
Commun. Math. Phys. 176, 475-478 (1996) Communications in 
MathemalP~l 

�9 Springer-Verlag 1996 

Erratum 

Global Existence of Solutions of the Spherically 
Symmetric Vlasov-Einstein System 
with Small Initial Data 

G. Rein 1, A.D.  Rendall z 
1 Mathematisches Insfitut der Universitfit Miinchen, Theresienstr. 39, D-80333 Miinchen, Germany 
2 Max-Planck-Institut gh: Gravitations physik, Schlaatzweg 1, D-14479 Potsdam, Germany 

Received: 25 April 1994 

Commun. Math. Phys. 150, 561-583 (1992) 

In the above paper the authors proved a local existence result for the spherically 
symmetric Vlasov-Einstein system (Theorem 3.1 ). Unfortunately, the proof contains 
an error: To estimate J~n in the proof of Lemma 3.3 we had in mind to differentiate 
the relation (3.4) 

A(t,x,v) =f( (x . ,  Vn)(O,t,X,V)) 

with respect to t, and use the boundedness of  the right-hand side of the characteristic 
system (3.3) and the "fact" that (X,, Vn)(S,t,x,v) is symmetric in s,t in the sense 
that (X~, V~)(O,t,x,v) as a function of t solves (3.3) with the signs of the right- 
hand side reversed. This "fact" is wrong, it would be correct only if (3.3) were 
autonomous. In the following we indicate the main arguments which have to be 
added to the analysis in the above paper in order to set things right. A detailed 
exposition of the arguments can be obtained from the first author. 

As a first step we prove Lemma 3.3. By (3.26) and (3.27) we have to bound 
I t lips( )H~ and IlPn(t)ll~. Using the Vlasov equation to express J~ in 

tSn(t,x ) = f g/1 + v2j~n(t,x,v)dv, 

integrating the term with 0~f~ by parts and using Lemma 3.2 we get 

l Ilpn(t)lloo, IIA(t)ll~ =< Cl(t)(1 + I[~f~(t)llo~), t c [0, T[, 

where C~(t) depends on the functions Z 1 , Z  2 introduced in Lemma 3.2. Differentiating 
(3.3) with respect to x and using a Gronwall argument yields the estimate 

t 

IOxy.+l(o,t,z)l + I~xVn+~(o,t,z)l ~: exp f Cl(S)(1 + II~xA(~)ll~)ds, 
0 
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where z = (x, v). Substituting this into (3.4), differentiated with respect to x, gives 

I laxf~<(t) l l~ 
t 

Ila~fll~ exp fC~(s)(1  + I l a ~ A ( s ) l l ~ ) d s .  
0 

By induction, II~xf~(t)ll~ is for all n bounded by the solution z 3 of 

t 

z~(t) = I/azfll~ exp f C,(s)(1 -t-z3(s))ds , 
0 

which exists on some interval [0, T'[C [0, T[. This proves Lemma 3.3, but on a 
possibly shorter time interval, the length of which is determined as the maximal 
existence interval of the functions z~,z2, and z3. 

On [0, T~[ Lemma 3.4 holds, but the proof of the regularity of the limit obtained 
(Proof of Theorem 3.1 ) contains the same error again. Here the correction requires 
an essential new idea, which is contained in the following lemma: 

Lemma, Let  2,#,2"  [0, T[x[0,oo[ be sufficiently regular so that all derivatives 
appearin9 below exist. Define 

v ( x . v -  ) lR 3 F(s , x , v )  e u-;~ _ 2 ' G ( S ' x ' v )  2+e~_; .  lx/i--~# , x = = - -  - ,  X ,V E , 
r r 

and let (X, V)(s,t,z) = (X, V)(s) be the solution o f  

2 = F(s,x ,  v), ~ = G(s,x, v) 

with (X, V)( t , t , z )  = z. Define 

~j(s) = a~jX(s, t, z ) ,  

V2r X ( s ~  X ( s )  X ( s )  . ~j(s) .  
,lj(~) = a~j V(s, t , ~ ) +  v /a  + _ , ,  " ' " " "  IX(s) l  IX(s)l 

Then 
~j = cl(s ,X(s) ,  V(s))~j + c2(s,X(s), V(s))~j , 

/~j = ( e  3 -~- c 5 ) ( s , Y ( s ) ,  V ( s ) ) ~ j  ~- c 4 ( s , Y ( s ) ,  V ( s ) ) I~ j  , 

where c l , . . . ,  c4 contain only 2, 2 ~, 2, #, #', and 

(cs(s,x, v))i,k = --e~+'~V/1 + v 2 

The proof is only a lengthy calculation and therefore omitted. Note that, if 2 = i,  
then the term in brackets in c5 is precisely the (2, 2)-component of the Einstein ten- 
sor and can therefore be replaced by the (2, 2)-component of the energy-momentum 
tensor, if 2, # satisfy the full set of field equations. The geometric interpretation of 
this lemma is that the relative motion of geodesics which are close to each other is 
governed by the geodesic deviation equation, in which only those combinations of 
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derivatives of Christoffel symbols appear, which appear in the Riemann curvature 
tensor, cf. also Eq. (4.15) and the discussion there. 

To apply the lemma we first observe that for the limit obtained in Lemma 3.4, 

)~ = -4rcre~+2j. 

This follows from the identity 

e22n 
2n = e ~ " - l - & - x - " + 2 " ~ n  + _ _  

r 

- ,~,-l(p,-1 + p , _ l ) ) d x ,  

where 

and 

f (e~n-l+)"-l-~"-&~n(Pn-2 q- Pn-2) 
Ixl<=r 

2n = -47rreU"+x"j~-1 ~ -4rcre~+Xj, n --~ oo , 

j . ( t , x )  = f x �9 v f . ( t , x , v ) c l v  " 
F 

Passing to the limit in this identity gives the claim. 
If  we define F,,  Gn as indicated in the lemma then the convergence already 

established implies that the corresponding solutions (Xn, Vn)(s,t ,z) converge to 
(X, V)(s,t ,z),  locally uniformly on [0, T'[2xlR 6. We use the lemma to show that 
the derivatives of the (X ~, V ~) with respect to z form a Cauchy sequence, and this 
proves the desired regularity of (X, V)(s, t,z), and thus of all the limiting quanti- 
ties obtained in Lemma 3.4. Note that for the iterates all quantities needed in the 
lemma are sufficiently regular, which is not true for the limiting quantities obtained 
in Lemma 3.4. 

From Lemmas 3.2,3.3, and 3.4 it follows that the coefficients c,,i, i = 
1 . . . . .  4, are bounded, together with 8zC~,i, uniformly in n and locally uniformly on 
[0, T '[xlR 6, and form Cauchy sequences. The crucial term is e<5. Here a lengthy 
calculation shows that 

- -  ---+ O ,  /'/ ~ - +  O 0  , (Cn'5)i'k e~"+;~" V/1 -}- v247Cqn-1 r 

locally uniformly on [0, T/[• 6, where 

x • v 2 a v  
q~(t,x) = f - - r  fn(t,x, v) v/1 + v~ 

Since q~ is twice the (2, 2)-component of the energy-momentum tensor corre- 
sponding to fn, this means that the (2,2)-component of the field equations holds 
approximately for the iterates. By what we know from Lemmas 3.2, 3.3, and 3.4 the 
quantities q~ are uniformly bounded together with q~n, and form a Cauchy sequence. 
Thus 

~zjXn(s,t,z), ~zjgn(s, t ,z)  

form a Cauchy sequence, locally uniformly on [0, Tt[Z• 6, and the proof of 
Theorem 3.1 is complete. 

However, now a new problem comes up: From the above it follows that we need 
to bound the quantity 8xf ( t )  in addition to the quantities P(t)  and Q(t) considered 
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in Theorem 3.2, i f  we want to extend a local solution. In the proof  o f  Theorem 3.2 
we showed that a bound on P(t)  implies a bound on Q(t). Using the above lemma 
again, but now with 

= J~ = -4~reU+Xj, (Cs)i,k = --eU+~V/1 + v247rqX; k , 

shows that a bound on P(t)  also implies a bound on (~xX,~xV)(O,t,z) and thus on 
Iloxf(t)ll~; note that by  Theorem 2.1 we now have the full set o f  field equations at 
our disposal. Therefore both the existence result, Theorem 3.1, and the continuation 
criterion, Theorem 3.2, remain correct as they stand. 

As a final remark we mention that the above lemma can also be employed to 
avoid the use o f  the Jacobi fields and the geodesic deviation equation in the proof  
of  the global existence result Theorem 4.1. 
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