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1. I N T R O D U C T I O N  

This contribution is a review of the method of 
isomonodromic quantization of dimensionally re- 
duced gravity developed in [1-3]. The main idea 
of this approach is a complete separation of vari- 
ables in the isomonodromic sector of the model 
and exploiting the related "two-time" Hamilto- 
nian structure. This allows an exact quantization 
in the spirit of the scheme developed in the frame- 
work of integrable systems [4]. The possibilities 
to identify an appropriate quantum counterpart 
of the Kerr black hole are discussed. In addition, 
we briefly describe the relation of this model with 
Chern Simons theory. 

2. T H E  M O D E L  

The Lagrangian of 2D gravity coupled to a 
SL(2, R)/SO(2) ¢~-model is 

£ =- p(hR + tr(g~g - lg~g-1 ) ) ,  (1) 

where the metric has been brought into eonformal 
gauge 

ds 2 = h(z, 5)dzd2; (2) 

R = (log h)**/h is the Gaussian curvature of the 
worldsheet, g E SL(2, R)/SO(2) and p C R is 
the dilaton. The equation of motion for p derived 
from (1) 

p ~  = 0 (3) 

is solved by 

p(z, ~) = Imp(z),  (4) 

*TaLk given by H. Nicolai. 
t On leave of absence from Steldov Mathematical Institute, 
Fontanka, 27, St.Petersburg, 191011 Russia. 

where ~(z) is a (locally) holomorphic function. 
Now we can further specialize the gauge by iden- 
tifying ~ with the worldsheet coordinate. Then 
the equation of motion for 9 coming from (1) is 

((~ - ~ ) 9 ~ 9 - 1 ) ~  + ((~ - ~ ) g ~ - l ) ~  = 0. (5)  

Using the following parameterization of an arbi- 
trary S L( 2, R ) / SO( 2 )-valued matrix: 

1 ( 2 i(£ -_g) 
= £ +---2 _ i ( £  - g )  2 e ~  ] (6)  

in terms of the complex-valued function £(~,~), 
we can rewrite (5) in the famifiar form of the 
Ernst equation [5]: 

(£ + g) (E~ = (7 )  
J 

To get from (1) the remaining equations of motion 
for the conformal factor h, we have to temporarily 
relax the conformal gauge and to vary (1) with 
respect to the off-diagonal elements of the metric. 
Restoring the conformal gauge then yields 

~tr(g~g-1) 2 and c.c. (8) (logh)~ = 4 

It is well-known [6] that the same equations of 
motion arise in stationary axisymmetrie reduc- 
tion of the 4D Einstein equations. The quantum 
theory based on (1) may therefore be regarded as 
an example of the "midi-superspaee" approxima- 
tion to 4D quantum gravity. 

3. D E F O R M A T I O N  E Q U A T I O N S  A N D  
~ ' - F U N C T I O N  

Consider the following system of differential 
equations for 2 x 2 matrices {Aj(~,~)} and the 
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functions {Tj(~,~)} with j = 1, ..., N: 

OAj 2 ~ [Ak, AA 
0~ - ~ - ~ (1 - ~ k ) ( 1  : 7j) (9) 

0Aj _ 2 K-" [A~, A~] 

(:9~ ~ - , ~  ~ . ( l + T k ) ( 1 + T j )  

07j 7j 1 + 7 i  _ (lO) 
0~ ~ - ~ 1  - 7 i  

07j 7i 1 - 7i 
of ~-~1+7j 

These (compatible) equations are solved by 

2 
7j - - x (11) ~-~ 

{ ~ +~ + ~/(wj - ~)(~, -~)} wj -- - - ~  

where wj E C are constants of integration; in the 
sequel we shall assume 7j to be defined by (11). 
One can easily check that the system (9) is always 
compatible if (10) holds. 

Next define the 7--function 7-(~,~) associated 
with (9) by 

dlogT- = E t r ( A ~ A k ) d l o g ( T j  - 7k), (12) 
j < k  

where the differential is to be taken with respect 
to the variables (~, ~). Equivalently it can be com- 
puted with respect to the variables {7i}, which 
gives 7- as a function of the parameters 7i. No- 
tice that the 1-form on the r.h.s, of (12) is always 
closed as a consequence of (9). 

N A It is easy to check that trAj,  trA] and ~ i = 1  J 
are integrals of motion of the system (9). 

Our purpose will be to exhibit the link between 
the system (9) with 7j given by (11) and the equa- 
tions of motion (5) and (8) of the previous section. 
A partial answer is given by 

T h e o r e m  1 Let {Ai} be an arbitrary solution of 
the system (9) with 7j given by (11). Then 

1. The system of equations 

2EA  
g~g-1 _ ~ - ~  1--- 7j 

2EAj g ~ g - l _  ~ - ~  . l + T j  

(13) 

for the matriz-valued function g(~,~) E 
GL(2, C) is always compatible. 

2. The solution g(~,~) of this system satisfies 
equation (5). 

3. The conformal factor h defined by (8) is re- 
lated to the v-function of the system (9) as 
follows: 

[ oTj ~ItrA~ (14) 
2 

N where Am - -  E j _ - I  Aj and C is a constant. 

To understand the precise correspondence be- 
tween the solutions of (9) and the original model, 
one has to ensure the coset and reality conditions 
g C SL(2, R ) /SO(2)  and h C R. To this aim we 
define the rational function A(7) by 

N 
A(7) = ~ Aj 

7 - 7j j=l 
(15) 

The proof of the following theorem may be found 
in [3]. 

T h e o r e m  2 Let {Aj  } be a solution of the system 
(9) satisfying the following additional conditions: 

I. Reality: 

A(7) = - A ( - ~ )  (16) 

2. Asymptotic regularity: 

N 

A ~ -  E A  ~ = 0  
3=1 

(17) 

3. Invariance of the v-function with respect to 
the involution 7j --* 1/7i: 

V , . . . ,  z C 0 T ( 7 1 , . . .  , T N )  (18) 

with some constant co ~£ O. 
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Then the constants of integration in (8) and (13) 
may be chosen in such a way that h C R and 
g • SL(2, R ) /SO(2) .  

At this point the relation between (9) and the 
original model may still appear obscure; it will 
be clarified in section 6. Let us just emphasize 
that the variables in the system (9) have been 
completely separated; thus we can treat the "left" 
(~) and "right" (4) moving sectors as completely 
independent. 

The link between the system (9) and the classi- 
cal Schlesinger equations [7] for the variables Aj 
considered as functions of 71, ..., 7N 

OAj [Aj, Ak] 
---- (k 5£ j)  (19) 

07k 7j - 7k 

O A , _ _ } 2  I , A 

O~[J i e j  " f j  - -  7 i  

is given by 

T h e o r e m  3 Let Aj({~,j}) be a solution of the 
Schlesinger equations (19) satisfying the con- 
straint (17). Then, assuming that all 7j depend 
on (~, 4) according to (11), the functions Aj (~, ~) 
solve system (9). 

4. A N  E X A M P L E :  T H E  K E R R - N U T  SO- 
L U T I O N  

The general solution of the system (9) for ar- 
bitrary values of N and the parameters wj is 
certainly not possible. However, one can try to 
understand which solutions of (9) correspond to 
known solutions of (7). For example, the Kerr- 
NUT solution of (7) corresponds to N = 4, 

w l = w a = - ~  w 2 = w 4 = ~ r  ~ E R  (20) 

with 7a = 7~-1 and ~f4 = 7~ -I. The integrals of 
motion trA~ should equal 1/2 (since trAj = 0, 
this means that the eigenvalues of Aj are equal to 
4-1/2). It is not difficult to show that the solution 
{Aj}  of (9) satisfying these conditions and the 
constraints given by Thm.2 corresponds to the 
Ernst potential 

E = (/3: - / 3 1 ) x  - + / 3 1 ) Y  - 2 
(/3~ - / 3 t ) X  - (/3: +/31)Y + 2' (21) 

where 

1 1 
X -- ~---~{S, + S:} Y -- ~ { $ 1  - $2}, (22) 

with 

$1 
! 

= + + 

are prolate ellipsoidal coordinates; j31,: are com- 
plex constants satisfying [/311 = 1/321-- 1. This 
is nothing but the Kerr-NUT solution; the Kerr 
solution itself corresponds to/3:  = -/31. 

5. T W O - T I M E  H A M I L T O N I A N  S T R U C -  
T U R E  

We adopt here a "two-time" Hamiltonian for- 
malism with the two "times" corresponding to the 
fightcone coordinates ( and 4. One major advan- 
tage of this procedure is that the quantum the- 
ory is manifestly eovariant under 2D coordinate 
transformations, a feature which is far from obvi- 
ous (and possibly not even true) for the ADM for- 
mulation of canonical quantum gravity (see e.g. 
[8] for a recent discussion). Moreover, we must 
to treat the "times" ~ and 4 as phase space vari- 
ables because they are really fields in a special 
gauge; then, according to the general canonical 
procedure, the related total Hamiltonians should 
weakly vanish, i.e. should be considered as first- 
class constraints. 

The Hamiltonian structure whieh gives the 
complete set of equations of motion in terms of 
the variables {Aj}, ~,4, (logh)~ and ( logh)(  is 
described by the following 

T h e o r e m  4 The system (8), (9) is a "two-time" 
Hamiltonian system with respect to the Poisson 
brackets 

{~,(logh)~} = {4, (log h)(} = 1 

{4, (logh)~} = {~, (log h)(} = 0 

{Aj,(logh)~} = {Aj , ( logh)(}  = 

(24) 

0, (25)  
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where A(7) is given by (15) and the classical ra- 
tional R-ma~riz r is equal to 

1 0 0 0  
1 0 0 1 0  

r ( v - f , ) - 7 _ u  o lO 0 
0 0 0  1 

The mutually commu¢ing Hamiltonian con- 
strain,s in the ~ and E-directions are given by 

1 
C (() : :  - ( l o g h ) (  + ~ - - ~ t r  As(I) 

1 
C (() := - ( l o g h ) ( + ~ _  t r A 2 ( - 1 )  (26) 

Defining 

Aj,~/3 =: A ~ t ~ ,  (29) 

where t ~ are the generators of SL(2,  R), and in- 
serting (15)into (23), we get 

{Aj, A~} ab 

where fab c are the structure constants of 
SL(2, R). 

Observables in the sense of Dirac are by defini- 
tion all those functionals O on phase space which 
weakly commute with the constraints C(~) and 
C ((), but do not vanish on the constraint hyper- 
surface C(~) = C(~) = 0, i.e. 

This theorem can be verified by direct calcula- 
tion. The weak vanishing of C(¢) and C(() implies 
the equations (8) relating the gravitational and 
matter  degrees of freedom. Commutativity of the 
Hamiltonian constraints may be obtained by use 
of the general relation 

: 0, (27)  

which is valid for arbitrary 7 and #. The commu- 
tativity of the flows generated by C(~) and C (() is 
equivalent to the decoupling of the classical equa- 
tions of motion in (8) and (9) and may be viewed 
as a direct consequence of the compatibility of the 
system (8), (9). In terms of the standard "oue 
time" canonical formalism with p as Euclidean 
time, the combination C(p) = 1/2i(C(~)-C (()) cor- 
responds to the Hamfltonian or Wheeler-DeWitt 
constraint while 1/2(C(~)+ C(0) corresponds to 
the diffeomorphism constraint. 

The "time evolutions" of any functional F are 
generated as usual by commutation with the total 
Hamiltonian constraints Cff) and C ((), i.e. 

d f  _ {C(~), F}  dE 
d~ d~ - {C(~)' F}. (28) 

On the 1.h.s. here we have the total derivatives 
with respect to (, ~; the first term of C(~) or C(0 
generates the partial derivatives with respect to 
the coordinates and the second term takes care 
of the (~, ~)-dependence of A i. Observe that we 
have (C(i)) t = C ((). 

{c(~), o }  ~ 0 , {c(O, o }  ~ 0. (30) 

By (28) the observables are independent of the co- 
ordinates and therefore highly non-local objects 
as one would expect on general grounds [9,10]. 
First of all, the parameters wl, ..., WN trivially be- 
long to this class since they commute with every- 
thing. Second, and more importantly, the mono- 
dromies M1, ..., MN of the connection A(7)d 7 de- 
fined by 

Mj = P exp ~j  A(7)d% (31) 

where the contour lj starts at 7 = <x~ and encircles 
the point 7j, are also observables for arbitrary N. 
For a discussion of this fact, see [3]. All observ- 
ables can be generated from the set 

Obs := {wl, ..., Wg; M1,. . . ,  MN}  (32) 

by taking products and linear combinations. In 
this sense, Obs constitutes a complete set of clas- 
sical (and quantum) observables for arbitrary N. 
These are the conserved "non-local charges" of 
dimensionally reduced gravity. 

Notice also that the constraints mentioned in 
Thm.2 are in fact first class constraints with re- 
spect to our Poisson structure. In particular, the 
constraint Am = 0 which closes into the SL(2, It)  
algebra is nothing but the conserved charge which 
generates the Ehlers transformations g ---* QtgQ 
with a constant matrix Q c SL(2, R). 
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6. L I N K  T O  C H E R N  S I M O N S  T H E O R Y  
A N D  T H E  L I N E A R  S Y S T E M  

It is known that the Ernst equation can be 
obtained as the compatibility of a linear system 
[11,12]. The interpretation of the linear system 
as a zero curvature condition suggests a link with 
Chern Simons theory whose equations of motion 
also state the vanishing of some curvature. The 
new feature here is that the Chern Simons gauge 
connection lives on a space locally parameterized 
simultaneously by the spectral parameter and the 
true space time coordinate. 

The relevant Chern Simons action (at level 1) 
reads 

s-- fl-L f tr(- AOeA + (33) 

where ~ plays the role of time, A -- A7d7 + A~d2 
is a time dependent connection 1-form on the Rie- 
mann surface locally coordinatized by 7, "~, and 
F - F ~ d 7 d ~  is the curvature 2-form. The time 
component A~ appears as a Lagrangian multiplier 
for the first class constraints of vanishing curva- 
ture F = 0: 

{Fa(7), Fb(#)} = 2~rifC'bCF~(7)6(2)(7 - it). (34) 

In the usual treatment A~ is gauged to zero 
which leads to static components A v and A q. In 
particular, the singularities of this connection are 
then time-independent and treated by inserting 
static Wilson-lines in the action (33). Alterna- 
tively, we consider the gauge 

Ae(7 ) = 2AV(1) - 7(1 + 7)A7(7) (35) 
(~ - ~)(1 - 7) 

The residual gauge freedom corresponding to (34) 
is fixed by demanding 

= 0 (36)  

on the whole surface except for some set of zero 
measure. Because of (34) and F = 0 the remain- 
ing component A ~ then becomes holomorphie up 
to poles. To allow such singularities in A 7 as in 
the previous section, it is clear that (36) cannot 
be imposed everywhere because the singularities 
arising via the relation 0_1_ = 2ri5(2)(7) would 

7 7 

spoil the constraint (34). Instead one should 

think of A # as being localized on some string with 
endpoints at the singularities of A 7. 

The remaining equation of motion is 

OA ~ OAv 
- -  + [ A  f , 3  7 ] : 0  (37) 

O7 0~ 

The constraints can now be treated by intro- 
ducing Dirac brackets. The original Poisson- 
bracket that comes from the action (33): 

{ATa(7), A~(# )}  = 2~-i6ab5(:)(7 - #) (38) 

is thereby changed to a bracket between the 
remaining meromorphic components Aa(7) -- 

[14,15]: 

{A~(7), Ab(tt)} = _f¢b¢ A¢(7) - At(#) (39) 
7 - i t  

This may be translated into a bracket structure 
on the coefficients of the poles of A 7, which - -  
together with the positions of the poles - -  now 
parameterize the phase space: 

a b {A~, A j}  = 26ijf~bCAj (40) 

for 

A j  
a ( 7 )  = 7 - _ : r  j . 

3 

It coincides with the Poisson structure introduced 
in Thm. 4 of the previous section. The equations 
of motion (37) give rise to equations (9) and (10). 

Among the surviving first class constraints is 
the total sum of the residues: 

f F(7)  = Am 0 

as well as the Chern Simons Hamfltonian 

C(~) 1 / 
= 2a '~ t rAfF '  (41) 

which generates the equations of motion for the 
holomorphic component of the connection: 

0~A(7) = 07A~(7) + [A~(7), A(7)] 

Splitting the Hamiltonian (41) it is now possi- 
ble to identify its parts with the expressions ob- 
tained in the previous section. A short calculation 
reveals 

1 t r f  A~O~ATdTdS, 1 ~t~A(1)A(1)~ 
2~ri ~ - 
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such that defining 

1 [ A~ AT]) dTd2, (log h)~ - - - t r  (O.tA q + [A q, 
2ri  J 

we have 

OA~ 
{(log h)¢, A "~} - 07 (42) 

in agreement with (25) if A v is given by (15). All 
equations of motion are now generated by 

C ( ~ ) = - ( l o g h ) ~ +  1- t rA2(1)  (43) 

In this way the Poisson structure as well as the 
Hamiltonian and the constraints have a natural 
explanation in the context of Chern Simons the- 
ory. Similar considerations lead to the analogous 
results for the E-sector. However, further work is 
required to embed this two-time treatment in one 
unified canonical approach. 

It is quite instructive to see how the well-known 
auxiliary linear system [11,12] arises in this frame- 
work. The analogous treatment of Chern Simons 
model in (3', "Y, ~) space with the gauge choice 

2A~(-1) + 3,(1 - 3,)A~(3') (44) 
A((3') = (~ - ~)(1 + 3') 

gives the equation of motion supplementing (37): 

OA ( OA'~ 
- - + [ A  (,A v]=0 (45) 

03' 0 f  

The vanishing of the curvatures (37) and (45) 
implies the existence of a gauge transformation 
~(3,; ~, 4) such that 

0~  0~  
0~ AV ~ - -  = A ~  ~ = A(~ (46) 

Substituting (35) and (44) into the last two equa- 
tions and using (13) we get just the linear system 
of [12] with 3' playing the role of the spectral pa- 
rameter. The solutions of (5) for which A v can be 
represented as in (15) are called isomonodromic; 
in particular, they contain all known solutions 
such as multisoliton solutions [12] and the alge- 
bro geometrical solutions of [13], as well as many 
others. Of course in assuming (15) we truncate 
the total phase space of the original model. We 

would expect that  there exists a topology on the 
space of solutions for which the isomonodromic 
solutions constitute a dense subset of the phase 
space of "all solutions" (notice that the Poisson 
structure given by (23), (24) and (42)is indepen- 
dent of the ansatz (15)). 

7. Q U A N T I Z A T I O N  

To quantize the model, we replace the Poisson 
brackets (23) by commutators in the usual fash- 
ion: 

[A(7) e, A(#)] = ih[r ,  A(7) ® 1 + 1® A(#)] (47) 

[~,(logh)~] = [~, (log h)(] = ih (48) 

[~,(logh)~] = [~, (log h)(] = 0 

Suppose now that all 7i are imaginary (i.e. w a 6 
R); then by Thm.2 we should require all elements 
of A a to be real at the classical level. Quantum 
mechanically we get 

ih ( ha 2ca)  (49) 
A a =_ ~ 2 f  a - h  a , 

where ca, fa, ha are the anti-hermitian Chevalley 
generators of SL(2, R) obeying the standard com- 
mutation relations 

[ha, ej] = 2e a (50) 

[ha, fa] = - 2 / a  

lea, Sa] -- ha 

Unitary representations of (50) with Casimir op- 
erator 

-4 2 
~ - t r A  a = ~h~ + ear a + faej 

equal to sj (sj - 2) are given by 

= , + (51)  

e 
S, - 

d 
hj = 2 j +sa, 

where {ffj} are the arguments of the functions 
spanning the representation space "k/a, which may 
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belong to the principal, supplementary or discrete 
series of SL(2, R). 

According to (48) one. can choose 

(logh), = - i h ~  (logh)~ = - i h ~  (52) 

Thus the wave function • of a given isomon- 
odromic sector with wj E R should depend on 
(~, ~) and live in the direct product 

of N unitary representation spaces of SL(2, R). 
This means that (I, can be realized as a function 

¢ - 6 , . . - ,  IN). 

8 .  W H E E L E R - D E W l T T  E Q U A T I O N S  

A N D  K N I Z H N I K - Z A M O L O D C H I -  

K O V  S Y S T E M  F O R  SL(2, R)  

The Wheeler-DeWitt equations now take the 
form 

d~ d*  
- - - 0 ( 5 3 )  

d~ d~ 

or, equivalently, 

C(~)¢ = C(~)¢ = 0 (54) 

which can be written out by use of the explicit 
form of the constraints C(~) and C (~) given in (26) 
(49),(51) and (52): 

0 ,  (55) 
k#j 

0 ¢  _ - i h  V "  ~i~  
0~ / - "  (1 + 7j)(1 + 7k) k#j 

w h e r e  

~jk = lhjhk +ej fk  +ekf3 

02 
= - ( 5 6 )  

0 0 sjs~ 
+ (~  - ~ 3 ) ( s 3 ~  - s ~ )  + 

According to Thin.2, the wave functionals sat- 
isfying the coset constraints should be symmetric 

with respect to the involution 7i ---* 1/7j and sat- 
isfy the constraint 

N 

 Aj,: o. (57) 
j = l  

The general solution of the system (55) is 
not known. However, these equations turn 
out to be intimately related to the Knizhnik- 
Zamolodchikov system for SL(2, R) [16,17]: 

Oe~KZ - - i h  E ~2jk OKZ (58) 
07j k #j 7j - 7k 

with an 7-/(2V)-valued function ¢~KZ(~, ~). 

T h e o r e m  5 If  ¢~KZ is annihilated by the "total 
spin" 

N 

E Aje~KZ = 0 
3=1 

and the 7j depend on (~, ~) according to (11), then 

* = H (59) 
j = l  

solves the constraint (Wheeler De Witt) equations 
(55). 

Thus, the task of solving (55) reduces to the so- 
lution of (58). 

The full set of quantum observables is related 
to the algebra of monodromies for the KZ equa- 
tions (58) which is well understood only for SU(2) 
where it gives rise to certain quantum groups [18]. 

The only solutions of KZ equations for the non- 
compact group SL(2, R) known so far are solu- 
tions corresponding to the unitary discrete series 
representations (either positive for all j or nega- 
tive for all j )  all of which possess a ground (lowest 
weight) state in 7-/(N). However, it is possible to 
show [3] that  solutions of this kind cannot sat- 
isfy the constraint (57). Moreover, a simple anal- 
ysis of the sign of the Casimir operator shows 
that on order to construct wave functions cor- 
responding to physically interesting classical so- 
lutions (such as Kerr-NUT) one would have to 
consider representations of the continuous series. 
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Namely, for all known classical solutions (includ- 
ing Kerr-NUT) we have trA~ > 0. However, in 
the quantum case, 

h: 
trA  : -  -s(s - 2 )  

For the discrete series, when s is real and integer, 
this is always negative. For the continuous series 
we have s = 1 + iq with q C R, and the eigenvalue 
of trA~ is positive. 

In the next section we shall briefly discuss how 
one might go about constructing a quantum state 
whose semiclassical fimit would reduce to the 
Kerr-NUT solution. 

9. T O W A R D S  A Q U A N T U M  K E R R  SO-  
L U T I O N  

According to the previous section, the desired 
solution of (58) for N = 4 is a function of the four 
positions of the poles -fi defined by (20) and of the 
four auxiliary variables ~,, on which the algebra 
sl(2, R) is represented. 

The constraints (57) have to annihilate this 
function which hence is SL(2, R) invariant. 
Therefore it essentially depends only on the ra- 
tio 

- - 

just as in conformal field theory where the confor- 
mal Ward identities reduce the correlation func- 
tions to a function of a single variable [20]. More- 
over, the vahdity of the KZ equations imphes an 
analogous reduction of the 7~-dependence. 

The quantum state then reduces to the follow- 
ing form: 

,i, : 1~ ( 0 , j  ~ - ¼ ~ ' ( ' - : )  
j : l  ~ OWj ] F(~i,"f i) ,  ( 6 0 )  

with 

S ---= S 1 ---- S 2 = S 3 = -  S 4 

( ¢ 1  - - y ) ,  

X 

(il 

y = 
(~1 - ~ 4 ) ( ~  - ~:)  

ih 
A - 2 s ( s  - 2) 

The remaining KZ equation for the function G 
can be obtained by a lengthy but straightforward 
calculation which gives 

with 

n ( x )  = x : ( 1 -  x)0~: + 2sx(1 - x)0= 

+ l s : ( 1  - 2x) 
Z 

An equivalent form of this equation appeared 
in the study of four-point correlation-functions in 
Liouville theory [19]. 

Equation (61) is very similar to the standard 
hypergeometric equation, where D(x) and D ( 1 -  
z) are just two 2 × 2 matrices. The singular points 
y = 0, 1, oc have a very definite physical meaning 
from the point of view of the classical Kerr so- 
lution. Namely, we can express the variable y 
in terms of prolate ellipsoidal coordinates (22) as 
follows: 

1 - y :  p: 
Y-- l - X :  - ~ 2 ( X : - 1 ) :  

This shows that y = 0 corresponds classically to 
the spatial infinity and the part of the symmetry 
axis outside of the event horizon. The value y = 1 
corresponds to the poles of the event horizon, and 
y = cx) corresponds to the surface of the event 
horizon. 

The analysis of equation (61) should give 
asymptotical expansions of the wave functional 
at these singular points and allow us to relate 
them. This would then enable us to understand 
the behavior of physically interesting expectation 
values at these points and to clarify the meaning 
and the fate of the classical singularities in the 
quantum theory. 

The classical limit leading to the Kerr-NUT so- 
lution should look like 

h: 
~-(1 + q:) --4 1 
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If this limit is equal to an integer k, the related 
classical solution should be the kth member of the 
Tomimatsu-Sato hierarchy. 
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