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Abstract 

We explicitly extract the structure of higher-derivative curvature-squared terms at genus 0 and 1 in the d = 4 heterotic 
string effective action compactified on symmetric orbifolds by computing on-shell S-matrix superstring amplitudes. In 
particular, this is done within the context of calculating the graviton 4-point amplitude. We also discuss the moduli- 
dependent gravitational threshold corrections to the coupling associated with the CP even quadratic curvature terms. 

1. Introduction 

It is a well known fact that perturbative string the- 
ory contains the pure Einstein-Hilbert action. A pri- 

ori, there is no reason why higher-derivative gravita- 
tional terms could not also be present in the action of 
strings and superstrings. Recently, it has been shown 
that higher-derivative supergravity terms can provide a 
new mechanism for supersymmetry breaking in d = 2 
and d = 4 supergravity models [ 31 and, hence, such 
terms could be fundamentally important. An attempt 
to determine this question was made within the con- 
text of superstring compactilications on 2~ symmet- 
ric orbifolds in [ 41. It was demonstrated, using light 
field one-loop radiative corrections to the string effec- 
tive Lagrangian, that higher-derivative supergravita- 
tional terms can arise in string theory and, importantly, 
that they need not be in the topological Gauss-Bonnet 
combination. However, this discussion was not con- 
clusive since the radiative contributions of the infinite 
tower of massive states was not included in the calcu- 
lation. It is possible, although it was argued that it was 
unlikely, that these massive contributions would can- 

ccl the higher-derivative terms generated by the light 

fields. It seems clear that the only way to resolve this 
issue is to do complete genus-O and genus-l super- 
string amplitude calculations, since such calculations 
include both massless and massive states. One would 
then attempt to construct the string action associated 
with these amplitudes. In this way one could explore 
the interesting question of whether or not string the- 
ory can completely fix the curvature squared terms in 
its action, at least to the genus-l level. The answer to 
this problem is the subject of this paper. 

2. String S-matrix 

The perturbative S-matrix approach consists of find- 
ing a local gauge-invariant effective Lagrangian fZ 
whose associated S-matrix elements coincide with the 
string S-matrix. More precisely this means that the ef- 
fective action, which is a power series in the external 
momenta k2a! and the string coupling constant g,, re- 
produces the kinematic structure of the string ampli- 
tudes. 
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We start by giving the most general ansatz for the 
bosonic part of the CP even gravitational Lagrangian 

+ bR,, RF” i- cR2 (1) 

where K is the four dimensional gravitational coupling 
constant. In the following we set 2~~ = 1 and reintro- 
duce it later for special purposes. We are not consid- 
ering the CP-odd part of the gravitational action here, 
which is given by a topological invariant, the first Pon- 
trjagin class in four dimensions. The aim is to try to 
fix the unknown coefficients a, b and c by calculating 
string amplitudes. 

In order to find the appropriate n-point string am- 
plitudes, we expand the above Lagrangian around the 
flat background metric g,, = qpV + h,,. The inverse 
metric is then given by a power series expansion gfi” = 
vpV - h’” + ( h2)p” - . . . and hpV = $?,?‘“h,,. Fur- 
thermore, in order to correspond to the on-shell fluc- 
tuations described by the string graviton-vertex oper- 

ator, we demand that h,, satisfies the harmonic gauge 
conditions for a massless spin 2 field, namely Oh,, = 
0, dfihp,, = 0 and the tracelessness condition h = 0. 
Expanding the curvature terms in Eq. ( 1) in terms of 
h, the first non-vanishing contributions arise at the 3- 
point level [ 71. These are 

&RI,,3 = h,,(h,&’ h) + 2hpvta hvp,” h,, 

--+ (k&2)(A3) +2(k&3&z) 

+ cyclic perm . 

,&RppyuRppY& = h,,, PAhpcrhaA, pv 

(2) 

-+ (k1e3kl) (k3e2dk3) + cyclic perm. (3) 

where the notation (h,p” h) = (&‘#‘h,,) hP5 has 
been used. We have also introduced the transformation 
to the momentum space, replacing ia -+ k, and re- 

placed h,, -+ l pu, where eCLy is the graviton polariza- 
tion tensor. Note that this polarization tensor satisfies 
the same differential and tracelessness conditions as 
h,,. Unfortunately, the kinematic structure of RGy RfiY 
and R2 are such that they must vanish when expanded 
in h,, to the 3-point level. That is 

&iRpvRp“Ih3 = ,&R21h3 = 0 (4) 

Therefore, a 3-point string amplitude with three on- 
shell external gravitational vertex operators can pro- 
duce only the first two terms of the effective La- 
grangian ,!Z. The other two terms may exist in the effec- 

tive Lagrangian, but this cannot be determined at the 
3-point level. Fortunately, at the level of 4-point am- 
plitudes (and higher), the Ricci squared and curvature 
scalar squared terms no longer vanish. That is, at the 
level of 4-point amplitudes dRpv Rp” 1 p and &R” 1 hd 
are non-zero. In the expansion up to order h4 of the 

curvature squared terms, it is sufficient for our pur- 
poses to isolate only certain terms, which are particu- 
lar combinations of the polarization tensors, namely 

(5) 

&R/w RpV l/,4 = is2E2 + (y+:s2)4C.. . (6) 

fiR21h4 = &s2E1 + . . . (7) 

where s = -2kI . k2, t = 2kl . k3 and u = -2kl . k4 
are the Mandelstam variables and we introduce El = 
(ElE2) (~3~4) and E2 = (et@E&), Using the matrix 
notation (~1~2) = 61~~~2~~. 

At tree level, both the 3- and 4-point graviton am- 
plitudes for the heterotic string in d = 4 have al- 
ready been studied in, e.g. [7,12,17,8]. The 0(k2) 
part of the 3-point tree level amplitude corresponds to 

the curvature scalar R and, therefore, reproduces the 
Einstein-Hilbert action. Additionally, it gives the re- 

lation 2~~ = g$’ between the gravitational and string 
coupling constants. The 0(k4) terms in the 3-point 
amplitudes can only give rise to one of the curvature 
squared terms, as discussed above, so we won’t dis- 
cuss them here. All three curvature squared terms arise 
at order O( k4) in the four-graviton amplitude. If we 
again restrict ourselves to only the terms involving the 
particular polarization combinations El and E2, the 
O( k4> contribution of the Q-point amplitude is found 
to be 

&;=3&{ ( +‘+r2)E, +u2E2} 

= 3gfK4” (8) 



514 K. Fijrger et al./Physics Letters B 388 11996) 512-520 

Comparing this amplitude with the effective La- 
grangian C, one realizes that there is no combination 
of curvature squared terms (5)) (6) and (7) that 
reproduces the kinematic structure of dtr. This fact 
is not surprising since string amplitudes include 1PR 
exchange graphs with massless poles as well as 1PI 
graphs. It follows that one has to perform the appro- 
priate field theory subtractions in order to relate the 
string result to the effective action. This will be done 

for the tree and the l-loop amplitudes in the next 

section. 
Proceeding in a similar fashion to the genus-zero 

case, we now go to the one-loop level and calculate 
both the 3- and 4-point graviton amplitudes on a world- 

sheet torus for the heterotic string in d = 4 with a 
given vacuum. The general expression for the CP even 
n-point amplitude is [ 13,151 

(9) 

where s = (~1, ~2) characterizes the spin structures, 

which take the values 0 and 1 for the NS and R sectors, 
respectively. The integration region for the modulus 
of the torus r = rt + i72 is the fundamental region 
l? = {r] ]rt] 5 i, 171 2 l}.Thefactor (-)s1+s2 comes 
from the fermionic partition function 2, in the light 
cone gauge by demanding that the sum over the spin 
structures of 29 is modular invariant. 2 (7, ?, s) is the 
partition function in light cone gauge for the heterotic 

string, given by 

Z(r,?,s) =Tr((-)SFqH-i$-l) 

= Z* ZX ZXo Zint (10) 

where F is the fermion number and 4 = ezair. Zx, = 
l/2 (2~) “7: is the contribution from the bosonic zero 
modes, ZX = h is the bosonic partition function 

where the Dedekind 7 function is defined as ~(7) = 

4”24rI:_1(l -s”), and the partition function for one 
complex fermion in the light cone gauge is Z$ = 

‘;:y;‘) where 6, are the Riemann theta functions for 
LY = 2, 3, 4 corresponding to the spin structures (st, 

~2) = ( 1, 0), (0,O) , (0, 1) respectively. The term Zt”t 
is the partition function for the six-dimensional inter- 

nal compact manifold. The super-ghost charges in the 
CP even part of the string amplitude have to add up 
to zero. Therefore, the vertex operators are taken to 
be in the zero ghost picture V(O). In this picture, the 
graviton vertex operator looks like 

V’O’(z 2) rz. 
g ’ 

. ~,,~X~(dXv+ik~~~v)eik’X : (11) 

Here Xp are the free world-sheet bosons and t,V the 

left-moving supersymmetric partners. 
Let us start by calculating the O( k2) piece of the 

3-point graviton amplitude, which is associated to 
the R term. We expand the three-point correlation 

function of three-graviton vertex operators in the zero 
ghost picture using Wick contractions. By supersym- 
metry, terms that are independent of the spin structure 
give zero after summing over spin structures. Con- 
tractions of the exponential eik.x give (: nj eiki”i :) 

= nicj IXij]‘/2k~kj where we have set (Y’ = $ and 

Xij E x( zjj, 7) = 2~e-T(rmZij)2/ImTZ 
&(zij,7) I I fi: to,71 

(12) 

which is related to the bosonic Green function on the 
torus by G$ = -$ In 1~~1~. To get the whole kinematic 
structure of &jR as in expression (Z), one also has 
to take into account contributions coming from the 
0( k4) terms by a “pinched off” integration [ 13-151. 
These terms arise in the limiting case zij -+ 0, for 

which we get 

IXij12 + IZij12, 

aG;d --, 1 1 

4&j 
aG;. -+ -- 

4Zij 
(13) 

The world-sheet integral over the region lzijl < E then 
yields a pole in ki . ki, after analytic continuation: 

J dzzij lzf;~“;: N ?? _ 

IZijl<E 

lJ 16ki. kj (14) 

where we assumed that $1 ki . kjl < 1 &I. After per- 
forming one world-sheet integration we get the fol- 
lowing 0( k2) expression: 
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3 

In d*zi(Vg(“)(Zi,Zi))IO(r) 

i=l 

-I J - d*zl d2z2(G;3)2g2Gf2 

x [ (k&Z) (E%3> + 2( k3E2E3E1k*>] 

+ cyclic perm . 

where GE = GF(zij) and 

(15) 

,7Y:(oJ)&Y(z*d 
GF(z) = %Ya(0,r)8.1(z,7) 

is the fermionic Green function on the torus. If we use 
the fact that ( GF)* can be expressed as 

(GF(z))* = &(-8*lnfi1(z,7) 

+45-i&lnr](7) -e,) (16) 

where ecu = -4~3, In Z,, we can replace ( GF)* by 
the spin dependent part ( - 3) because the other terms 
of ( GF) * will yield a zero result for the amplitude after 
summing over even spin structures. Therefore, there 

remains only one world-sheet integral to be done. But 
since 

(17) 

we find that the one-loop coupling in front of &R 
vanishes. This means that there is no renormalization 
of Newton’s constant for heterotic strings in d = 4, a 
fact which was also noted in [ 1 ] and [ 161, whereas 
for type II strings in d = 4 it does get renormalized 
at one-loop string level, because the fermionic zero 
modes can be saturated by contracting left- and right- 
moving fermions [ 161. 

We now turn to the curvature squared terms and 
calculate the 0( k4) terms of the one-loop 4-graviton 
amplitude for a d = 4 heterotic string. By doing so, we 
hope to determine whether or not the coefficients of 
the curvature squared terms of the one-loop effective 
action can be uniquely fixed. The four-graviton vertex 
correlation function is 

( fi v,(0)(zi, i;)> = n Ixjj11/2k:.kj 
i=l i<j 

x (X(ke,z) +Y(k,e,z) +Z(k,E,z)) (18) 

where X(k, E, z), Y(k, E, z) and Z(k, E, z) are 
polynomials of k, E and bosonic- and fermionic Green 
functions, including a 4-, 6- and 8-fermion correlation 
function, respectively. 

If we concentrate on 0( k4) contributions, we also 
have to expand the contractions of the exponential 

i<j i<j 

(19) 

which is valid only if ]zijl > E because of the singu- 
larity of GB at the origin. For zij -+ 0 one has to use 
the pinched off integration. 

Performing the world-sheet integrals one real- 
izes that many of the integrals give a zero re- 
sult because of ( 17). Further, integrals such as 
s d2z1@GF2cs(2Kz12)cs(2Kz13) also vanish as a re- 
sult of the (quasi) periodicity of the Jacobi elliptic 
function cs(2Kz), where K = ~8~(0, T) and which 
is defined as 

cs(2Kz) = 
~2(&~)~44(%~) 

791(2,7)~3(0~7)’ 

So cs (2Kz ) is related to the fermionic Green function 
for cy = 2. Finally, we find that the Er and E2 dependent 
part of the one-loop string amplitude is 

even 
*4&z 

3 4K1-loop 
= -z& 4g c C--j 

$1 +n 

s even J 
X d*zi(G&)*~*(JG!&)* (20) 

where v = $ and K;p = [-s2E1+(2~*+u2)E2]. 
The remaining world-sheet integral is given by the 
following result 

J d2z(JGB(z))2 = -7&111(~2?j*) 

(21) 

where we used the heat equation and periodicity of 
61 (z, r), and the Eisenstein function of weight 2, 
G2 (7) = G2 (7) - %. Thus we get for the amplitude 
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s even 

(22) 

Note that Kip # cr. Thus either the one-loop 

corrections to the effective action are not proportional 
to the tree-level effective action, or the one-loop string 

amplitude contains different field theory subtractions. 
The G- integral can be performed after fixing the 

internal sector, as, for example, a symmetric orbifold. 
This will be done after the field theory subtraction. 

3. Field theory comparison 

In the previous section, we computed 4-point string 
amplitudes and obtained particular kinematic struc- 
tures for the O( k4) parts. As we already mentioned, 

no combination of curvature squared terms that are 
expanded to the order h4 can reproduce either cr or 

K1-loop. The way to proceed is to take the Lagrangian 
in47 1) , calculate all possible field theory contact and 
exchange graphs that contribute to c3( k4), and sub- 
tract them from the string amplitude expression to get 
the 1PI effective action. 

To do this we introduce h,, as an off-shell graviton 
field. That is, unlike h,, which is constrained to satisfy 

the equation of motion, h,, is an arbitrary fluctuation. 
We determine the vertices for two on-shell and one off- 
shell field. Expanding the scalar curvature JsRlh2h = 

~,,VR we get the vertex 

V, = ;vpv(h,Ph,P) - ;(h,ph,‘) - ;(h h,llv) 

-$hpCL”,ph”,,P+... (23) 

For the moment we are only interested in terms hav- 
ing the form (h,p h,” ), ( hrfiLY h), hpCL”,p hYa,P and 
(h,, h,” ) because in exchange graphs it will be these 
terms that contribute to those kinematic terms depend- 
ing on El and E2, which we picked out for the compar- 
ison with the 4-graviton string amplitude. The vertex 
for Rppvu RppYc can be obtained by taking 

&&Lpy”RCLPY &Z& = &vvg gpVlr)z 9 

the vertex for R,,RflLY by 

&jRFLYRpvIh2h = il WV pLv (R,,)2 

and the R2 vertex by 

Ifpv (R,,,,)2 = zrl L p’(h,Pa h+r) - 5(hpLa,pcrhPol,pu) 

- (hrpvPh,P) +... (24) 

V”” (RF&2 = (hvpp kYP) + &(h! h,pvp) 

- ( hpCLa,pc h”mPu ) + . . . (25) 

V”” -3(h,.C”Ph,vp) +3(h,Ph,pLyp) CR*) - 
- 3$‘LP(h,ap h,ap > + . . . (26) 

Having defined the vertices, we now introduce the 
internal propagator for the exchange graphs. Expand- 
ing (1) to quadratic order and inverting the kernel, 
one finds the following propagator: 

C 
p(2) 

D /wp(+ = - 
WPfl 

k2(1 +k”(b+4a)) 

p$/xr - 
2k2(1+2k2(-3a-b-3~)) > 

(27) 

where P$$ and P,$,a are transverse projectors for 

spin-2 and spin-O, respectively 

PC2) WPU 
= ge,,e,, + 8,,8,) - Pi;;, (33) 

pw 
WPU = &d,, (29) 

where 8,, = TV,, - wcly and We,, = 9. We expand 
the propagator for small momenta and get Dp,,p(T = 

n pvpCr + fipvpCn where the first term is the usual gravi- 

ton propagator 

II 
1 

pvpa = -g 
( 

p(2) 
WP’T 

_ $pi;;a 

> 

(30) 

and the second terms is a correction to the graviton 
propagator: 

Ii PL”pg = (b+4a)P~;;,+(a+b+3c)P$;,. (31) 

We can now calculate the field theory exchange 
graphs using II and I? as internal propagators. The 
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h h h 

h 

Fig. 1. Tree-level contact graph: Q. 

s’ 
h 

hfih 

fig. 2. Tree-level exchange graph: V$IVR and V~flv~. 

four-graviton tree-level amplitude is reported by a tree- 
level contact graph (Fig. 1) and tree-level exchange 
graphs (Fig. 2). 

The fourth-order contribution to the tree level con- 
tact term is given by 

Q = ~{aRppyaRPPv, + bR,,Rpv + cR2)lp 

(32) 

The exchange graph gives rise to two terms of the 
order 0 ( k4). The first one contains the corrected prop- 
agator fi, giving, isolating the El and E2 terms, 

VPPfi R pvep V-’ = s2 E, 
( ) 

b+4a 
+t2E, I6 

b+4a 
+ s2E2- 4 +... (33) 

and the second exchange diagram has the usual gravi- 
ton propagator as the internal propagator 

tf2EI(-f--$)+s2Ez(-:a--$)+... 

(34) 

where VP” = aVl”” &Lpw)* + b?X.) 2 + cVC& is the ver- 

tex for the quadratic curvature terms. If we add up ev- 

fig. 3. I-loop-level contact graph: (AgrQ). 

erything, retaining only the El and E2 terms, we get 
the following result, 

= ;{ (&s2+t2)4 +u’EI) = ;Ktr (35) 

This result tells us that tree-level string amplitudes are 
reproduced by the Riemann squared term only and that 

the coefficients b and c, which are associated with the 
Ricci squared and the scalar curvature squared term 
respectively, do not appear. They cancel during the 
summation over contact and exchange diagrams. It 
follows that the on-shell string amplitudes do not fix 
a particular combination of curvature squared terms. 

Before discussing the consequences of this result, 
let us consider the situation for the genus-one case. 
Similar to tree level, there is also one contact term 
(Fig. 3), which gives (AsrQ), where 

A c (_)sl+s2 d2r ’ 

s even 
J 72 lr1(~)14 

x .74",&.@2-2<~> (36) 

is replacing the blob representing one-loop 1PI pro- 
cesses. 

There is no wavefunction renormalization of on- 
shell external legs, because we have ,&Rlh71 = 0, 
JgRppVwRfiPVvIh~ = 0 and the same is true for the 
Ricci squared and the scalar curvature squared term. 
Hence, Fig. 4 does not contribute to the curvature 
squared term in the effective action. 

Furthermore, we have one contribution from Fig. 5 
which is given by (AsrVr)IIlcL,,p~P, where the fac- 

tor i reflects the fact that there is no renormalization 

of Newton’s constant and vt” stands for the one-loop 
curvature squared term with one-loop coefficients, a, 
bandc. 
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Fig. 4. Wavefunction renormalization of external legs. 

c 
h 

M 
h 

5 

h 

Fig. 5. Contribution from: (Agr&)IIV~. 

h h 

Fig. 6. Contributions from: V,II(A,&)lIl$ and V~ll(Ag&)fiV~ 

and VRU(A,,~~)IIVR. 

Finally there are three terms of the order 13( k4) 
coming from a diagram with an internal blob like 
Fig. 6. Before giving the explicit expression of these 
terms, we compute the kinematic expression for the 
field theory two-point function with two external 
off shell legs z for various curvature terms. The ex- 
pansion of ,,@?1712 gives (VR)PyP, = $fIPVpo. and 

&(aR+PVaRPpv~ + bR,,Rfi’ + cR2)IXz leads to 

(G),,@ = $fipVPg. The term 

WIT 4 cvp,w (A&‘? &~~crV;~ (37) 

does not give any contribution to the one-loop effective 
action because of the tree level vertex V ;p depends 

on tree-level coefficients. There are two more 6( k4) 
contributions, namely 

These two exchange graphs cancel against each other. 
Adding up the exchange graphs with one blob at the 
three point vertex and the contact term, we get 

C&Q> + &$%LppcJ~” 

+ (2sZ+z42)E2) (40) 

(41) 

The only one-loop coefficient that survives the field 
theory subtractions is, as in the tree-level case, a, the 
coefficient of fiR~pLpruRfi~P~. All other coefficients 
cancel against each other. Therefore, at the genus-one 
level, as in the genus-zero case, the coefficients b and c 
are not determined. They remain completely ambigu- 
ous. Thus, for example, the topological Gauss-Bonnet 
(GB) term, which has b = -4a and c = a, and the 
C PPV(TCpp“g term, with b = -2a and c = - 3, produce 
the same kinematic expression in the string S matrix. 

Thus we learn that on-shell string amplitudes can 
only fix the coefficient of l/gRpppvR~f”‘g as an un- 

ambiguous coefficient, whereas the coefficients of 
,&RpVRp” and &R2 are completely ambiguous. 
They cancel when considering both contact and ex- 
change graphs and the situation for the genus-l case 
is exactly the same as for the genus-0 case. We expect 
this situation to continue at any higher genus as well. 
We conclude that one could use any one of a continu- 
ously infinite set of curvature squared terms, indexed 
by arbitrary coefficients b and c, in the string effec- 
tive action, because the string S matrix would see no 

difference between them. This means that field redef- 
initions are a symmetry of the perturbative string S 
matrix. This is precisely the content of the equivalence 
theorem [ 18-211, which claims that, for example, re- 
defining the metric gPy = g,, + cl R,, + cTg,,R will 
change the coefficients b and c of the effective La- 
grangian L so that 6a = 0,6b = cl and SC = - 4 - ~2, 

but does not change the S matrix; that is S = 3. Our 
results explicitly verify previous results on field re- 
definitions. We also show exactly how this ambiguity 
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arises within individual genus-zero and genus-one 
amplitudes. 

It is important to emphasize that an effective ac- 

tion with only a GB term, for example, is physi- 
cally different from an effective action involving R2 
or CPpVaCpPVfl. In the pure GB case, the theory repre- 
sents only a spin-2 graviton whereas the R2 case has, in 
addition to the spin-2 graviton, an additional ghost-free 
scalar degree of freedom. Similarly, a CPprffCPPYa 
term in the effective action would add a symmetric 
tensor of ghost-like fields to the spectrum. These ef- 
fective actions are physically inequivalent, and it is 
not possible to change one into the other by a field re- 
definition or any other means. It is therefore of impor- 
tance to know the complete higher-derivative structure 

of the superstring effective action. Unfortunately, the 
results of this paper show that it is not possible to de- 
termine this structure by computing on-shell, s-matrix 
string amplitudes. Such computations can always be 
reproduced by an infinite number of effective actions 

indexed by coefficients b and c, and this ambiguity 
can never be resolved in this manner. This does not 
mean, however, that one can use field redefinitions to 
choose some convenient higher-derivative action, such 
as pure GB. It simply means that one would have to 
perform some kind of off-shell superstring calculation, 
such as in string field theory, to exactly determine the 
structure of the higher-derivative gravitational terms. 

( 
4 

l-I 
VgO’(Zi,t)VT”(ZS,~~) 

i=l > 

= u,(dX9XJ) 
( 

fi V,‘O’(Zi, 5) 
i=l > 

519 

4. Gravitational threshold corrections for 
symmetric orbifolds 

Moduli-dependent threshold corrections have been 
discussed in [ 1,2,6], by calculating a CP odd ampli- 
tude. Since we are interested in the kinematic structure 
of the CP even part of the effective action correspond- 
ing to moduli dependent gravitational corrections, we 
now want to calculate the CP even string amplitude 
including four graviton vertex operators and one mod- 
ulus vertex 

VT(“(z 7 2) = : ulp3X’(JXJ +ik.@,!~~)e~~‘~ : (42) 

where VIJ = &( GIJ + BIJ), GIJ is the metric and 
BIJ the antisymmetric tensor of the six dimensional 
internal compact manifold. The five-point amplitude 
is 

which can be computed to give the result 

62 
A%+ - 164 

1 -loop 
- --uI.IK~~ 

s 
d2TZ3;( 7, ?) 

(43) 

(44) 

where 

It is only the N = 2 sector that gives a non-vanishing 

contribution to t3s,, I’ because in this sector the zero 

modes of X2 can be saturated. 
If we write Bz(7, a) = (JXrdXJ)E3st3gr(7, F) we 

have a similar expression to the threshold corrections 
to gauge couplings [ 61. Therefore, we can express &23,, 
in factorized from as &,, = &,,,, (7, F) C,,( a), where 

Z torus = &LJ%ETz,n 4 Pt/2@‘i/2 is the partition function 

of the zero modes of X’ and r2,2 is an even self-dual 
Lorentzian lattice. The coupling appearing in the five- 

point amplitude is thus 

(46) 

If we apply + on both sides of this equation and use 

the fact that [ 11 

(47) 

we can perform the 7 integral which becomes a con- 
tour integral around the fundamental region. The only 
non-vanishing contribution comes from the 5-2 --+ co 
region, because of the modular invariance of the inte- 
grand. Thus we get directly the result 

aFarA,, = 
b gr 

&(T + T)2 

where b,, = lim,*_,, E&r is the trace anomaly for the 
N = 2 sector. Integrating the last expression yields 
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to the gravitational coupling of the curvature squared 
terms 

A,,(T,i;) = -$In(jo(iT)14(T+ i;)) (49) 

If we now use the results of the last section, we 
know that the moduli dependent threshold correction 
Agr is the coefficient of ~R~pyuR~~P~. There could 
also be R,,Rp” or R2 terms whose coefficients are 
ambiguous and cannot be determined by string ampli- 
tude calculations. Therefore, this part of the one-loop 
string effective Lagrangian is given by 

L: = &A,,( Rp”pV=RWy~ + bR,, Rp” + cR2) (50) 

As discussed above, it would require some sort of off- 
shell superstring calculation to fix the b and c coeffi- 
cients uniquely. Expression (50) is the best that one 
can compute using on-shell string amplitudes. 
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