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Abstract 

We present a detailed account of the isomonodromic quantization of dimensionally reduced 
Einstein gravity with two commuting Killing vectors. This theory constitutes an integrable "midi- 
superspace" version of quantum gravity with infinitely many interacting physical degrees of 
freedom. The canonical treatment is based on the complete separation of variables in the isomon- 
odromic sectors of the model. The Wheeler-DeWitt and diffeomorphism constraints are thereby 
reduced to the Knizhnik-Zamolodchikov equations for SL(2, R).  The physical states are mani- 
festly invariant under the full diffeomorphism group. An infinite set of independent observables ~t 
la Dirac exists both at the classical and the quantum level. Using the discrete unitary representa- 
tions of SL(2, ~ ) ,  we construct explicit quantum states. However, the problem of satisfying the 
additional constraints associated with the coset space SL(2,]~) /S0(2)  remains open. We briefly 
discuss the possible impfications of our results for string theory. 

PACS: 04.60.-m 
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1. Introduct ion  

The purpose  of  this article is to explain in detail the new Hamiltonian formulation of  

d imensional ly  reduced gravity presented in [ 1 ] and to study its exact quantization as an 

integrable model  o f  quantum gravity with infinitely many physical  degrees of  freedom 

on the basis o f  the methods introduced in [2] .  Our results generalize to the more general 

models  that one would obtain by dimensional  reduction of  certain matter coupled models  

o f  gravity and supergravity, but we will in this paper  deal only with the stationary 
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axisymmetric reduction of Einstein's theory, deferring the discussion of the Lorentzian 
signature (colliding plane wave) case as well as of arbitrary gravitationally coupled 
o--models and the extension to locally supersymmetric models to another publication. 
This we do mainly in order to keep the technical complexity of the construction to a 
minimum and to bring out the salient features as clearly as possible. 

As is well known, our general understanding of the mathematical and conceptual 
problems of quantum gravity is severely hampered by the scarcity of "realistic" exact 
solutions of the Wheeler-DeWitt (WDW) equation (for introductory reviews of the sub- 
ject with many further references, see [3-5] ). The known examples of exactly solvable 
models include pure gravity [6] (see also [7])  and supergravity [8] in three dimen- 
sions, as well as certain mini-superspace models such as static spherically symmetric 
gravity [9] or supersymmetric models of the type considered in [ 10] and references 
therein. Since these models describe only finitely many physical degrees of freedom, 
it would be desirable to find models with infinitely many physical degrees of freedom. 
An example of such a model is the quantum theory of cylindrical gravitational waves 
studied in [ 11,12] which corresponds to a truncation of dimensionally reduced gravity 
for which the Ernst potential is real and (2.4) below can be transformed into a free 
wave equation. 

Our main intention here is to demonstrate that models with infinitely many self- 

interacting physical degrees of freedom can be treated exactly, and that the methods 
which have been developed over many years in the context of flat space integrable 
systems [ 13,14] can be transplanted to quantum gravity, yielding a class of completely 
integrable "midi-superspace" models (which reduces to the Euclidean version of cylin- 
drical gravitational waves for abelian groups). With regard to the conceptual problems 
of quantum gravity we shall adopt the pragmatic attitude that knowledge of sufficiently 
complicated exact solutions of the type constructed here may furnish new and essen- 
tial insights also with regard to the proper interpretation of the "wave function of the 
universe". Indeed, notwithstanding the remaining technical difficulties, certain generic 
problems of quantum gravity are neatly resolved in our model. First of all, there is a 
well-defined Hilbert space for each isomonodromic sector; although details remain to be 
worked out when N becomes infinite or even continuous, it is clear at least in principle 
how to construct the full Hilbert space as an inductive limit. Secondly, the fact that the 
WDW equation and diffeomorphism constraint express the invariance of the quantum 
state with respect to the full set of 2d coordinate transformations is completely manifest; 
the scalar product which naturally exists in the isomonodromic subspaces is positive def- 
inite for unitary representations and respects the full diffeomorphism invariance upon 
restriction to the subspace of physical states. While the construction of observables 
la Dirac remains a largely unsolved problem of canonical gravity in general [4], it 
turns out that our model admits an infinite number of independent ones, namely the 
monodromies associated with the singularities of the logarithmic derivative of ~ in the 
spectral parameter plane: these are the conserved "nonlocal charges" of matter coupled 
quantum gravity. The correlators of observables - the only meaningful expectation values 
in quantum gravity - are well defined and can be computed at least in principle. 
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Our treatment of  axisymmetric stationary quantum gravity relies in an essential way 

on the novel canonical formulation of the Ernst equation proposed in [ 1 ] and is based 
on the complete separation of the equations of motion and the use of the logarithmic 
derivative of  the related ~-function with respect to the spectral parameter as the fun- 
damental canonical variable. In [ 1] we have proved that, in the classical theory, the 
conformal factor is essentially the z-function associated with the Ernst equation. Fur- 
thermore, as shown in [2], the WDW equation for this class of models can be reduced to 
the Knizhnik-Zamolodchikov (KZ) equations [ 15 ]. While only the gravitationally cou- 
pled principal chiral SU(2) model was analyzed from this point of view in [2],  we will 
here extend these considerations to coset spaces and noncompact groups. Completely 
explicit exact solutions of  the WDW equation based on the discrete unitary represen- 
tations of  SU(2) and SL(2, •), respectively, are thereby obtained. Unfortunately, we 
are not able so far to solve the additional coset constraints for the noncompact space 
SL(2,R)/SO(2) with the discrete unitary representations of SL(2, R);  rather, it ap- 
pears that one will have to make use of the principal continuous series representations 
of SL(2,1~), for which no solutions of the KZ equations are known so far. This is the 
major open problem left by the present work. 

We also hope that these results may eventually enable us to address some other 
unsolved problems of current research in the framework of exactly solvable models. Our 
methods can be generalized without difficulty of principle to matter coupled gravity and 
supergravity because matter and gravity are unified in the group theoretical construction 
(for instance, to quantize Maxwell-Einstein gravity one simply would have to replace the 
coset space SL(2, ]~)/S0(2) by SU(2, 1 ) / U(2 )  ). Since the exact WDW functionals are 
built on classical solutions, we can in principle obtain solutions of the WDW equation 
which in a very precise sense are "close" to a given classical solution of Einstein's 
equations and study their h ---+ 0 limits. Understanding the semiclassical limit is also 
a necessary prerequisite for explaining the UV divergences that would appear in a 
conventional perturbative treatment and that are invisible in the isomonodromic sectors 
which are "far away" from the perturbative regime: An intriguing aspect of our work is 
the possible relevance of quantum groups suggested by the link with the KZ equations; 
it appears that the notion of quantum space-time [ 16] may emerge quite naturally in 
the present framework. Our results might also shed some light on the information loss 
paradox for Hawking radiation: in view of persisting disagreements [ 17], one cannot 
help feeling that the Gordian knot can only be cut by finding an exactly solvable model 
for it. 

In Section 2 we briefly recall the origin of our model as Kaluza-Klein-like dimen- 
sional reduction of 4d Einstein equations with two commuting Killing vectors. Section 
3 gives a classical treatment of  the model in the framework of the inverse scattering 
method. In the isomonodromic sector of the model we rewrite the equations of motion 
as a system of Schlesinger-like deformation equations by introducing new canonical 
variables, and present the two-time Hamiltonian formulation suitable for quantization. 
In Section 4 we explicitly quantize this Poisson structure. The link between the WDW 
equations and the KZ equations for SU(2) and SL(2 ,R)  is established. For the stan- 
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dard unitary representations of SU(2) and the unitary discrete series representations 
of SL(2, I~) this allows us to write down the exact WDW functional in terms of the 
integral representations for solutions of the KZ equations and to define the quantum 
T-function. We explain the constraints that must be satisfied when one passes from the 
group space SL(2, R) to the coset space SL(2, II{)/S0(2),  which put in evidence the 
need for continuous (principal series) unitary representations of SL(2, N). Since many 
of our results have a decidedly stringy flavor, we elaborate a little on the hints pointing 
towards the existence of a new kind of dual model in a separate Section 5. In the 
appendix we summarize the results about unitary representations of SL(2, R) needed in 
the main text. 

2. Axisymmetr ic  stat ionary gravity as a nonl inear o--model 

We will proceed from the standard metric of a stationary axisymmetric 4d space-time, 

ds 2 = f - 1  [e2k(dx 2 + dp2) + p2 d~o2] _ f ( d t  + F d~o) 2 . (2.1) 

Here (x, p) are canonical Weyl coordinates with p _> 0 and x E R, and t and q~ are 
time and angular coordinates, respectively. By assumption, the functions appearing in 
(2.1) depend only on (x ,p ) ,  and the coordinates t and ~o thus play no role in the 
remainder. The metric coefficients appearing in (2.1) are commonly expressed in terms 
of the so-called Ernst potential £ [ 18,19] as follows: 

2ip(  £(g(£ (£ - g ) (  k£ + ~)z  ' F( = 2p.(£ + £)2 ' f = R e £  , (2.2) 

where ~ := x + ip, ( := x - ip, and subscripts stand for partial derivatives throughout 
this paper. Next we define the symmetric matrix 

1 ( 2 i(8 -g)~ 
g= g +---~ i ( g - - £ )  2g£ ) ' (2.3) 

which can be viewed as an element of the coset space SL(2 ,N) /SO(2) .  Einstein's 
equations then imply the Ernst equation [ 19] 

( ( (  _ ~ ) g ( g - 1 ) ~  + ( (~  _ ~ )gcg -1 )~  = O, (2 .4)  

which in this form closely resembles the equation that one would obtain for a princi- 
pal chiral model. Further, they give rise to the following first order equations for the 
conformal factor h = e2~: 

2k~ = (log h)¢ = ~ -4 ~ tr(g~g-1)2 , 2k¢ = (log h)~ = ~--~ ~ tr(g~g-I )2. 
(2.5) 

We will find it convenient to reexpress these equations by means of the one-form w 
defined by 
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tr(g¢g-t  )2 d~: + ~ - ~  tr(g$g -1 )2 d~. (2.6) co--- 4 

Then (2.5) simply becomes 

dk  = ½w. (2.7) 

Both (2.5) and (2.7) are consistently defined because (2.4) implies dw = 0. We note 
already here that Eqs. (2.5) will turn into (linear combinations of) the WDW equation 
and the diffeomorphism constraint upon quantization. 

The above equations of motion, which were obtained by dimensional reduction of the 
Einstein equations, can be alternatively derived directly from a SL(2 ,  R ) / S O ( 2 )  coset 
space o--model in two space-time dimensions coupled to 2d gravity and a dilaton field 
p [20]. If the Euclidean worldsheet is locally parametrized by the complex coordinates 
(z, ~), the metric has the following form in the conformal gauge: 

ds 2 = h(z ,  ~) dz  d~ , h = e 2k . (2.8) 

A suitable Lagrangian is 

£ = p ( h R  + tr(gzg - l g ~ g - 1 ) ) ,  (2.9) 

where R is the Gaussian curvature of the worldsheet, i.e., 

R = ( l o g h ) z J h ,  

and the trace in (2.9) is appropriately normalized. As is well known from string theory, 
the first order equations (2.5) can be obtained from (2.9) by variation with respect to 
the off-diagonal elements of the worldsheet metric, so the conformal gauge condition 
must be temporarily relaxed. It is then obvious that these equations are completely 
analogous to the Virasoro conditions of string theory. 

In the Lagrangian (2.9) the dilaton p appears as an independent field, not as a 
coordinate. To establish the relation with the previous formulation for the metric (2.1) 
in terms of Weyl canonical coordinates, we note that the equation of motion for p 
following from (2.9), 

Pz~ = 0,  (2.10) 

is solved by 

p(z ,  Z) = I m ( ( z ) ,  (2.11) 

where ( ( z )  is a (locally) holomorphic function, and that the conformal gauge (2.8) is 
left intact by holomorphic reparametrizations of the complex coordinate z (for which 
the metric remains diagonal and h(z ,  ~) is simply multiplied by a factor). Hence we 
can further specialize the gauge by identifying p with one of the worldsheet coordinates 
as in (2.1) (global aspects of this change of variables were discussed in [21] but 
will not concern us here). From the 2d point of view, the gravitational field h and 
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the matter field g are coupled through the dilaton p; furthermore, the obvious solution 
p = const, of  (2.10) would imply g~ = g¢ = h E = h~ = 0, i.e., the trivial solution for the 
matter fields, in which case the gravitational sector would become purely topological 
(strictly speaking, this argument relies on the positive definiteness of the Cartan Killing 
metric on the coset SL(2, N)/S0(2)). Therefore, the model possesses no nontrivial fiat 
space limit since the matter fields act as sources for 2d gravity and thus distort the 
two-dimensional background geometry. 

Although we do not know whether a "Wick rotation" can be rigorously justified in 
the context of (quantum) gravity (see, however, [22] for a recent discussion), we will 
occasionally take the liberty to refer to p and x as "time" and "space" coordinates, 
respectively, especially in connection with the canonical treatment. 

3. Classical treatment 

3.1. Linear system and isomonodromy 

The results of this and the following section apply to solutions g(~,~) of (2.4) 
belonging to the complex general linear group GL(n, C). The extra conditions needed 
to ensure that g(g:,~) is an element of the coset space G/H and that h(~:,~) E R (as 
required by dimensionally reduced gravity) will be presented in detail in Section 3.3. 

Eq. (2.4) is the compatibility condition of the following linear system [23,24]: 

d~ g~g- 1 d~ 
= g(g-lgt, __._= = gr, (3.1) 

d~: 1 - y  d~: l + y  

where ~ (y ;g : ,~ )  is a two-by-two matrix from which the metric (2.1) can be recon- 
structed. The function y(g:, ~) is a "variable spectral parameter" subject to the following 
(compatible) first order equations: 

y l + y  y 1 - y  
Y ¢ - ( - ~ I - T '  Y ~ = ~ - ( l + y "  (3.2) 

They are solved by 

~, :~(w;~,~)  -- ~_---~ - - - ~  ~,~:(w;~,~)  ' (3 .3)  

with w E C a constant of integration, which can be regarded as the "hidden" constant 
spectral parameter. In the sequel we will usually suppress the index + and simply write 
y(w; ~:, ~) ~- y+(w; ~:, ~). The relation (3.3) can be inverted to give 

w = ¼ ( ~ - ~ )  ( y + l ) + ½ ( ~ : + ~ ) ,  (3.4) 

which shows that, in our conventions, y is purely imaginary for real w. For the linear 
system (3.1) we can use either y or w; when y is expressed as a function of w 
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according to (3.3), the linear system (3.1) lives on the two-sheeted Riemann surface 

of the function V/(W - ~) (w - ~). Furthermore, 
# 

d 0 y l + y  0 d O y 1 - y  O 
d r - -  Og: + ~ -  gv 1 - y 0 y  d (  0 ( +  ~ - ~ : 1  +Y0Y " (3.5) 

From (3.1) we immediately obtain (see also [25] ) Lemma 1. 

Lemma 1. The following relations hold: 

2 ~gt ~--1 y=l 2 _gtygr-1 7=-1 (3.6) 
g¢g- 1 = ~ _ , g~g-1 = ~ _ ( , 

where the subscript y denotes partial differentiation with respect to y. 

Next we consider the behavior of (d~/d~)g t-I  and (dgr/d()g r-I in the complex 
y-plane. The following theorem is a standard consequence of the formulation of classical 
integrable systems as a Riemann-Hilbert problem. 

Theorem 1. Let the two-by-two matrix qt (y; ~:, ~) be subject to the following conditions: 
(1) As a function of y the matrix g~ is holomorphic and invertible everywhere on 

some cover of the complex y-plane with the exception of the points mentioned 
below. 

(2) g~ has regular singularities at the branch points y j ( ( , ( )  := y (wj ; ( ,~ )  for j = 
1 . . . . .  N with constants wj C C, in the vicinity of which it behaves as 

g~(y;~:,~) = G j ( ( , ( ) ~ j ( y ; ~ , ~ ) ( y - y j ) r J c j  as y ~ y j ,  (3.7) 

where, for y ~ Zi, g~J (Y; ( ,  ()  = 1 + O ( y -  yj) is holomorphic and invertible. The 
matrices Cj and Tj are constant and invertible, and constant diagonal, respectively, 
while the (( ,  ()-dependent matrices G/ are assumed to be invertible. 

(3) Across certain "movable" contours {Lj}, which connect the singular points yj to 
some arbitrarily chosen but fixed and nonsingular base point y0 --- y(w0;~,~) 
and whose dependence on (g:,~) is determined by (3.3), the boundary values of 
g t - ( y )  and gr+(y) are related by 

g t+ (y ; ( ,~ )  = ~ F - ( y ; ~ , ~ ) M j ( w ) ,  y E L j ,  (3.8) 

where the invertible matrices Mj depend only on the constant spectral parameter 
W. 

(4) The following asymptotic conditions hold: 

g , ' ( y ; /~ ,~ )=g~+O(1)  a s y N c ~ ,  (3.9) 

g t ( y ; ~ : , ~ ) = g ( { , ~ ) + O ( y )  a s y N O ,  (3.10) 

where the matrix goo is constant and invertible and the matrix g({, gS) is invertible. 
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Then W obeys the linear system (3.1) and g(sC,~) E GL(2,  C) solves (2.4). 

Proof Conditions ( 1 ) - ( 4 )  imply the analyticity of g~(~- i  and g~ggr-1 in 3' away from 
3, = d:l. The poles at y = dzl on the r.h.s, of (3.1) are produced solely by differentiation 
of the spectral parameter y with respect to s c and ~, with residues fixed by (3.10). Since 
condition (3.9) provides the normalization at y = cx~, the r.h.s, of (3.1) is completely 
determined. [] 

Definition 1. A solution g(~:, ~7) of (2.4) is called isomonodromic if the associated 
conjugation matrices Mj are independent of w (i.e., do not vary along Lj). 

Following [26] we will refer to the set {wj ,Tj ,Cj ,Lj ,Mj(w)}  as the set of  mon- 
odromy data of the function ~F (Y) and the associated solution g(g:, ~) of (2.4). 

The logarithmic derivative ("spectral parameter current"), 

0g" -1 
A(3, ; ( ,~)  ~ -~yq t , (3.11) 

will play a key role in the sequel. In general, A(3,) is not single-valued as a function 
of 3, for nonconstant matrices Mj. It is only for isomonodromic solutions that the 

singularities of  A(3,) in the y-plane are simple poles at 3(]. In this case A(3,) is a 
meromorphic function, and we have 

N 

Aj (3.12) 
A(3,) = 3, 3,J 

"m 

( i f  the summation range is not indicated explicitly, sums are understood to be taken 
over j = 1 . . . . .  N) .  The residues at the points 3' = Y/ are easily computed from (3.7), 

Aj(s c, () = Girja21 . (3.13) 

The eigenvalues of Aj determine the ramification number of g '  at 3(]; if they are all 
rational, the number of  sheets glued at 3(i of the associated Riemann surface is finite, 

otherwise infinite. The sum of the residue matrices, 

N 

A ~  := lim ( 3 , A ( 3 , ) ) = ~ A i ,  (3.14) 
'y----~ ¢24~ 

j=l  

governs the asymptotical behavior of ~(3, )  at infinity. I f  ~ ( Y )  is regular at 3, = cx~ as 
in (3.9), we have 

A ~  = 0. (3.15) 

Then we can choose 3'0 = c~ as the base point in Theorem 1. We shall assume (3.15) 
to hold throughout most of this paper. Inserting (3.12) into (3.6), we obtain 

2 ~j Aj 2 ~i A j (3.16) 
g~g-l = ~ _  $ . 1-----~j ' gsg-l = ~ _  ~ . 1+3(i" 
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This formula shows how to reconstruct the Ernst potential, and hence the space-time 
metric, once the residues Aj are known. 

For isomonodromic solutions, the matrices Mj(w) =- Mj are independent of  w and 
are called monodromy matrices of the connection A(T)dy; we have 

Mj = CTl e2~riTJCj. (3.17) 

By definition, they obey 

dMj _ dM i = 0 (3.18) 
d~ d~ 

and are thus constants of motion. To express them as as path-ordered integrals we choose 

the same base point T0 as in Theorem 1; then 

Mi := T' exp ~( ~ - l ~ z ,  dY, (3.19) 

tj 

where the contour Ij starts at Y0, encircles the point yj((,~) and returns to Y0; of  
course, Mj does not depend on the choice of 3'o as is already obvious from (3.17). For 

3'o = c~ we get 

M.i = g~o' (7~ exp J A(y) dy)goo. (3.20) 

# 

The eigenvalues of  the matrices log Mj and 27riAj are the same; however, the explicit 
relation between them is highly nonlocal. The "monodromy at infinity", 

N 

H Mj = Moo = exp (27riAc~), (3.21) 
j=l 

is equal to 1 as a corollary of the assumed regularity of g ' ( 7 )  at 9' = cxz. 
An obvious question at this point concerns the status of the isomonodromic solutions 

among all solutions of (2.4). At first sight (3.12) looks like a strong constraint on the 
possible solutions, but in fact it is not. Apart from the assumed analyticity of g ' ,  the only 
true assumption that goes into (3.12) is the absence of essential singularities of g" as 
a function of 3/ (this assumption must, however, be relaxed for locally supersymmetric 
theories where higher order "rigid" poles at y = ~1 appear in the linear system [27] ); 
then (3.12) is just the analog of the well-known statement that the logarithmic derivative 
of an analytic function can be represented as a sum over its poles. In fact, ahnost all 
known exact solutions of  (2.4) are isomonodromic. So, for multisoliton solutions of 
Einstein's equations [24], all of the matrices Mj are proportional to the unit matrix such 
that all eigenvalues of Aj are half integer, and for the finite gap (algebro-geometric) 
solutions constructed in [28,29] the matrices Mj are either anti-diagonal (i.e., with zeros 
on the diagonal) or again proportional to 1. For solutions expressible in terms of Painlev6 
transcendents [ 30], the matrices Mj are triangular. The only examples of solutions which 
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are not strictly isomonodromic in the sense that the sum in (3.12) is infinite and that 
there is an accumulation point of the poles at infinity are the periodic analogs of the 
axisymmetric static solutions constructed in [31,21]. Evidently, such solutions may be 
obtained from the N-soliton solutions by a limiting procedure. Indeed, we can at least in 
principle approximate an arbitrary solution of (2.4) by isomonodromic ones (perhaps 
including higher order poles) if we approximate a given nonconstant function MJ (w) 
by step functions. If this procedure could be justified rigorously we could claim that our 
present treatment also covers the general case where the sum in (3.12) is replaced by 
an integral. However, in spite of some work in this direction for other integrable systems 
[32], the results obtained so far are still inconclusive. Rigorously speaking, we are thus 
considering a truncation of the total phase space by assuming (3.12), and the question 
of whether we can get the full phase space as a union (in a suitable completion) 
of its isomonodromic subsectors remains open for the moment. We conjecture that a 
complete treatment of the model will allow us to rigorously justify the restriction to the 
isomonodromic sectors, which is introduced in (3.12) "by hand". Naturally this question 
also bears upon the precise definition of the Hilbert space of the quantum theory. 

The analyticity properties of g t (y)  have also been discussed extensively in [33]. 
To understand the difference between the approaches of [24] and [33] we note that, 
together with a given g~(y), the function g~(y)S(w) also solves the linear system (3.1) 
for any nondegenerate matrix S(w). While the multiplication by such a matrix does not 
affect the (~:, g~)-dependence, it does alter the analyticity properties of qt as a function 
of y (and hence the prescription for extracting the solution g(~:,() from it). As a 
consequence, the expansion (3.12) is also modified because O~,S = OwSO~,w -~ O. In 
[33] this residual freedom in the choice of ~F is completely eliminated by demanding 
g~(y) to be holomorphic a certain neighborhood of the origin (e.g., the unit disk in the 
y-plane), whereas no such restriction on the location of the poles in the y-plane is made 
in [24]. The precise relation between these different "pictures" will be further clarified 
in Section 3.3 when we discuss the coset constraints. 

3.2. Deformation equations and T-function 

Substituting (3.16) into (3.1) and demanding compatibility between (3.1) and 
(3.12), we get [1] 

OA.i_ 2 k~i [Ak, A,] OAj = 2 k~j [Ak, A.j] 
. ( l+yk)( l+yj )  

(3.22) 

We repeat that these deformation equations as well as the definition of the T-function to 
be presented below are valid generally for the groups GL(n, C). Eqs. (3.22) may also 
be represented in "Lax form", viz. 

3Aj 
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where 

U = g~g-1 V = g~g-1 
1 - 3 "  1 + 3 '  

This form of  (3.22) is "gauge-covariant" with respect to the transformation 

= J2(~:, ~ ) ~ ,  (3.24) 

in the sense that the transformed function ~ satisfies the linear system d ~ / d (  = (Y~, 
d~ /d~-= flxb with 

0 = ~'~sc~f2 - 1  -Jr- OUff'2 - 1  , V = g2¢f2 -1 + OVO -1 . (3.25) 

Clearly, the matrix functions Aj transform as Aj ~ .4j = g2Ajg2 -1 under (3.24). The 
transformed matrices .Aj then obey the same linear system (3.23) with the pair (U, V) 

replaced by (U, V). 
We are now in a position to formulate Theorem 2. 

Theorem 2. Let {w/ E C ; j = 1 . . . . .  N)  be an arbitrary set of  complex constants and 

Aj = A j ( ( , ~ )  E gl(2,C.). Then 

(1) The two matrix differential equations (3.22) are compatible if 3"j = 3"(wj; ~,~). 
(2) The linear system (3.16) for g(~: , ( ) ,  where {A;(~: ,~)} is an arbitrary solution o f  

(3.22),  is also compatible, and its solution g(~:, ~) E GL(2, C) satisfies Eq. (2.4). 

Proof The compatibility of  Eqs. (3.22) can be checked by a straightforward compu- 
tation. Combining (3.16) and (3.22) we recover the (complexified) Ernst equation 
(2.4).  [] 

Remarkably, the dependence o f  the (complexified) Ernst equation and its associated 
linear system on the variables ~: and ~ has been completely decoupled by Theorem 2. 

Therefore the problem of  solving Einstein's equations in this reduction has been reduced 

to integrating a system of  ordinary matrix differential equations, which are automatically 
compatible unlike the original linear system (3.1). All information about the degrees 

of  freedom is thereby encoded into the "initial values", i.e., the set of  matrices A I °) _---- 

Aj(~(o), ~(0)), where (((0), if(0)) is an arbitrarily chosen base point, and the value at 

any other point can be consistently obtained by integration along any curve connecting 
. (0)  it to the base point 2 The matrices Aj are also the appropriate phase space variables 

for the matter sector, as we will see in Section 3.4. Accordingly, we will regard the 

functions A j ( ( , ~ )  rather than ~(3" ;~ ,~)  as the basic quantities from now on, and 

2 Although we are dealing with an elliptic rather than a hyperbolic partial differential equation, there is no 
paradox here because the "initial values" also determine the behavior at infinity via the matrix Aoo -- AM ) = 
- S" A (°) (which is a constant of motion by Lemma 2 below) as appropriate for an elliptic boundary value ~--.,j j 
problem. 
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relate the system (3.22) directly to the (complexified) Ernst equation (2.4). With 
this parametrization of the phase space, the isomonodromic subsectors can be treated 
separately, as they are stable with respect to the evolution equations for arbitrary choices 
of the "soliton number" N and the points wj. 

As an immediate consequence of (3.22) we can construct integrals of motion, con- 
firming the statements after (3.18). 

Lemma 2. Let {A j} be an arbitrary solution of the system (3.22). Then the variables 
Am =- ~-~j Aj, trAj and trA~ (and thus all eigenvalues of the two-by-two matrices Aj) 

are (s c, ()-independent, hence constants of motion. 

Notice that the lemma is in accord with the original definition of Aj in (3.13), but 
more general since we now consider arbitrary solutions of (3.22). As a corollary, we 
conclude that the sum 

~tr(A.iAk) = 1  2 ~ t r A ~  trAm _ 1 (3.26) 
j<k j 

is likewise ( ( ,  ~')-independent. The above constants of motion will give rise to observ- 
ables in the canonical framework. 

To each solution {Aj} of (3.22) we can associate the following closed one-form 
[26]: 

too(~, ~) = ~ tr(ajak) d Iog(zi - Yk), (3.27) 
j<k 

where the exterior derivative d is to be taken with respect to the deformation parameters 
(~:,~). The closure condition dw0 = 0 may be directly verified by use of (3.22) and 
(3.2). Following the general prescription given in [26], we have Definition 2. 

Definition 2. The function r(~:, ( )  defined by 

d log ~- = m0 

is called the r-function of the Ernst equation. 

(3.28) 

We will now show that the ~--function has a very definite physical meaning in our 
context: up to an explicit factor, it is just the conformal factor h = e 2~ ! To establish this 
result, we first substitute (3.16) into (2.6); then using (3.2) and (3.27), we obtain 

1 
~-~ tr A~ (1 _ yi)  a (1 + 7 j )  2 oJ=oJo+~_~ J 

+ Z tr(A;Ak) d log(~: -  ~) .  (3.29) 
.j<k 

By (3.26) all extra terms on the r.h.s, of (3.29) may be explicitly integrated. Using 
(3.2), (3.29) and the relation 
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2 1 1 1 
~ : - ~  { ( ( 1 - - - ~ j ) 2  2 ) d ~ : - ( ( 1  + y j ) 2  2 ) d ( }  

= d  l o g ( e _  #) (1 _ y~) \ a w j / '  

we arrive at Theorem 3. 
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Theorem 3. The conformal factor h defined by (2.6) and (2.7), and the r-function 
defined by (3.28) are related by 

h ( ~ , ~ ;  {wj}) =C(~--~)(trA2c*a)/2II { O~lj } (trA2,/2 
) ~wj r ((, g~; {wj}), (3.30) 

where C is an integration constant. 

Observe that the notation in (3.30) can be further unified by writing (see (3.4)) 

4 = 0_y_y 

For A ~  = 0, the first factor in (3.30) can be dropped. Also, for the group GL(2,C) ,  the 
function h( ( ,  ~) is complex in general. Apart from its structural content this theorem is 
more general than previous results, where the conformal factor was computed only for 
multisoliton solutions [24]. It would be interesting to find out how it is related to the 
"cocycle formula" of [33]. 

The above formulas simplify considerably for abelian groups - corresponding to the 
Euclidean version of cylindrical waves for G = GL(1, R) = R + - or if the residue 
functions Aj are in the Cartan subalgebra of the non-abelian group under consideration 
(which for G = SL(2, R) would give the multi-Schwarzschild solutions). Namely, if 
the commutators on the r.h.s, side of (3.22) vanish, all Aj are constant. One can then 
immediately write down the solution of the linear system, which reads 

N 

= g)  I - [  (7 - (3 .31)  
j=l 

The undetermined function F ( ( , ~ )  is fixed by imposing the proper y-dependence in 
(3.1) and given by 

F(( , • )  = (~: -- ;~3 ~'~'A' (3.32) 

(thus F ~ 1 for A ~  = 0). From this we can immediately read off the solution of (2.4) 
with ~o _= log g, 

N 

~o(~:, #) = ~ Ajlog ((s  c -  #)y(wj;~: ,#))  . (3.33) 
j=l 
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(3.33) bears some similarity to the mode expansion of a string target space coordinate 
in terms of oscillators. However, it is better to think of (3.33) as an expansion in terms 
of coherent states. 

3.3. Reality conditions and coset constraints 

The solutions g(~:, ~) obtained from the deformation equations (3.22) in general are 
neither symmetric nor even in SL(2, R) .  We must therefore impose extra conditions in 
order to ensure that g(~:,~) E S L ( 2 , R ) / S O ( 2 ) ,  i.e., that g is real and symmetric, and 
that the conformal factor is real. For this purpose we need both a reality condition on 
the moving poles 3/j (and thus on the parameters wi) as well as certain extra constraints 
on g~, the monodromy matrices or the r-function. These conditions may be formulated 
in several equivalent ways which we shall now present. 

Quite generally it is clear that for g to be in a given Lie group, the residues Aj in 
(3.12) must be elements of the associated (complexified) Lie algebra; consequently, 
for simple Lie groups, we have tr Aj = 0. Depending on which real form one is dealing 
with, the parameters wj and the matrices Aj are subject to certain reality conditions. In 
the case at hand, these follow from the simple requirement that the two expressions in 
(3.16) are complex conjugate to one another for real g. It is important here that only the 
sums on the r.h.s, of (3.16) are constrained in this way, so that the individual matrices 
Aj can (and will!) still belong to the complexified Lie algebra sl(2, C). 

The conditions needed to make g an element of a coset space rather than a group are 
more subtle and require some explanation. An essential observation at this point is that, 
for symmetric g(s c, ~), one can prove from (3.1) that the matrix 

2k4 (3/; ( ,  ~ ) :=  t0"t ( 1 ;  ~, ~ )  g- I  ( ( ,  ~ ) ~  (3/; , ,  ~) (3.34) 

is annihilated by the operators (3.5), 

d2k4 d.Ad 
- -  - - 0 ,  (3.35) a¢ 

and therefore depends only on the constant spectral parameter, i.e., 

AA (r (w;  sc,~7); so, ()  = .M(w) (3.36) 

(by a slight abuse of notation, we write 3,4 on the r.h.s., too). From the invariance of 
w, and hence of Ad(w), under the involution 3/---+ 3/-1 we immediately obtain 

2Mt(w) = .Ad(w) . (3.37) 

The constancy of the matrix .A4 (as a function of the coordinates) was already noticed 
in [24]; in [33] it played an important role in reaching a systematic understanding of 
axisymmetric stationary solutions of Einstein's equations. 3.4 (w) is called "monodromy 
matrix" in [33], but obviously it must not be confused with the matrices Mj defined in 
(3.19). In both [24] and [33] the problem of finding solutions to Einstein's equations 
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is reformulated as a Riemann-Hilbert  problem by reducing (3.1) to the factorization 

problem (3.34).  In the description of  [33] ,  A,4 = 1 would correspond to the trivial 

vacuum solution (i.e., Minkowski space), while nontrivial solutions are characterized 
by a nonconstant M ( w ) .  By contrast, in [24] gt is fixed by demanding .M(w)  =- 1 for 
all solutions. These two possibilities, therefore, correspond to two different descriptions 

of  the same solution o f  Einstein's equation 3. It is crucial that the asymptotic expansion 
(3.12) is compatible with the (sc,~)-independence of  the matrix (3.34) only if 3// is 

w-independent. For this reason we will adopt the prescription of  [24] rather than that 

of  [33] in the rest o f  this paper (this also relieves us o f  the need to worry about a new 

name for .L4(w)) .  

The main idea is now to turn the above statement around and to link the desired 

symmetry o f  g to the constancy of  (3.34). 

Theorem 4. Suppose that in addition to the conditions of  Theorem 1, function ~F satisfies 

~ ( - ~ )  = g ' ( y )  (3.38) 

and 

get ( 1 ) g - l ~ ( y )  = goo. (3.39) 

Then the constants of  integration in (2.7) and (2.3) may be chosen such that g ( ( , ~ )  

is symmetric and h(~ , ( ' )  c JR; in particular, (3.39) implies goo C S L ( 2 , R ) / S O ( 2 ) . )  

Proof From (3.38) we immediately obtain 

A ( y )  = - A ( - ~ ) ,  (3.40) 

so we have in particular A(1)  = - A ( - 1 ) ;  the reality condition g(~:,~) C SL(2,]R) 
then follows from (3.6).  Setting y = cx~ in (3.39) and making use of  the assumed 

asymptotic properties (3.9) and (3.10) of  !F we get g = gt; on the other hand, taking 
9' = 0 we obtain g t  = g ~ .  [] 

In the form stated above, the conditions suffer from the drawback that the solution 

g(s  c, g~) of  the Ernst equation appears explicitly in (3.39), so the coset property can 
only be verified a posteriori, i.e., after the solution has already been constructed. As a 

first step towards the elimination of  g we reformulate the relevant conditions in terms 
of  the poles Yj and the matrices Aj. 

Lemma 3. Theorem 4 remains valid if  we require Aoo = 0 and replace conditions (3.38) 
and (3.39) by the invariance of  the set {Aj, y j }  with respect to the involutions 

3The precise formula can be worked out by factoring the "monodromy matrix" of [33] as 
.A/IBM(W) = St(w)S(w). The linear system functions of [33] and [24] are then related by !FBM(T) = 
!P'Bz (y) S(w ( ~,; ~, ~) ). This formula also explains why multisoliton solutions correspond to rational gt (T) in 
[33], whereas square root branch cuts (and hence half integer eigenvalues of Aj) appear in the description 
of [24]. 
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A j  --~ A j ,  9/.j ~ - - ~ j  

1 A.~ --+ - g -  1Ajg, Y.J --~ - -  
T.J 

(3.41) 

(3.42) 

Proof Clearly, the first condition is equivalent to (3.40) by (3.12) (see also (3.16)).  
To prove the second part of the lemma, we differentiate both sides of (3.39) with respect 
to y; noticing that the r.h.s, gives zero, a little algebra leads to 

or 

1 A t ( l "  ~ ~-y ~ , ~ j = g - l A ( y ) g  , (3.43) 

1 N t N 
Aj = y~-~  g-~Aig  (3.44) 

7 9/-]- ~ •J j=l "y -- ZJ .'= 

Now performing the substitution (3.42) on the 1.h.s., we arrive at 

N A" N 

i~l y J = ~ Y i  A'i , (3.45) 
.= Y - -  7J j=l ~ - -  Z/  

which is indeed fulfilled provided that A ~  = ~ Aj = O. [] 

The coset condition (3.42) can be satisfied by taking N = 2n and assuming 

1 
Zj+n = - - ,  At.i+,, = _ g - 1 A j g .  (3.46) 

Y.j 

While the involution 7 ~ y-1 has only two fixed points at y = + l ,  the anti-involution 
y ~ - ' ~  leaves all points yj fixed for which wj E ~.  Thus (3.41) implies that n = m + 2 l  
and that for j = 1 . . . . .  m and j = n + 1 . . . . .  n + m ,  

3/.j = - -97j ,  Aj = A j ,  (3.47) 

whereas f o r j = m + l  . . . . .  m + l a n d j = n + m + l  . . . . .  n + m + l ,  

Yj = -9/)+t, A.j = Aj+t. (3.48) 

Thus for (3.47) we have w i E ~ and Aj E s l ( 2 , ~ ) ,  whereas for (3.48) wj is complex 
and we have Aj E sl(2, C).  

The complete elimination of g(~:, ~) is achieved by reformulating the above constraints 
in terms of the monodromy matrices and the T-function. It is straightforward to deduce 
from (3.8) and (3.39) the conditions 

M~+ n = gc~M'[l g ~  1 , (3.49) 

which do not contain g ( ( ,  ~) anymore. By the one-to-one correspondence between the 
solutions of (2.4) and the monodromy data [26], we therefore have Theorem 5. 
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Theorem 5. Let ~ obey the reality condition (3.38) and let the monodromy matrices 
satisfy the relations (3.49). Furthermore suppose that the eigenvalues of each matrix Aj 
do not differ by integers and trA} = trA}+n. Then the constants of integration in (3.6) 

and (2.7) may be chosen in such a way that g(~, ~) solves the Ernst equation (2.4), is 
real and symmetric, and the conformal factor h is real. 

FinMl~ we give the necessary condition for thefulfillment of the cons~mnts in terms 
of the r-function. 

Corollary 1. Suppose that the same conditions as in Lemma 3 hold. Then 

( ' ,  , ' )  ~ ~ " " ~  =~-(~,, . . . . .  ~,~). (3.50) 

Proof From (3.27) it is obvious that the 7"-function depends only on the traces of 
products of the matrices Aj. Then (3.39) is an immediate consequence of the invariance 
under (3.42). [] 

The symmetry and reality conditions as well as the regularity properties of ~ are 
preserved by the Ehlers group SL(2, R) [ 19]. An Ehlers transformation is characterized 
by a matrix Q E SL(2, R) and acts on ~ as 

~ ~ = QqFQ. (3.51) 

From (3.11) we infer that (3.51) induces the following transformation on the residue 
matrices: 

Aj ---+ Aj  = QtAjQt-1  (3.52) 

It is known that the Ehlers group admits an infinite extension, the so-called Geroch 
group [34], which also acts on the space of axisymmetric stationary solutions. Save for 
some scattered remarks we will not consider this group here; see, however, [35,33,36] 
for a description of this group and its generalizations in the framework of dimensional 
reduction. 

3.4. "Two-time" Hamiltonian formalism 

We will now present the canonical formulation of the results described in the foregoing 
sections. For this purpose we adopt a "two-time" Hamiltonian formalism with the two 
"times" corresponding to the lightcone coordinates s c and ~. One major advantage of 
this procedure is that the quantum theory is manifestly covariant under 2d coordinate 
transformations, a feature which is far from obvious (and possibly not even true) for the 
ADM formulation of canonical quantum gravity (see, e.g., [37] for a recent discussion). 
In the case at hand, the two-time Hamiltonian structure giving rise to the equations of 
motion (3.22) is summarized in Theorem 6. 
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Theorem 6. The system (3.22) is a "two-time" Hamiltonian system with respect to the 
Lie-Poisson bracket, 

{ a ( y )  ~, A(/x) } = [ r ( y - / z ) ,  A ( y ) ® 1  + 1  ® A(/x)] , (3.53) 

where A(y)  =- qt g~-I and the classical rational R-matrix r (y)  is equal to H/y  with 
H the permutation operator in C 2 x (22, 

H =  O1 
1 0  
0 0  

The dynamics of the physical fields in the ~: and ~-directions are governed by the "matter 
Hamiltonians", 

N 
1 1 V "  tr(A.iAk) 

H(~:) := ~:_(- trA2(1) = s o - - g ?  j ~  (1 - yi)  ( 1 .  --Yk) ' 

N tr( AjAk ) 
H(~) ._ l _ _ ~ t r a 2 ( _ l  ) = 1 ~ (1 + y j ) ( l + y k )  ' (3.54) 

"-- ~ - -  ~ i f - -  ~j,k=-I 

and the respective flows generated by H (~) and H (~1 commute, i.e., {H (~), H (g) } = 0. 

Proof The main statement can be verified by direct calculation. Commutativity of the 
Hamiltonians follows from the more general relation 

{trA2(y),  trA2(/z)} = 0, (3.55) 

which is valid for arbitrary y and/x. The commutativity of the flows generated by H (~) 
and H (~) is equivalent to the decoupling of the classical equations of motion in (3.22), 
and may be viewed as a direct consequence of the compatibility of the system (3.22) 
(cf. Theorem 2). Observe that we have (H(~)) t = H (~). [] 

For the benefit of readers not familiar with the above tensor product notation (see 
[13,14] for details), we spell out these brackets once more with matrix indices 
oL, fl . . . . .  1,2 indicated explicitly. Setting 

A(T) ® A(/~))~f~,~a := A(T)~A(tz)Z~ 

and 

H~,r~ = 8~88~,#, 

the Poisson brackets (3.53) are equivalent to 
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-tzl ( ~aa(A(T)-A(#))y~-~#~(A(T)-A(I~))c~ ) {A~z(y),  A~a(/~) } = 7------7__ 

415 

Defining 

A~ --= A~ta~, (3.56) 

where t a are the generators (so far of SL(2 ,C) )  and inserting (3.11) into (3.53), we 
get 

{Aj  @, Ak} =C~jk[I[, Aj @ 1] (3.57) 

or, equivalently, 

°.jkJ cla.j , 

where fab c are the structure constants of SL( 2, C). 
With (3.54) we can thus reexpress the equations for the conformal factor (2.5) in 

the form 

C (~:) := - 2 k (  + H (() ~ 0,  C C) := -2k~ + H C) ~ 0. (3.58) 

Thus, in accordance with the general theory of constraints [38], we shall from now 
on regard (3.58) as constraints h la Dirac rather than merely as equations determin- 
ing the conformal factor (accordingly, ~ means "weakly zero"). This interpretation is 
appropriate for generally covariant theories where the local (gauge) invariances give 
rise to canonical constraints whose "matter parts" are just the conventional Hamiltoni- 
ans (3.54). More precisely, the constraints (3.58) express the invariance of the theory 
under local translations in ~: and ~, respectively; as such they are linear combinations of 
the WDW and diffeomorphism constraints corresponding to the invariance of the theory 
with respect to local translations in "time" p and "space" x. As before we have a reality 
condition (C (~))t = CC) for the constraints. 

Interpreting (3.58) as canonical constraints requires that we enlarge the phase space 
so as to account for the gravitational degrees of freedom (the conformal factor and the 
dilaton). Their canonical brackets are given by 

{(, 2k(} = {(, 2kg} = 1, {~,2k~} = {(, 2k¢} = 0 .  (3.59) 

(Strictly speaking, the derivation of these brackets would require that we undo the 
choice of Weyl coordinates, on which (2.1) and (2.4) are based, but we will skip this 
step here.) Use of (3.59) and some further computation then show that the constraints 
commute like the matter Hamiltonians in terms of which they are defined, 

{C (~) , C C) } = 0. (3.60) 

A noteworthy feature of the new formulation is that the dimension of the system 
has been effectively reduced from two to one by trading the "space" variable x and 
the "time" variable p for two "time" variables g: and (. We can thus regard the spec- 
tral parameter currents A(y) at a fixed but arbitrarily chosen base point (xo, po) as the 
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fundamental canonical variables. In other words, instead of considering phase space vari- 
ables depending on the space coordinates, we now take them to depend on the spectral 
parameter. Since this point can be chosen at will, this formulation manifestly preserves 
2d covariance. The "time evolutions" of any phase space function F({Aj};  ~, ~, k[, k~) 

are then generated as usual by commutation with the constraints C (~) and C ($), i.e., 

dE dE {C($), F} .  (3.61) 
d---~ = {C(~:)' F } ,  --= = d~ 

It is important that the derivatives appearing here are total derivatives with respect to ~: 
and g~, with the first term of C ~) or C ~[) generating the partial derivatives with respect 
to the coordinates, and the second term taking care of the (~:, ~)-dependence of Aj. 
Altogether the action of the constraints on any phase space function is thus simply 
given by the operators 

C(~) ~ d C(~) ~ d = - -  = ---=. (3.62) 
d~:' dsC 

As we will see, this remains true for the quanfized theory where the constraints become 
operators acting on a Hilbert space of wave functionals. 

Observables in the sense of Dirac are by definition all those functionals (_9 on phase 
space which weakly commute with the constraints C C() and C ~) but do not vanish on 
the constraint hypersurface C (¢) = C (~) = 0, i.e., 

{C (~) , O} ~ 0 ,  {C (~) , O} ,.~ 0. (3.63) 

By (3.62) the observables are therefore highly nonlocal objects as one would expect 
on general grounds [4,5]. It is easy to see that our model admits an infinite number 
of independent observables. First of all, the parameters Wl . . . . .  WN trivially belong to 
this class since they commute with everything. Secondly, and more importantly, the 
monodromies M1 . . . . .  MN defined in (3,17) are also observables for arbitrary N. This 
fact is obvious from (3.18), but can also be rephrased in canonical language. Namely, 
as functionals on phase space, the monodromy matrices depend both on {A j} and {y j}; 

furthermore, Mj does not commute with the matter Hamiltonians H (~) and H (~) but 

only with the full constraints C (~) and C (¢) of (3.58); for instance, 

OMj {H (g) Mj} O. dMj = {C(¢ ) M.i} = - { 2 k f ,  ~:} + {H (O, Mj} = - - ~  + , = 
d( 

We here recognize an important difference between dimensionally reduced gravity and 
the corresponding flat space o--models, where y would be coordinate independent and 
the traces t rA(y )  2 would already be constants of motion by (3.55). 

All observables can be generated from the set 

Obs := {wl . . . . .  WN; M1 . . . . .  MN} (3.64) 

by taking arbitrary products and linear combinations. In this sense Obs constitutes a 
complete set of classical (and quantum) observables for arbitrary N. These are the 
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conserved "nonlocal charges" of dimensionally reduced gravity. The monodromies are 
not easy to handle at the canonical level because of their nonlocal dependence on A(3/) 
[39]. For this reason we shall mostly deal with the restricted set of observables 

{ } Ob~'s := wl . . . . .  WN; trA~ . . . . .  t rA~;  N o  C O b s .  (3.65) 

We include Am (cf. Lemma 2) here to keep the discussion as general as possible. If  g~ 
is regular at infinity, the condition Aoo = 0 should be treated as a first class constraint 
since this matrix obviously closes into an SL(2, IR) algebra and its entries are integrals 
of motion. The meaning of A ~  is further clarified by the following theorem. 

Theorem 7. The matrix elements of Aoo are the canonical generators of  the group of 
Ehlers transformations with respect to the Poisson structure (3.53). 

Proof By (3.51 ), an infinitesimal Ehlers transformation with parameter e,~B acts on Aj 
a s  

~A.i = [ A j, e l .  

On the other hand, we have 

{ez, a(A~o)~z,, (Aj),t~ } = [Aj, e],~ 

by (3.57). [] 

At this point the following comments concerning the status of the constraints (3.40) 
and (3.50) are in order. In the sequel we shall mainly deal with the case 3/j = -y,j 
(i.e., set m = n in (3.47)).  Then condition (3.40) just means that Aj E s l (2 , • )  and 
the Poisson bracket (3.57) is the standard Kirillov-Konstant bracket for sl(2, ]~). The 
asymptotic regularity condition Aoo = 0 should be considered as a part of the coset 
constraints. It ensures the symmetry of ~ with respect to the involution 3/ ~ 3/-I; 
regularity of  !/' at 9/ = to  then follows from the assumed regularity of ~ at 9' = 0. 
However, the constraint (3.50) is not an ordinary phase space constraint since it relates 
the phase space variables at the different "times" 3/j. 

Let us mention two alternative ways of writing the brackets (3.53). 
- The total phase space of the theory may also be parametrized by the coefficients of 

the expansion of A(3/) at 3/= oo, 

cx~ N 

X-" A -y~- 1 A ( y ) = Z 3 / - ~ L ,  L = - Z . ~  j j . (3.66) 
k=l j = l  

Assuming the total phase space to be 

 ={LIk=l,2 .... } 

and substituting (3.66) into (3.53), we get 

{.4j,,4~} = fabcAj+ k, j , k  > I ,  (3.67) 
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i.e., "half '  of the current algebra A~ 1) - s/(2,--"---C). 
For the isomonodromic sectors with finite N, the currents Aj are clearly dependent. 

For N ---+ c¢, on the other hand, they can be considered as independent canonical 
variables; for arbitrary non-isomonodromic solutions the natural waft to generalize 
our present construction might thus be in terms of the variables Aj together with 
(3.67). The Ehlers charge coincides with the first term of the expansion (3.66), i.e., 

- A o ~  - ,~1. 
- For the infinite set of currents, 

N 
Aj X--" 

Jm,n (1  - ~ , j ) , , ( 1  + 3 , j )  n ' 
.j=l 

we have the "'current algebra" 

{ J~;~,n, J~b,',n' } _- JCabc~ m+m',,,+, ' ' I t  (3.69) 

Now -Aoo coincides with J0,0. 
The Poisson structure (3.53) also appears in Chern-Simons theory, where one starts 

from the connection 

,A := A I ( y , ~ / )  d y +  A2(y,'~) d~ ,  

with the bracket 

{A~(y, ~,), A~(/z,/2) } = 6ab62(y - t z ) .  

Imposing the flatness condition 

A I ~ - A 2 ~ , +  [A1,A2] = 0  

and choosing a holomorphic gauge A2 = 0 (see [40]) ,  one can derive the bracket 
(3.53) as the Dirac bracket for the remaining component A ( T )  -- Al(y) ,  at least for 
the punctured sphere. This link is discussed in more detail in [41,39]. 

To conclude this section we would like to briefly comment on the relation between the 
new Hamiltonian formulation and the conventional one based on the use of one space 
and one time variable, where g(~:,~) would be treated as a quantum field coupled to 
2d gravity and a dilaton. It will be sufficient to explain the differences for the principal 
chiral model (see, e.g., [42] for a description of the corresponding flat space model). 
There the main objects of interest are the x-dependent currents at fixed "time" p, 

jp  = pgpg-1  and Jx = Pgxg -1 (3.70) 

(which are obviously related to the currents J03 and Jl,0 from (3.68)) and their equal 
time Poisson brackets, which read 
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{Jp(x) ~, Jp(y) }=p[II, Jp(x) ® l ] S ( x -  y) , 

{Jp(x) ~, Jx(Y) } = P[/7, Jx(x) ® 113(x - y) + p/7S'(x Y),  

{Jx(x)  ~, Jx(y)}  =0  (3.71) 

(for coset space tr-models the matr ix /7  would not be independent of the fields). The 
Hamiltonian determining the evolution in the p-direction is 

H = f p-'tr(-J~ + J~) d x .  (3.72) 

The non-ultralocal St-term in (3.71) has been a notorious source of trouble, leading to 
irresoluble ambiguities in the Poisson brackets of certain integrated phase space quan- 
tities [42-44].  It also represents a serious obstacle towards the application of standard 
quantization techniques [ 13,14]. By contrast, our "two-time" formalism sidesteps this 
difficulty, as the troublesome non-ultralocal term has disappeared. Besides yielding the 
same canonical equations of motion as the usual approach, the (real) Hamiltonian defin- 
ing the evolution in p-direction in our formalism is equal to (recall from (2.11) that 

p = Ims ~) 

H(p) = - l i ( H ( ( )  - H(# ) )=  ¼P(tr(g~g-')2 + tr(g~g-') 2) 

and therefore agrees with the Hamiltonian density (3.72) of the usual approach. Let us 
note that the minus sign in front of jp2 is simply due to the "Wick rotation" of the l + 1 
metric to a 0 -4- 2 metric; the apparent lower unboundedness of the Hamiltonian (3.73) 
is therefore spurious. 

3.5. Relation to the Schlesinger equations 

Our equations (3.22) are closely related to the so-called Schlesinger equations [45] 
which play an important role in the theory of integrable systems [26]. To exhibit the 
relation, let us consider y j ,  j = 1 . . . . .  N as independent deformation parameters and 
suppose that the monodromy data {Tj , Cj} are yj-independent. Instead of (3.12) and 
(3.1), we would then get the following deformation equations in Yi: 

o~  Aj 
- - - ~ ,  j = l  . . . . .  N.  (3.74) 

oyj y - y j  

Demanding compatibility of (3.74) and (3.12) we arrive at the classical Schlesinger 
equations [26], 

c~Aj = [Aj, Ak] (k # j ) ;  3Aj = _~_~ [Aj, Ai__] (3.75) 
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The system (3.75) is an N-time Hamiltonian system with respect to the Poisson structure 
(3.53) [26] with times yj for the Hamiltonians, 

tr( AiA j ) Hj . . . .  , j = 1 . . . . .  N. (3.76) 
i4=j "Yj -- Yi 

The Hamiltonians Hj mutually commute and can alternatively be obtained from 

Hj = res t rA2(T).  (3.77) 
T=Tj 

The ~--function (3.28) is the generating function for Hamiltonians H j  in the sense that 

8r - -  = Hjz. (3.78) 
OZi 

Now we are in the position to formulate the theorem relating the Schlesinger equations 
(3.75) to our deformation equations (3.22). 

Theorem 8. Let the functions Aj({yk}), j = 1 . . . . .  N solve the Schlesinger equations 
(3.75) and obey the constraint (3.15). Furthermore, let the variables yj depend on (~:, ~) 
according to (3.3), i.e., Zi = Y (w J; ~:, ~7). Then the residue functions Aj ( {Yk (~:,'~) }) 
satisfy Eqs. (3.22). 

Proof The proof is straightforward. Using (3.75), (3.2), we get, for example, 

-~Tk = _1 k~j [Aj,Ak] {Tk_~__ "~J l~ - i~ j  J 
~-~ 1 + Yk 1 + y j  

A.i( 
k ~ ~ ' ~/J - ~ ~ k  . 

2 ~ i  [Ak,a.i] 1 [ Ak] 
=sO ( ( 1 - y j ) ( 1 - - y k )  + ~ - - ~  A j ' Z  " 

• k 

The constraint (3.15) eliminates the last term in (3.79). 

(3.79) 

[] 

To clarify the link between Hamiltonians H (¢) , H (~) (3.54) and the Hamiltonians H.i 
(3.76), we note that the evolution in the ~:-direction of an arbitrary solution of (3.75) 
is given by the Hamiltonian 

~'-~HjT.i~ = 1 ~ tr(AjAk) 1 ~ t r (Z jZk ) .  
J ~:-------~ , (1 - - ~ - -  Yk) 2(~: -- ~) k~j 

Using (3.26) and comparing this result with (3.54), we get 

H(,)=~-~Hizi ~ 1 ~-~ t rA~{~ 1 } 1 _ tr(Aoo) 2 
.i --so-----{ J ( I - -TJ )2  + 2 ( s c - ~ )  " 

(3.80) 

Since the terms containing trA.~ commute with all Ak by virtue of (3.53), they do 
not give any contribution to the equations of motion, and thus can be interpreted as 
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contributing to the "vacuum energy" only (the last term on the r.h.s, obviously vanishes 
for asymptotically flat solutions). Upon quantization the "vacuum energy terms" turn into 
Casimir operators, and do contribute to the wave function via an explicitly computable 
phase factor. 

The Schlesinger equations together with (3.3) imply that the dependence of Aj (and 
in fact any phase space variable depending on the A.i's ) on the parameters wj is governed 
by the mutually commuting Hamiltonians, 

H (wj) = O~/J H. (3.81) 
awi J, 

since 

aAj : {H(Wk) ' A j } .  (3.82) 
awk 

Therefore the Hamiltonian H (w j) (3.81) can be interpreted as a generator of translations 
in the variable w j, as it moves the position of the jth singularity. The Hamiltonians 

(3.81) also commute with the total Hamiltonians H (¢) and H (~) provided (3.15) is 
satisfied. In fact, (3.82) means that, in analogy to evolution in ( and ~ directions, 
the proper treatment of the evolution in wj direction is the following: the canonically 
conjugate variable to wj is 2kwj; then the equation 2kwj - H (w~) = 0 should be treated 

as a constraint in analogy with the constraints C (~) and C (~) (3.58). 

4. Quantizat ion 

4.1. Commutation relations and Bethe ansatz 

To quantize the model, we replace the Poisson brackets (3.53) by commutators in 
the usual fashion, 

[ a ( y )  o, a ( / z ) ]  = i h [ r ( y - ~ ) ,  A ( y )  ® 1 + 1 ® a ( / z ) ] .  (4.1) 

The entries of the matrix of A ( y )  thus become operators acting on a Hilbert space to 
be specified below; note that on the 1.h.s. of (4.1) we have a commutator of operators 
in Hilbert space whereas on the r.h.s, we have a commutator of ordinary matrices. This 
means in particular that the expansion (3.12) is no longer valid as an operator statement, 
but must be reinterpreted as a property of the states on which A ( y )  acts. We write 

ih ( h ( y )  2e(y)  ) (4.2) 
A(T) -- -~ 2f(y)  - h ( y )  " 

The reality constraint (3.40) translates into 

h ( y )  t = h ( - ~ ) ,  e (T) t  = e ( - ~ ) ,  f ( y ) t  = f ( _ ~ ) .  (4.3) 

(4.1) and (4.2) yield the following commutation relations for the operators h ( y  ) , e (y  ) 
and f (y ) :  
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[ h ( T ) , e ( y ' ) ] =  3 / - T '  e ( T ) - e ( ' Y ' )  , 

[h(T),  f (y , )  ] = ~ 2  ( f (y)  _ f (y , ) )  y _ ,yt 

1 ( h ( y ) - h ( y ' ) )  (4.4) [ e ( y ) , f ( y ' ) ] = -  (y - y , )  

with all other commutators equal to zero. For coincident arguments we have, for instance, 

[h (y ) ,  e (y)  ] = - 2  de(y)  . 
dy 

The Hamiltonians (3.54) remain unchanged; they can be written out more explicitly 
in terms of the matrix elements of A (y) and thereby cast into a form reminiscent of the 
Sugawara construction. Explicitly, 

H ( ' ) =  l _ _ _ ~ t r ( A 2 ( 1 ) ) _  ~2 ( ½ h ( 1 ) h ( 1 ) + e ( 1 ) f ( 1 ) + f ( 1 ) e ( 1 ) )  (4.5) 

H ( $ ) = -  1 - - ~ t r ( A 2 ( - 1 ) )  

-- , h2 ; ( ½ h ( - l ) h ( - 1 )  + e ( - l ) f ( - 1 )  + f ( - l ) e ( - 1 ) )  . (4.6) 

As already mentioned, we shall restrict ourselves to states on which the operator A(T) 
may be represented as in (3.12) with Y.i = -~'.i- Accordingly, we put 

i h ( h /  2 e j )  
ai  --- 2 2fj - h i  ' (4.7) 

so that 

N hj N e /  N 

h(y )  = E e(y)  = Z - - '  f(Y) = E fj (4.8) 
j=l 'y -- ")/j ' j=l 'y '~'J j=l y Z.yj"  

The operators h i, ej and fi are the anti-Hermitian Chevalley generators of SL(2, R)  (see 
appendix) obeying the standard commutation relations 

[hi, ej] = 2e i , [hi, fi] = - 2 f j ,  [ej, fj] = hj ,  (4.9) 

as a consequence of (4.4). 
For the explicit construction of solutions it is convenient to switch from the SL(2, R)  

basis to an SU(1, 1) basis in terms of which raising and lowering operators can be 
defined; this also facilitates the comparison between the noncompact case G = SU( 1, 1) 
and the compact case G = SU(2). The SU( 1, 1) Chevalley generators are defined by 

e j : = ½ ( - i h . i + e j + f i ) ,  f i : = ½ ( i h j + e . i + f j ) ,  h . i : = i ( f j - e . i  ) . (4.10) 

They also obey 

[hj, ej] = 2 e j ,  [hi, f j ]  = - 2 f j ,  [ej, f j ]  = h i ,  (4.11) 
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but are no longer anti-Herrnitean, satisfying instead the following hermiticity properties: 

h.~ = h i ,  e~ = - f i .  (4.12) 

For SU(2), the operators are the same but the hermiticity condition reads 

h~ = h i ,  e~ = + f j .  (4.13) 

In both cases we can interpret ej and f j  as creation and annihilation operators, respec- 
tively (or vice versa) and diagonalize the operators hi. 

Physical states based on unitary representations of SU(2) or on the discrete series 
representations of SU( 1, 1) always admit a "ground state" IP) labeled by some analytic 
function p = p ( y )  subject to the reality condition p ( y )  = p ( - 9 ) .  This state is a lowest 
weight state in the sense that it is assumed to obey the conditions 

h(T) IP) = P(Y)[P) and f ( y )  [p) = 0. (4.14) 

The classical expansion (3.12) corresponds to the special choice 

N 

P(Y)  = Z sj , (4.15) 
j=l T -  YJ 

which is equivalent to hjlp) = sj]p). The "excited states" are obtained by applying the 
raising operators to [p). More specifically, we define the (off-shell) Bethe states for 
both SU(2) and SU(1, 1) by 

IP; vl . . . . .  vm) := e (v l ) . . . e (vM)[p) ,  (4.16) 

where e (y )  is the analog of (4.8) and the complex parameters vi are arbitrary at 
this point. Thus the operators e ( y )  and f ( y )  indeed play the role of creation and 
annihilation operators, respectively, as asserted above; interchanging them turns the 
representation "upside down". For SU(2), the possible values for sj are negative integer 
(since we are working with lowest weight states) and the spectrum of h.i (and hence the 
number of excitations in (4.16)) is bounded with eigenvalues -Is.il,-Is.i[ + 1 . . . . .  ]sjl. 
For the discrete representations of SU(1 ,1) ,  sj is either positive integer with sj >_ 2 
and a semi-infinite "topless" spectrum sj, sj + 1 . . . . .  or negative integer with sj < 0 
and a semi-infinite "bottomless" spectrum with s j, sj - 1 . . . . .  The eigenvalue of the 
Casimir operator is always s j ( s j  - 2) in these conventions. For these representations, 
the physical parameters (masses, etc.) are quantized, and we can claim that the quantum 
theory is "more regular" than the classical theory because the quantization of sj severely 
constrains the types of singularity that can appear in the quantum wave functional. For 
the principal and supplementary series of SU( 1, 1), on the other hand, which have no 
SU(2) analog, sj is a continuous parameter, and there is consequently no quantization 
of physical parameters. (4.15) and the first relation in (4.14) still hold but the Bethe 
ansatz (4.16) no longer works because the corresponding ground state does not exist. 

For the full theory we must also quantize the gravitational degrees of freedom 2k~, 
2k$ and s c, ~, keeping in mind that these are really fields in a special gauge and not just 



424 D. Korotkin, H. Nicolai/Nuclear Physics B 475 (1996) 397-439 

coordinates on the worldsheet. We must therefore replace the Poisson brackets (3.59) by 
commutators and construct an operator representation for the gravitational phase space 
variables. From the canonical brackets (3.59) we deduce 

[~,2k£] = [~,2k£] = ih ,  [~,2k£] = [~:,2k$] = [2k~:,2k£] = 0. 

To realize these commutation relations, we take 

2k< : -ihff--~- + f ( ( , ~ )  , 2k[ : - i h 0 -  ~ + f(~:,~) , (4.17) 

with an arbitrary function f satisfying 

a f  _ 0 f  

A different choice of f will result in a renormalization of the physical states by a function 
of the coordinates and will not affect the physical content of the theory; without loss of 
generality we can thus set 

f(~:,  ~) = 0 .  

The main advantage of (4.17) is that by representing ( ( ,  g~) as multiplication operators 
we salvage their interpretation as coordinates; otherwise the spectral parameter y would 
not remain a function but become a nonlocal differential operator and thus very awkward 
to deal with. It is then obvious that the two equations (4.24) are mutually compatible 
for the same reason that their classical counterparts (2.7) are. Recall that the worldsheet 
coordinates ( ( ,  ~) appear explicitly only because we have adopted the special gauge 
(2.11) identifying the dilaton field with one of the coordinates. In other words, this 
choice of  gauge makes the quantum state ¢ time-dependent through the identification 
of time with the "clock field" p. We note that this long suspected mechanism for the 

emergence of time from the "timeless" WDW equation here comes almost for free (see, 
e.g., [46] for a review and further references). In a covariant treatment the gauge choice 
(2.11) would have to be undone, and the full quantum state would be a functional of p 

rather than a function of the worldsheet coordinates. 

4.2. Hilbert space, physical states and quantum observables 

For obvious reasons we require the total physical Hilbert space 7-/ to be unitary 4 . 
Accordingly, in a given isomonodromic sector we assign to every y j  some unitary 
representation space of S L ( 2 , ~ )  and then take the direct product of these spaces. 
We recall that all yj are assumed to be purely imaginary; admitting arbitrary complex 
yj would necessitate replacing S L ( 2 , ~ )  by SL(2 ,C) ,  since for non-self-conjugate 
pairs with yj = --ff/k ( '~j  ~ ")/k) the matrices Aj are complex. As is well known, 

4 Although in an Euclidean formulation the requirement of unitarity should really be replaced by some 
version of the Osterwalder-Schrader reflection positivity. 
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unitary representations of noncompact groups are infinite dimensional. For SL(2, ]~) 
(or SU(1, 1)) one distinguishes the continuous (principal and supplementary) series 
and the discrete series representations [47] (see appendix for a summary), whereas for 
SL(2, C) no discrete unitary representations exist. In contradistinction to the compact 
case, where we would have to deal with the standard spin s representations of SU(2) 
utilized in [2], we must decide therefore which unitary representations of SL(2,N) 
to use here. Although we will be mainly concerned with discrete series representations 
in the remainder, we would like to emphasize that our only reason for ignoring the 
continuous series representations here is that the technology for solving KZ equations for 
them is not yet sufficiently developed. As we just explained, the necessity of including 
such representations becomes already evident when one tries to extend the present 
treatment to arbitrary complex 3% 

The total Hilbert space containing all N-soliton sectors is obviously quite large. As 
explained above, we can view the quantized N-soliton sector as a system of N compact 
(for SU(2))  or noncompact (for SU(1, 1)) "spins" located at the points (x,p) = 
(w i, 0), where the classical solutions of (2.4) and (2.7) generically have singularities 
on the worldsheet [28]. Since we expect all worldsheet points to be equivalent, it seems 
that we would have to assume these representations to be the same for all wj. However, 
such configurations would not give all possible classical solutions in the classical limit. 
This suggests that we should not assign one particular representation to every point, but 
instead the (formal) direct sum of all representations, 

:= ~ ( s )  (4.18) ~-~(Wj) 
S 

(of  SU(2) or SU( l, 1) if wj is real and SL(2, C) otherwise). Then the Hilbert space as- 
sociated with an isomonodromic sector is parametrized by the set (wl . . . . .  wN) (which 
is invariant under complex conjugation) and given by the direct product 

N 

7-/(u) ({wi}) := @ 7-g(wj). (4.19) 
j=l 

The full Hilbert space 7-/ should contain all these spaces as subspaces, i,e., we should 
demand that 

7-/(N) ({wi}) C 7-[ (4.20) 

for all possible choices of N and w i. For any two disjoint sets of data {wi} and 
{w~} with respective soliton numbers N and N', we can construct a new Hilbert space 
describing both configurations by taking the direct product 

(wj, : =  ({wj}) @ 
If the sets are not disjoint, we simply include the overlapping factors only once in the 
product. In this way we ensure that the various subspaces are consistently embedded 
in a partially ordered sequence of Hilbert spaces, and we can therefore define the total 
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Hilbert space 7-/as the inductive limit of the subspaces contained in it. Superficially, 7-( 
thus looks like a Fock space with N playing the role of a particle number operator, but 
matters are complicated by the fact that there is a continuous infinity of parameters on 
which 7-( may depend, so we cannot expect the Hilbert space 7-/to be separable. This 
construction would be reminiscent of similar constructions in the context of recent work 
on the loop representation of canonical gravity [48]; at the classical level it is related 
to the problem of whether and in what sense the isomonodromic solutions exhaust the 
full phase space of dimensionally reduced Einstein gravity. In summary, the structure of 
the full Hilbert space 7-I is rather complicated and remains to be fully elucidated. 

Physical states 4 must satisfy the quantum analog of (3.58), i.e., the WDW equations 

Cc~)4 = C ~ ) 4  = 0. (4.21) 

By (3.62) these equations are equivalent to 

d 4  d 4  
- _ - 0 .  (4.22) 

d~ d~ 

Therefore the physical states are independent of the coordinates; we thus have a rather 
simple realization of the idea that physical states in quantum gravity should be invariant 
under the full set of 2d coordinate transformations! The usefulness of this observation 
relies essentially on the fact that the coordinate dependence enters essentially only via 
the spectral parameter y and the constraints C ~() and C ~) are represented by highly 
nontrivial operators. Quantum observables O by definition commute weakly with the 
constraint operators C (¢) and C (~), i.e., 

[C ~ ,  O ] 4 =  [C ~ ,  0 ] 4 = 0  

for any physical state 4.  Thus from any such state we can obtain another physical 
state by application of the operator O. In Section 3.5 we have given a large variety 
of classical observables based on the monodromy matrices Mi. Since these present no 
ordering problems of any kind for finite N, we can straightforwardly take them over to 
the quantum theory. In other words, the quantum monodromies are obtained from (3.19) 
by promoting A (3,) to an operator in accordance with (4.2). As before, we shall consider 
only the restricted set Obs consisting of (the quantum versions of) the classical integrals 
of motion trA~ and A~.  As we will see, the quantization of the Schlesinger equations 
in terms of Aj leads to the KZ equations; then the quantum monodromies turn out to 
coincide with the monodromies of the KZ equations up to similarity transformations 
and to carry representations of a certain quantum group [49,50]. 

Since we are working with unitary representations, the natural scalar product on any 
subspace 7~ ~N) is automatically positive definite (negative norm states would, however, 
arise in a fully covariant treatment, i.e., prior to the conformal gauge fixing (2.11 ), and 
would have to be eliminated by a suitable gauge constraint). Furthermore, owing to the 
coordinate independence of the physical states (4.21), this scalar product is invariant 
under the full diffeomorphism group when restricted to physical states because for two 
such states, 
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d 
Io2) = ( d ) o l  fo2)+  (ol Ic( )o2) = 0. 

In a covariant formulation we would have to integrate over the fields (:(z) and ~(Z) with 
a suitable measure, which would presumably include a Faddeev-Popov determinant to 
ensure diffeomorphism invariance, together with a/3-functional for gauge fixing. Given 
observables O1 . . . . .  On E Obs and any nontrivial physical state O, we can thus compute 
the correlators 

<O~'-'On> = <oIOl""OnlO) 
(O[O) (4.23) 

By construction, such expectation values are invariant under 2d diffeomorphisms and 
therefore meaningful objects in quantum gravity. 

4.3. Solving the Wheeler-DeWitt equation 

The central task is now to solve the quantum constraints (4.21), which can be written 
out as 

( 2 k , - H ( ¢ ) ) O = ( 2 k ~ - H ( ( ) ) O = O ,  (4.24) 

where O is the full quantum state. Using (4.17), Eqs. (4.24) take the form 

- i h  30 = a(()O, - i h ? ~  = H(#)O, (4.25) 
a~ a~ 

where, in the N-soliton sectol, O is an ~(N)-valued function of (~:, ~). Readers may 
wonder at this point why these equations are first order, since the usual WDW equation 
is a second order (functional) differential equation. This feature is explained by the fact 
that the first order equations (4.25) arise due to the separation of the theory into left 
and right moving sectors, and is similar to the fact that the Virasoro constraints of string 
theory in the lightcone gauge become linear in the longitudinal target space coordinate 
X - .  

To simplify matters we shall not utilize the full Hilbert space (4.19) but only consider 
functionals that live in the N soliton subspace, 

N 
: =  : 

j=l 

with fixed wj C ]~ and sj. For the rest of this and the following sections we will work 
entirely with the SU( 1, 1) basis from now, because this permits an easy passage to the 
compact group SU(2). Furthermore, we will restrict attention to the discrete unitary 
representations, leaving the consideration of continuous representations for future work. 
Explicit solutions of (4.25) on the subspace 7-/(N) may be obtained by exploiting the 
close link between (4.25) and the KZ equations [ 15] for SL(2,•) ,  which read 
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0@KZ = --ih E ~ ' 2 J ~ k  ~KZ , (4 .26)  

~ J  k*j 3'j -- ~'k 

with an ~(N)-valued function #Kz(~:, ~). Here 

g2jk := l hj ® hi + f j  ® ek + ej ® f k  (4.27) 

is a linear operator which for j v~ k acts nontrivially only in 7-[j and 7gk and as the unit 
operator on the other spaces (the operators g2jk retain their form when we replace the 
SU(1,  1) generators by the SL(2,R)  generators e j , f i , h i  ). 

Solutions of (4.26) for s u ( 2 )  were apparently first constructed in [51,52]. The 
adaptation of these results to the positive discrete series representations of SL(2,  R) 
reviewed in the appendix works as follows: substituting expressions (A.6) for generators 
e j ,  fj, hj in terms of variables z j ,  we see that O.i k are differential operators of the second 
order, and the KZ equations (4.26) can be realized as the following system of linear 
partial differential equations for the wave function ¢0(yl . . . . .  YN; Zl . . . . .  zN): 

{ 0 ~ )  
O* = _ i h  Z 1 Z . 2 02~b ( s .  &b Si ~zJ ozi k*J rj - (zj - k) oz .oz + Zj) \ " ozk 

+ l s j sk4 ' }  . (4.28) 

Solutions of these equations corresponding to the positive discrete series correspond to 
functions which for all zj are holomorphic in the upper half plane. They are described 
by Theorem 9. 

Theorem 9. The following expression satisfies Eqs. (4.26): 

 , z=Jdvl...fav ,w o, (4.29) 

A1 AM 

where 

:= e( vl ) ..  "e( VM) Ip) (4.30) 

are the "off-shell" Bethe states introduced in (4.16) and the function W is defined by 

W({'~'j'Ur}) := H (')~]--~k)--ihsjsk/2 H (Ur--Us)-2ih 
1 <_k<j<_N 1 <s<r<M 

M N 
X H H ( ~ / j  -- Ur) -iltsy (4.31) 

r=l j=l 

and is assumed to be single-valued on the cycle A in C m consisting of a family of 
vr-dependent contours A r in C M having empty intersection with the hyperplanes Vs = Vr 
for r 4= s and the (~, ()-dependent hypersurfaces Vr = Y.i' where r, s = 1 . . . . .  M and 
j = l  . . . . .  N. 
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Proof (See [52,53] ). In the remainder we shall use the shorthand notation 

J d v = / d v , . . . / d V M  (4.32) 

A AI AM 

for the multiple contour integral in (4.29). Let us also define 

q~r := e(vl ) "" e(vr-i )e(Vr+l) "" e(VM)]p), (4.33) 

so that 

0~or = 0 (4.34) 
OVr 

since the term e(Vr) is omitted from q~r. Then by a lengthy but straightforward calcu- 
lation, taking into account the definiting conditions (4.14), one shows that 

( ~rl3-------L----rej~Or), (4.35) Hjq~ = (ih) 2 ajq~ - 3(i - -  Ur 

where 

Hj=(ih)2 E f2j___k_ (4.36) 
k4~.i "Y] - -  T k  

are the KZ Hamiltonians entering (4.26). Here we have defined the functions 

sisj s_____L__ j (4.37) 
aJ = E 2(~-]--~ Ti ) E U r - - y  j ' 

i =/= .] r 

/3r= E _2 + E  _sJ (4.38) 
s # r  Ur Us . Or ~ j  

.I 

By construction, W in (4.31) satisfies 

OW OW - -  = -ihcejW, - -  = -i]:i1~rW. (4.39) 
a y j  avr 

Invoking (4.35) and (4.39), we get 

__04~KZ 1 ( r ~ 0 { ~ } e j  __t3rei ) 
-+" ~ H j ~ ) K Z  = ~( dv -- i h  E @r W 

ag, j m j ~ q~ - ~.i - vr 
A r 

=_ej . fdV~r _~Vr { W } - - ~ r  = O, 
U r - -  "~  

A 

because of (4.34), and there are no boundary contributions as A is closed. [] 

For a discussion of the completeness of the solutions (4.29) in the case of SU(2), 
see [52,54]. The cycles A, on which the solutions depend in addition to the parameters 
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characterizing the N-soliton Hilbert spaces, are generically rather complicated, especially 
in the limit h -+ 0. For SL(2, R), the space of solutions is infinite dimensional even 
for fixed soliton number N due to the fact that the underlying Hilbert space 7-/(N) is 
also infinite dimensional: unlike for SU(2), the basic formula (4.29) yields nontrivial 
solutions for arbitrary M. 

With the solution (4.29) of the KZ equation at hand, we can now proceed to the 
construction of the full WDW functional ¢ solving (4.25). 

Theorem 10. Let q~KZ C ~ be any solution (4.29) of the KZ equations (4.26). Then 
the ~-valued function q~(~:, ~), defined by 

17"N \~--~W./J ( O')'j "~ -h2sJ(sS-2)14+KZ ({,),j}) (4.40) O = ( (  -- ~)-h2s~(s~-2)/4 =f 

with 

soo := 2M + E sj ,  (4.41) 
J 

satisfies the WDW equation (4.25). 

Proof From (4.2), we find 

tr( a jak  ) = --h2 j2jk . 

Moreover, one can check the following relation between the total Hamiltonians H (¢), 
H (~) and the KZ-Hamiltonians Hj (3.76) which resembles the classical relation (3.80) 
between H (¢), H (~) and the Schlesinger Hamiltonians. For instance, 

1~. j~. t r (A~)(~  ( 1 ) 9 9 ) 2 )  H(¢) E HjXj_~  
j ~ - . 

l ( E ) 2  4 2(~: ~---~ tr . Aj . (4.42) 
.1 

The second term on the r.h.s, of (4.42) involves the Casimir operators of the respective 
SL(2, R) representations and acts on the off-shell Bethe states according to 

tr(A~)~p = (ih)212jjq~ = - l h 2 s j ( s j  - 2)~o. 

Writing 

i h ( h o o  2 e o o ) i h (  1 l i ) ( h o o  2 e o o ) ( 1  i )  
- A ~ = ~ -  2f~o -hoo = ~  - i  2 f ~  -hoo i 1 

we have 

h ~ q ~  = 2 M +  ~o~ sooq ~ . 
j=l j 

(4.43) 

(4.44) 
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For the last term of (4.42) we then get 

tr(EA.i)2~o=(ih)2Ed~ik~=-h2(1sc~(s~-2)q~+E[~rej~Or), ( 4 . 4 5 )  

j j,k j,r 

where the functions fir and the states ~r are defined in (4.38) and (4.33), respectively, 
and the off-diagonal last term on the r.h.s is due to the action of the operator ejf i. 
The r.h.s, of  (4.43) contributes in an obvious way to (4.40). As for (4.45), the second 
term on the r.h.s., which is not diagonal, does not contribute to H(¢)q~ because by Eq. 
(4.39) and by partial integration (with 0A = 0) it gives a term inside the integral (4.29) 
proportional to 

I d o l .  cgW = - f  dv~-~e jW cgqgr ~vr ejq~r av~ 
A j,r A J 

which vanishes by (4.34). In this way we arrive at 

trA 2~q~Kz = -½h2s~(s~ - 2)¢KZ, (4.46) 

which is diagonal; therefore, all terms depending explicitly on (~:, ~) can be integrated 
straightforwardly. [] 

We note the strong similarity of (4.40) with the classical formula (3.30) : the prefactor 
is essentially the same except that we have replaced the classical expressions in the 
exponent by the eigenvalues of the corresponding operators. The factor involving (~:-g~) 
can be absorbed into a renormalization of ~ by an appropriate choice of the function 
f ( ( , ( )  in (4.17). The state ~v,z can therefore be regarded as the quantum analog of 
the classical ~--function 5 . 

Formula (4.40) gives the general solution of (4.25) for both SU( 1, I)  (and therefore 
SL(2, ~) ) and SU(2) for the respective lowest weights sj. For SU(2) the theorem was 
already stated without proof in [2], whereas the noncompact case was not considered 
there. This leaves us with the task of translating the classical coset conditions of  Sec- 
tion 3.3 into the quantum theory. However, we cannot directly generalize the condition 
g((, ~) E SL(2, ~)/S0(2) because we do not know the proper definition of the quan- 
tum operator corresponding to g(~:, ~). This is why in Section 3.3 we explored different 
ways to formulate the coset constraint. The similarity between ~- and ~KZ suggests the 
necessary conditions, 

Aj ~KZ = 0 (4.47) 

5 Alternatively, one could identify the quantum r-function with the corresponding evolution operator which 
is a "matrix" whose columns constitute an orthonormal basis of  states @KZ in the space of  solutions of KZ 
equations. 
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1) 
q~KZ . . . . .  = @KZ(3"I . . . . .  TN) • (4.48) 

These imply the following restrictions on the parameters of ~KZ, and hence on the full 
WDW wave functional q~ by Theorem 10. 

Theorem 11. The solution ~KZ in (4.29) of the KZ equations satisfies the symmetry 
_ y . - I  and = s j  ( j = l ,  ,n) conditions (4.47) and (4.48) if N = 2n, yj+, - j sj+n . . . .  

N 

s o  =-- 2 M  + ~ sj = 0 ,  
j = l  

(4.49) 

and the cycle z~ in (4.29) is invariant with respect to the continuous deformation of y j 

into 9, . -  1 j • 

Unfortunately, there is a simple argument showing that (4.49) cannot be satisfied 
for the noncompact theory with the discrete representations of SU(1,  1) or SL(2 ,N) ,  
unlike for the compact group SU(2) (for which sj < 0). Namely, for the noncompact 
groups we have sj > 0 and condition (4.49) can never be met; switching to the negative 
discrete series, for which sj < 0, does not help because M becomes negative due to 
the interchange of ej and f j .  Therefore it appears that the discrete representations of 
SU( 1, 1) are unsuitable for the task at hand, at least as long as we do not make 
simultaneous use of the positive and negative series. This conclusion is confirmed by an 
analysis of  the sign of the Casimir operator (cf. (4.52) below) which shows explicitly 
that the known classical solutions are associated with the principal series representations 
of SL(2 ,  N)  or SL(2 ,  C). Moreover, let us repeat that for 9'2 = -~-k, when 7-/.i carries 
a unitary representation of SL(2 ,C) ,  the discrete series are altogether absent, so the 
consideration of the principal series cannot be avoided in any case. Finally, a complete 
treatment of  the quantum coset constraints will require the implementation of (3.49) at 

the quantum level. 
As an aside we observe that the "ultra quantum limit" h ~ ~ corresponds to the 

semi-classical limit of the WZNW model (and vice versa). Heuristically, this limit is 
dominated by the stationary points of the integral which are determined by the equations 

flj = 0, or, equivalently, 

Z 2 ,j + - o. (4.50) 
s ~ r  Vr Vs . O r - -  3"j 

These are nothing but the so-called Bethe equations [13,14] which diagonalize the 
"matter Hamiltonians" Hj on the Bethe states (4.16), except that the Bethe parameters 
vr here depend on the coordinates because Zi = ~/J(~:,~)" Consequently, in the limit 
h --+ ~ ,  the quantum states become more and more sharply peaked about the "on-shell" 

Bethe states. 
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To study the classical limit of the quantum states we have to consider the expectation 
values of the various observables and their h ~ 0 limits. Although this is a difficult 
problem, it is at least clear that in order to end up with a nontrivial classical solution 
the expectation values (tr A~) must stay finite in the limit h ~ 0. This can be achieved 
by letting h --+ 0 and s i --+ oo in such a fashion that the product hsj remains finite, i.e., 

hSj ~ ,~j~(0) =/t: 0 as h ~ 0,  (4.51) 

such that for discrete representations, 

(~hj  q-e j f iq-  f j e j ) = - ~ , a j  , < 0 ,  (4.52) lim (tra2) = _ l im h2 1 2  1 ( ~(0)'~2 
h---+0 

since the operator in parentheses is just the Casimir operator. On the other hand, tr A 2 is 
positive for all known classical solutions, and this indicates again that we must eventually 
consider solutions based on the principal series representation for which the expectation 
value (trA~) is positive. 

5. Stringy aspects 

To conclude we would like to emphasize the intriguing analogies of our results 
with certain aspects of string theory and the tantalizing hints of a new type of theory 
which could emerge upon a "stringy" reinterpretation of (a supersymmetric version of) 
dimensionally reduced quantum gravity along the lines already suggested in [56]. The 
similarity of the dilaton field p and the logarithm of the conformal factor with the 
longitudinal target space coordinates X + and X- ,  respectively, was already pointed out 
in [ 36]. Furthermore, the choice of Weyl canonical coordinates in (2.11) corresponds 
to the lightcone gauge fixing condition X + -- 7 in string theory; in [21] it was shown 
that this analogy remains valid for higher genus worldsheets if one identifies p with 
the globally defined (lightcone) time coordinate introduced by Mandelstam to describe 
string scattering in the lightcone gauge. The  fact that through this choice of gauge the 
field variables 2k( and 2k¢ become canonically conjugate to the worldsheet coordinates 
is also in accord with this interpretation. The transmutation of the conformal factor 
into a longitudinal target space degree of freedom has also been proposed in Liouville 
theory (i.e., subcritical string theory) [57]; however, the Lagrangians considered for 
this purpose apparently do not arise from a dimensional reduction of Einstein's theory. 

We have also remarked that the WDW equations (4.24) should be considered on a 
par with the Virasoro constraints of string theory as they state nothing but the vanishing 
of the off-diagonal components T¢~ and 7"$$ of the full energy-momentum tensor on 
the physical states, where the full energy-momentum tensor is defined to include the 
gravitational contribution O(k =-- 2iO~kO~p (or its Hermitean conjugate), again in analogy 
with the Liouville theory. Thus instead of regarding the expressions (4.40) as solutions 
of 2d matter coupled quantum gravity, we could alternatively interpret them as physical 
states in some higher-dimensional target space. The operators e ( y )  and f ( y )  would 
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play the role of transverse creation and annihilation operators, respectively. We note 
that the relevant "oscillators" are not the Fourier coefficients of the string target space 
coordinates with respect to the left and right moving worldsheet coordinates ~: and ~, 
but rather based on an expansion with respect to the spectral parameter y which appears 
to be the truly fundamental variable. Our hypothetical string would thus be neither 
closed nor open, but "unidexterous". The similarity between the contour integrals over 
products of "oscillators" appearing in (4.40) and the corresponding expressions giving 
physical string states in terms of DDF operators is noteworthy (in fact, our expressions 
are almost identical with the integrals for correlators of the c < 1 minimal conformal 
models [ 51 ] ). 

Of course, we would not expect the new "string" to be automatically consistent; 
instead, consistent models should satisfy further constraints such as absence of anomalies 
(which is the criterion singling out the critical string theories). As is well known, the 
crucial consistency test in the lightcone gauge is the closure of the Lorentz algebra (see, 
e.g., [58] ), and in addition to defining the target space we will have to look for the 
analog of the Lorentz algebra. The obvious candidate for the transverse subgroup for the 
model investigated here is the SO(2) subgroup of the Ehlers group SL(2, ~ )  generated 
by A~  (see (3.14)),  but the extension to a full Lorentz group remains to be found. 

One of the outstanding problems of midi-superspace quantum gravity is to find a 
symplectic (canonical) realization of the Geroch group [34]. Classically this is simply 
the group of "dressing transformations" which add extra regular singularities to ~ ( y )  
with special monodromy data. Here we have investigated the isomonodromic sectors 
separately, where only representations of SL(2, R) appear, but the general case should 
involve the affine extension SL(2, •). The appearance of the involution y --+ y-1 in 
(3.50) and (4.48) moreover suggests that in a fully covariant formulation the physical 
states should be invariant under the "maximal compact" subgroup SO(2) ~ already 
encountered in [35,33,36]. While there are indications from flat space models that such 
transformations cannot be realized within the conventional canonical approach [59], the 
situation may be different for our new formulation. The quantum Geroch group would 
relate the quantum states to one another in the same way that the ordinary Geroch 
group relates classical solutions; it would mix the isomonodromic sectors and change 
the soliton number N. The monodromy operators (3.17) are the natural candidates for 
conserved quantum nonlocal charges. The work of [49] on the quantum group structure 
of the monodromy algebra of the KZ equations suggests that the Geroch group could 
become a true quantum group in the technical sense of the word (see also [50] ). In the 
string context the quantum Geroch group would be interpreted as a spectrum generating 
symmetry with the physical states belonging to unitary representations of the relevant 
noncompact (quantum) group. 

The introduction of interactions between physical string states would amount to a 
"third quantization" from the 2d worldsheet point of view, such that scattering processes 
involving different physical states would correspond to the interaction of different 2d 
"universes". However, just as the construction of a proper string field theory requires 
more than the Virasoro constraints, such an interpretation of our model would involve 
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essentially new elements beyond the WDW equations (4.24). In particular, it would 
necessitate repeating the analysis of this paper for higher genus worldsheets. Readers 
may appreciate the resemblance of these ideas with recent attempts to understand the 
possible loss of quantum coherence and the emergence of baby universes in quantum 
gravity on the basis of certain 2d models [60]; however, our intentions here really go 
in the opposite direction as we wish to build a new kind of string theory from these 
models rather than to treat string theory as an ancillary model to understand features of 
2d quantum gravity. 

Finally, the manifest split into left and right moving sectors put in evidence by the 
automatic compatibility of (3.22) and the mutual commutativity of the Hamiltonians 
(3.54) as well as the canonical constraints (3.60) is strongly reminiscent of holomorphic 
factorization in string theory. It suggests that our formulation is the natural starting point 
for studying the reduction to one dimension. In analogy with string theory, which can 
be regarded as a 2d field theory composed of two one-dimensional (chiral) halves, such 
a reduction would not really be a dimensional reduction to one dimension. One might 
even argue that the 2d theory is already "one-dimensional" in that the (g:, ~)-dependence 
essentially enters only via the (analytic) dependence on one complex variable y. In 
contrast to a naive dimensional reduction of the original theory, which would just leave 
us with trivial plane waves, the rich structure of stationary axisymmetric or colliding 
plane wave quantum gravity would be entirely preserved in this scheme. This also 
indicates that the spectrum of the new theory would contain many more excitations than 
the ordinary string because the structure of unitary representations of S L ( 2 ,  R) and other 
noncompact groups (see [61] ) is considerably more intricate than the "linear" harmonic 
oscillator spectra of string theory, leaving room for myriad solitonic excitations at the 
quantum level. 
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Appendix A. Unitary representations of SL(2, •) 

For the convenience of the reader we here summarize some pertinent results about 
unitary representations of SL(2, R);  see [47] for details and further information. All 
representation spaces 7-/(s) can be realized as Hilbert spaces of functions ~o(z) of one 
(complex or real) variable z. The action of the group element G C SL(2,1R), 
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(where ad - bc = 1 ), on any such function is given by 

( a z  + b ~  
Ts(G)q~(z)  = q~ \ c z  + d J  (cz  + d )  -s  , (A.2) 

if  s is integer; otherwise (i.e., for continuous representations) we have Icz + dl -s  
instead of (cz  + d ) - s  on the r.h.s, of this formula. For all representations, the Chevalley 
generators with commutation relations 

[h, e] = 2e, [h, f] = - 2 f ,  [e, f] = h ,  

are represented on 7-g ~s~ by the differential operators 

2 d  d d 
Ts(e) = z - -  + s z ,  Ts(f) = - - - ,  Ts(h) = 2z ~ z  + s ,  (A.3) 

dz  dz 

where the parameter s must satisfy the constraints given below. These operators are 
anti-Hermitean with respect to the scalar products given below. The Casimir operator 
Ts ( lh  2 q-ef-}-re) is always diagonal; by direct computation one easily verifies that its 

eigenvalue is ½s(s - 2). 
All unitary irreducible representations of SL(2,  ~ )  (with the exception of the so- 

called limit of  the discrete series corresponding to s = 1 ) are contained in the following 
list. 
- For the principal series the functions ~o(z) live on the real line, i.e., z E •, and the 

scalar product is the ordinary LZ(R) product (which is independent of s),  

(¢,, ~)  = f O(z)~(z) d z .  (A.4) 

The allowed values for s are s = 1 + iq, q E R, and the spectrum of the operators 
Ts[e],Ts[f] and Ts[h] is continuous for all such s. 

- For the supplementary series, the functions ~ ( z )  are again defined on the real axis, 
but the scalar product now depends on s and is given by 

(¢" ~)" = l O(zl )~o(z2)Izl - Z 2 [  s - 2  dZl dz2 , 

R2 

with s E R and 0 < s < 2 (the latter restriction follows from requiring (~o,~)s to be 
positive for nonzero ~o). The spectrum of the operators Ts[e], Ts[f], Ts[h] is again 
continuous. 

- The positive discrete series representations consist of the functions holomorphic in 
the upper half plane normalizable with respect to the scalar product 

(~,¢P)s := f ~ t ( z ) q ~ ( z ) [ I m z [ S - 2 d z d Z .  (A.5) 
, /  

Imz>0 
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In order to ensure single-valuedness of  the functions ~ ( z  ), only discrete values of  s 

are admitted; furthermore, convergence of  the integral at Im z = 0 requires  s > 2, so 

we have s = 2, 3 . . . . .  
To construct an explicit basis of  functions for the discrete series, the SU( 1, 1) basis is 

more useful; it is realized by the operators 

Ts(e)  = I T s ( -  ih + e + f) = ½(z - i ) 2 ~ -  z + ½s(z - i ) ,  

T s ( f )  = ½ T s ( i h + e + f )  = ½(z + i) 2 d  + ½s(z + i) , 
az  

d 
Ts( h ) = Ts(i( f - e))  = - i (  z - i) ( z + i) -~z - isz . (A.6) 

We can explicitly check that 

Its(h), rs (e)]  = 2 r s ( e ) ,  [T~(h), Ts ( f ) ]  = - 2 T s ( f ) ,  

[Ts(e),  T s ( f ) ]  = T s ( h ) ,  

as well as 

r s ( h )  = Ts(h)  t , Ts(e)  = - T s ( f )  t , 

with respect to the scalar product (A.5).  The representation space 7-/~+ ~) of  the positive 

discrete series is spanned by the following functions holomorphic in the upper half-plane: 

~+k , k = 0 , 1 , 2  . . . . .  (A.7) ~o s ( z )  = (z  - i ) k ( z  + i )  - s - k  

The generators T~(e),  T~( f )  and T~(h) act on these functions as follows: 

T , (h)  -s+kq~s = ( s +  2k)q~ +~, Ts(e )~os+k=i ( s+k)~  °s+k+l 

r s ( f )  q~s+k .- s±k-1 = t * : ~ ,  . ( A . 8 )  

The lowest weight state corresponds to the function ~ which is annihilated by T s ( f )  

and from which all other functions can be generated by repeated application of  the 

raising operator Ts (e ) ;  also the operator Ts (h)  is diagonal in this basis with eigenvalues 
s , s + 2 ,  s + 4  . . . . .  
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