
Class. Quantum Grav.13 (1996) 2811–2816. Printed in the UK

Vacuum spacetimes with toroidal null infinities
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Abstract. It is shown that some known solutions of Einstein’s vacuum field equations admit
null infinities such that the sections of the null hypersurface at infinity are toroidal.
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1. Introduction

The conformal field equations developed by Friedrich [1] seem to be an ideal tool to
perform numerical calculations of an asymptotically flat spacetime on a finite grid. This
was sucessfully tested by Hübner [2] for the case of the spherical collapse of a scalar field.
The next step is to do a(2+ 1)-dimensional calculation, for example an axisymmetric one.
For this purpose one needs initial data to begin the evolution, and exact solutions to check
the code. Due to the well known difficulties at spacelike infinity, one presently has to use
Cauchy hypersurfaces which intersect future null infinity scri+. Such Cauchy surfaces are
called hyperboloidal. In the special case where the second fundamental form is proportional
to the metric of the initial hypersurface, the momentum constraint just demands that the
mean curvature is constant. The Hamiltonian constraint can be formulated as a semilinear
elliptic equation. Such data are analogous to time symmetric data in the usual formulation
of the Cauchy problem.

In [3], such initial data are constructed which have an evolution admitting smooth null
infinity [4]. The basic result is as follows. Choose any smooth Riemannian metrich on
some orientable, compact 3-manifoldM = M̃ ∪ ∂M with boundary and a functionρ which
defines the boundary byρ = 0, dρ 6= 0. Suppose that the trace-free part of the second
fundamental form of the boundary of̃M vanishes. Then there exists a unique solutionu of
the Hamiltonian constraint (R is the Ricci scalar ofu4ρ−2h)

R(u4ρ−2h) = −6, (1.1)

which has a smooth extension to the boundary ofM̃ and (M̃, g̃ = u4ρ−2h, χ̃ = constant̃g)
is a solution of the constraints in spacetime.

Let me consider some examples:
(1) SupposeM is the closed unit ball inR3 with its standard metric. Since the solutionu

is unique the initial data must be spherically symmetric and turn out to describe a hyperboloid
in Minkowski space.
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(2) M = S2 × [−1, 1] with its standard metric. Again the initial data are spherically
symmetric. This case defines a hypersurface in the Kruskal spacetime intersecting both
future null infinities.

(3) M = S1 × S1 × [−1, 1]. The solution evolving from this initial data set must have
two null infinities with toroidal sections. The initial data admit two commuting Killing
vectors. One can show in addition that there is a local group of isotropies. The generalized
Birkhoff theorem tells us that these data must evolve into a part of the analogue of the
Schwarzschild solution with planar symmetry. This is the solution A3 in the classification
of Ehlers and Kundt [5], which had already been found by Levi-Civita in 1916. This solution
was independently rediscovered several times and appears also as a Kasner solution or a
Robinson–Trautman solution. It is a ‘cosmological solution’ admitting null infinity.

This reasoning tells us that there is a well known solution which can be used to check
the code for the conformal field equations. Particularly nice is that the Killing vectors have
no fixed points. So there are no axis problems and one can fully concentrate on the study
of the radiation at infinity.

The possibility of toroidal null infinity was first mentioned by Newman and Unti in
[12]. The asymptotic symmetry groups of null infinities with non-spherical sections were
investigated by Foster [13]. As far as I am aware, explicit examples are given the first time
in this paper.

The plan of the paper is as follows. In section 2, I calculate null infinities for the A3
solution. Section 3 contains generalizations and describes solutions with just two commuting
Killing vectors admitting null infinities with toroidal sections. It is amusing that there is
still another class of such spacetimes with a global structure different from cylindrical or
boost-rotational symmetry.

2. Null infinity of A3

The analogue of the Schwarzschild metric with planar symmetry is the metric A3 in the
classification of Ehlers and Kundt:

g = − 1

R
dT 2 + R dR2 + R2(dx2 + dy2). (2.1)

It is defined for all realx, y, T and R 6= 0. The isometry group is four dimensional.
For R > 0 the metric is static and forR < 0 we have an Abelian three-parameter group
of isometries, hence a Kasner solution. The obvious coordinate transformation reveals
(− 1

3, 2
3, 2

3) for the Kasner exponents.R = 0 is a curvature singularity becauseR−3 is an
eigenvalue of the Weyl tensor.

T

R

Figure 1.
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Figure 1 shows the structure of the null cones in theR–T plane. (Black indicates
the timelike directions.) In these coordinates the null lines are the parabolasT =
± 1

2R2 + constant. We expect null infinity in the directions of the null lines to infinity.
Hence, only for the caseR < 0 we have the possibility to connect two scris by a spacelike
hypersurface.

To demonstrate the existence of a conformal infinity we introduce a null coordinateu

by the transformations

T = 1
2R2 + u; dT = R dR + du. (2.2)

The metric becomes

g = −2 dR du − 1

R
du2 + R2(dx2 + dy2). (2.3)

In the coordinate

R̄ = 1

R
(2.4)

the metric is

g = 2 dR̄

R̄2
du − R̄ du2 + 1

R̄2
(dx2 + dy2). (2.5)

Rescaling with a conformal factor� = R̄ one obtains the metric

ḡ = �2g = 2 dR̄ du − R̄3 du2 + (dx2 + dy2) (2.6)

which obviously allows a regular extension through the null hypersurfaceR̄ = 0. The
conformal extension is possible in both cases,R̄ < 0, R̄ > 0.

It is also instructive to consider the conformal extensions in double null coordinates.
Using a second null coordinatev,

T = − 1
2R2 + v, dT = −R dR + dv, R2 = v − u, (2.7)

we obtain

g = − du dv

±√|v − u| + (v − u)(dx2 + dy2). (2.8)

The two signs correspond to the casesR̄ < 0, R̄ > 0.
We expect null infinities foru = constant,v → ∞ andv = constant,u → −∞ because

v − u > 0. With

v̄2 = 1

v
, v > 0 and ū2 = − 1

u
, u < 0 (2.9)

we obtain

g = − dū dv̄

±v̄2ū2
√

ū2 + v̄2
+ ū2 + v̄2

ū2v̄2
(dx2 + dy2). (2.10)

The conformal factor� = ūv̄ defines the rescaled metric

ḡ = �2g = − dū dv̄

±√
ū2 + v̄2

+ (ū2 + v̄2)(dx2 + dy2) (2.11)

which is regular forv̄ = 0, ū 6= 0 andū = 0, v̄ 6= 0.
Any hypersurfacēv = −ū + constant is spacelike in the caseR < 0 and intersects both

scris.
To relate to the toroidal case treated in the introduction we only have to take the above

metrics with some identificationx mod (a), y mod (b) for any two positive numbersa, b.
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We have thus demonstrated that the A3 solution has two null infinities which have
toroidal sections if we do the appropriate identification.

There are more solutions with null infinities in the class of degenerate static vacuum
solutions: for example, the solution A2 which has an isometry groupG1×G3. TheG3-orbits
are hyperboloids of constant negative curvature. This solution can be used to construct null
infinities whose sections are spheres with any finite number of handles. Details will be
given elsewhere.

3. Generalizations

The solution discussed in the previous section has a four-parameter group of isometries like
the Schwarzschild solution. In this section I construct solutions which are locally Einstein–
Rosen waves with two spacelike, hypersurface orthogonal Killing vectors. Globally,
however, they differ from the cases investigated up to now: cylindrical waves [6], boost-
rotational spacetimes [7] and Gowdy universes [8].

We take the vacuum field equations for the metric

g = e2M(−dt2 + dz2) + t (eW dx2 + e−W dy2) (3.1)

from Isenberg and Moncrief [9]:

W,tt + 1

t
W,t − W,zz = 0 (3.2)

M,t = − 1

4t
+ t

4
((W,t )

2 + (W,z)
2) (3.3)

M,z = t

2
W,tW,z. (3.4)

The integrability condition of the two equations (3.3) and (3.4) is the field equation (3.2), a
Euler–Poisson–Darboux equation with indexµ = 1

2. The corresponding Green function is
known in terms of hypergeometric functions.

Consider first the caseW = 0. Integration of (3.3) gives e2M = t−
1
2 and therefore the

metric

g = 1√
t
(−dt2 + dz2) + t (dx2 + dy2). (3.5)

This metric is isometric (up to a constant factor) to the metric A3 in the form given in (2.8).
An obvious transformation of thet-coordinate would result in the Kasner form.

Are there solutions of (3.2) defining spacetimes with conformal infinities analogous to
the A3 spacetime? I give two examples.

The function

W = 1√
t2 − z2

(3.6)

solves (3.2). Integration of (3.3), (3.4) gives

2M = −1

2
ln t − 1

4

t2

(t − z)2(t + z)2 . (3.7)

Knowing that A3 admits scri it is easy to check that this is also the case for this spacetime.
Writing

2M = − 1
2 ln t + N (3.8)
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the metric is

g = 1√
t

eN(−dt2 + dz2) + t (eW dx2 + e−W dy2). (3.9)

Transforming to double-null coordinates

2u = t + z, 2v = t − z, t = u + v, (3.10)

the metric becomes

g = 1√
(u + v)

eN(−4 du dv) + (u + v)(eW dx2 + e−W dy2) (3.11)

and we can proceed as in section 2 to find the null infinity:

ū2 = 1

u
, v̄2 = 1

v
(3.12)

g = −4
dū dv̄

v̄2ū2
√

v̄2 + ū2
eN + v̄2 + ū2

ū2v̄2
(eW dx2 + e−W dy2). (3.13)

The conformal factor� = ūv̄ defines the rescaled metric

ḡ = �2g = −4
dū dv̄√
v̄2 + ū2

eN + (v̄2 + ū2)(eW dx2 + e−W dy2). (3.14)

Since

W = 1
2ūv̄, N = − 1

64(ū
2 + v̄2)2 + 1

2 ln 2 (3.15)

are analytic at̄v = 0 andū = 0 we have two analytic null infinities. This spacetime is only
defined fort > z.

The next, more complicated example has the same domain of definition as the solution
A3, t > 0. It is the analogue of the ‘Weber–Wheeler–Bonnor’ pulse [10, 11]. It is
determined by the following solutions of (3.2):

W =
√

2C

√√
(a2 + t2 − z2)2 + 4a2z2 + a2 + t2 − z2

(a2 + t2 − z2)2 + 4a2z2
. (3.16)

(For a = 0 we obtain (3.6) up to a constant.) Integration of (3.3) gives

2M = −1

2
ln t + 1

4
C2

(
1

a2
− 2

t2((a2 + t2 − z2)2 − 4a2z2)

((a2 + t2 − z2)2 + 4a2z2)2

+ t2 − a2 − z2

a2
√

(a2 + t2 − z2)2 + 4a2z2

)
. (3.17)

The same coordinate transformation and rescaling as above shows that we again obtain two
analytic null infinities.

It is natural to ask which solutions of the wave equation (3.2) will define spacetimes
with null infinities. I conjecture that it should be sufficient that the solutionW has a smooth
extension to the null infinity defined by the solution A3. This has to be checked by an
analysis of the field equations as was done in the boost-rotational case [7].
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