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Abstract. In this work the asymptotic solutions of massless spin-3
2 fields are studied. First,

in a Minkowski space, the fields, their potentials, and the associated gauges are analysed in the
Rarita–Schwinger description. We exhibit the explicit appearance of the conserved charges of the
fields and their singular behaviour in the potentials. The charges of the spin-3

2 fields emerge as a
global definition of twistors. The flat space case serves as a guide in the analysis of the problem
in general vacuum spacetimes. Although the fundamental connection between and the meaning
of twistors and charges have not, as yet, been established in general vacuum spacetimes, some
useful insights have nevertheless been gained in studying the potential-modulo-gauge description
of the spin-32 problem in such spacetimes.

PACS numbers: 0420, 1115

1. Introduction

One of the major research directions of twistor theory in recent years has been to explore
the relationship between twistors and the charges of massless spin-3

2 fields. First of all, the
connection between general relativity and the spin-3

2 fields has been known for many years
[1]; the consistency conditions for the massless spin-3

2 fields in a potential-modulo-gauge
description (see discussion below) on a spacetime are that the spacetime must satisfy the
vacuum Einstein equations. More recently, it was pointed out by Penrose [2] that in a
Minkowski spacetime, the space of the conserved charges of the massless spin-3

2 fields is
isomorphic to the flat twistor space. This curious result greatly stimulated the search that
had already been under way for finding the conserved charges of the spin-3

2 fields in general
Ricci-flat spacetimes with which to construct the generalized versions of twistor space [3].
If the twistor spaces in question really existed, they would presumably reflect, although in
an essentially non-local manner, the properties of the underlying vacuum spacetime; e.g. the
vacuum spacetimes would be encoded, in some manner, into the twistor spaces themselves.
Unfortunately, this program has not been successful until now.

The present work investigates (by explicit integration) the problem of the charges of
the massless spin-3

2 fields, first in flat spacetime and then (with the flat-space results as a
guide) in asymptotically flat vacuum spacetimes. This procedure allows us to see explicitly
how far the flat space results are tenable in the curved spaces and also what the possible
obstructions would be. The explicit comparison between the flat and the curved space
results may provide a way to envisage the twistor concepts in the curved space case.
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In a Minkowski spacetime, a spin-3
2 field, described by a totally symmetric spinorψȦḂĊ ,

satisfies the zero rest mass field equation

∇AȦψȦḂĊ = 0, (1.1)

where∇AȦ is the spinor-covariant derivative. Throughout the present work, we use two-
component spinor notation, where spinors with dotted indices transform under the(0, 1

2)

representation of the Lorentz group and those with undotted indices under the( 1
2, 0)

representation. HereA = 0, 1 and Ȧ = 0̇, 1̇. In our convention, the spinor field with
three symmetric dotted indices represents a spin-3

2 particle of positive helicity.
In a general curved spacetime, equation (1.1) is rendered inconsistent by the well known

Buchdahl condition:

9ȦḂĊḊ ψ
ȦḂĊ = 0, (1.2)

where9ȦḂĊḊ is the conformal Weyl spinor. Equation (1.2) is a condition on the spinor
field and the spacetime that severely restricts the set of solutions of equation (1.1). In order
to circumvent this difficulty, one introduces a potentialσCȦḂ , which, in flat space, describes
locally the spinor fieldψȦḂĊ .

In a Minkowski spacetime, two kinds of potential formulations have been given—the
Dirac [4] and the Rarita–Schwinger [5] formulations. In the Dirac formulation, the spinor
field ψȦḂĊ is defined in terms of a potentialσCȦḂ as

ψȦḂĊ = ∇C(Ċσ
C
ȦḂ), (1.3)

with
∇AȦσCȦḂ = 0, (1.4)

where the potentialσCȦḂ is symmetric in the indiceṡA and Ḃ. Equation (1.3), together
with equation (1.4), implies the validity of equation (1.1).

The gauge transformation forσCȦḂ which leavesψȦḂĊ invariant is given by

σCȦḂ −→ σCȦḂ + ∇C
ȦνḂ, (1.5)

where the spin-12 field νḂ satisfies the Weyl anti-neutrino equation

∇AȦνȦ = 0. (1.6)

In the Rarita–Schwinger formulation, equation (1.3), which defines the field in terms of
the potential, is unchanged. The potential, however, is no longer symmetric in the indices
Ȧ and Ḃ and now satisfies the Rarita–Schwinger equations

∇C(Ċσ
C
Ȧ)Ḃ ε

ȦḂ = 0, (1.7)

∇Ȧ(AσC)ȦḂ = 0. (1.8)

Equation (1.3), together with the Rarita–Schwinger equations (1.7) and (1.8), implies the
validity of equation (1.1).

σCȦḂhas the same gauge transformation as in equation (1.5), with the exception that
νḂ is now completely arbitrary. It may be mentioned in passing that the Rarita–Schwinger
formulation yields the Dirac formulation for a special choice of gauge.

It has been shown by Buchdahl [1] and by Chinea [6] among others and later also
by people working in supergravity theory [7, 8] that the integrability conditions for the
potential equations (the Dirac equation, equation (1.4), in the Dirac formulation, and the
Rarita–Schwinger equations, equations (1.7) and (1.8), in the Rarita–Schwinger formulation)
in an arbitrary curved spacetime are that the traceless part of the Ricci tensorRµν vanishes.
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Furthermore, if the potentialσCȦḂ has to enjoy the same gauge freedom as that given by
equation (1.5), the trace part ofRµν must vanish, so that the requirement for consistency both
of the Dirac and of the Rarita–Schwinger formulation in an underlying curved spacetime is
that the spacetime is Ricci-flat, i.e.

Rµν = 0.

It is important, however, to recognize in this connection that any massless spin-3
2 fieldψȦḂĊ

defined from the potentials in either of the two formulations is not gauge invariant, and one
cannot help being resigned to a potential-modulo-gauge description.

Frequently, a second potentialρȦ
BC is introduced, which locally defines the first

potentialσCȦḂ . In the Dirac formulation, the second potentialρȦ
BC is symmetric in the

indicesB andC and is given by

σCȦḂ = ∇B(ḂρȦ)
BC, (1.9)

with
∇AȦρȦ

BC = 0, (1.10)

subject to the following gauge freedom

ρȦ
BC −→ ρȦ

BC + ∇B
Ȧχ

C + εBCνȦ, (1.11)

where the spin-(− 1
2) field χC satisfies the Weyl neutrino equation

∇CĊχ
C = 0. (1.12)

TheεBCνȦ term in the gauge transformation ofρȦ
BC in equation (1.11) generates the correct

gauge transformation of the first potentialσCȦḂ , as given by equation (1.5). Equations (1.9)
and (1.10), along with equations (1.3) and (1.4), imply the validity of equation (1.1).

In the Rarita–Schwinger formulation, the symmetry condition is not imposed on the
second potential. The first potentialσCȦḂ is related to the second potential by the following
equations:

σC Ȧ

Ȧ
= − 4

3
∇Ḃ(CρB)BḂ , (1.13)

σC
(ȦḂ)

= 2 ∇B(ȦρḂ)
BC. (1.14)

With the above defining relations between the two potentials, the first Rarita–Schwinger
equation, (1.7), reduces to an identity, while the second Rarita–Schwinger equation, (1.8),
yields a second-order equation forρȦ

BC which can be satisfied by solving the first-order
equation

∇Ȧ(AρȦ
BC) = 0. (1.15)

The gauge transformation forρȦ
BC is again given by equation (1.11), but nowχC is just

an arbitrary spinor field.
In a Minkowski spacetime, a consistent identification of twistors with the charges of

massless spin-3
2 fields has been made [2]. The concept of charge arises here in close

analogy with Gauss’s law in electrodynamics, where the chargeQ of an electromagnetic
field is obtained by integrating the field tensorFµν (a closed 2-form) over a sphere enclosing
the source:

Q =
∫
S

Fµν dxµν.
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In order to obtain a generalized Gauss’s law to define charges for spin-3
2 fields, one begins

with a spinor field of the form

βȦ = µȦ + ixAȦλA, (1.16)

(the pair of constant spinors(λA, µȦ) defines a dual twistorWα) which satisfies the dual
twistor equation

∇A(ȦβḂ) = 0. (1.17)

One then defines the Maxwell spinor

φȦḂ = ψȦḂĊ β
Ċ, (1.18)

which satisfies the self-dual Maxwell equations, and the charge is given by

Q(β) =
∫
S

φȦḂ dSȦḂ , (1.19)

whereS is any closed 2-surface of the topology ofS2 enclosing the region of spacetime
which contains the sources of the spin-3

2 fields. For anyβȦ, one thus obtains a complex
numberQ(β) which depends linearly on the dual twistorWα. Given a spin-32 field ψȦḂĊ ,
one therefore finds a twistorQα by means of the duality relationQ(β) = QαWα. ThisQα

may be called the charge twistor of the fieldψȦḂĊ . As ψȦḂĊ ranges over all possible field
configurations, one obtains in this way a complete twistor space of charges. This space
arises in a way which is completely different from that in which twistors are usually tied in
with the geometry of a complexified Minkowski space. It is natural to ask whether one can
make a suitable connection between the charge twistor of a spin-3

2 field and anα-plane that
defines a twistor in the more geometric picture. It turns out that this can indeed be done
by looking at the asymptotic behaviour of the field and by locating anα-curve or a twistor
line (i.e. the intersection of anα-plane with null infinityI) in terms of the field only. This
will be described in more detail in a forthcoming paper.

In section 2 we present the asymptotic solution of the massless spin-3
2 field equations in

flat space and show explicitly how the conserved quantities that appear in the field reappear
as singular terms in the two potentials. In section 3, we exhibit a particularly interesting
exact solution of the spin-3

2 problem, the solution for pure charges or the ‘quasi-Coulumb’
solution. In section 4, we study the asymptotic solutions of the Rarita–Schwinger equations
and also the behaviour of the second potential in Ricci-flat spacetimes. Section 5 considers
the possibility of defining conserved quantities as charges in an arbitrary vacuum spacetime.
Section 6 summarizes the main results of the present work and also points out some further
aspects of the spin-3

2 problem that are currently being investigated.

2. Asymptotic solution in flat spacetime

In this section we study the asymptotic behaviour of the spin-3
2 fields and their associated

potentials in Minkowski spacetime. In particular, we find certain conserved quantities
(twistors), which are the charged sources of the fields. We then show how these quantities
appear in the two potentials.

We first introduce standard null spherical (Bondi) coordinates (u, r, ζ , ζ̄ ) [9, 10], where
u is the retarded time andr the radial distance in the usual system.ζ andζ̄ are the standard
complex stereographic coordinates on the sphere. The hypersurfaces,u = constant, are the
outgoing light cones with vertices onr = 0.
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At any point in the spacetime, a complex null tetrad or vierbeinλµa = (lµ, nµ,mµ, m̄µ)

can be introduced as follows:lµ is an outward-pointing null vector tangent to the cone
u = constant,nµ is a null vector pointing inward towardr = 0, andmµ and m̄µ are
complex vectors tangent to the 2-sphereS2 defined by constantr and u, m̄µ being the
complex conjugate ofmµ. Hereµ (µ = 0, 1, 2, 3) is the spacetime index, and the indexa
(a = 0, 1, 2, 3) stands for the name of the vectorλµa. The exact forms of the tetrad can be
found in [9, 10].

The components of the spin-3
2 field in the vierbein basis are given by four complex

functionsφ0, φ1, φ2 and φ3 having spin weights− 3
2, − 1

2, 1
2 and 3

2, respectively. These
quantities are defined in terms of the spinor fieldψȦḂĊ as

φ0 = ψ0̇0̇0̇ = ζ0̇
Ȧζ0̇

Ḃζ0̇
ĊψȦḂĊ = oȦoḂoĊψȦḂĊ ,

φ1 = ψ0̇0̇1̇ = ζ0̇
Ȧζ0̇

Ḃζ1̇
ĊψȦḂĊ = oȦoḂ ιĊψȦḂĊ ,

φ2 = ψ0̇1̇1̇ = ζ0̇
Ȧζ1̇

Ḃζ1̇
ĊψȦḂĊ = oȦιḂ ιĊψȦḂĊ ,

φ3 = ψ1̇1̇1̇ = ζ1̇
Ȧζ1̇

Ḃζ1̇
ĊψȦḂĊ = ιȦιḂ ιĊψȦḂĊ ,

(2.1)

where ζaA = (ζ0
A, ζ1

A) = (oA, ιA) (the complex conjugate beingζȧȦ = (ζ0̇
Ȧ, ζ1̇

Ȧ) =
(oȦ, ιȦ)) is the standard spin-frame or the zweibein associated with the Bondi null tetrad
by the following relations [11]:

lµ = oAoȦ, nµ = ιAιȦ, mµ = oAιȦ, m̄µ = ιAoȦ,

with the standard normalization

lµnµ = 1, mµm̄µ = −1, oAι
A = 1.

To be precise, we should have usedφ̄0, φ̄1, φ̄2 andφ̄3 in lieu ofφ0, φ1, φ2 andφ3 to define
quantities belonging to the complex conjugate space, but to keep our notation uncluttered,
we have avoided putting the bars on theφ’s. The spin-32 field equation, equation (1.1),
can now be expressed in the tetrad basis in terms of theφ’s by the following set of field
equations: (

∂

∂u
− 1

2

∂

∂r

)
φ0 − 1

2r
φ0 + 1

r
ð̄φ1 = 0, (2.2)

1

r
ðφ0 +

(
∂

∂r
+ 3

r

)
φ1 = 0, (2.3)(

∂

∂u
− 1

2

∂

∂r

)
φ1 − 1

r
φ1 + 1

r
ð̄φ2 = 0, (2.4)

1

r
ðφ1 +

(
∂

∂r
+ 2

r

)
φ2 = 0, (2.5)(

∂

∂u
− 1

2

∂

∂r

)
φ2 − 3

2r
φ2 + 1

r
ð̄φ3 = 0, (2.6)

1

r
ðφ2 +

(
∂

∂r
+ 1

r

)
φ3 = 0. (2.7)

The operators, edth and edthbar (ð and ð̄) are angular differential operators which act on
spin-weighted functions. Their definitions can be found in [10, 11].

If φ0 is given on one light cone atu = u0 as an arbitrary function ofr, ζ , and ζ̄ ,
equations (2.3), (2.5), and (2.7) can at once be integrated by treatingr as an independent
variable andζ and ζ̄ as parameters.
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To establish good ‘peeling behaviour’ in the solutions of the above equations, we assume

φ0 = φ
(0)

0

r4
+ φ

(1)

0

r5
+O(r−6). (2.8)

Then, from equations (2.3), (2.5) and (2.7) we obtain

φ1 = φ
(0)

1

r3
+ 1

r4
ð φ
(0)

0 + O(r−5), (2.9)

φ2 = φ
(0)

2

r2
+ 1

r3
ð φ
(0)

1 + O(r−4), (2.10)

φ3 = φ
(0)

3

r
+ 1

r2
ð φ
(0)

2 + O(r−3). (2.11)

Since there is no equation which governs theu dependence ofφ
(0)

3, it can be given as a

free function ofu, ζ andζ̄ . φ
(0)

3 is commonly known as the ‘news function’ in the literature.
With the abover-dependence of the leading terms in theφ-expansions, equations (2.2), (2.4)
and (2.6) now yield, at the lowest order,

∂ φ
(0)

2

∂u
= −ð̄ φ

(0)

3, (2.12)

∂ φ
(0)

1

∂u
= −ð̄ φ

(0)

2, (2.13)

∂ φ
(0)

0

∂u
= −ð̄ φ

(0)

1. (2.14)

The solutions of these equations are given by

φ
(0)

2 = C2 +D2 −
∫ u

−∞
du′ ð̄ φ

(0)

3, (2.15)

φ
(0)

1 = C1 +D1 − u ð̄C2 − u ð̄D2 +
∫ u

−∞

∫ u′

−∞
du′ du′′ ð̄2 φ

(0)

3, (2.16)

φ
(0)

0 = D0 − u ð̄D1 + u2

2
ð̄2D2 −

∫ u

−∞

∫ u′

−∞

∫ u′′

−∞
du′ du′′ du′′′ ð̄3 φ

(0)

3. (2.17)

Here

C2 =
∑
m

βm 1
2
Y 1

2m
, m = −1

2
,

1

2
(2.18)

and

C1 =
∑
m

δm − 1
2
Y 1

2m
, m = −1

2
,

1

2
, (2.19)

whereβm andδm are four constants, the ‘charges’ of the spin-3
2 fields.

In equations (2.15) and (2.16), there is the possibility that the initial values ofφ
(0)

0, φ
(0)

1,

and φ
(0)

2 may contain terms havingl values higher thanl = 1
2. The u-independent (i.e.

constant) quantitiesC2 andC1 are thel = 1
2 components of the initial values, while the
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other (constant) components havingl values higher thanl = 1
2 are lumped together in the

sum of termsD2 andD1. This decomposition facilitates exhibiting the ‘twistor charges’ of
the spin-32 fields in terms of the four complex conserved quantitiesβm and δm. However,

by suitably choosing the values of the fieldφ
(0)

0 on the initial hypersurfaceu = −∞, we
can setD0, D1 andD2 equal to zero. We shall henceforth be concerned only with the four
complex conserved quantitiesC1 andC2. For each value ofs, sYlm are the spin-weighted
spherical harmonics forming a complete orthonormal set for all spin-weighted functions.
Their properties can be found in [10, 11].

Since the asymptoticφ’s are completely known, the potentials via equation (1.3) can
now be obtained in terms of the fields. This allows us to explicitly see the conserved charges
in certain components of the potentials. Throughout this work we deal exclusively with the
Rarita–Schwinger description of the potentials, though by a gauge transformation the Dirac
solution can be obtained.

A remark concerning the status of the field–potential relations (1.3) and the Rarita–
Schwinger equations (1.7) and (1.8) is appropriate here. It is important to recognize that
the field–potential relations alone cannot yield all the components of the potential uniquely.
Even after the relations have been integrated, some components of the potential, which are
not pure gauge, will remain undetermined in the solution. In order to obtain these quantities,
one must appeal to the Rarita–Schwinger equations, which are stronger conditions on the
solution set of the potential than the field–potential relations. On the other hand, the
potential, which does not naturally ‘peel’, enjoys some of the peeling properties of the
field through the field–potential relations only. This becomes a problem when we study the
Rarita–Schwinger equations in curved vacuum (Ricci-flat) spacetime in which there exists
no gauge invariant spin-3

2 field ψȦḂĊ to start with.
Before integrating the potential equations, we must settle the issue of the gauge fixing

of the potential. In the first place, we note that the field–potential relations (1.3) constitute
a set of four equations involving the four componentsφ0, φ1, φ2 andφ3 of ψȦḂĊ and the
eight tetrad components,σ 0

0̇0̇, σ
0

0̇1̇, . . . , σ
1

1̇1̇ of the potentialσCȦḂ defined as follows:

σ 0
0̇0̇ = ζA

0ζ0̇
Ḃζ0̇

ĊσAḂĊ = −ιAoḂoĊσAḂĊ,
σ 0

0̇1̇ = ζA
0ζ0̇

Ḃζ1̇
ĊσAḂĊ = −ιAoḂoĊσAḂĊ,

...
...
...
... = ...

...
...
... = ...

...
...
...

σ 1
1̇1̇ = ζA

1ζ1̇
Ḃζ1̇

ĊσAḂĊ = oAι
Ḃ ιĊσAḂĊ .

(2.20)

We can set two of the eight components of the potential equal to zero by imposing the
null gauge condition:

lµσµȦ = 0, (2.21)

or

σ 1
0̇0̇ = 0 = σ 1

0̇1̇, (2.22)

so that there are only six independent components of the potential. However, even after
imposing the null gauge, there still remains some residual gauge freedom in the choice of
the potential. This freedom will be used to eliminate some of the constants of integration
in the solution.

Before we start integrating the potential equations asymptotically (for known fields
ψȦḂĊ), it is worthwhile to present some exact relations between the various components of
σCȦḂ which can be deduced directly from the Rarita–Schwinger equations. These are

σ 1
1̇0̇ = σ

(1)1
1̇0̇

r
= 0, (2.23)
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σ 1
1̇1̇ = σ

(1)1
1̇1̇

r
, (2.24)(

∂

∂r
+ 2

r

)
σ 0

0̇1̇ = −1

r
ðσ 0

0̇0̇, (2.25)

∂

∂r
σ 0

1̇0̇ =
(
∂

∂r
+ 1

r

)
σ 0

0̇1̇, (2.26)(
∂

∂r
+ 1

r

)
σ 0

1̇1̇ = −1

r
ðσ 0

1̇0̇, (2.27)

1

r
ð̄ σ(1)11̇1̇ + ðσ 0

0̇1̇ − ðσ 0
1̇0̇ − σ 0

1̇1̇ = 0. (2.28)

In equation (2.23),σ 1
1̇0̇ has been set equal to zero by gauge choice (see discussion below).

The above relations prove to be very useful in simplifying the asymptotic solutions ofσCȦḂ
in terms of the fieldsψȦḂĊ given below.

The radial expansion of the tetrad components of the potentialσCȦḂ , which is found
from the radial behaviour of theφ’s, is given by

σ 0
0̇0̇ = σ

(1)0
0̇0̇

r
+ σ

(2)0
0̇0̇

r2
+ O(r−3), (2.29)

σ 0
0̇1̇ = σ

(1)0
0̇1̇

r
+ σ

(2)0
0̇1̇

r2
+ O(r−3), (2.30)

σ 0
1̇0̇ = σ

(0)0
1̇0̇ + σ

(1)0
1̇0̇

r
+ σ

(2)0
1̇0̇

r2
+ O(r−3), (2.31)

σ 0
1̇1̇ = σ

(0)0
1̇1̇ + σ

(1)0
1̇1̇

r
+ σ

(2)0
1̇1̇

r2
+ O(r−3), (2.32)

σ 1
1̇0̇ = σ

(1)1
1̇0̇

r
+ σ

(2)1
1̇0̇

r2
+ O(r−3), (2.33)

σ 1
1̇1̇ = σ

(1)1
1̇1̇

r
+ σ

(2)1
1̇1̇

r
+ O(r−3). (2.34)

By comparing the coefficients of the different powers of1
r

in the tetrad version of

equation (1.3), we obtain a series of relations between the tetrad components ofσ
(n)A

ḂĊ and
theφ’s. In particular, we find

∂ σ
(1)1

1̇0̇

∂u
= 0,

or

σ
(1)1

1̇0̇ = G0(ζ, ζ̄ ),

whereG0(ζ, ζ̄ ) is an arbitrary function ofζ and ζ̄ , and

∂ σ
(1)1

1̇1̇

∂u
= φ

(0)

3,

or

σ
(1)1

1̇1̇ = I0(ζ, ζ̄ )+
∫ u

−∞
du′ φ

(0)

3.
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We soon return to these two relations.
The gauge transformations ofσ 1

0̇0̇ andσ 1
0̇1̇ are given by

σ 1
0̇0̇ −→ σ 1

0̇0̇ − ∂ν0̇

∂r

and

σ 1
0̇1̇ −→ σ 1

0̇1̇ − ∂ν1̇

∂r
.

The preservation of the null gauge condition (σ 1
0̇0̇ = 0 = σ 1

0̇1̇) therefore implies that

∂ν0̇

∂r
= 0 = ∂ν1̇

∂r
, (2.35)

so that in the remaining gauge freedomν0̇ andν1̇ are functions ofu, ζ and ζ̄ only. Next,
ther-independent terms in theσ 0

1̇0̇ andσ 0
1̇1̇ series can be made to vanish by making use of

the residual gauge freedom leaving as gauge freedom the two functionsν0̇ andν1̇ depending

on ζ and ζ̄ only. Furthermore, the gauge transformations of the componentsσ
(1) 1

1̇0̇ and

σ
(1) 1

1̇1̇ are given by

σ
(1)1

1̇0̇ −→ σ
(1)1

1̇0̇ + ν1̇ + ðν0̇

and

σ
(1)1

1̇1̇ −→ σ
(1)1

1̇1̇ + ðν1̇.

This residual gauge freedom allows us to set bothG0 andI0 equal to zero. In the remainder

we thus haveG0 = I0 = 0 as well as σ
(0)0

1̇0̇ = σ
(0)0

1̇1̇ = 0.
With the above simplifications, the relevant information for the leading terms of the

tetrad components of the potentialσCȦḂ , obtained from equation (1.3) in conjunction with
the Rarita–Schwinger equations (1.7) and (1.8), is

∂ σ
(1)0

0̇0̇

∂u
= 0 = ∂ σ

(1)0
0̇1̇

∂u
, (2.36)

ð2 σ
(1)0

0̇0̇ = −ð σ(1) 0
0̇1̇ = C2, (2.37)

σ 1
1̇0̇ = σ

(1)1
1̇0̇

r
= 0, (2.38)

σ 1
1̇1̇ = σ

(1)1
1̇1̇

r
, (2.39)

σ
(1)1

1̇1̇ =
∫ u

−∞
du′ φ

(0)

3, (2.40)

σ
(1)0

1̇0̇ = 0 = σ
(2)0

0̇0̇, (2.41)

σ
(1)0

1̇1̇ = − φ
(0)

2 = −C2 +
∫ u

−∞
du′ ð̄ φ

(0)

3. (2.42)

The other conserved quantityC1 appears inσ 0
0̇1̇ as

− σ
(2)0

0̇1̇ = φ
(0)

1 = C1 − u ð̄C2 +
∫ u

−∞

∫ u′

−∞
du′ du′′ ð̄2 φ

(0)

3. (2.43)

There is an important issue that we should discuss now. Let us focus our attention on
equation (2.37), which is

ð2 σ
(1)0

0̇0̇ = C2.
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Sinceð is a spin-raising operator (in steps of unity), and sinceσ
(1)0

0̇0̇ has spin weight− 3
2,

we see from the above equation that theð operator cannot supply a non-zerol = 1
2 part so

as to produce the correspondingl = 1
2 part ofC2. The equation, therefore, is not soluble

for any regular functionσ
(1)0

0̇0̇ of ζ and ζ̄ defined globally on the sphere.σ
(1)0

0̇0̇ possesses
an angular singularity similar to the well known string singularity of the Dirac magnetic
monopole in Maxwell’s electrodynamics (with magnetic monopoles). The sphere must be

covered by (at least two) overlapping patches andσ
(1)0

0̇0̇ defined separately on each patch,

where it is regular. In the region of overlap of the patches,σ
(1)0

0̇0̇ are related by gauge

transformations. Thus the singularity ofσ
(1)0

0̇0̇ appearing in one patch of the sphere can be
shifted to another by choosing a solution of the homogeneous equation

ð2 σ
(1)
(H)

0
0̇0̇ = 0, (2.44)

which is tantamount to choosing an appropriate singular gauge function in the gauge

transformation of σ
(1) 0

0̇0̇ that cancels the singularity ofσ
(1)0

0̇0̇ in the patch containing the

singularity and moves it to another patch. Explicitly,σ
(1)0

0̇0̇ is given in some patch(a) by

σ
(1)0

0̇0̇
(a) = − 1

4
√
π

[
(1 + 2ζ ζ̄ ) β 1

2
− ζ̄ β− 1

2

ζ̄ 2

]
P− 1

2 , (2.45)

whereP = 1
2(1 + ζ ζ̄ ). β 1

2
andβ− 1

2
are the constants appearing inC2 in equation (2.18).

σ
(1)0

0̇0̇ is clearly singular atζ = 0. Now the general solution of the homogeneous equation
(2.44) is given by

σ
(1)
(H)

0
0̇0̇ = f (ζ̄ )P

3
2 ,

wheref (ζ̄ ) is an arbitrary anti-holomorphic function of integration. Choosing

f (ζ̄ ) = 1√
π

(
β 1

2

ζ̄ 2
−
β− 1

2

ζ̄

)
,

the singularity atζ = 0 can be removed, so that now in another patch(b)

σ
(1)0

0̇0̇
(b) = 1

4
√
π

[
ζ 2 β 1

2
− ζ (2 + ζ ζ̄ ) β− 1

2

]
P− 1

2 . (2.46)

σ
(1)0

0̇0̇
(b) is singular atζ = ∞. Patches(a) and (b) of S2 are chosen to beS2 − {0} and

S2 − {∞} respectively, so thatσ
(1)0

0̇0̇
(a) and σ

(1) 0
0̇0̇
(b) are both regular in their own domain.

The singular gauge functionνȦ that shifts the singularity from patch(a) to patch(b) is
given by

ν0̇ = 1

4
√
π

[
(

1

ζ̄
− ζ log ζ̄ ) β 1

2
+ (1 + ζ ζ̄ + log ζ̄ ) β− 1

2

]
P− 1

2 (2.47)

and

ν1̇ = 1

8
√
π

[
(1 + log ζ̄ ) β 1

2
+ ζ̄ log ζ̄ β− 1

2

]
P− 1

2 . (2.48)

It is not difficult to verify that with the above singular gauge functionsν0̇ and ν1̇, no
singularities are introduced in any of the regular potential componentsσ 0

0̇1̇, . . . , σ
1

1̇1̇,
i.e. their analytic structure onS2 remains unaffected by this choice ofν0̇ and ν1̇. A
covariant description of the singularities of the potentials and the associated singular gauge
transformations is given in section 3 in connection with a particularly simple and exact
solution of the spin-32 equations—the ‘quasi-Coulomb’ solution.
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Our next task is to use the tetrad versions of equations (1.13) and (1.14) to find the
solution for the eight components,ρ0̇

00, ρ0̇
01, . . . , ρ1̇

11 of the second potentialρȦ
BC . These

quantities are defined as follows:

ρ0̇
00 = ζ0̇

ȦζB
0ζC

0ρȦ
BC = oȦιBιCρȦ

BC,
...
...
...
... = ...

...
...
... = ...

...
...
...

ρ1̇
11 = ζ1̇

ȦζB
1ζC

1ρȦ
BC = ιȦoBoCρȦ

BC.

(2.49)

Our procedure here is straightforward and mimics that of the first potential.
First, from the null gauge condition, two of the eight tetrad components ofρȦ

BC are
set equal to zero. Explicitly,

lµρµ
A = 0 H⇒ ρ0̇

10 = 0 = ρ0̇
11. (2.50)

There are thus six independent components of the second potential also. They have the
following radial expansion obtained from equations (1.13) and (1.14):

ρ0̇
00 = ρ

(0)
0̇

00 + ρ
(1)

0̇
00

r
+ ρ

(2)
0̇

00

r2
+ O(r−3), (2.51)

ρ0̇
01 = ρ

(1)
0̇

01

r
, (2.52)

ρ1̇
00 = ρ

(0)
1̇

00 + ρ
(1)

1̇
00

r
+ ρ

(2)
1̇

00

r2
+ O(r−3), (2.53)

ρ1̇
01 = ρ

(0)
1̇

01 + ρ
(1)

1̇
01

r
+ ρ

(2)
1̇

01

r2
+ O(r−3), (2.54)

ρ1̇
10 = ρ

(1)
1̇

10

r
+ ρ

(2)
1̇

10

r2
+ O(r−3), (2.55)

ρ1̇
11 = ρ

(1)
1̇

11

r
+ ρ

(2)
1̇

11

r2
+ O(r−3). (2.56)

By imposing the null gauge, the gauge fieldsχ0 andχ1 are reduced to functions ofu, ζ ,
and ζ̄ . The r-independent terms in theρ1̇

00 andρ1̇
01 series can be made to vanish by the

residual gauge choice, thereby restricting the gauge freedom to two functionsχ0 andχ1

depending onζ and ζ̄ only.
From the tetrad version of equations (1.13) and (1.14), we first note that

∂ ρ
(1)

1̇
11

∂u
= 1

2
σ 1

1̇1̇ = 1

2

∫ u

−∞
du′ φ

(0)

3,

or,

ρ
(1)

1̇
11 = J0(ζ, ζ̄ )+ 1

2

∫ u

−∞

∫ u

−∞
du′ du′′ φ

(0)

3,

and

2
∂ ρ
(1)

1̇
10

∂u
= σ

(1)0
1̇1̇ = − C2 +

∫ u

−∞
du′ ð̄ φ

(0)

3,

or,

ρ
(1)

1̇
10 = H0(ζ, ζ̄ )− u

2
C2 + 1

2

∫ u

−∞

∫ u

−∞
du′ du′′ ð̄ φ

(0)

3.
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As before, we make use of the residual gauge freedom to set bothJ0 andH0 equal to
zero. The final information for the leading terms in the tetrad components of the second
potentialρȦ

BC is now contained in the following results:

ρ
(0)

0̇
00 = 1

2
σ
(1)0

0̇0̇, (2.57)

ð2 ρ
(1)

0̇
00 = 1

2
ðC1 + u

4
C2, (2.58)

ρ
(1)

0̇
01 = −u

2
ð σ(1)00̇0̇, (2.59)

ρ
(1)

1̇
01 = ρ

(2)
1̇

01 = ρ
(2)

1̇
10 = 0, (2.60)

ρ
(1)

1̇
00 = −1

4
σ
(2)0

0̇1̇ = 1

4
C1 − u

4
ð̄C2 + 1

4

∫ u

−∞

∫ u′

−∞
du′ du′′ð̄2 φ

(0)

3, (2.61)

ρ
(1)

1̇
10 = −u

2
C2 + 1

2

∫ u

−∞

∫ u′

−∞
du′ du′′ð̄ φ

(0)

3, (2.62)

ρ
(1)

1̇
11 = 1

2

∫ u

−∞

∫ u′

−∞
du′ du′′ φ

(0)

3. (2.63)

Equation (2.57) reveals an angular singularity in theρ
(0)

0̇
00 (spin weight= − 3

2)

component of the second potential. As before, a regularρ
(0)

0̇
00 can be defined in a patch of

the sphere by removing the singularity from that patch by choosing an appropriate singular

gauge function in the gauge transformation ofρ
(0)

0̇
00. Another angular singularity appears

in the potential componentρ
(1)

0̇
00 (spin weight =− 3

2), as is evident from equation (2.58).
In this case, both the conserved quantitiesC1 andC2 contribute to the singularity, so that
even ifC2 were zero from the very outset,C1 alone would give rise to the singularity in

ρ
(1)

0̇
00. The solution to equation (2.58) on patch(a) is given by

ρ
(1)

0̇
00 = − 1

4
√
π

[
(1 + 2ζ ζ̄ )( 1

2δ 1
2
+ u

4β 1
2
)− ζ̄ ( 1

2δ− 1
2
+ u

4β− 1
2
)

ζ̄ 2

]
P− 1

2 , (2.64)

which is seen to be singular atζ = 0. This is again an unphysical angular singularity and
therefore can be moved to a different patch (not containing the pointζ = 0) of the sphere
by a gauge transformation (see section 3 for details).

In the next section we present an exact solution of the spin-3
2 equations; the ‘quasi-

Coulomb’ solution. This solution is simple and interesting and possesses all the essential
features needed for the purpose of understanding the connection between the conserved
quantities (charges) appearing in the solution of the spin-3

2 fields and the theory of twistors.

3. The ‘quasi-Coulomb’ solution

In this section we display an exact solution of the spin-3
2 equations. This solution is

analogous to the Coulomb or monopole solution of Maxwell’s electrodynamics; hence the
name ‘quasi-Coulomb’ solution. This is an exact solution obtained by setting the radiation
parts of the field equal to zero. It is given by

φ0 = 0, (3.1)
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φ1 = φ
(0)

1

r3
, where φ

(0)

1 = C1 − u ð̄C2, (3.2)

φ2 = φ
(0)

2

r2
+ ð φ

(0)

1

r3
, where φ

(0)

2 = C2, (3.3)

φ3 = 0. (3.4)

As in section 2,C2 = ∑
m βm 1

2
Y 1

2m
, m = − 1

2,
1
2 andC1 = ∑

m δm − 1
2
Y 1

2m
, m = − 1

2,
1
2,

whereβm and δm are again the four complex constants, the ‘charges’ of the spin-3
2 field

ψȦḂĊ . In order to exhibit the conserved quantities in the components of the potentialσCȦḂ ,
we solve the field–potential relations and the Rarita–Schwinger equations exactly. The final
solution in null gauge (σ 1

0̇0̇ = 0 = σ 1
0̇1̇) is given by

σ 0
0̇0̇ = σ

(1)0
0̇0̇(ζ, ζ̄ )

r
, (3.5)

where

ð2 σ
(1)0

0̇0̇ = C2,

σ 0
0̇1̇ = −ð σ(1)00̇0̇(ζ, ζ̄ )

r
− 1

r2
(C1 − u ð̄C2), (3.6)

σ 0
1̇0̇ = − 1

2r2
(C1 − u ð̄C2), (3.7)

σ 0
1̇1̇ = −C2

r
− 1

2r2
(ðC1 + uC2), (3.8)

σ 1
1̇0̇ = 0, (3.9)

σ 1
1̇1̇ = 0. (3.10)

The equationð2 σ
(1)0

0̇0̇ = C2, which reveals an unphysical angular singularity inσ
(1)0

0̇0̇
can be integrated, as in the previous section, in the two separate patches(a) and(b) of S2

of section 2, and a regularσ
(1)0

0̇0̇ defined in each patch by

Patch(a) : σ
(1)0

0̇0̇
(a) = − 1

4
√
π

[
(1 + 2ζ ζ̄ ) β 1

2
− ζ̄ β− 1

2

ζ̄ 2

]
P− 1

2 ,

Patch(b) : σ
(1)0

0̇0̇
(b) = + 1

4
√
π

[
ζ 2 β 1

2
− ζ(2 + ζ ζ̄ ) β− 1

2

]
P− 1

2 ,

with P = 1
2(1 + ζ ζ̄ ). The gauge transformation connecting the two solutions is given by

equations (2.47) and (2.48).
An alternative and more elegant way of expressing these solutions is to give them in

terms of covariant objects. We choose

σ
(1)0

0̇0̇ = (oȦV
Ȧ)

2

ιȦV
Ȧ

− F

ιȦV
Ȧ(ιȦW

Ȧ)2
, (3.11)

whereζ Ça
Ȧ = (oȦ, ιȦ) is the zweibein or spinor dyad defined in section 2.

The first term on the right-hand side of equation (3.11) is a particular solution of

ð2 σ
(1)0

0̇0̇ = C2 = ιȦV
Ȧ, whereV Ȧ = (V 0̇, V 1̇) is a constant spinor withV 0̇ = − β− 1

2

2
√
π

and

V 1̇ = β 1
2

2
√
π

. The second term is the solution of the homogeneous equationð2 σ
(1)
(H)

0
0̇0̇ = 0,
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which is used to move the singularity ofσ
(1)0

0̇0̇ from one point to another on the sphere
S2. HereWȦ is an arbitrary spinor that moves the singularity about onS2. To ensure that

σ
(1)0

0̇0̇ approaches a well defined limit asζ̄ → V 1̇

V 0̇ , which is the zero ofιȦV
Ȧ, we chooseF

to be the value of(ιȦW
Ȧ)2(oȦV

Ȧ)2 at ζ̄ = V 1̇

V 0̇ . Thus

F = (ιȦW
Ȧ)2(oȦV

Ȧ)2|
ζ̄= V 1̇

V 0̇

= (VȦW
Ȧ)

2
.

A useful coordinate representation ofζ Ça
Ȧ is given by

oȦ = 1√
P
(1, ζ ) and ι ÇA = 1√

P
(−ζ̄ , 1).

In this coordinate system, the choiceWȦ = (−1, 0) shifts the ‘natural’ singularitȳζ = V 1̇

V 0̇

to the pointζ̄ = 0.
Finally, the gauge fieldνȦ responsible for this shift of the singularity is given by

ν0̇ = − VȦW
Ȧ

ιȦW
Ȧ

− oȦV
Ȧ log

(
ι ÇAV ÇA

ι ÇAW ÇA

)
,

ν1̇ = ιȦV
Ȧ log

(
ι ÇAV ÇA

ι ÇAW ÇA

)
.

The relations between the first potentialσCȦḂ and the second potentialρȦ
BC can now

be integrated. Using, in addition, condition (1.15) onρȦ
BC , we have an exact solution in

null gauge (ρ0̇
10 = 0 = ρ0̇

11):

ρ0̇
00 = 1

2
σ
(1)0

0̇0̇(ζ, ζ̄ )+ ρ
(1)

0̇
00(u, ζ, ζ̄ )

r
, (3.12)

where

ð2 ρ
(1)

0̇
00 = 1

2
ðC1 + u

4
C2,

ρ0̇
01 = ρ

(1)
0̇

01(u, ζ, ζ̄ )

r
, (3.13)

where

ð ρ(1)0̇01 = −u
2
C2,

ρ1̇
00 = 1

4r
(C1 − u ð̄C2), (3.14)

ρ1̇
10 = − u

2r
C2, (3.15)

ρ1̇
11 = 0. (3.16)

The singular components ofρȦ
BC are again ρ

(0)
0̇

00 and ρ
(1)

0̇
00, where ρ

(0)
0̇

00 = 1
2 σ
(1) 0

0̇0̇ and

where ρ
(1)

0̇
00 is found in a similar manner (see equation (3.11)) but withC2 replaced by
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1
2ðC1 + u

4C2 = oAV̂
A with V̂ A = (V̂ 0, V̂ 1) =

(
− δ− 1

2
+ u

2β− 1
2

4
√
π

,
δ 1

2
+ u

2β 1
2

4
√
π

)
. The gauge fieldχA

responsible for the shift of the singularity of the componentρ
(1)

0̇
00 on the sphere is given by

χ0 = − V̂AŴ
A

oAŴA
− ιAV̂

A log

(
oAV̂A

oAŴA

)
,

χ1 = 2oAV̂
A log

(
oAV̂A

oAŴA

)
,

where nowŴA is an arbitrary spinor that moves the singularity ofρ
(1)

0̇
00 from one point to

another onS2.
Note that in the two gauge fieldsχA andνȦ, there is a logarithm that changes by 2πi on

a circuit around the equator. The associated changes in theχA and theνȦ have been referred
to as the ‘glitches’ or jumps in the gauge fields. OnI the glitches are two functions ofu, ζ
and ζ̄ , namelyιAV̂ A andιȦV

Ȧ. Penrose observed that the vanishing of these glitches onI
defines a curve onI which is identical to the so-called twistor curves of flat space, defined
by the intersection of a twistor surface withI [12]. One attempt to understand twistors in
asymptotically flat spacetime is to see if this idea of the glitches and the curve on which
they vanish can be generalized to the situation where there is gravitational radiation. This
problem will be discussed, but not solved, in section 5.

4. Rarita–Schwinger Equations in Ricci-flat spacetime

In this section we study the solutions of the Rarita–Schwinger equations in Ricci-flat
spacetime. First of all, we note that now we do not have the gauge-invariant spin-3

2 fields
ψȦḂĊ to fall back upon. As in the flat case, we choose Bondi coordinates (u, r, ζ , ζ̄ ), and
the associated complex null tetrad or vierbeinλµa = (lµ, nµ,mµ, m̄µ) may be written as
[13]

lµ = δ
µ

1 ,

nµ = δ
µ

0 + U δ
µ

1 +Xi δ
µ

i ,

mµ = ω δ
µ

1 + ξ i δ
µ

i .

With this choice of coordinate system and tetrad, the tetrad derivatives assume the form

D = lµ ∂
∂xµ

= ∂
∂r
,

1 = nµ ∂
∂xµ

= ∂
∂u

+ U ∂
∂r

+Xζ ∂
∂ζ

+Xζ̄ ∂

∂ζ̄
,

δ = mµ ∂
∂xµ

= ω ∂
∂r

+ ξ ζ ∂
∂ζ

+ ξ ζ̄ ∂

∂ζ̄
,

δ̄ = m̄µ ∂
∂xµ

= ω̄ ∂
∂r

+ ξ̄ ζ ∂
∂ζ

+ ξ̄ ζ̄ ∂

∂ζ̄
,

(4.1)

where(ξ ζ ) = ξ̄ ζ̄ and (ξ ζ̄ ) = ξ̄ ζ . The complete asymptotically flat solution of the vacuum
Einstein equations together with the definitions of the various quantities involved can be
found in [13]. For us, the asymptotic behaviour of the shearσ(u, r, ζ, ζ̄ ) of the light cones
u = constant is of particular importance. Specifically,σ(u, r, ζ, ζ̄ ) = σ0(u,ζ,ζ̄ )

r2 + O(r−4).
Before we begin working with the Rarita–Schwinger equations (1.7) and (1.8) in Ricci-

flat spacetime, we note thatσ 1
0̇0̇ andσ 1

0̇1̇ can again be set equal to zero by the imposition
of the null gauge condition, whereby the gauge fieldsν0̇ andν1̇ are restricted to be functions
of u, ζ and ζ̄ alone.



476 J Frauendiener et al

We assume the same asymptotic fall-off inr of the σ ’s as that in the flat case. Thus

σ 0
0̇0̇ = σ

(1)0
0̇0̇

r
+ σ

(2)0
0̇0̇

r2
+ O(r−3), (4.2)

σ 0
0̇1̇ = σ

(1)0
0̇1̇

r
+ σ

(2)0
0̇1̇

r2
+ O(r−3), (4.3)

σ 0
1̇0̇ = σ

(0)0
1̇0̇ + σ

(1)0
1̇0̇

r
+ σ

(2)0
1̇0̇

r2
+ O(r−3), (4.4)

σ 0
1̇1̇ = σ

(0)0
1̇1̇ + σ

(1)0
1̇1̇

r
+ σ

(2)0
1̇1̇

r2
+ O(r−3), (4.5)

σ 1
1̇0̇ = σ

(1)1
1̇0̇

r
+ σ

(2)1
1̇0̇

r2
+ O(r−3), (4.6)

σ 1
1̇1̇ = σ

(1)1
1̇1̇

r
+ σ

(2)1
1̇1̇

r2
+ O(r−3). (4.7)

The r-independent terms in theσ 0
1̇0̇ andσ 0

1̇1̇ series can be made to vanish by using
the additional gauge freedom which further reducesν0̇ andν1̇ to functions ofζ and ζ̄ only.

Besides, sinceσ
(1)1

1̇0̇ is time-independent (follows from the Rarita–Schwinger equations (1.7)
and (1.8)), and since it transforms as

σ
(1)1

1̇0̇ −→ σ
(1)1

1̇0̇ + ν1̇ + ðν0̇,

we can setσ
(1)1

1̇0̇ = 0 by definingν1̇ in terms ofν0̇ in the above relation.
Incorporating these simplifications into the tetrad version of equations (1.7) and (1.8)

and then comparing the coefficients of the different powers of1
r
, we obtain

∂ σ
(1)0

0̇0̇

∂u
= 0 = ∂ σ

(1)0
0̇1̇

∂u
, (4.8)

σ
(1)0

1̇0̇ = 0 = σ
(2)0

0̇0̇, (4.9)

σ
(2)1

1̇0̇ = σ0 σ
(1)0

0̇0̇, (4.10)

σ
(1)0

0̇1̇ + ð σ(1)00̇0̇ = 0, (4.11)

σ
(2)1

1̇1̇ = σ0 σ
(1)0

0̇1̇, (4.12)

− σ
(2)0

0̇1̇ + 2 σ
(2)0

1̇0̇ + σ̄0 σ
(1)1

1̇1̇ = 0, (4.13)

σ
(2)0

1̇1̇ = −1

2
ð(σ̄0 σ

(1)1
1̇1̇)+ 1

2
ð σ(2)00̇1̇, (4.14)

∂ σ
(2)0

0̇1̇

∂u
+ ð̄ σ(1)01̇1̇ − ˙̄σ0

σ
(1)1

1̇1̇ + (ð̄σ̇0) σ
(1)0

0̇0̇ = 0, (4.15)

ð̄ σ(1)11̇1̇ + ð σ(1)00̇1̇ − σ
(1)0

1̇1̇ + σ̇0 σ
(1)0

0̇0̇ = 0, (4.16)

ð̄ σ(2)11̇0̇ − (ð̄σ0) σ
(1)0

0̇0̇ − σ0 ð̄ σ(1)00̇0̇ + ð σ(2)00̇0̇ = 0, (4.17)

where the dot on the shear signifies the derivative with respect to the retarded timeu.
Some of the above equations are reminiscent of equations (2.36)–(2.43) in the flat case.

This similarity will be our guide (section 5) in the search for conserved quantities similar to
C1 andC2 of the flat space solution. In the next section, we shall, in fact, discuss the issue
as to whether it is at all possible to obtain conserved quantities likeC1 andC2 by solving
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the Rarita–Schwinger equations in Ricci-flat spacetimes. We note that the asymptotic shear
σ0(u, ζ, ζ̄ ) of the vacuum spacetime couples directly to the leading terms of the Rarita–
Schwinger fields. As we shall see in section 5, this coupling acts as the main impediment
to defining a conserved charge.

We now proceed to expressing the above solution in terms of the components of the
potentialρȦ

BC by making use of the tetrad versions of equations (1.13) and (1.14). The
solution again simplifies by choosing the null gauge in whichρ0̇

10 = 0 = ρ0̇
11. As before,

we assume that the tetrad components ofρȦ
BC have the same asymptotic fall-off inr as

that in the flat case. Symbolically, we write

ρ = ρ
(0)+ ρ

(1)

r
+ ρ

(2)

r2
+ O(r−3), (4.18)

whereρ represents all the non-zero components ofρȦ
BC in the tetrad basis.

By the residual gauge freedom,ρ
(0)

1̇
00 and ρ

(0)
1̇

01 are set equal to zero, which leaves
the gauge fieldsχ0 and χ1 as functions ofζ and ζ̄ alone. We then have the following
information:

ρ
(0)

0̇
01 = ρ

(0)
1̇

10 = ρ
(0)

1̇
11 = ρ

(1)
1̇

01 = 0, (4.19)
1

2
σ
(1)0

0̇0̇ = ρ
(0)

0̇
00, (4.20)

−u
2

ð σ(1)00̇0̇ = ρ
(1)

0̇
01, (4.21)

−1

2
σ
(1)0

0̇1̇ = ð ρ(0)0̇00, (4.22)

1

2
σ
(2)1

1̇0̇ = σ0 ρ
(0)

0̇
00, (4.23)

1

2
σ
(1)0

1̇1̇ = ∂ ρ
(1)

1̇
10

∂u
− σ̇0 ρ

(0)
0̇

00, (4.24)

1

2
σ
(1)1

1̇1̇ = ∂ ρ
(1)

1̇
11

∂u
. (4.25)

Equations (4.24) and (4.25) can be immediately integrated to give

ρ
(1)

1̇
11 = 1

2

∫ u

−∞
du′ σ

(1)1
1̇1̇ (4.26)

and

ρ
(1)

1̇
10 = 1

2

∫ u

−∞
du′ σ

(1)0
1̇1̇ + σ0

2
σ
(1)0

0̇0̇, (4.27)

where, as in the flat case, we have set the time-independent functions of integration in both

ρ
(1)

1̇
11 and ρ

(1)
1̇

10 equal to zero by making use of the residual gauge freedom in theχ ’s.

To proceed further, we make the assumptionρ
(2)

1̇
10 = 0. In flat space, equations (1.13)–

(1.15) ensured the vanishing of the componentρ
(2)

1̇
10. Although equation (1.15) does not

have a realization in curved space, the imposition of the very mild conditionρ
(2)

1̇
10 = 0

on the curved spaceρ’s considerably improves the situation by making the equations for

ρ
(1)

0̇
00 and ρ

(1)
1̇

00 separable and thereby removing any arbitrariness in the solution ofρȦ
BC .

Furthermore, the condition does not lead to any ambiguity in the solution.

Finally, we remark that although the equations forρ
(1)

0̇
00 and ρ

(1)
1̇

00 can, in principle, be
solved in terms of theσ ’s and the shear, in actual practice they are extremely complicated
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and difficult to integrate in closed form. It suffices to comment thatρ
(1)

0̇
00 becomes badly

singular in curved space.
As the equations for theσ and theρ are quite similar in structure to their flat space

counterparts, we shall, in the next section, take advantage of this fact to try to construct
twistor charges in our Ricci-flat spacetime.

5. Charges in an arbitrary vacuum spacetime

Using the results of the previous section, we now elucidate the general problem of defining
conserved charges for massless spin-3

2 fields. Before considering the question as to whether
it is at all possible to define conserved charges in an arbitrary vacuum spacetime, it is
worthwhile to reconsider the concept of charges in a Minkowski space by viewing them
solely as conserved (u-independent) quantities appearing in certain components of the
potentialσCȦḂ .

We begin by trying to see what information we can extract about any conserved
quantities in a Minkowski space by restricting ourselves to solutions of the Rarita–Schwinger
equations alone without using the fieldsψȦḂĊ . The following relations are obtained by
considering asymptotic solutions of the Rarita–Schwinger equations in the null tetrad basis:

∂ σ
(1)0

0̇0̇

∂u
= 0 = ∂ σ

(1)0
0̇1̇

∂u
, (5.1)

ð σ(1)00̇0̇ = − σ
(1)0

0̇1̇, (5.2)

σ
(1)0

1̇1̇ = ð σ(1)00̇1̇ + ð̄ σ(1)11̇1̇. (5.3)

Combining equations (6.2) and (6.3), we obtain

ð2 σ
(1)0

0̇0̇ = ð̄ σ(1)11̇1̇ − σ
(1)0

1̇1̇. (5.4)

Becauseσ
(1)0

0̇0̇ is a time-independent (equation (5.1)), the quantity on the right-hand side of

equation (5.4) must be time-independent. Now, since the spin weights ofσ
(1)0

0̇0̇, σ
(1)0

1̇1̇, and

ð̄ σ(1)11̇1̇ are− 3
2, 1

2, and 1
2 respectively, we see immediately that a time-independentl = 1

2
component can be generated from the quantity on the right-hand side of equation (5.4)

which makes σ
(1)0

0̇0̇ a singular function on the sphere. This object has the right character
of a conserved charge and is in fact theC2 of section 2.

We now try to emulate this procedure to generate a free time-independent object as a
conserved charge by considering the Rarita–Schwinger equations in an arbitrary Ricci-flat
spacetime. From equations (4.11) and (4.16), we obtain the following equation which is
analogous to equation (6.4) considered above for the flat case:

ð2 σ
(1)0

0̇0̇ = ð̄ σ(1)11̇1̇ − σ
(1)0

1̇1̇ + σ̇0 σ
(1)0

0̇0̇. (5.5)

Since σ
(1)0

0̇0̇ is time-independent (equation (4.8)), the right-hand side of the above equation
must also be time-independent. We then have

ð̄ σ(1)11̇1̇ − σ
(1)0

1̇1̇ + σ̇0 σ
(1)0

0̇0̇ = C2(ζ, ζ̄ ). (5.6)

Since the spin weights of the termsσ
(1)0

1̇1̇ and σ̇0 σ
(1)0

0̇0̇ are both1
2, there is the possibility

of generating a time-independentl = 1
2 component on the right-hand side of equation (5.6).

C2(ζ, ζ̄ ) stands for this particular component. All time-independent higher harmonics
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(l = 3
2,

5
2, . . .) can be disposed of by choosing suitable initial conditions for the terms

on the left-hand side of equation (5.6).
Equation (5.5) now gives

ð2 σ
(1)0

0̇0̇ = C2. (5.7)

As in the flat case,σ
(1)0

0̇0̇ is singular on the sphereS2.
C2 is indeed the same conserved quantity as that encountered in the flat case in section

2 constituting one component of the twistor chargeQ. Let us now see if we can also find
the other componentC1 of the charge. If thisC1 is to be a conserved quantity, it should
appear, as in the flat case, as a time-independent function of integration in the component

σ
(2)0

0̇1̇. To find it, we first note that equation (5.6) allows us to defineσ
(1)0

1̇1̇ in terms of
C2(ζ, ζ̄ ), the arbitrarily specified ‘gravitational news’σ0, and the free spin-3

2 ‘radiation’

term σ
(1)1

1̇1̇. Thus,

σ
(1)0

1̇1̇ = −C2(ζ, ζ̄ )+ ð̄ σ(1)11̇1̇ + σ̇0 σ
(1)0

0̇0̇. (5.8)

We now substitute σ
(1)0

1̇1̇ from equation (5.8) into equation (4.15), which can then be
integrated to yield

σ
(2)0

0̇1̇ = − C1(ζ, ζ̄ )+ u ð̄C2(ζ, ζ̄ )− ð̄(σ0 σ
(1)0

0̇0̇)

−(ð̄σ0) σ
(1)0

0̇0̇ −
∫ u

−∞
du′ (ð̄2 − ˙̄σ0

) σ
(1)1

1̇1̇. (5.9)

C1(ζ, ζ̄ ), being again thel = 1
2 harmonic of the form seen earlier in equation (2.43) of

flat space, has the right appearance of the other component of the twistor charge, our
desideratum. UnfortunatelyC1 cannot now be identified with certainty as a conserved
quantity similar to that obtained in the flat case, since it is not clear that the time-dependent
singular terms (the third and the fourth terms on the right-hand side of equation (5.9)) do not
contribute a time-dependentl = 1

2 component to be added toC1. However, if we assume
that C1 is, in fact, conserved (note thatC2 is always conserved), we are still presented
with the problem of showing the existence of the ‘glitches’ and the associated curves onI,
defined by the vanishing of the glitches (discussed in section 3 in the context of flat space),
as well as finding and investigating the properties of these curves. The conjecture is that
the space of these curves is indeed the generalization of twistor space to asymptotically flat
vacuum spacetimes and that this generalized twistor space ‘encodes’ the information of the
spacetime itself.

6. Conclusion

We briefly summarize here what we have accomplished in this work. First, the asymptotic
retarded solutions of the massless spin-3

2 fields in Minkowski space have been found. The
solutions reveal the existence of four complex conserved quantities in the fieldsψȦḂĊ .
The space of these four complex quantities can be shown to be isomorphic to flat twistor
space. With appropriate choices of gauge, the equations for the first and second potentials
can be integrated asymptotically. The conserved quantities reappear in certain singular
behaviour of the potentials, the singularities being of the Dirac string type, movable by gauge
transformations. An exact special solution, the ‘quasi-Coulomb’ solution—the analogue of
the Coulomb solution of the Maxwell equations—was found and analysed, which exactly
exhibits the conserved quantities.
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These calculations have then been repeated for the case of asymptotically flat vacuum
spaces. Once again one can see where quantities similar to the four complex conserved
charges arise.

Unfortunately, it still remains an unsolved problem as to how a curved twistor space
could be constructed from these quantities. It is clear, however, that the obstruction to
the flat space twistor construction is the existence of gravitational radiation, in the form of
Bondi shear.
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