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Accuracy of parameter estimation of gravitational waves
with LISA
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Abstract. LISA is a space-borne, laser-interferometric gravitational-wave detector currently
under study by the European Space Agency. We give a brief introduction about the main features
of the detector, concentrating on its one-year orbital motion around the Sun. We compute how
the amplitude as well as the phase of a gravitational wave are modulated due to this motion by
transforming an arbitrary gravitational-wave signal in a reference frame that is rigidly fixed to
the arms of the detector. To see how LISA works the detector response to a gravitational wave
which is purely monochromatic in the barycentric frame will be discussed.

A brief review of the theory of parameter estimation, based on the work of Finn and Cutler,
will be given. Following this theory the detection of a gravitational-wave signal buried in detector
noise was simulated numerically. We interpret the results of this simulation to determine the
angular resolution of LISA.

PACS number: 0480N

1. Introduction

The LISA mission consists of six spacecraft forming a laser interferometer in a plane inclined
60◦ with respect to the ecliptic and along a circle with a radius of 3× 109 m [1]. Two
spacecraft will be placed at each of three points on this circle forming an equilateral triangle
with baselines of 5× 109 m which rotates clockwise around its centre, as viewed from the
Sun, with a period of one year. The complete constellation describes an approximately
circular orbit at a distance ofR = 1 AU from the Sun and trailing the Earth in its orbit by
20◦. As a single, nonmoving detector reveals no information about the directional parameters
of the source of the gravitational wave, all the information about the source parameters is
contained in the variation of the detector response that results from the described motion [5].

Firstly, the detected amplitude of the gravitational wave is modulated, as the detector’s
sensitivity pattern is not isotropic, so the detected amplitude depends on the location of the
source relative to the detector and this location changes due to the rotation of the detector
formation around its centre.

Secondly, the detector is moving relative to the source due to the periodic motion of
its centre along its orbit around the Sun, Doppler-shifting the frequency of the gravitational
wave. This results in a phase modulation of the detector output.

The amplitude modulation as well as the phase modulation will spread a sharply peaked
monochromatic signal into a set of sidebands separated from the carrier by integer multiples
of the fundamental frequency,(1 year)−1. In the following sections both modulations will
be calculated and a review of some standard techniques of parameter estimation will be
given. Finally, these techniques are applied to the simulated data for a linearly polarized,
monochromatic wave at a frequency of 3 mHz and interpreted to give information about
the potential accuracy of the estimation of the angular parameters of the source.
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2. The amplitude modulation

The amplitude modulation can be calculated by transforming the metric tensors

h× := h×

 0 1 0
1 0 0
0 0 0

 and h+ := h+

 1 0 0
0 −1 0
0 0 0

 (1)

which are defined in the source frame, i.e. a system with itsx-axis in thex–y-plane of
the barycentric frame, itsz-axis pointing towards the Sun and the source at its origin. The
transformation is split into one transforming the source system into the barycentric system
and another one from the barycentric frame into the detector frame, which is rigidly fixed
to the interferometer arms.

Let θ andφ be the Euler angles that define the source position in the barycentric frame,
with its x–y-plane in the ecliptic (cf figure 1). The transformation into the source system
is composed of two rotations. The first, realized by the rotation matrixa1, turns they-axis
of the barycentric frame on the projection of the line connecting the Sun and the source on
the ecliptic, that is counterclockwise through an angleφ − 90◦ around thez-axis,

a1 :=
 sinφ − cosφ 0

cosφ sinφ 0
0 0 1

 . (2)

Figure 1. Orientation of the source in the barycentric frame.

A second rotationb1 turns the system counterclockwise around the newx-axis by
180◦ − θ . With T1 := b1a1 the matrixh+ of (1) is transformed from the source system
into the barycentric frame by

h+ → T t
1h+T1. (3)

The following angles are used to calculate the transformation into the detector system:

ψa := 2
πt

T
ψb := 1

3
π ψc := −2

πt

T
+ α (4)

where 1
3π is the angle of LISA with respect to the ecliptic [1] andα is the phase between

LISA’s motion around the Sun and the motion around its centre of mass.
Now a rotation matrixa2 turns the frame of reference in the barycentric system

counterclockwise around thez-axis byψa, so that the newy-axis points towards LISA.
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Then b2 turns it byψb out of the ecliptic. Finally,c2 turns it clockwise around the new
z-axis byψc. A vector is transformed from the barycentric into the detector system by
T2 = c2b2a2. Therefore the matrixh+ is transformed as

h+ → T2T
t
1︸ ︷︷ ︸

=:T

h+T1T
t
2. (5)

3. The phase modulation

The translatory motion of the detector relative to the source leads to a phase modulation of
the gravitational-wave signal. This modulation can be easily calculated with the so-called
barycentric transform between time of arrival at the Solar System and time at the detector
[2]. In the former system, which can be considered to be a convenient inertial frame, the
signal is not modulated at timescales short or comparable to an Earth orbit and therefore
is of fixed frequency. Letsd and sb be the signals at the detector and at the barycentre,
respectively, then by definition

sd(td) = sb(tb[td, θ, φ]), (6)

where(θ, φ) is the angular position of the source (cf figure 1). The relation between the
two time variablestb, td is given by

tb[td, θ, φ] = td + En(θ, φ) Ed(td)
c

(7)

with En being a unit vector pointing towards the source andEd a vector connecting LISA and
the solar system, so it has a length ofR = 1 AU:

En =
 cosφ sinθ

sinφ sinθ
cosθ

 Ed = R

 sin(2πt/T )
cos(2πt/T )

0

 . (8)

Therefore the relation between the two signalssd andsb as functions of time is

sd(td) = sb

(
td + R sinθ

c
cos

(
2πt

T
− φ

))
. (9)

So if the signal in the inertial frame is purely sinusoidal of frequencyfGW, in the detector
response it appears as

sd(td) = sin(2πfGWtb)

= sin

(
2πfGWtd + 2πfGWR sinθ

c
cos

(
2πt

T
− φ

)
︸ ︷︷ ︸

8(t)

)
, (10)

including a phase modulation8(t) with a modulation indexm of

m = 2πfGWR sinθ

c

≈ π sinθ

(
fGW

1 mHz

)
. (11)
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4. The LISA response to a gravitational wave

A gravitational wave which is purely sinusoidal in the barycentric frame causes a strain
perceived by the detector given by

H = T


0 0 0 0
0 hpl hkr 0
0 −hkr hpl 0
0 0 0 0

 T t exp{i[2πfGWt − EkGWEx +8(t)]} (12)

with the phase modulation8(t) of equation (10) and the modulated amplitude
T (h+ + h×)T t (cf equation (5)). To see how the gravitational-wave detector works, recall
that general relativity predicts that a ray of light connects a set of points by an interval of
zero or

ds2 = 0. (13)

For simplicity, one of the detector arms is chosen to give thex-axis of the detector frame,
while the other arm points to the ‘first quadrant’ at an angle ofα = 60◦ to thex-axis. The
above equation then becomes

0 = ds2

= gµν dxµ dxν

= −c2 dt2 + (1 +H11(t, Ex)) dx2 + (1 +H22(t, Ex)) dy2 +H12(t, Ex) dx dy

+H21(t, Ex) dy dx

= −c2 dt2 + [(1 +H11(s)) cos2 α + (1 +H22(s)) sin2 α

+ (H12(s)+H21(s)) sinα cosα] ds2 (14)

where the parameters is the parametrization of the trajectory andα equals 60◦ for one arm
of the interferometer and 0◦ for the other. This means that the gravitational wave modulates
the light travel timeτtt between two neighbouring points of fixed coordinate separation
which can be calculated by integrating the square root of the above equation

c

τtt∫
0

dt =
L∫

0

√
1 +H11(s) cos2 α +H22(s) sin2 α + 1

2(H12(s)+H21(s)) sin 2α ds

−
0∫

L

√
1 + · · · ds,

where L is the interferometer arm length. Assuming that the metric perturbation is
approximately constant during the time any given wavefront is present in the apparatus
(i.e. fGWτtt � 1), and expanding the root, leads to a difference in light travel time for the
interferometer arms of

1τtt = 2L

8c

√
3[(H22 −H11)

√
3 +H12 +H21]

and, takingλ to be the laser wavelength, a corresponding measurable phase difference of

18 = 2Lπ

4λ

√
3[(H22 −H11)

√
3 +H12 +H21] (15)

whereH still has the same time dependence as in (12). Due to the motion of the detector
a signal that is monochromatic in the source system will now be spread into a set of



Parameter estimation of gravitational waves with LISA A283

sidebands in the detector system that contains all the information about the parameters of
the gravitational wave. The resulting line spectra for two source locations are presented
in figures 2 and 3. The frequency of the gravitational wave in the example given in the
figures is 3 mHz, and the source locations are(θ, φ) = (π/2, 0) or (θ, φ) = (π/4, 0)
respectively.
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Figure 2. Sideband structure of the detector re-
sponse to a monochromatic, pluspolarized gravita-
tional wave at 3 mHz, corresponding to a modula-
tion index ofm ≈ 10 (cf equation (11)). The source
is located at(θ, φ) = (π/2, 0).
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Figure 3. Sideband structure of the detector re-
sponse to a monochromatic, pluspolarized gravita-
tional wave at 3 mHz, corresponding to a modula-
tion index ofm ≈ 10 (cf equation (11)). The source
is located at(θ, φ) = (π/4, 0).

5. Review of parameter estimation

The problem of measurement is to determine the values of some or all parameters of the
signal [3]. It will be shown how accurately that can be done. Consider a streams(t) that
represents the pure detector outputh( Eµ), parametrized by several unknown parametersµi
collectively denoted asEµ = (µ1 = θ, µ2 = φ, . . .) plus additional noisen(t). Now one has
to find a probability density functionP( Eµ, s) for the parametrizationEµ that characterizes
the detector outputh( Eµ). Assuming thatn(t) is a Gaussian process with zero mean,
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characterized by the one-sided power spectral densitySn(f ), it can be shown [4] that

P( Eµ, s) ∼ exp〈s, h( Eµ)〉
where the symmetric inner product is defined as

〈s, h〉 = 2

∞∫
0

s(f )h∗(f )+ h(f )s∗(f )
Sn(f )

df.

From this definition it follows that, for a waveformh( Eµ), the signal-to-noise ratio is given
approximately by

S

N
[h( Eµ)] = 〈h( Eµ), h( Eµ)〉

RMS(〈h( Eµ), n〉) =
√

〈h( Eµ), h( Eµ)〉.
The error in measurement is taken to be the width of the probability density functionP( Eµ, s)
for the measured valuêEµ, i.e. the variance–covariance matrix

6ij =
∫
(µi − µ̂i)(µj − µ̂j )P ( Eµ, s)dnµ.

There are several choices of data-processing algorithms to findÊµ; one is the so-called Bayes
estimator ÊµBayes=

∫ EµiP ( Eµ, s)dnµ.

6. Results

In table 1 RMS errors are presented as square roots of6θθ and6φφ that have been calculated
for a monochromatic, linearly plus-polarized wave at 3 mHz with constant amplitude over
one year of observation. Only values ofθ < π/2 andφ = 0 appear in that table, because
the errors are symmetrical inπ/2 ± θ and in φ. For a signal-to-noise ratio of 100 the
position accuracy comes out as 1–10 mrad, depending on the value ofθ .

Table 1. The RMS errors for the angular parametersθ and φ (cf figure 1 for φ = 0 and a
signal-to-noise ratio of 115, that put a constraint on the angular position accuracy of 10−6 sr).

Location (rad) δθ (mrad) δφ (mrad) d� = sinθ δθ δφ (mrad2)

θ = 0.10π 1.99 5.58 3.10
θ = 0.15π 2.33 3.65 3.87
θ = 0.20π 2.79 2.84 4.64
θ = 0.25π 3.27 2.43 5.45
θ = 0.30π 3.92 2.08 6.47
θ = 0.35π 5.52 1.88 9.06
θ = 0.40π 6.81 1.69 10.82
θ = 0.45π 9.27 1.59 14.38
θ = 0.50π 10.94 1.57 16.55
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