposed to run forever, because the h
zon keeps moving outward and the radial metric coefficie
increase. For the same reason, geodesic slicing makes f
interesting test case apart from the crash test, because
can work on some aspects of moving horizons.

The one scheme without built-in time limitations is bas
on horizon locking shift conditions@21#. One starts with dy-
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namically evolving data, but manages to find coordinates
which the metric becomes static, which unsurprisingly
possible for the Schwarzschild spacetime. To find the fi
static black hole is just what one needs for many proble
on the other hand, our maximal proper time oft56 is not
too bad for a genuinely dynamical slicing.

VII. CONCLUSIONS AND OUTLOOK

The numerical results collected with our new~311!-
dimensional adaptive mesh code in the case of Schwa
child spacetime in geodesic slicing are in good agreem
with the analytical solution. Tests of the adaptive mesh r
mostly on no physics and flat space scenarios, but for
black hole case the added efficiency of the adaptive m
was crucial for performing the computations on a sm
workstation. The evolution reproduces the crash time
pM , and can also be carried out to about 6M with the help
of an apparent horizon boundary condition. We argued t
numerical relativity on patches is a natural idea for adapt
mesh in general relativiy.

Apart from obvious extensions of this work to larger m
chines, let us mention three directions for future work. T
adaptive mesh can be generalized to cover some aspec
numerical relativity on patches, e.g., to overlapping box
without parents. Having the ADM compiler available, on
can experiment with the various hyperbolic formulations th
have become available recently~see@27# for a review!. Fi-
nally, as a simple example for nonvacuum general relativ
one can study the collapse of a scalar field in 311 to find out
whether the Choptuik effect exists for nonspherical config
rations of the scalar field.
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Meeting, Stanford, California, 1994, edited by R. Ruffini a
M. Keiser ~World Scientific, Singapore, 1995!.

@12# T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor. Ph
Suppl.90, 1 ~1987!.

@13# M. Shibata and T. Nakamura, Phys. Rev. D52, 5428~1995!.
@14# P. Anninos, D. Bernstein, S. Brandt, J. Libson, J. Masso´, E.

Seidel, L. Smarr, W. Suen, and P. Walker, Phys. Rev. Lett.74,
630 ~1995!.

@15# T. Baumgarte, G. Cook, M. Scheel, S. Shapiro, and S. Teu
sky, Phys. Rev. D54, 4849~1996!.

@16# See, for example, B. Bru¨gmann and E. Marinari, Phys. Rev
Lett. 70, 1908~1993!; J. Math. Phys.~N.Y.! 36, 6340~1995!;
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