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Abstract. In this work the asymptotic solutions of massless s%)iﬁelds are studied. First,

in a Minkowski space, the fields, their potentials, and the associated gauges are analysed in the
Rarita—Schwinger description. We exhibit the explicit appearance of the conserved charges of the
fields and their singular behaviour in the potentials. The charges of th&%simds emerge as a

global definition of twistors. The flat space case serves as a guide in the analysis of the problem
in general vacuum spacetimes. Although the fundamental connection between and the meaning
of twistors and charges have not, as yet, been established in general vacuum spacetimes, some
useful insights have nevertheless been gained in studying the potential-modulo-gauge description
of the spiniz5 problem in such spacetimes.

PACS numbers: 0420, 1115

1. Introduction

One of the major research directions of twistor theory in recent years has been to explore
the relationship between twistors and the charges of massles§ $igials. First of all, the
connection between general relativity and the ﬁ)iﬁelds has been known for many years

[1]; the consistency conditions for the massless %)ﬁields in a potential-modulo-gauge
description (see discussion below) on a spacetime are that the spacetime must satisfy the
vacuum Einstein equations. More recently, it was pointed out by Penrose [2] that in a
Minkowski spacetime, the space of the conserved charges of the masslegsfisqjxihr is
isomorphic to the flat twistor space. This curious result greatly stimulated the search that
had already been under way for finding the conserved charges of thé §ipids in general
Ricci-flat spacetimes with which to construct the generalized versions of twistor space [3].

If the twistor spaces in question really existed, they would presumably reflect, although in
an essentially non-local manner, the properties of the underlying vacuum spacetime; e.g. the
vacuum spacetimes would be encoded, in some manner, into the twistor spaces themselves.
Unfortunately, this program has not been successful until now.

The present work investigates (by explicit integration) the problem of the charges of
the massless spigl-fields, first in flat spacetime and then (with the flat-space results as a
guide) in asymptotically flat vacuum spacetimes. This procedure allows us to see explicitly
how far the flat space results are tenable in the curved spaces and also what the possible
obstructions would be. The explicit comparison between the flat and the curved space
results may provide a way to envisage the twistor concepts in the curved space case.
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In a Minkowski spacetime, a spign‘ield, described by a totally symmetric spingf ; ¢,
satisfies the zero rest mass field equation

VAY e =0, (11)

where V44 is the spinor-covariant derivative. Throughout the present work, we use two-
component spinor notation, where spinors with dotted indices transform unde@,tg'l}a
representation of the Lorentz group and those with undotted indices unde(r%mas
representation. Herd = 0,1 andA = 0,1. In our convention, the spinor field with
three symmetric dotted indices represents a gpirarticle of positive helicity.

In a general curved spacetime, equation (1.1) is rendered inconsistent by the well known
Buchdahl condition:

Wisep vt =0, (1.2)
where W ; ;5 is the conformal Weyl spinor. Equation (1.2) is a condition on the spinor
field and the spacetime that severely restricts the set of solutions of equation (1.1). In order
to circumvent this difficulty, one introduces a potentidl ; ;, which, in flat space, describes
locally the spinor fieldy ;-
In a Minkowski spacetime, two kinds of potential formulations have been given—the

Dirac [4] and the Rarita—Schwinger [5] formulations. In the Dirac formulation, the spinor
field v ¢ is defined in terms of a potential® ;; as

Vige = Vo€ i (1.3)
with '
VA s =0, (1.4)

where the potentiab € ;; is symmetric in the indicest and B. Equation (1.3), together
with equation (1.4), implies the validity of equation (1.1).
The gauge transformation fer® ,; which leavesy ;- invariant is given by
o%ip — 0% + Vv, (1.5)
where the spin} field v, satisfies the Weyl anti-neutrino equation
VA4, =0. (1.6)

In the Rarita—Schwinger formulation, equation (1.3), which defines the field in terms of
the potential, is unchanged. The potential, however, is no longer symmetric in the indices
A and B and now satisfies the Rarita—Schwinger equations

Voo ig A =0, %))
vAAGO . =0. (1.8)

Equation (1.3), together with the Rarita—Schwinger equations (1.7) and (1.8), implies the
validity of equation (1.1).

o ¢ ;3has the same gauge transformation as in equation (1.5), with the exception that
v is now completely arbitrary. It may be mentioned in passing that the Rarita—Schwinger
formulation yields the Dirac formulation for a special choice of gauge.

It has been shown by Buchdahl [1] and by Chinea [6] among others and later also
by people working in supergravity theory [7, 8] that the integrability conditions for the
potential equations (the Dirac equation, equation (1.4), in the Dirac formulation, and the
Rarita—Schwinger equations, equations (1.7) and (1.8), in the Rarita—Schwinger formulation)
in an arbitrary curved spacetime are that the traceless part of the Ricci ®pswanishes.
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Furthermore, if the potentiat® ;; has to enjoy the same gauge freedom as that given by
equation (1.5), the trace part 8f,, must vanish, so that the requirement for consistency both
of the Dirac and of the Rarita—Schwinger formulation in an underlying curved spacetime is
that the spacetime is Ricci-flat, i.e.

Ry, =0.

It is important, however, to recognize in this connection that any massles§ Sigilckr ; 52
defined from the potentials in either of the two formulations is not gauge invariant, and one
cannot help being resigned to a potential-modulo-gauge description.

Frequently, a second potential; 2¢ is introduced, which locally defines the first
potentialo€ ;3. In the Dirac formulation, the second potentia®¢ is symmetric in the
indicesB andC and is given by

o g = VB(BPA)BC, (1.9
with A

VA4 B¢ =0, (1.10)
subject to the following gauge freedom

pifC — 0 BC 4+ VB xC 4 By, (1.11)
where the spin-é%) field x¢ satisfies the Weyl neutrino equation

Veex© =0. (1.12)

Thee?€v,; term in the gauge transformation pf 2¢ in equation (1.11) generates the correct
gauge transformation of the first potentédl ; ;, as given by equation (1.5). Equations (1.9)
and (1.10), along with equations (1.3) and (1.4), imply the validity of equation (1.1).

In the Rarita—Schwinger formulation, the symmetry condition is not imposed on the
second potential. The first potentiaf ;; is related to the second potential by the following
equations:

UCAA = -3 vBCHB) o (1.13)
oG =2 Ve . (1.14)

With the above defining relations between the two potentials, the first Rarita—Schwinger
equation, (1.7), reduces to an identity, while the second Rarita—Schwinger equation, (1.8),
yields a second-order equation fpj 2¢ which can be satisfied by solving the first-order
equation

VA, BO — 0, (1.15)

The gauge transformation for; 2¢ is again given by equation (1.11), but ngw is just
an arbitrary spinor field.

In a Minkowski spacetime, a consistent identification of twistors with the charges of
massless spié- fields has been made [2]. The concept of charge arises here in close
analogy with Gauss'’s law in electrodynamics, where the ch@rgef an electromagnetic
field is obtained by integrating the field tend@y, (a closed 2-form) over a sphere enclosing
the source:

Q:fﬂwdx“”.
N
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In order to obtain a generalized Gauss’s law to define charges for:;'stheizids, one begins
with a spinor field of the form

B =t +ixMa,, (1.16)

(the pair of constant spinors. 4, u?) defines a dual twistoi,,) which satisfies the dual
twistor equation

vAUgh o, (1.17)

One then defines the Maxwell spinor
$is = Vise BS. (1.18)
which satisfies the self-dual Maxwell equations, and the charge is given by

0(B) = /S 5 0S4, (1.19)

where S is any closed 2-surface of the topology & enclosing the region of spacetime
which contains the sources of the s@rﬁelds. For anyg4, one thus obtains a complex
numberQ(8) which depends linearly on the dual twisté,. Given a spin% field ¥ 43¢,
one therefore finds a twista@?® by means of the duality relatio@(8) = Q*W,. This Q¢
may be called the charge twistor of the field ;-. As ¥ ;¢ ranges over all possible field
configurations, one obtains in this way a complete twistor space of charges. This space
arises in a way which is completely different from that in which twistors are usually tied in
with the geometry of a complexified Minkowski space. It is natural to ask whether one can
make a suitable connection between the charge twistor of a%sfﬁﬂd and anx-plane that
defines a twistor in the more geometric picture. It turns out that this can indeed be done
by looking at the asymptotic behaviour of the field and by locatingeamurve or a twistor
line (i.e. the intersection of a@-plane with null infinityZ) in terms of the field only. This
will be described in more detail in a forthcoming paper.

In section 2 we present the asymptotic solution of the masslesgs‘hiid equations in
flat space and show explicitly how the conserved quantities that appear in the field reappear
as singular terms in the two potentials. In section 3, we exhibit a particularly interesting
exact solution of the spié—problem, the solution for pure charges or the ‘quasi-Coulumb’
solution. In section 4, we study the asymptotic solutions of the Rarita—Schwinger equations
and also the behaviour of the second potential in Ricci-flat spacetimes. Section 5 considers
the possibility of defining conserved quantities as charges in an arbitrary vacuum spacetime.
Section 6 summarizes the main results of the present work and also points out some further
aspects of the spié—problem that are currently being investigated.

2. Asymptotic solution in flat spacetime

In this section we study the asymptotic behaviour of the §pfields and their associated
potentials in Minkowski spacetime. In particular, we find certain conserved quantities
(twistors), which are the charged sources of the fields. We then show how these quantities
appear in the two potentials.

We first introduce standard null spherical (Bondi) coordinates (¢, ¢) [9, 10], where
u is the retarded time andthe radial distance in the usual systefmand¢ are the standard
complex stereographic coordinates on the sphere. The hypersurfagesmnstant, are the
outgoing light cones with vertices on= 0.
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At any point in the spacetime, a complex null tetrad or vierbein = (I*, n*, m*, m*)
can be introduced as followd* is an outward-pointing null vector tangent to the cone
u = constant,n* is a null vector pointing inward toward = 0, andm* and m* are
complex vectors tangent to the 2-sphefe defined by constant and u, m* being the
complex conjugate ofi*. Hereu (1 =0, 1, 2, 3) is the spacetime index, and the index
(@ =0, 1, 2, 3) stands for the name of the vectat,. The exact forms of the tetrad can be
found in [9, 10].

The components of the sp@rfield in the vierbein basis are given by four complex
functions g, ¢1, ¢> and ¢5 having spin weights-3, —3, 7 and 3, respectively. These
quantities are defined in terms of the spinor figlg; as

do = Yoo = G0'"% Vise = 0"0Po Ve
$1 = Yooi = ' 0 Vase = 0% 0P, 2.1)
b2 = Voii = "GP G Vage = ABLCWABC» '
¢s = Vi = 'GP Vise = B Y

where tad = (G0, &) = (0, 4) (the complex conjugate being,A = (;“(-,A,g-lA) =
(04, 1)) is the standard spin-frame or the zweibein associated with the Bondi null tetrad
by the following relations [11]:

I* = 0404, nt =44 mt = 044 mt = 404
with the standard normalization
"n, =1, mtm, = —1, oqtd =1

To be precise, we should have usgg @, ¢» andes in lieu of ¢o, ¢1, ¢ andes to define
guantities belonging to the complex conjugate space, but to keep our notation uncluttered,
we have avoided putting the bars on . The sping field equation, equation (1.1),
can now be expressed in the tetrad basis in terms obthdy the following set of field

equations:

0 1 0
(3 ) $o— - ¢o + - E§¢1 (2.2)
u 20r
L oge+ (3 3) b1 =0, 2.3)
r or r
0 190 1 1
(al/t—zm)¢1_r¢l+ra¢2:o, (24)
1 2
— 0¢1 + (3 > ¢2 =0, (2.5)
r or r
0 1 0
(8 ) $2— - ¢2 + - 3053 = (2.6)
u 20r
}5452 + (8 4 1) ¢3=0. 2.7)
r or r

The operators, edth and edthbarand d) are angular differential operators which act on
spin-weighted functions. Their definitions can be found in [10, 11].

If ¢ is given on one light cone at = uo as an arbitrary function of, ¢, and ¢,
equations (2.3), (2.5), and (2.7) can at once be integrated by treatisgan independent
variable and; and¢ as parameters.
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To establish good ‘peeling behaviour’ in the solutions of the above equations, we assume
(((t))) (¢1>)
bo= 73+ 3 +00. (2.8)

Then, from equations (2.3), (2.5) and (2.7) we obtain
0

¢1

br=73+ 6¢o+0(r‘5) (2.9)
(0)
$r = ¢2+ 5¢1+O(r_4), (2.10)
©)
_ ¢3 -3
3=+ 6¢2+0(r ). (2.11)

. . . . © .
Since there is no equation which governs thdependence oip,, it can be given as a
, - O A .
free function ofu, ¢ and¢. ¢4 is commonly known as the ‘news function’ in the literature.

With the above-dependence of the leading terms in thexpansions, equations (2.2), (2.4)
and (2.6) now yield, at the lowest order,

©

0 ()

992 _ 5 b, (2.12)
ou

d b ©
P1_ 5 b5, (2.13)
ou

d b ©)

9% _ 5 1. (2.14)
ou

The solutions of these equations are given by

© u _

¢2 = C2 + D2 —_ / du 6 ¢3, (215)

©) - - L (1)

¢ = C1+D1—M5C2—M5D2+/ / du'du” 0 P3, (2.16)

0
o= Do — udD1 + = 62D2 —/ / / du’ du” du”" 3° ¢3. (2.17)

Here
11
Z B 1Y m=—3.5 (2.18)
and
11
Ci=)_ bu N (2.19)
whereg,, ands,, are four constants, the ‘charges’ of the séirﬁelds
o (O

In equatlons (2.15) and (2.16), there is the possibility that the initial valua$00f¢l,

and ¢2 may contain terms having values higher tha = % The u-independent (i.e.

constant) quantitie€’; and C; are thel = é components of the initial values, while the
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other (constant) components havihgalues higher thah = % are lumped together in the
sum of termsD, and D;. This decomposition facilitates exhibiting the ‘twistor charges’ of
the spin-g fields in terms of the four complex conserved quantifigsandé,,. However,

by suitably choosing the values of the fieiq%)o on the initial hypersurfaca = —oo, we

can setDy, D1 and D, equal to zero. We shall henceforth be concerned only with the four
complex conserved quantiti€s and C,. For each value of, ,Y;, are the spin-weighted
spherical harmonics forming a complete orthonormal set for all spin-weighted functions.
Their properties can be found in [10, 11].

Since the asymptotig’s are completely known, the potentials via equation (1.3) can
now be obtained in terms of the fields. This allows us to explicitly see the conserved charges
in certain components of the potentials. Throughout this work we deal exclusively with the
Rarita—Schwinger description of the potentials, though by a gauge transformation the Dirac
solution can be obtained.

A remark concerning the status of the field—potential relations (1.3) and the Rarita—
Schwinger equations (1.7) and (1.8) is appropriate here. It is important to recognize that
the field—potential relations alone cannot yield all the components of the potential uniquely.
Even after the relations have been integrated, some components of the potential, which are
not pure gauge, will remain undetermined in the solution. In order to obtain these quantities,
one must appeal to the Rarita—Schwinger equations, which are stronger conditions on the
solution set of the potential than the field—potential relations. On the other hand, the
potential, which does not naturally ‘peel’, enjoys some of the peeling properties of the
field through the field—potential relations only. This becomes a problem when we study the
Rarita—Schwinger equations in curved vacuum (Ricci-flat) spacetime in which there exists
no gauge invariant spié—field Vipe to start with.

Before integrating the potential equations, we must settle the issue of the gauge fixing
of the potential. In the first place, we note that the field—potential relations (1.3) constitute
a set of four equations involving the four componeps ¢1, ¢ and¢s of ¥z~ and the

eight tetrad components, 000'17 ..., o%j; of the potentialb ; ; defined as follows:
0 B,C A
% = £a% Co ot BC = —1407070" ¢,
0 B
0% = £a’%" 51 ohye = —ua0boColtye, (2.20)
1 B,C A
oty = &atg® §1 oty = AL 0" e

We can set two of the eight components of the potential equal to zero by imposing the
null gauge condition:
I"o,4 =0, (2.21)
or
oty =0=0c%. (2.22)
so that there are only six independent components of the potential. However, even after
imposing the null gauge, there still remains some residual gauge freedom in the choice of
the potential. This freedom will be used to eliminate some of the constants of integration
in the solution.
Before we start integrating the potential equations asymptotically (for known fields
V¥ ipe)s it is worthwhile to present some exact relations between the various components of
o€ ;3 which can be deduced directly from the Rarita—Schwinger equations. These are
M4

ol = "r 10 _ o, (2.23)
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Dy

oly = - 1 (2.24)
0] 2 1

( + ) 0% = —= 0%, (2.25)
ar r r

0 3 1

500’10 = <8r + r) %1 (2.26)
a 1 1

( + > 0'0‘1'1 = —— 600'10, (2.27)
ar r r

1-0

kY Lii +00%; — 00%5 — 0% = 0. (2.28)

In equation (2.23)¢1;5 has been set equal to zero by gauge choice (see discussion below).
The above relations prove to be very useful in simplifying the asymptotic solutiom$ gf
in terms of the fields) ;¢ given below.
The radial expansion of the tetrad components of the potemfigl,, which is found
from the radial behaviour of the’s, is given by

Do @0,
%= — 0+ r2°° +00r7%), (2.29)
Do @o_
="+ 5 007, (2.30)
Mo~ Do,
0% = 7%+ Gr S Urzlo +0( ), (2.31)
Mo, @o
0% = 0% Gr s Urzﬂ +0073), (2.32)
D1 @
olip = , 0 4 rzlo + 0373, (2.33)
D1 @
oty = ) i } 14 or3). (2.34)

By comparing the coefficients of the different powers goﬁn the tetrad version of

equation (1.3), we obtain a series of relations between the tetrad componéﬁtéggf and
the ¢’s. In particular, we find
D4
a ..
9970 _
du

’

or

&L = Go(2. 2).

whereGo(¢, ¢) is an arbitrary function ot and¢, and

1
2ol ©
K

or

M1

_ u /(0)
o 1‘1=10(C,§)+/ du’ 3.
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We soon return to these two relations.
The gauge transformations ofy, andoly; are given by

IVg
0100 0100 )

or
and
8 .
oty — oo — %-
,
The preservation of the null gauge conditientg, = 0 = o%4;) therefore implies that
Vg dVj
o _ o= (2.35)
ar ar

so that in the remaining gauge freedognand v; are functions of, ¢ and¢ only. Next,
ther-independent terms in the®;, ando?;; series can be made to vanish by making use of
the residual gauge freedom leaving as gauge freedom the two funecgienslv; depending

on ¢ and¢ only. Furthermore, the gauge transformations of the compon%ﬁﬂsﬁ) and
& 1,; are given by

(@) D1

olip —> 0 + i+ 0Ovp
and

Q) D)1

o'y — o'+ Ovy.

This residual gauge freedom allows us to set b@ghand Iy equal to zero. In the remainder
we thus haveGo = Ip = 0 as well as(a)o10 = (3)011 =0.

With the above simplifications, the relevant information for the leading terms of the
tetrad components of the potentiaf ; ;, obtained from equation (1.3) in conjunction with
the Rarita—Schwinger equations (1.7) and (1.8), is

Mo Mo

8000 _o0- 8001 (2.36)
du ou '
0?2 6% = —00 % = Ca, (2.37)

#,
oty = 10—, (2.38)
r
e
o= 1 (2.39)
©
oLy = / du’ ¢, (2.40)
0% = 0= 7%, (2.41)
© u ()
GO =— ¢o=—Cot | du' 3 s (2.42)
—00
The other conserved quantity, appears in® 4; as
© wooow )
— F% = ¢y =C1—udCso+ / / du’ du” 02 ¢ (2.43)
—00 J—00

There is an important issue that we should discuss now. Let us focus our attention on
equation (2.37), which is

1
62( )000 Co.
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Sinced is a spin-raising operator (in steps of unity), and sir%?@oo has spin weight-3,
we see from the above equation that theperator cannot supply a non-zdre- % part so
as to produce the correspondihg= % part of C,. The equation, therefore, is not soluble

e S 1
for any regular functlon(a)ooo of ¢ and¢ defined globally on the sphere(o)ooo possesses

an angular singularity similar to the well known string singularity of the Dirac magnetic
monopole in Maxwell's electrodynamics (with magnetic monopoles). The sphere must be

covered by (at least two) overlapping patches a(ﬁaoo defined separately on each patch,
where it is regular. In the region of overlap of the patch%é?oo are related by gauge

transformations. Thus the singularity &)000 appearing in one patch of the sphere can be
shifted to another by choosing a solution of the homogeneous equation

a2 %)(mooo =0, (2.44)

which is tantamount to choosing an appropriate singular gauge function in the gauge
transformation of & % that cancels the singularity of’ % in the patch containing the
singularity and moves it to another patch. Exphmtl%r,ooo is given in some patclu) by

1+208)Br —¢ B 1
Wo w__ 1 [( £8) Ba ;ﬂz]Pz’

e = (2.45)

where P = J(1+ ¢0). Bi and B_1 are the constants appearingdh in equation (2.18).

1 . . . .
(G)OOO is clearly singular at = 0. Now the general solution of the homogeneous equation

(2.44) is given by
@ = 2
o0 = f(O P2,
where £(¢) is an arbitrary anti-holomorphic function of integration. Choosing

1 (B By
f@) = ( —->,

NZANE ¢
the singularity at = 0 can be removed, so that now in another paigh
Do_» _ -
7% 4f [¢28; —c@+cDpy] P (2.46)

é)ooo(b) is singular at; = oo. Patchesa) and (b) of S? are chosen to b&? — {0} and

$2 — {00} respectively, so that’ %@ and & %,® are both regular in their own domain.
The singular gauge function, that shifts the singularity from patctz) to patch(b) is
given by

< - —¢lo 1 lo 2.47
v = 4\/»[( ¢ gC)ﬂ1+(+§§+ 90 ] (2.47)
and

vy = 8f [(+10g0) By + log £ By | P (2.48)
It is not difficult to verify that with the above singular gauge functiopsand v;, no
singularities are introduced in any of the regular potential componefys ..., o1,
i.e. their analytic structure ois? remains unaffected by this choice of and v;. A
covariant description of the singularities of the potentials and the associated singular gauge
transformations is given in section 3 in connection with a particularly simple and exact
solution of the spin% equations—the ‘quasi-Coulomb’ solution.



Twistors and the asymptotic behaviour of massless %piields 471

Our next task is to use the tetrad versions of equations (1.13) and (1.14) to find the
solution for the eight components,®, 0,2, ..., p;i1! of the second potentiad ; €. These
guantities are defined as follows:

e = ;OAé-BOg-COpABC — OAlBlC,OA‘BC,
g8 (2:49)
pitt = §YeTctpi”C = togocp;tC.
Our procedure here is straightforward and mimics that of the first potential.
First, from the null gauge condition, two of the eight tetrad components;6f are
set equal to zero. Explicitly,
I"p,* =0=> p'®=0=py*. (2.50)
There are thus six independent components of the second potential also. They have the
following radial expansion obtained from equations (1.13) and (1.14):
@ oo D oo

)] P 4 -
:00002 ,oo°°+ ro + rg + 0373, (2.51)
@ o1
it
Pt = ro ’ (2.52)
@ o0 @ oo
)] P i P -
pi® = 9,004 rl + r; + 033, (2.53)
@ o1 @1
© D i D -
pi%t= 9014 rl + r; + 033, (2.54)
%>,1o (/2)),10
pil0= P14 ; + 0073, (2.55)
r r
(/1)),11 (/2)).11
pill = rl + r; +0¢73). (2.56)

By imposing the null gauge, the gauge field® and x* are reduced to functions of, ¢,
and¢. Ther-independent terms in the;% and p;°! series can be made to vanish by the
residual gauge choice, thereby restricting the gauge freedom to two fungtfoaad !
depending ort and¢ only.

From the tetrad version of equations (1.13) and (1.14), we first note that

@ 11 u
0pq 1, l/ 0
= — fa = — d / y
ou 20T, ) G 9s
or,
@ - 1 [+ u ()
pit =&, + 5 / f du’ du” ¢,
—0Q —0Q
and
@ 10 u
00 _ 0
2L= (cjf)oii=—C2+ du’ O ¢,
ou oo
or,

1 - u rr ()
(/0)110=H0(§7§)—*C2+*/ / A’ du” 3 B,
27272 ) ).
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As before, we make use of the residual gauge freedom to set/pahd Hy equal to
zero. The final information for the leading terms in the tetrad components of the second
potential p; 2¢ is now contained in the following results:

Boo =2 9o, (2.57)
32 5,00 = % aCy + % Ca, (2.58)
Do = —% 06% (2.59)
Pi%= 9% =9l =0, (2.60)
3% = —211 @o.. _ zllcl - %802 n % /W /oo d' ' Gy, (2.61)
Wawo_ Ul / ' / " '3 bs, (2.62)
2722 ) )
P = % /_ OO /_ oc A’ e’ B, (2.63)

Equation (2.57) reveals an angular singularity in tl%ooo (spin weight=" —3

component of the second potential. As before, a regf,?f@?o can be defined in a patch of
the sphere by removing the singularity from that patch by choosing an appropriate singular

gauge function in the gauge transformation (;O))'OO. Another angular singularity appears

in the potential componen(tfl))(-)OO (spin weight :—g), as is evident from equation (2.58).
In this case, both the conserved quantiti§sand C, contribute to the singularity, so that
even if C, were zero from the very outsef;; alone would give rise to the singularity in

%)000. The solution to equation (2.58) on patah) is given by
o 1 [Q+2DGH+3B) —C(GE 4]
0T Taym %

which is seen to be singular at= 0. This is again an unphysical angular singularity and
therefore can be moved to a different patch (not containing the goiatd) of the sphere
by a gauge transformation (see section 3 for details).

In the next section we present an exact solution of the %pﬂ'muations; the ‘quasi-
Coulomb’ solution. This solution is simple and interesting and possesses all the essential
features needed for the purpose of understanding the connection between the conserved
guantities (charges) appearing in the solution of the §p|iia>lds and the theory of twistors.

‘i)} P}, (2.64)

3. The ‘quasi-Coulomb’ solution

In this section we display an exact solution of the s%imaquations. This solution is
analogous to the Coulomb or monopole solution of Maxwell's electrodynamics; hence the
name ‘quasi-Coulomb’ solution. This is an exact solution obtained by setting the radiation
parts of the field equal to zero. It is given by

$o =0, (3.1)



Twistors and the asymptotic behaviour of massless %piields 473

0

b1 © 5
o1 = = where ¢, = C1 — u 0Cy, (3.2)
b, 00 o
br = 72 +— where ¢, = C», (3.3)
r r
¢3=0. (3.4)
As in section 2,C> = 3, B 1Yy, m = —33andCi =3, 8, ¥y m = —2 2

where 8,, and$,, are again the four complex constants, the ‘charges’ of the %ﬁield

Vige- In order to exhibit the conserved quantities in the components of the poteftjal

we solve the field—potential relations and the Rarita—Schwinger equations exactly. The final
solution in null gaugedly; = 0 = o'ly;) is given by

Do =
o%0 = M (3.5)
where
LG %)000 = (Cop,
1) =
s 0. (£, ) 1 _
O_Ooi — _+§C _ ﬁ (Cl —u 6C2)’ (36)
1 _
0. _
0= "5%3 (C1 —udCy), (3.7)
Cy 1
0. _
oTii =T —?(5C1+MC2), (3.8)
oty =0, (3.9)
oti; =0. (3.10)

The equatiord? %)000 = C,, which reveals an unphysical angular singularity%%?oo
can be integrated, as in the previous section, in the two separate paigteesd (b) of $?
of section 2, and a regula%)ooo defined in each patch by

1 [(1+2§E)ﬁ;—fﬁ_;} .
P

Patch(a) : (é)ooo(a) = —

’

N Z

1 = 1
Patch(v) : % =+~ [¢*8y — c@ctrpy | P

with P = %(1+ ¢¢). The gauge transformation connecting the two solutions is given by
equations (2.47) and (2.48).
An alternative and more elegant way of expressing these solutions is to give them in
terms of covariant objects. We choose
Ay
_ iV S (3.11)

b0
ivA LVAQ WA

00

wherec,A = (04, ) is the zweibein or spinor dyad defined in section 2.
The first term on the right-hand side of equation (3.11) is a particular solution of

. . L ) . B
02 %)000 = Cp, =(,V4, whereV4 = (V9 V1) is a constant spinor witlv® = —ﬁ% and

; B1 . . (1
V= ;7. The second term is the solution of the homogeneous equakion;, % = O,



474 J Frauendiener et al

which is used to move the singularity (%)000 from one point to another on the sphere
§2. Here W* is an arbitrary spinor that moves the singularity aboutsén To ensure that

%)Ooo approaches a well defined limit gs— “j—; which is the zero of ; V4, we choose§

to be the value of; W4)2(0o,V4)2 at 7 = “j—; Thus

F=WWH20 Vs = (VWY
v0
A useful coordinate representation QfA is given by

04 = /—17€ and A_\/T:’ §71
yi

In this coordinate system, the choite! = (—1, 0) shifts the ‘natural’ singularity = Y-

Vo
to the pointz = 0.
Finally, the gauge field; responsible for this shift of the singularity is given by

])'Oz — A - —OAVAIOg ‘A )
LA WA LAWA

. VA
vy = LA'VA |Og<LLA\NA).
A

The relations between the first potentidl ; ; and the second potential; 5¢ can now
be integrated. Using, in addition, condition (1.15) pn?¢, we have an exact solution in
null gauge p*° = 0 = pytY):

@ 00 p
1 1) oy p C (M, é‘a é‘)
0= LW, by 4 LOED 612)
where
2 Q) 00 1 u
. —— _C ,
6 po 28C1+ 4 2
@ o1 P
Po (U, 8, ¢)
pe’t = SO (3.13)
where
M o1 u
R =——C ,
dpo > 2
1 _
p® =, (C1—udCy), (3.14)
A
i =~ C, (3.15)
2r
pitt=0. (3.16)

. . (O 1 0 1
The singular components gf; ?C are again p>ooo and (p)ooo, where (,o)ooo =1 Go

where (;1))000 is found in a similar manner (see equation (3.11)) but withreplaced by

00 and
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A A Ao A S_1+5B.1 S1+%B1
20C1+ 4Co = 0, VA with VA = (VO, V] = (-’24}”2 24;?2

responsible for the shift of the singularity of the compon&ﬁ;‘)o on the sphere is given by

) . The gauge fielg¢*

1 5A 0A\7A>
=20,V" IO ~ ,
X A g(oAWA

where nowW4 is an arbitrary spinor that moves the singularity(;%))f()00 from one point to
another ons?.

Note that in the two gauge fielgs* andv,, there is a logarithm that changes byizon
a circuit around the equator. The associated changes iptted thev; have been referred
to as the ‘glitches’ or jumps in the gauge fields. Dithe glitches are two functions af, ¢
andZ, namelyi, V4 and.; V4. Penrose observed that the vanishing of these glitchés on
defines a curve o which is identical to the so-called twistor curves of flat space, defined
by the intersection of a twistor surface with[12]. One attempt to understand twistors in
asymptotically flat spacetime is to see if this idea of the glitches and the curve on which
they vanish can be generalized to the situation where there is gravitational radiation. This
problem will be discussed, but not solved, in section 5.

4. Rarita—Schwinger Equations in Ricci-flat spacetime

In this section we study the solutions of the Rarita—Schwinger equations in Ricci-flat
spacetime. First of all, we note that now we do not have the gauge-invariang Sigiluls
¥ iic to fall back upon. As in the flat case, we choose Bondi coordinates, ¢, ¢), and
the associated complex null tetrad or vierbgih, = (I*, n*, m*, m*) may be written as
[13]
" =4,
nt =8y + U + X' 8",
mt = wdl +E 5.

With this choice of coordinate system and tetrad, the tetrad derivatives assume the form

D = 2 = 2
BXBH aar’ d 9 r 9
— 0 — 0 ¢ 39 o) .
N P 9 _ = 0 ¢ 0 )
§ = miyn = @ +E g +E

where (£¢) = £¢ and (£¢) = £°. The complete asymptotically flat solution of the vacuum
Einstein equations together with the definitions of the various quantities involved can be
found in [13]. For us, the asymptotic behaviour of the she@ar, r, ¢, ¢) of the light cones

u = constant is of particular importance. Specificabiyyu, r, ¢, ) = % + 0.

Before we begin working with the Rarita—Schwinger equations (1.7) and (1.8) in Ricci-
flat spacetime, we note that'y, andoly; can again be set equal to zero by the imposition
of the null gauge condition, whereby the gauge fielgandv; are restricted to be functions
of u, ¢ and¢ alone.
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We assume the same asymptotic fall-offriof the o’s as that in the flat case. Thus

0 pp = p + + O ™), (4.2)
0 %)001 (é)om -3
0 i = p + + O ™), (4.3)
<1>0 @0
0% = %+ 04 7 10 1 o3, (4.4)
Do <2>0
0% = 9%+ " 4 T orT), (4.5)
1 %)1'10 (é)llo -3
0vip = p + + O ™), (4.6)
1 %)1'1'1 (02)111 -3
o7 = + + O(r™2). 4.7)

The r-independent terms in theoio ando;; series can be made to vanish by using
the additional gauge freedom which further reduggandv; to functions of¢ and¢ only.

Besides, since%)l-m is time-independent (follows from the Rarita—Schwinger equations (1.7)
and (1.8)), and since it transforms as

1 D1
(O')llo — (O') 10 +V1+8U0,
we can set(é)lio = 0 by definingv; in terms ofy; in the above relation.
Incorporating these simplifications into the tetrad version of equations (1.7) and (1.8)
and then comparing the coefficients of the different power%,uf/e obtain

Do Mo,
9 0

o 00 —0= o 017 (48)

ou du
Do _o_ 20 (4.9)
2 @

@1 _ g0 Do (4.10)
(1)001 ey Mg 5 = O. (4.11)
o) @

aly =00 0%, (412)
_ @0 bt 2 (2>ol pL (01)111 -0 (4.13)
) o (2
7% = 2 5(0 oty) + 5 5 7 o (4.14)
a

gum 4590, —6° P14 (B F0% =0, (4.15)
d %)111 §) %)001 - (&)011 +6° G0 00 =0, (4.16)
§ @1, — (00 D0 — 05 PO+ @0 = 0, (4.17)

where the dot on the shear signifies the derivative with respect to the retarded. time

Some of the above equations are reminiscent of equations (2.36)—(2.43) in the flat case.
This similarity will be our guide (section 5) in the search for conserved quantities similar to
C; and C; of the flat space solution. In the next section, we shall, in fact, discuss the issue
as to whether it is at all possible to obtain conserved quantitiesdikand C, by solving
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the Rarita—Schwinger equations in Ricci-flat spacetimes. We note that the asymptotic shear
o%u, ¢, ¢) of the vacuum spacetime couples directly to the leading terms of the Rarita—
Schwinger fields. As we shall see in section 5, this coupling acts as the main impediment
to defining a conserved charge.

We now proceed to expressing the above solution in terms of the components of the
potential p ;2¢ by making use of the tetrad versions of equations (1.13) and (1.14). The
solution again simplifies by choosing the null gauge in whigh’ = 0 = py%. As before,
we assume that the tetrad componentp of¢ have the same asymptotic fall-off inas
that in the flat case. Symbolically, we write

o %) %) ;
=,0+7+ﬁ+0(r7), (4-18)

wherep represents all the non-zero components fC in the tetrad basis.

By the residual gauge freedon%g)ioo and (2)10_1 are set equal to zero, which leaves
the gauge fieldgc® and x* as functions of; and ¢ alone. We then have the following
information:

© © © (o)

pot=pi%= pitt=0;"=0 (4.19)

1w ©

5 0= Po"; (4.20)
Uag® @
-5 O = DL, (4.21)
1 ©

_é o 00'1 =0 ,OOOO, (4.22)

1 ©

5 0lio=0" 0" (4.23)

(6N
e 301" 50
5 0=y =6 P, (4.24)
@D 17
1w 0P
Equations (4.24) and (4.25) can be immediately integrated to give
Q1= / du' 5ty (4.26)
and
@ 1 w0 W
Pi Zé du’ o 11+ 2 T "50» (427)

where, as in the flat case, we have set the time-independent functions of integration in both

%)111 and % 110 equal to zero by making use of the residual gauge freedom iry the

To proceed further, we make the assumptl;an10 0. In flat space, equations (1.13)—
(1.15) ensured the vanishing of the componéﬁim. Although equation (1.15) does not

have a realization in curved space, the imposition of the very mild condl%)qﬁo =0
on the curved spacg’s considerably improves the situation by making the equations for
(;1))000 and (;1))100 separable and thereby removing any arbitrariness in the solutippt.

Furthermore, the condition does not lead to any ambiguity in the solution.

Finally, we remark that although the equations {‘3500 and 5 100 can, in principle, be
solved in terms of the's and the shear, in actual practice they are extremely complicated
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and difficult to integrate in closed form. It suffices to comment tﬁ%@oo becomes badly
singular in curved space.

As the equations for the and thep are quite similar in structure to their flat space
counterparts, we shall, in the next section, take advantage of this fact to try to construct
twistor charges in our Ricci-flat spacetime.

5. Charges in an arbitrary vacuum spacetime

Using the results of the previous section, we now elucidate the general problem of defining
conserved charges for massless s})iﬁ'relds. Before considering the question as to whether

it is at all possible to define conserved charges in an arbitrary vacuum spacetime, it is
worthwhile to reconsider the concept of charges in a Minkowski space by viewing them

solely as conserveduf{independent) quantities appearing in certain components of the

potentialo € ;5.

We begin by trying to see what information we can extract about any conserved
guantities in a Minkowski space by restricting ourselves to solutions of the Rarita—Schwinger
equations alone without using the fields;;-. The following relations are obtained by
considering asymptotic solutions of the Rarita—Schwinger equations in the null tetrad basis:

@o @o

: ‘;uoo 0= % (5.1)

00% =~ 0%: (5.2)

G0 =07% +8%,. (5.3)
Combining equations (6.2) and (6.3), we obtain

3?60 =37L; — 7% (5.4)

Because(c}—)ooo is a time-independent (equation (5.1)), the quantity on the right-hand side of
equation (5. 4) must be time-independent. Now, since the spin Weigrgeog{, (é)o-li, and

) (0)111 are — 2 2, and respectively, we see immediately that a time-independeﬂt%
component can be generated from the quantity on the right-hand side of equation (5.4)
which makes%)ooo a singular function on the sphere. This object has the right character
of a conserved charge and is in fact #ig of section 2.

We now try to emulate this procedure to generate a free time-independent object as a
conserved charge by considering the Rarita—Schwinger equations in an arbitrary Ricci-flat
spacetime. From equations (4.11) and (4.16), we obtain the following equation which is
analogous to equation (6.4) considered above for the flat case:

Do D1 Do (1)0 )

?6% =061 — 0% +0° & (5.5)

Since (01)000 is time-independent (equation (4.8)), the right-hand side of the above equation
must also be time-independent. We then have

=1 1
59N — 7% +6° 7% = Ca(¢, 0. (5.6)

Since the spin weights of the termg; and&° & 0.5 are both3, there is the possibility
of generating a time-independdnt % component on the right-hand side of equation (5.6).
C»(¢,¢) stands for this particular component. All time-independent higher harmonics



Twistors and the asymptotic behaviour of massless %piields 479

(¢ = 2 2,. .) can be disposed of by choosing suitable initial conditions for the terms
on the left-hand side of equation (5.6).
Equation (5.5) now gives

3% 3%, = Ca. (5.7)

As in the flat case@ %, is singular on the sphers?.

C, is indeed the same conserved quantity as that encountered in the flat case in section
2 constituting one component of the twistor cha@e Let us now see if we can also find
the other component; of the charge. If thisC; is to be a conserved quantity, it should
appear, as in the flat case, as a time-independent function of integration in the component
(3)001 To find it, we first note that equation (5.6) allows us to defﬁ%)é’ii in terms of
Ca(¢, ¢), the arbitrarily specified ‘gravitational news, and the free spirg- ‘radiation’

term &1 ji- Thus,

Mo @ @

0% =—Ca(¢,0) +0 Yy +° 0%, (5.8)
We now substituteo-oi-l from equation (5.8) into equation (4.15), which can then be
integrated to yield

G0%;i = — C1(¢. D) +udCa(2, T) — (0 %)

~30%) 8%~ [ aw @ - 5% 8 (5.9)

C1(¢, ¢), being again thé = % harmonic of the form seen earlier in equation (2.43) of
flat space, has the right appearance of the other component of the twistor charge, our
desideratum. Unfortunatel¢'; cannot now be identified with certainty as a conserved
guantity similar to that obtained in the flat case, since it is not clear that the time-dependent
singular terms (the third and the fourth terms on the right-hand side of equation (5.9)) do not
contribute a time-dependeht= % component to be added 16,. However, if we assume

that C; is, in fact, conserved (note thal, is always conserved), we are still presented
with the problem of showing the existence of the ‘glitches’ and the associated cunz&s on
defined by the vanishing of the glitches (discussed in section 3 in the context of flat space),
as well as finding and investigating the properties of these curves. The conjecture is that
the space of these curves is indeed the generalization of twistor space to asymptotically flat
vacuum spacetimes and that this generalized twistor space ‘encodes’ the information of the
spacetime itself.

6. Conclusion

We briefly summarize here what we have accomplished in this work. First, the asymptotic
retarded solutions of the massless sgyiﬁelds in Minkowski space have been found. The
solutions reveal the existence of four complex conserved quantities in the figlgls.

The space of these four complex quantities can be shown to be isomorphic to flat twistor
space. With appropriate choices of gauge, the equations for the first and second potentials
can be integrated asymptotically. The conserved quantities reappear in certain singular
behaviour of the potentials, the singularities being of the Dirac string type, movable by gauge
transformations. An exact special solution, the ‘quasi-Coulomb’ solution—the analogue of
the Coulomb solution of the Maxwell equations—was found and analysed, which exactly
exhibits the conserved quantities.
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These calculations have then been repeated for the case of asymptotically flat vacuum
spaces. Once again one can see where quantities similar to the four complex conserved
charges arise.

Unfortunately, it still remains an unsolved problem as to how a curved twistor space
could be constructed from these quantities. It is clear, however, that the obstruction to
the flat space twistor construction is the existence of gravitational radiation, in the form of
Bondi shear.
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