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Abstract

We explicitly extract the structure of higher-derivative curvature-squared terms at genus O and 1 in the d = 4 heterotic
string effective action compactified on symmetric orbifolds by computing on-shell S-matrix superstring amplitudes. In
particular, this is done within the context of calculating the graviton 4-point amplitude. We also discuss the moduli-
dependent gravitational threshold corrections to the coupling associated with the CP even quadratic curvature terms.

1. Introduction

It is a well known fact that perturbative string the-
ory contains the pure Einstein-Hilbert action. A pri-
ori, there is no reason why higher-derivative gravita-
tional terms could not also be present in the action of
strings and superstrings. Recently, it has been shown
that higher-derivative supergravity terms can provide a
new mechanism for supersymmetry breaking ind =2
and d = 4 supergravity models [3] and, hence, such
terms could be fundamentally important. An attempt
to determine this question was made within the con-
text of superstring compactifications on Zy symmet-
ric orbifolds in [4]. It was demonstrated, using light
field one-loop radiative corrections to the string effec-
tive Lagrangian, that higher-derivative supergravita-
tional terms can arise in string theory and, importantly,
that they need not be in the topological Gauss-Bonnet
combination. However, this discussion was not con-
clusive since the radiative contributions of the infinite
tower of massive states was not included in the calcu-
lation. It is possible, although it was argued that it was
unlikely, that these massive contributions would can-

cel the higher-derivative terms generated by the light
fields. It seems clear that the only way to resolve this
issue is to do complete genus-0 and genus-1 super-
string amplitude calculations, since such calculations
include both massless and massive states. One would
then attempt to construct the string action associated
with these amplitudes. In this way one could explore
the interesting question of whether or not string the-
ory can completely fix the curvature squared terms in
its action, at least to the genus-1 level. The answer to
this problem is the subject of this paper.

2. String S-matrix

The perturbative S-matrix approach consists of find-
ing a local gauge-invariant effective Lagrangian £
whose associated S-matrix elements coincide with the
string S-matrix. More precisely this means that the ef-
fective action, which is a power series in the external
momenta k?a’ and the string coupling constant g, re-
produces the kinematic structure of the string ampli-
tudes.
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We start by giving the most general ansatz for the
bosonic part of the CP even gravitational Lagrangian

1
£=ve { SR+ ARy R,

+ bR, R™ + ch} (1)

where « is the four dimensional gravitational coupling
constant. In the following we set 2x? = 1 and reintro-
duce it later for special purposes. We are not consid-
ering the CP-odd part of the gravitational action here,
which is given by a topological invariant, the first Pon-
trjagin class in four dimensions. The aim is to try to
fix the unknown coefficients a, b and ¢ by calculating
string amplitudes.

In order to find the appropriate n-point string am-
plitudes, we expand the above Lagrangian around the
flat background metric g,,,, = 1, + hy,. The inverse
metric is then given by a power series expansion g#” =
N — ¥ + (R2)* — ... and B* = n#Py*" h,,. Fur-
thermore, in order to correspond to the on-shell fluc-
tuations described by the string graviton-vertex oper-
ator, we demand that £, satisfies the harmonic gauge
conditions for a massless spin 2 field, namely [k, =
0, 9#hy, = 0 and the tracelessness condition 7 = 0.
Expanding the curvature terms in Eq. (1) in terms of
h, the first non-vanishing contributions arise at the 3-
point level {7]. These are

\/§th3 = h,ull(hslw h) + 2h,u.)ua h¥eH hpa’
— (k€' k) (€%€) + 2(kse’3e' ky)
+ cyclic perm. )

VERup TR 4|13 = By, PA Ry h™h P
— (k1€%k1) (kz€®€'k3) + cyclic perm . (3)

where the notation (%,*” h) = (3#3%h,e)h?° has
been used. We have also introduced the transformation
to the momentum space, replacing id — k, and re-
placed Ay, — €,,, Where €,, is the graviton polariza-
tion tensor. Note that this polarization tensor satisfies
the same differential and tracelessness conditions as
hyy. Unfortunately, the kinematic structure of R, R*
and R? are such that they must vanish when expanded
in Ay, to the 3-point level. That is

VERu R |13 = \JgR ) = 0 (4)

Therefore, a 3-point string amplitude with three on-
shell external gravitational vertex operators can pro-
duce only the first two terms of the effective La-
grangian L. The other two terms may exist in the effec-
tive Lagrangian, but this cannot be determined at the
3-point level. Fortunately, at the level of 4-point am-
plitudes (and higher), the Ricci squared and curvature
scalar squared terms no longer vanish. That is, at the
level of 4-point amplitudes \/gR ., R** |+ and \/gR?| s
are non-zero. In the expansion up to order 4% of the
curvature squared terms, it is sufficient for our pur-
poses to isolate only certain terms, which are particu-
lar combinations of the polarization tensors, namely

V&R R ;|10 = (éuz + %f) Er

+ (%zz - }Ts2)E1 +... (5)

VB8R R |18 = 152 B + (%t2+§s2> Ei+... (6)

VER 1 = &SPE + ... (7)

where s = —2ky - kg, t = 2kt + ky and u = 2k - ka
are the Mandelstam variables and we introduce E; =
(e1€2) (€3€4) and E; = (€1€2€4€3), using the matrix
notation (e1€3) = €162,

At tree level, both the 3- and 4-point graviton am-
plitudes for the heterotic string in d = 4 have al-
ready been studied in, e.g. [7,12,17,8]. The O(k?)
part of the 3-point tree level amplitude corresponds to
the curvature scalar R and, therefore, reproduces the
Einstein-Hilbert action. Additionally, it gives the re-
lation 2«2 = g2 between the gravitational and string
coupling constants. The O(k*) terms in the 3-point
amplitudes can only give rise to one of the curvature
squared terms, as discussed above, so we won’t dis-
cuss them here. All three curvature squared terms arise
at order O(k*) in the four-graviton amplitude. If we
again restrict ourselves to only the terms involving the
particular polarization combinations E; and E,, the
O(k*) contribution of the 4-point amplitude is found
to be

g;e = 3g§{ ( - %Sz + tZ)E1 + u2E2}

= 3g2 K (8)
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Comparing this amplitude with the effective La-
grangian L, one realizes that there is no combination
of curvature squared terms (5), (6) and (7) that
reproduces the kinematic structure of A§*. This fact
is not surprising since string amplitudes include 1PR
exchange graphs with massless poles as well as 1PI
graphs. It follows that one has to perform the appro-
priate field theory subtractions in order to relate the
string result to the effective action. This will be done
for the tree and the 1-loop amplitudes in the next
section.

Proceeding in a similar fashion to the genus-zero
case, we now go to the one-loop level and calculate
both the 3- and 4-point graviton amplitudes on a world-
sheet torus for the heterotic string in d = 4 with a
given vacuum. The general expression for the CP even
n-point amplitude is [13,15]

Aeven _— 51482 dzTZ =
n _g’s' Z (“) 72“ (T,Tvs)

51,8,
(elver%) 7€l

X /:[:l[dzz;<1:_l[V(0)(zi,Z;)>S 9

where § = (51, s2) characterizes the spin structures,
which take the values 0 and 1 for the NS and R sectors,
respectively. The integration region for the modulus
of the torus 7 = 71 + im is the fundamental region
' = {7| |r] < i, |7| = 1}. The factor (—)**+% comes
from the fermionic partition function Z; in the light
cone gauge by demanding that the sum over the spin
structures of Zy is modular invariant. Z (7, 7, §) is the
partition function in light cone gauge for the heterotic

string, given by

Z(7,7,8) = Tr((_«)stqH—% A1)
. = leZXZXOZint (10)

where F is the fermion number and g = >, Zy, =
1/2(27)*r3 is the contribution from the bosonic zero
modes, Zx = l_n(lT)F is the bosonic partition function
where the Dedekind 7 function is defined as (1) =
q"/* T2, (1 — ¢™), and the partition function for one
complex fermion in the light cone gauge is Z;, =
Qf?-((% where 19, are the Riemann theta functions for
a =2, 3, 4 corresponding to the spin structures (s,
52) = (1,0), (0,0), (0, 1) respectively. The term Zj
is the partition function for the six-dimensional inter-

nal compact manifold. The super-ghost charges in the
CP even part of the string amplitude have to add up
to zero. Therefore, the vertex operators are taken to
be in the zero ghost picture V(. In this picture, the
graviton vertex operator looks like

V;O)(Z,Z_) = : E,,,,,a-X”‘(ﬁX” +ik-¢¢f”)eik'X: (1)

Here X* are the free world-sheet bosons and # the
left-moving supersymmetric partners.

Let us start by calculating the O(k?) piece of the
3-point graviton amplitude, which is associated to
the R term. We expand the three-point correlation
function of three-graviton vertex operators in the zero
ghost picture using Wick contractions. By supersym-
metry, terms that are independent of the spin structure
give zero after summing over spin structures. Con-
tractions of the exponential e** give (: [] ; ekiXi )
=11L.; |xij|"/%% where we have set & = % and

Dt (zj,7)
#1(0,7)

—7(Imz;)%/Imry

Xij = x(zij,7) =27e
(12)

which is related to the bosonic Green function on the
torus by G5 = — 1 In| x;;|2. To get the whole kinematic
structure of /gR as in expression (2), one also has
to take into account contributions coming from the
O(k*) terms by a “pinched off” integration [ 13-15].
These terms arise in the limiting case z;; — 0, for
which we get

Lxis? = |zl

- 1

Zij Y 4Z,'j

The world-sheet integral over the region |z;;| < € then
yields a pole in k; - k;, after analytic continuation:

|1/ 2k k;
2zl ! 4
. ~ . 14
/ d Zij 16]Zijt2 16k; - kj (14)

|zij]<e

where we assumed that 1|k; - k;| < || After per-
forming one world-sheet integration we get the fol-
lowing Q(k?) expression:
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3
[TT v (i 2oy
S

o~ /dzzl /dzzg(G%)zngfz
J J

X [ (ko€ k) (€2€3) + 2(kz€e?e’e'ky) ]

+ cyclic perm. (15)
where G, = GF (z;;) and
ij \<ij)

(G"(2))? = {5(—8*Inh(z,7)
+ 4mid, Inn (1) — eg) (16)

where e, = —4mid; In Z¢, we can replace (GF)? by
the spin dependent part (— T ) because the other terms
of (GF )2 W111 y1e1d a zero result for the amplitude after
summing over even spin structures. Therefore, there
remains only one world-sheet integral to be done. But
since

/dzzéGB = /d2z52GB =0 (17)

we find that the one-loop coupling in front of |/gR
vanishes. This means that there is no renormalization
of Newton’s constant for heterotic stringsin d =4, a
fact which was also noted in [1] and [16], whereas
for type I Sﬁ‘ii‘lgs in d = 4 it does get renormalized
at one-loop string level, because the fermionic zero
modes can be saturated by contracting left- and right-
moving fermions {16].

We now turn to the curvature squared terms and
calculate the O(k*) terms of the one-loop 4-graviton
amplitude for a d = 4 heterotic string. By doing so, we

hone to determine \xlhpfhpr or not the coefficiente of
LUPC W GUICITHINT Wicunll OF 00V Uil LoLinlicis O

the curvature squared terms of the one-loop effective
action can be uniquely fixed. The four-graviton vertex
correlation function is

<Hv<°)(z,,z,)> IT x4

i<j

X (X(k,e,z) +Y(k,€,2) +Z(k,€,z)) (18)

where X(k, €, z), Y(k, €, z) and Z(k, €, 7) are
polynomials of %, € and bosonic- and fermionic Green
functions, including a 4-, 6- and 8-fermion correlation
function, respectively.

If we concentrate on @ (k%) contributions, we also
have to expand the contractions of the exponential

ITixal % =1=3 " ki k;GF

i<j i<j

1 2
+§(Zk,--k,-cg.> - (19)

N i<

which is valid only if |z;j| > € because of the singu-
larity of G® at the origin. For z;; — O one has to use
the pinched off integration.

Performing the world-sheet integrals one real-
izes that many of the integrals give a zero re-

sult because of (17). Further, integrals such as

JeLanste i Amiiits, Milgiails sulil Ao

f dzzlal cs(2K112)cs(2Kzl3) also vanish as a re-
sult of the (quasi) periodicity of the Jacobi elliptic
function ¢s(2Kz), where K = %1‘1‘%(0, 7) and which
is defined as

t(z,7)04(0,7)

KD = S 0,0

So ¢cs(2Kz) is related to the fermionic Green function
for o = 2. Finally, we find that the E; and E; dependent

part of the one-loop string amplitude is

A‘e;;en= gloop Z( )SI+s2/ _Z(T’T9S)

seven

4
. / [[#2(G5)%* (3652 (20)

where v = = and K1 doop _ [—52E + (252 + 1) E, 1.
The remammg world-sheet integral is given by the
following result

l7'2

/dzz(éGB(z»Z =~ In(rai)

--2¢
16 2(T) (21)
where we used the heat equation and periodicity of
th(z, 7), and the Eisenstein function of weight 2,
G2(7) = G3(7) — = . Thus we get for the amplitude

Im
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even__g 8&s 4Kl-loop
T g \16/) %
d’r 1 A
_\S1+s2 - - 4 =
DS / i ndr 2y o)
(22)

Note that Ki;‘mp # Kiz°. Thus either the one-loop
corrections to the effective action are not proportional
to the tree-level effective action, or the one-loop string
amplitude contains different field theory subtractions.
The 7 integral can be performed after fixing the
internal sector, as, for example, a symmetric orbifold.
This will be done after the field theory subtraction.

3. Field theory comparison

In the previous section, we computed 4-point string
amplitudes and obtained particular kinematic struc-
tures for the O(k*) parts. As we already mentioned,
no combination of curvature squared terms that are

expanded to the order * can reproduce either 4z OF

Ki;‘mp. The way to proceed is to take the Lagrangian
in (1), calculate all possible field theory contact and
exchange graphs that contribute to O(k*), and sub-
tract them from the string amplitude expression to get
the 1PI effective action.

To do this we introduce %, as an off-shell graviton
field. That is, unlike A, which is constrained to satisfy
the equation of motion, A, is an arbitrary fluctuation.
We determine the vertices for two on-shell and one off-
shell field. Expanding the scalar curvature /gR|,; =

R, Vi we get the vertex

Ve = 30" (hp ) = §(RAR7) = 5 (h M)
. %h,u,a,p hva’,ﬂ+ Ve (23)

For the moment we are only interested in terms hav-
ing the form (A,*h)}), (B h), h**,, 0" o,P and
(h,o h,* ) because in exchange graphs it will be these
terms that contribute to those kinematic terms depend-
ing on E; and E,, which we picked out for the compat-
ison with the 4-graviton string amplitude. The vertex
for R,.,," R#?”; can be obtained by taking

VEBRup RE” o ljag = hun Vg, 2

the vertex for R, R*” by

VERWR? |2y = EWV(’}:”)Z
and the R? vertex by

\/§R2|h2h = -IWV(I;;)'

We find
‘/(I;QZ,,,,,,.)Z = %nl.w(h’pa' h,pa ) - S(h'uavpo hva,po' )
—(B" ,hP) +. .. (24)

‘/(,;;:(’D)Z = (hyﬂp h’v p) + %(hap halul p)

~ (h* e B0, ) + ... (25)
Vg =3(hHhY ) +3(hP hM )

—~ 3" (B P hyap ) + ... (26)

Having defined the vertices, we now introduce the
internal propagator for the exchange graphs. Expand-
ing (1) to quadratic order and inverting the kernel,
one finds the following propagator:

P2
Do = — £2P7
e {k2(1+k2(b+4a))
- Pispo (27)
2k2(1 + 2k2(—3a — b — 3¢))

where P2), and P{") are transverse projectors for

spin-2 and spin-0, respectively

Py = 3(0upbus + 0,s6sp) — P, (28)
Py = 50050 (29)

30y
where 0, = Ny — @4 and w4, = 35, We expand

the propagator for small momenta and get D5 =
11,000 +11 500, where the first term is the usual gravi-
ton propagator

1 0
s = =55 (P — 42150 ) 30)

and the second terms is a cotrection to the graviton
propagator:

Mypo = (b+4a) P, + (a+b+30)PS), . (31)

nrpo

We can now calculate the field theory exchange
graphs using II and II as internal propagators. The
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h h

h h

Fig. 1. Tree-level contact graph: Q.

h h
Fig. 2. Tree-level exchange graph: V,IIVr and VeIiVi.

four-graviton tree-level amplitude is reported by a tree-
level contact graph (Fig. 1) and tree-level exchange
graphs (Fig. 2).

The fourth-order contribution to the tree level con-
tact term is given by

0 = /g{aR, ;" R*” 5 + bR, R* + cR*}| ;s
b 9 b
— 2 _z i + 2
‘SE1< 478 166) tE’( 16)

3 b
+s2E2<5 4)+8qu2+ (32)

The exchange graph gives rise to two terms of the
order O( k*). The first one contains the corrected prop-
agator 11, giving, isolating the E; and E, terms,

- o a b 9
Vlle‘LyH/-cvaﬁVRB = SZEI ( - —+ =+ —c)

168" 16
4 b+4
L pPp 2t op Z"+... (33)

and the second exchange diagram has the usual gravi-
ton propagator as the internal propagator

where V}* = aV’”’ ot b )2 + cV*, (x2y 1s the ver-
tex for the quadratlc curvature ‘terms. If we add up ev-

h h

h h
Fig. 3. 1-loop-level contact graph: (Ag Q).

erything, retaining only the E; and E, terms, we get
the following result,

Q+VR ,u.Va,BVa +V‘u H’uyaﬁVR
=§{( 2+t2)E1-I-u2E2} 8K (35)

This result tells us that tree-level string amplitudes are
reproduced by the Riemann squared term only and that
the coefficients b and ¢, which are associated with the
Ricci squared and the scalar curvature squared term
respectively, do not appear. They cancel during the
summation over contact and exchange diagrams. It
follows that the on-shell string amplitudes do not fix
a particular combination of curvature squared terms.

Before discussing the consequences of this result,
let us consider the situation for the genus-one case.
Similar to tree level, there is also one contact term
(Fig. 3), which gives (AgQ), where

1
—— s1+82
Ao = Z( ) /72 In(D*

S even

X zimafzmz(f) (36)

is replacing the blob representing one-loop 1PI pro-
cesses.

There is no wavefunction renormalization of on-
shell external legs, because we have \/§R| =0,
V&R upw” R 5|, = 0 and the same is true for the
Ricci squared and the scalar curvature squared term.
Hence, Fig. 4 does not contribute to the curvature
squared term in the effective action.

Furthermore, we have one contribution from Fig. 5
Wthh is given by (Ag V)11 #,,aBV,‘: , where the fac-
tor 2 reflects the fact that there is no renormalization
of Newton’s constant and V;* stands for the one-loop
curvature squared term with one-loop coefficients, a,
b and c.
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h S “Uh

Fig. 4. Wavefunction renormalization of external legs.

Fig. 6. Contributions from: V,IT(Ag Vz )M Vg and VRH(Aé,VR)ﬁVR
and VRH(Angq)HVR.

Finally there are three terms of the order O(k*)
coming from a diagram with an internal blob like
Fig. 6. Before giving the explicit expression of these
terms, we compute the kinematic expression for the
field theory two-point function with two external
off shell legs % for various curvature terms. The ex-
pansion of \/ZR|;. gives (Vk)uwps = $Ilpo and
V& {aR,L,,,, R, + BR,R* + cR?}|; leads to
s 1

T Tha
(@7 Mypg‘ T pvpo- 1 ne term

pU

VP apur (Mg Ve ) 550 VE” (37)

does not give any contribution to the one-loop effective

I3
action because of the iree level veriex Vq" - ucpcm»

on tree-level coefficients. There are two more @ (k%)
coniributions, namely

i’R Haﬂ;w (Agr _LR )1175p0' LR
b+ Sa —
( a C) V2

(38)

A -
——fi{(b+4a)(VR)p,V§ —

V,? ﬂnaﬁw (Agr‘—/qﬂwa ) Hyﬁpavlg ’
A

'e
—E 2 (b+4a) (Vr) peVE7 —

These two exchange graphs cancel against each other.
Adding up the exchange graphs with one blob at the
three point vertex and the contact term, we get

(AgQ) + LAV P ) Mapoo VE”
{ . hY
= Agrig(—fEl + (282 + uZ)EZ)J\ (40)

= Agr 1 loop ( 41)

8
The only one-loop coefficient that survives the field
theory subtractions is, as in the tree-level case, a, the

coefficient of /gR,,, " R*"

cancel against each other. Therefore, at the genus-one
level, as in the genus-zero case, the coefficients b and ¢
are not determined. They remain completely ambigu-
ous. Thus, for example, the topological Gauss-Bonnet
(GB) term, which has b = —4q and ¢ = a, and the
Cpupw” CH#” , term, with b = —2a and ¢ = —1, produce
the same kinematic expression in the strma § matrix.
Thus we learn that on-shell string amplitudes can
only fix the coefficient of |/gR, ;" R**”, as an un-
ambiguous coefficient, whereas the coefficients of
\/_ R,R* and ,/gR? are completely ambiguous.
lﬂCy bdﬂbﬁ‘«l when LUHblUCI'll'lg DOLH contact dIl(.l X~
change graphs and the situation for the genus-1 case
is exactly the same as for the genus-0 case. We expect
this situation to continue at any higher genus as well.
We conclude that one could use any one of a continu-
ously infinite set of curvature squared terms, indexed
by arbitrary coefficients b and c, in the string effec-

fiva artinn hecanca tha ctring § matriv wanld cea na
1ive aCiiln, o0CCaust Uil Saing o mMauix wolil 58€ no

difference between them. This means that field redef-
initions are a symmetry of the perturbative string S
matrix. This is precisely the content of the equivalence
theorem [18-21], which claims that, for example, re-
defining the metric g, = gup + C1 Ry + C284, R will
change the coefficients b and ¢ of the effective La-
grangian £ so that 8a = 0, 8b = ¢y and 8¢ = —% — 3,
but does not change the § matrix; that is S = S. Our
results explicitly verify previous results on field re-
definitions. We also show exactly how this ambiguity

A1l athar saafficionta
« a1 Uuill CUCHIICICHIIW
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arises within individual genus-zero and genus-one
amplitudes.

It is important to emphasize that an effective ac-
tion with only a GB term, for example, is physi-
cally different from an effective action involving R?
or Cyp,” C#?” ;. In the pure GB case, the theory repre-

sents nn]v a cp1n-’) oraviton whereas the P2 case has, in

B UL

addition to the spin-2 graviton, an additional ghost-free
scalar degree of freedom. Similarly, a C,,, 7 C*”,
term in the effective action would add a symmetric
tensor of ghost-like fields to the spectrum. These ef-
fective actions are physically inequivalent, and it is
not possible to change one into the other by a field re-
definition or any other means. It is therefore of impor-
tance to know the complete higher-derivative structure
of the superstring effective action. Unfortunately, the
results of this paper show that it is not possible to de-
termine this structure by computing on-shell, S-matrix
btfliig amputuues Such COi‘ﬁpuLauOi‘lS can Zu'waya be
reproduced by an infinite number of effective actions
indexed by coefficients & and ¢, and this ambiguity
can never be resolved in this manner. This does not
mean, however, that one can use field redefinitions to
choose some convenient higher-derivative action, such
as pure GB. It simply means that one would have to

narfarm eoma Find af aff_chall ciinarctring palpnlatinn
PLIOLN SO0 Ki1iG U1 O11-506C0 SUPCIsUing CarCiialion,

such as in string field theory, to exactly determine the
structure of the higher-derivative gravitational terms.

4. Gravitational threshold corrections for
symmetric orbifolds

Moduli-dependent threshold corrections have been
discussed in [1,2,6], by calculating a CP odd ampli-
tude. Since we are interested in the kinematic structure
of the CP even part of the effective action correspond-
ing to moduli dependent gravitational corrections, we
now want to calculate the CP even string amplitude
inclhiding four graviton vertex operators and one mod-

ulus vertex

Vi(2,2) = 0ydX! (3X7 + ik -y’ )R X 1 (42)

i

where pv;; = 9-(G:; + R:;). G;; is the metric and

where vy = dr(Gry + Byy), Gy 1s the metric and

By; the antisymmetric tensor of the six dimensional
internal compact manifold. The five-point amplitude
is

4
(H‘@<°>(z,»,zi>v;°’<zS,zs)>
\ =1 /

Py -..1.1ogp f 2 I PR
A = 1K / d*rBY (1, 7) (44)

1
x Z(‘)W;_— Zindr Z¢Gz(7)- (45)

It is only the N = 2 sector that gives a non-vanishing
contribution to Bf, because in this sector the zero
modes of X! can be saturated.

if we write b“ (1, ) = {c X1ox’ )bg,(r, 7) we
have a similar express1on to the threshold corrections
to gauge couplings [6]. Therefore, we can express B,,

wpv VOLVPANE 2LV, © AL SAPIYSS Dgr

in factorized from as Bg, Ziorus (T, T)Cqr (7)), Where
Zioras = 3 p1, prcTss gPL/2GPx/? is the partition function

of the zero modes of X! and Ty is an even self-dual
Lorentzian lattice. The coupling appearing in the five-

point amplitude is thus

Orfgr = i / 27

if we apply d; on boih sides of this equation and use
the fact that [1]

aTZtorus gr(”') (46)

aTaTZtorus aTaT(TZZtorus) 47)

(T + T) 2
we can perform the 7 integral which becomes a con-
tour integral around the fundamental region. The only
non-vanishing contribution comes from the 7, — oo
region, because of the modular invariance of the inte-

orand Thre wr e t dirantly tha ragn T+
granda. iagus wo sut uuvuuy I.ll\/ resuit

Bl = D (48)
¥ o m(T+71)2

where by = lim,,_, o By, is the trace anomaly for the

N = 2 sector. Integrating the last expression yields
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to the gravitational coupling of the curvature squared
terms

8T D) =~ In(ln (DT + 1)) (49)

If we now use the results of the last section, we

Tronmexr thhne th o saand Animnmdamt thoad PSP

KitOW uidl tne lllUUull UCPUIIUCHI. uucouxud uuucuuuﬁ
Ag is the coefficient of ,/gR,,,7 R“#” ;. There could
also be R, R* or R? terms whose coefficients are
ambiguous and cannot be determined by string ampli-
tude calculations. Therefore, this part of the one-loop
string effective Lagrangian is given by
L= /g0g(Rup” R s + bR, R* + cR?)  (50)
1 yirg 1 7 N 7
As discussed above, it would require some sort of off-
shell superstring calculation to fix the b and ¢ coeffi-
cients uniquely. Expression (50) is the best that one
can comnute using on-shell qtrma amnlitudes.
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