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Abstract. We review the WKB method for multicomponent fields obeying hyperbolic linear
partial differential equations and derive a general necessary and sufficient condition for the
formalism to provide transport equations. We apply the method to linearized perturbations of
perfect fluid solutions to Einstein’s equation and show that the gravitational and sound wave
modes satisfy this condition, whereas a zero-frequency, non-propagating matter mode does not.
We derive the transport equations for the wave amplitudes in leading order; they exhibit in
particular the influence of background curvature on the propagation of gravitational waves.

PACS numbers: 0425N, 0430N

1. Introduction

In an earlier paper (Ehlerset al 1987) we have dealt with the problem of propagation
of gravitational waves through pressureless matter using a WKB method which provided
transport equations for the wave amplitudes in the zeroth order of approximation. The
purpose of this paper is twofold. First we shall establish a general condition which is
necessary and sufficient in order that the WKB method leads to transport equations for
the amplitudes of multicomponent fields, and secondly we shall apply the method to linear
perturbations of perfect fluid solutions to Einstein’s field equations.

In section 2, we derive the condition announced in the preceding paragraph, which was
found earlier in a special case (Ehlerset al 1987), and is based on a generalization of
the long-known ‘lemma on bicharacteristic directions’ (Courant-Hilbert 1962, ch 6, # 3,
no 1). The method applies to linear partial differential equations of any order, provided
the differential operator does not depend on the short-wave parameter to which the WKB
asymptotics refers. In the context of this analysis, which is carried out in section 2,
we introduce a distinction between regular and singular modes, and we separate the
amplitudes of the perturbations into primary and secondary parts. In the regular case,
the primary amplitudes obey transport equations along the rays while the secondary ones
follow algebraically from the primary ones. Thus, initial data have to be specified for the
primary amplitudes only.

In section 3, we apply the method developed in section 2 to linear perturbations of
perfect fluid solutions to Einstein’s field equation. The background solution is assumed to

† Permanent address: Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India. E-mail address:
prasanna@prl.ernet.in

0264-9381/96/082231+10$19.50c© 1996 IOP Publishing Ltd 2231



2232 J Ehlers and A R Prasanna

have geodesic fluid world lines but is otherwise arbitrary. Naturally there are three modes.
Two of them, corresponding to gravitational and sound waves, respectively, turn out to be
regular, while the third one does not propagate and is singular.

The gravitational waves, in particular, propagate, according to the lowest WKB order,
as in empty space; only higher orders show the influence of background curvature and,
of course, ‘diffraction’ corrections depending on inhomogeneities. This paper may be
considered as an extension of an earlier one (Ehlerset al 1987) which gave some of our
results for the case of pressureless matter.

By refining the matter model and extending the approximations it should be possible
to get more detailed results on the interaction of gravitational waves with matter, including
damping mechanisms.

2. General WKB formalism for vector valued functions

Let a linear partial differential equation

P(x, ∂)U = (Aab(x)∂a∂b + Ba(x)∂a + C(x))U = 0 (2.1)

of second order for a functionU : Rn → Rm be given where theAab, Ba, C are (m × m)

matrix valued, smooth functions with real entries. (We could also consider one equation of
arbitrary orderp, but since the application in the following section concerns an equation
of second order, and the general formalism is independent of the order, we treat (2.1) as a
representative of the general case.)

All real solutions of (2.1) can be obtained as real parts of complex solutions; for
simplicity, we denote such solutions asU .

In order to set up a scheme which may provide approximate solutions of (2.1) with a
rapidly oscillatingphaseS and a slowly varyingamplitudeV one inserts, as a preliminary
step, an expression

U =
[

exp

(
i

ε
S(x)

)]
V (2.2)

into (2.1). TreatingS andV as unspecified functions and using the abbreviation

la = ∂aS (2.3)

for the wave covector, one can rearrange the expressionP(eiS/εV ) as follows:

P(x, ∂)(eiS/εV ) ≡
(

i

ε

)2

eiS/ε

(
L0 + ε

i
L1 +

(ε

i

)2
P

)
V (2.4)

where

L0(x, l) = Aab(x)lalb (2.5)

is called theprincipal symbolof P , and

L1(x, l, ∂) = 2Aab(x)la∂b + Aab(x)∂alb + Ba(x)la (2.6)

is a first order differential operator.
As in the typical case, considered here, so in the general case of apth order operator,

the principal parts ofL0, . . . , Lp (defined as in (2.4)) are determined by the principal part of
the original operator and one has formulae similar to (2.5)–(2.7). In particular, the principal
part L(1)

1 of L1 is always related toL0 by

L
(1)

1 =
(

∂

∂la
L0

)
∂a. (2.7)
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Lj is of orderj and depends onl and its derivatives up to orderj as long asj < p − 1.
To construct formal solutions of (2.1) in a step by step procedure, one now susbstitutes

for V a series

V (x, ε) ∼
∞∑

n=0

(ε

i

)n

Vn(x) (2.8)

and requires the terms of order 1, ε, ε2, . . . in the resulting equation(
L0 + ε

i
L1 +

(ε

i

)2
P

) (
V0 + ε

i
V1 + · · ·

)
= 0 (2.9)

to vanish separately. The lowest ‘zeroth’ order equation

L0V0 = 0 (2.10)

admits nontrivial solutionsV0 if and only if S obeys thecharacteristic equation

detL0 = det(Aab(x)lalb) := Q(x, l) = 0. (2.11)

Q is a homogeneous polynomial of degree 2m in the variablesla whose coefficients depend
on x; it is called thecharacteristic formof the differential operatorP .

Geometrically,Q may be viewed as a function onphase spaceπ ≡ {(x, l)}. In general,
the so-called characteristic set of (real) points ofπ which obey (2.11) consists of several
hypersurfaces (branches) which may intersect or touch each other. Let us henceforth assume
that the equation

H(x, l) = 0 (2.12)

describes locally over some domain ofRn, one such hypersurface6 and let us suppose that

on 6 :
∂H

∂l
6= 0 rankL0 = r = constant. (2.13)

Then we say that6 corresponds to asimple mode, that (2.12) is itsdispersion relationand

H(x, dS) = 0 (2.14)

its eikonal equation. (Note that what matters is not the functionH , but the hypersurface6
in π defined by (2.14).)

On 6, L0 admitsp = m − r linearly independent left null vector fieldsλj and as many
right null vector fieldsρj ,

λjL0 = 0 L0ρ
j = 0 (1 6 j 6 p). (2.15)

Let (λ1, . . . , λp, λ̃p+1, . . . , λ̃m) and (ρ1, . . . , ρp, ρ̃p+1, . . . , ρ̃m) each be a basis (in the
appropriate linear space). We may then write

Vn = a
(n)
j ρj + b

(n)
j ρ̃j =: V (1)

n + V (2)
n . (2.16)

We shall see that the two terms ofVn play different parts in the WKB expansion; therefore
we call V (1)

n the primary, V (2)
n the secondaryamplitude ofnth order. (This decomposition

depends, of course, on the mode considered as well as on the chosen basisρ.) The zero-
order equation (2.10) then requires

V0 = V
(1)

0 = a
(0)
j ρj (⇒ b

(0)
j = 0), (2.17)

thusV0 is independent of the choice of the basisρ.



2234 J Ehlers and A R Prasanna

In the case of waves (2.17), the kernel ofL0 is thep-dimensional space ofpolarization
states. The assumptions (2.13) which we made about6 imply that on6, there exists a
p × p matrix valued functionMk

j such that

λj

(
∂L0

∂la

)
ρk = Mk

j

∂H

∂la
. (2.18)

This generalized lemma on bicharacteristic directionsis crucial for the derivation of
transport equations for the primary amplitudes within the WKB method. (For a proof,
see Ehlerset al (1987).) Note that the term ‘simple mode’ was used differently in that
paper than it is here, which, however, does not affect the argument. We call a simple mode
regular if M is invertible, otherwise the mode is said to besingular.

We continue the review of the WKB formalism. First, one has to solve the eikonal
equation (2.14). That can be done (locally) via Hamilton’s ordinary differential equations
(method of ray tracing):

ẋa = ∂H

∂la
l̇a = − ∂H

∂xa
. (2.19)

SupposeS is a real solution of (2.15). It determines aray bundlein x-space generated by
the vector field

T a := ∂H

∂la
(xb, ∂aS). (2.20)

The first order WKB equation resulting from (2.10) requires

L0V1 + L1V0 = 0. (2.21)

Due to the definition ofλj , (2.15) and (2.17), this equation admits a solutionV1 if and only
if for 1 6 j 6 p,

λjL1V0 = λjL1V
(1)

0 = λjL1(ρ
ka

(0)
k ) = 0. (2.22)

Because of (2.7), (2.18) and the definition (2.20) of thetransport vector fieldT a associated
with S, (2.22) has the form

(Mk
j T a∂a + Qk

j )(a
(0)
k ) = 0, (2.23)

where

Mk
j T a := Mk

j

∂H

∂la
= λj

∂L0

∂la
ρk

and

Qk
j := λj

(
∂L0

∂la
∂aρ

k − (Aab∂alb + Bala)ρ
k

)
.

If the mode isregular, this equation is equivalent to a first order, linear, homogeneous
ordinary differential equation for the lowest order amplitudeV0 called itstransport equation.
It determinesV0 everywhere, given arbitrary initial data on some hypersurface inx-space
intersecting the rays. Moreover (2.21) then determinesV

(2)

1 algebraically in terms ofV0

and its first derivatives.
The second order equation requires

L0V2 + L1V1 + PV0 = 0. (2.24)

Its solvability for V2 requires via (2.8) and (2.19) the inhomogeneous transport equation

λjL1V
(1)

1 = −λjL1V
(2)

1 − λjPV0 (2.25)
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for V
(1)

1 , the right-hand side being known already. If that equation has been solved, (2.24)
givesV

(2)

2 etc. Note that, generally, the transport equation forV (1)
n is necessary and sufficient

in order that the(N +1)th order equation admits a (unique) solutionV
(2)

n+1. (This is a special
case of a more general feature of perturbation theory: annth order solution is ‘reliable’,
i.e. extendable to higher order, only if the former obeys an equation which frequently is an
evolution equation; more complicated examples are post-Newtonian or post-Minkowskian
equations of motion in GR.) Note also that, given a phase functionS, initial data have to be
prescribed only for theprimary amplitudes of all orders. In practice, one will usually set
the initial values for all amplitudes but the lowest order one to zero, in order that the lowest
order already approximates the full solution as well as possible near the initial hypersurface.
After n steps one obtains a formal solution of (2.1):

eiS/ε

(
V0 + ε

i
V1 + · · · +

(ε

i

)n−1
Vn−1

)
(2.26)

to within order εn−1. If the original equation is hyperbolic, the one-parameter family
(2.26) of functions is asymptotic forε → 0 to a one-parameter family of solutions of
(2.1), the ‘error’ being of orderεn (see, for example, Courant-Hilbert 1962, Taylor 1981).
In applications it is usual to putε = 1 at the end of the calculations. The role of the
small parameter is then played byλ/L where λ is the scale on whichS varies (typical
‘wavelength’) andL is the scale on which the coefficient functions of (2.1), the ‘background
field’, vary; in general, theVn will vary on this scale also.

In the singular case (2.23) will, in general, impose further ‘algebraic’ restrictions on
V

(1)

0 obtained by multiplying (2.23) with the left null vectorµl of M

µ
j

l Q
k
j (a

(0)
k ) = 0.

In the extreme caseMk
j = Qk

j = 0, (2.21) only givesV (2)

1 in terms of V0 and its
first derivatives and (2.25) provides an underdetermined system of second order partial
differential equations forV (1)

0 which is more complicated than the original equation (2.1)
for U , so that in this case the WKB formalism is useless; in particular, it does not lead to
transport equations for the leading amplitudeV0. The example treated in the next section
may suggest that this extreme singular case occurs for zero frequency, non-propagating
modes only. Whether that is true is by no means obvious from the general formalism; it
should be tested in other cases. We have not investigated the general singular case and are
not aware of a case where it occurs.

The formalism described above can without change be applied ifU in (2.1) denotes a
tensor field and∂a is replaced by the covariant derivative∇a.

3. Short wave linear perturbations of perfect fluid solutions of Einstein’s equations

The linear perturbation equations of a background solution(gab, U
a, ρ) of Einstein’s

equations with a cosmological constant3, for a perfect fluid satisfying an equation of
statep = p(ρ) are given by

ρ̂ = 1

(1 + 3C2
s )

[2R̂ij + (ρ + 3p − 23)ĝij ]UiUj (3.1)

p̂ = C2
s ρ̂ (3.1a)

ρÛk = [R̂ijh
i
k + 1

2(ρ − p + 23)ĝkj ]Uj (3.2)
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and

H
ij

ab(2δc
(i∇d

j) − δc
i δ

d
j ∇2 − gcd∇i∇j )(ĝcd)

= [(ρ − p + 23)hi
ah

j

b − (ρ + 3p − 23)αhabU
iUj ]ĝij ). (3.3)

Here the notation is as follows. Overhead hats denote the perturbed quantities;C2
s = dp

dρ
is

the squared sound speed; the speed of light and the Einstein gravitational constant are set
equal to 1. The signature of the metric is+2, hi

a = δi
a +UiUa is the usual projection tensor

and

H
ij

ab = hi
ah

j

b − αhabU
iUj .

The scalarα := (1−C2
s )/(1+ 3C2

s ) takes values in the range 06 α 6 1 since 1> Cs > 0.
As was shown in Ehlerset al (1987) one can impose the gauge conditionĝabU

b = 0,
if the streamlines of the background fluid are geodesics. We assume that and can thus use
that gauge condition as in the earlier paper and simplify the system of equations (3.3) as
follows:

P
ij

abĝij ≡ [(2hi
(ah

c
b)∇j∇c − hi

ah
j

b∇2 − gijhc
ah

d
b∇c∇d)

+αhab(g
ij∇2

u + 2∇(iUj)∇u + 4(∇dU
i∇ [dUj ]))

−(ρ − p + 23)hi
ah

j

b](ĝij ) = 0. (3.4)

This equation forĝij governs the linearized perturbations under the conditions specified
above;ρ̂ and Ûk are as given in (3.1) and (3.2).

Equation (3.4) is of the form (2.1) (except for the substitution of∇a in place of∂a),
whence the formalism of section 2 can be applied. Using equations (2.5) and (2.6), we
obtain the operatorsLj corresponding to (3.4) which act on the six-dimensional space of
metric perturbations as follows:

Lcd
0ab := −2h

(c

(ak
d)kb) + h

(c

(ah
d)

b) l
2 + (kakb − αω2hab)h

cd,

Lcd
1ab := [−4hi

(ah
(c

b)(l
d)∇i + ∇d)li) + 2h

(c

(akb)∇d) + 2h
(c

(ah
d)

b)(∇l + θ/2)

+ 2αωhab∇dUc − hcd{hi
(ah

j

b)∇j li + 2hi
(akb)∇i

− αhab(2ω∇u − Ui∇uli)}],

(3.5)

wherela = ∂aS as in (2.3) andω := −Uala, ka = hb
alb, θ = ∇ala, ∇u = Ui∇i , ∇l = li∇i .

In analogy to (2.2), (2.8) we use the notationsvij , v(0)ij for the total and partial complex
amplitudes ofĝij .

As has been noticed earlier (Ehlerset al 1987), the characteristic equation in this case
is

| detL0| = l4ω6[ω2 − C2
s k

2] = 0 (3.6)

or equivalently

(gablalb)
2[(UaUb − C2

s h
ab)lalb](Uala)

6 = 0.

Thus there are three modes:
(i) the gravitational wavemode, given by the HamiltonianH = 1

2gablalb and the null
geodesic rays with tangentT a = la;

(ii) the sound wavemode, given byH = 1
2[C2

s h
ab −UaUb]lalb and the sound rays with

tangentT a = ω(Csk
a

k
+ Ua); and

(iii) the matter modegiven byH = Uala and ‘matter rays’ with tangentT a = Ua.
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Light (ray) cone

Sound (ray) cone

Matter world lines

Figure 1.

Thus the (zero frequency) excitations of the last mode do not propagate relative to the
unperturbed matter, in contrast to those of the other two.

Assuming(ea
i ) i = 1, 2, 3 to denote an orthonormal basis in the space orthogonal to

Ua, with e
[a
3 kb] = 0, one can write explicitly the basis vectors in the space of amplitudes

and its dual respectively according to (2.15), as follows.

Mode (i), l2 = 0, rankL0 = 4, p = 2

λ1 = eab
+ := (ea

1e
b
1 − ea

2e
b
2) λ2 = eab

× := 2e
(a

1 e
b)

2 ,

λ̃3 = eab
1 := 2e

(a

1 e
b)

3 λ̃4 = eab
2 := 2e

(a

2 e
b)

3 ,

λ̃5 = eab
3 := ea

3e
b
3 λ̃4 = eab

4 := (ea
1e

b
1 + ea

2e
b
2)

(3.7)

and
ρ1 = e+

ab ρ2 = e×
ab,

ρ̃3 = e1
ab ρ̃4 = e2

ab,

ρ̃5 = e3
ab ρ̃6 = e4

ab.

(3.8)

Mode (ii), ω2 = C2
s k

2, rankL0 = 5, p = 1

λ1 = ((1 + C2
s )h

ab − 2eab
3 ) λ̃2 = eab

+ ,

λ̃3 = eab
× λ̃4 = eab

1 ,

λ̃5 = eab
2 λ̃6 = eab

3

(3.9)

and

ρ1 = (C2
s hab + e3

ab) ρ̃2 = e+
ab,

ρ̃3 = e×
ab ρ̃4 = e1

ab,

ρ̃5 = e2
ab ρ̃6 = e3

ab.

(3.10)

Mode (iii), ω2 = 0, rankL0 = 3

λ1 = eab
1 λ2 = eab

2 ,

λ3 = hab − 2eab
3 λ̃4 = eab

+ ,

λ̃5 = eab
× λ̃6 = eab

3

(3.11)
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and

ρ1 = e1
ab ρ2 = e2

ab,

ρ3 = e3
ab ρ̃4 = e+

ab,

ρ̃5 = ex
ab ρ̃6 = e4

ab.

(3.12)

Accordingly the lowest order amplitudes ofĝij are

(i) v
(1)

0ab = a
(0)
+ e+

ab + a
(0)
× e×

ab, (3.13)

which is transverse and trace free;

(ii) v
(1)

0ab = b(C2
s hab + e3

ab), (3.14)

with tracev(1)

0
a
a = (1 + 3C2

s )b;

(iii) v
(1)

0ab = a
(0)

1 e1
ab + a

(0)

2 e2
ab + a

(0)

3 e3
ab = A(ae

3
b), (3.15)

with Aa = a
(0)

1 e1
a + a

(0)

2 e2
a + a

(0)

3 e3
a arbitrary, and

v
(1)

0
a
a = a

(0)

3 . (3.16)

One can now compute the matricesMk
j , using the definition (2.24). It turns out that for

gravitational wavesMk
j is the unit matrix, while for sound wavesM is the positive scalar

2/(1 + α) = (1 + 3C2
s )/(1 + C2

s ), and for the zero frequency matter modeMk
j vanishes

identically.
For the three particular cases of special interest the situation is as follows. In the case

of dust (p = 0), Cs = 0 or α = 1, there are no sound waves; in fact forCs = 0, mode
(ii) degenerates into the longitudinal part of mode (iii). In the case of stiff matter(ρ = p),
Cs = 1 and α = 0, sound waves propagate with the speed of light but are (of course)
volume changing, in contrast to gravitational waves, andM = 2. For the case of pure
radiation,p = 1

3ρ, C2
s = α = 1

3 andM = 3
2. According to the definition given in section 2,

we thus have the modes corresponding togravitational wavesand tosound waves, regular,
whereas the matter mode issingular.

We now consider thetransport equationfor the amplitudes of the regular modes.

3.1. The gravitational wave mode

In this case, as has been shown earlier, the transport of the primary amplitudesa
(0)
+ anda

(0)
×

is governed by the equations(
∇l + θ

2

) (
a

(0)
+

a
(0)
×

)
= 0, (3.17)

where the vectorsea
1 andea

2 in (3.7) are assumed to be quasi-parallelly transported† along
the rays, null geodesics with tangentsla. Applying the method of section 2, we find the
structure of the first order secondary amplitude

v
(2)

1 = 2

k
(ec

1ρ̃3 + ec
2ρ̃4)(∇dv0cd). (3.18)

† Quasi-parallel transport has been defined in Ehlerset al (1987).
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This part ofv1 is thus smaller thanv0 by a factor of orderλ
L

, as expected. In contrast to the
primary amplitude, its polarization is neither longitudinal nor transverse, but mixed. The
transport equation for thesefirst order primary amplitudesis then given by(

∇l + θ

2

)
(a

(1)
+ ) = 1

2(ρ − p + 23)(a
(0)
+ )

+ 1
2eij {[2(∇d∇i + ∇i∇d)δc

j − δc
i δ

d
j ∇2 − hcd∇j∇i ](v0cd)} (3.19)

and a similar one fora(1)
× .

Using the definitions of the curvature tensor(Rh
ijk) and the Weyl tensor(Ch

ijk) and the
field equation

R
j

i = 1
2Rδ

j

i = (ρ + p)UiU
j + pδ

j

i − 3δ
j

i (3.20)

one can rewrite (3.19) as(
∇l + θ

2

)
(a

(1)
+ ) = 1

2e
ij
+{[4∇i∇hv0jh − ∇2v0ij − hcd∇j∇iv0cd ] + 2Chij v

hk
0 }

− 1
2(ρ − 3p + 43)a

(0)
+ . (3.21)

If the background spacetime is conformally flat, we haveCh k
ij = 0, and the transport

equations fora(1)
+ anda

(1)
× turn out to be(

∇l + 1

2
θ

)
(a

(1)
+ ) + R

3
(a

(0)
+ ) = 1

2
e
ij
+(4∇i∇cδd

j − δc
i δ

d
j ∇2 − hcd∇j∇i )(v0cd), (3.22)

which exhibits the influence of both the background curvatureR and the inhomogeneities
of v0 on the wave.

3.2. Sound waves

We next consider mode (ii),ω2 = C2
s k

2, representing the sound waves, whose primary
amplitude is given by (3.14),

v0cd = b(c2
s hcd + e3

cd).

Using this in equation (2.21) and left multiplying this withλ from (3.9), one gets after
simplification the transport equation forb,

4C2
s [(∇T + η)b] + {(1 + C2

s )(1 + 3C2
s )(∇ak

a − ω∇aU
a)

+[(1 + C2
s )h

ij − e
ij

3 ][(1 − C2
s )(∇ikj ) − (1 + 3C2

s )(∇iω)Uj ]

−[(1 + 2C2
s + 5C4

s )h
ij − 4(1 + C2

s )e
ij

3 ]ω(∇iUj )

+4(C2
s hij + e3

ij )[∇l(C
2
s h

ij − e
ij

3 )]}(b) = 0, (3.23)

whereη = ∇aT
a, ∇T = T a∇a, T a = (C2

s k
a +ωUa) is the tangent vector to the sound rays.

Finally using (3.1) and (3.2), along with the gauge conditionĝabU
b = 0, one can find

the density and the 4-velocity perturbation to be

ρ̂ = 2

(1 + 3C2
s )

{(ε−2ω2 − 2iε−1∇uω)vT − 2∇u(vjk∇(kUj)) − ∇2
uv

T

−2vij∇aU
i∇aUj + 2RkijlU

iUjvkl} (3.24)
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and

ρÛa = ε−2(ωlmvam) + iε−1[Uj lm∇avjm + lmUa∇u(U
jvjm) + Ujka∇mvjm

+lm∇uvam − ωhi
a∇mvim + Uj(∇mlj )vam − 2Ujhi

a∇lvij

−(∇uka)v
T − ω∇av

T − la∇uv
T ]

+hi
aU

j (∇m∇ivjm + ∇m∇j vim − ∇2vij ) − hi
a∇u∇iv

T , (3.25)

where a superscriptT represents the traceva
a and ∇(kUj) the rate of deformation of the

background matter flow. It is seen that for the gravitational wave mode (l2 = 0, v0ab = e+
ab

or e×
ab) and the matter mode (ω = 0, v0ab = A(akb)) both ρ̂ and Ûa vanish in the leading

(ε−2) order whereas for sound waves(ω2 = C2
s k

2)

ρ̂ = 2bω2 (3.26)

and

ρÛa = b(1 + C2
s )ωka (3.27)

in the leading order.
From the general equations (3.1) to (3.3), it may easily be seen that the treatment used

above is equally valid for the vacuum case,Rij = 0, as there appear no terms involvingρ, p

or 3 in the leading order equations, i.e. the dispersion relation and the transport equations
for the primary amplitude, and̂ρ vanishes to the order required.
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