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The dynamics of solutions of the Einstein—Vlasov system with Bianchi | symmetry

is discussed in the case of massive or massless particles. It is shown that in the case
of massive patrticles the solutions are asymptotic to isotropic dust solutions at late
times. The initial singularity is more difficult to analyze. It is shown that the
asymptotic behavior there must be one of a small set of possibilities, but it is not
clear whether all of these possibilities are realized. One solution is exhibited in the
case of massless particles, which behaves quite differently near the singularity from
any Bianchi | solution with perfect fluid as a matter model. In particular, the matter

is not dynamically negligible near the singularity for this solution. 1896 Ameri-

can Institute of Physic§S0022-248806)03901-4

I. INTRODUCTION

The simplest of all anisotropic cosmological models are those of Bianchi type I. They are the
space—times that admit a three-dimensional Abelian symmetry group whose orbits are space-like.
(For general information on Bianchi models see Rej. Just how simple their dynamics is
depends significantly on the nature of the matter content of the space—time. For a perfect fluid
with a linear equation of state, it has been known for a long time how to analyze the dyfa@mics.
For a noninteracting mixture of two fluids with linear equations of state, the time evolution is also
well understood and is asymptotic near the singularity and at large times to that of a singfe fluid.
The case of a fluid with a nonlinear equation of state is discussed in an Appendix to the present
paper. The dynamics does not differ much from the picture in the linear case. When a magnetic
field is added to the fluid, things are already more complicated. In fact, as was shown by Tollins,
a Bianchi type | model with fluid and magnetic field resembles a model of the more complicated
Bianchi type Il with fluid alone. It is also interesting to note that models of typgwith perfect
fluid and a magnetic field have a dynamical behavior resembling the notoriously complicated
“Mixmaster” behavior of Bianchi type IX model§.Thus, changing the matter model can have
effects on the complexity of the dynamics comparable with those encountered when passing to
more general symmetry types.

A matter model for which the details of the global dynamics of Bianchi type | space—times has
not previously been studied mathematically is the collisionless gas, described by the Vlasov
equation. The only general facts that are known are that, with an appropriate choice of time
orientation,(i) the space—time is future geodesically completeen maximally extended toward
the futureg; and(ii) there is a crushing singularity in the past where, except in the vacuum case, the
curvature invarianRaBRaﬁ tends to infinity.

These fundamental facts were proved in Ref. 7, where it was shown that they hold for any
Bianchi type other than IX and for a general class of matter models. The aim of this paper is to
refine (i) and (ii) in the case of Bianchi type | symmetry and matter described by the Vlasov
equation so as to get more detailed information about the asymptotics of the expanding phase and
the nature of the initial singularity. An aspect of the situation that makes this more difficult than in
the case of many other matter models is that for general initial data it is not possible to derive an
explicit closed system of ordinary differential equations that describes the dynamics. This is
because certain integrals that occur cannot be evaluated. In one special case, where massless
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particles are considered and the initial phase space density has the form of the characteristic
function of a ball, these integrals have been computed by Lukash and Stardiitmkiever, the
explicit expressions they obtain are sufficiently complicated that they do not seem to make a
rigorous analysis of the global dynamics any easier. On the other hand, they would probably be
useful for numerical calculations, since they would allow costly numerical evaluation of integrals
to be avoided.

The dynamics at late times of the models with massive particles can be described precisely.
All solutions become isotropic and can be approximated by dust solutions in thigTihebrem
5.4). On the other hand, the results of this paper do not give a complete picture of the dynamics
near the initial singularity of the space—times being studied. They merely reduce the possible types
of asymptotic behavior to a small number of alternatives. Improving on this is likely to require
new techniques. These results leave open the possibility that Bianchi | space—times with a matter
content described by kinetic theory may show complicated oscillatory behavior, and thus may be
very different from those with other types of matter content studied up to now. The mechanism
that allows for this complexity is simply the presence of anisotropy in the pressure that may
respond to changes in the geometry. It may be that the only reason that the dynamics is so simple
in the case of a perfect fluid is that this mechanism is excluded by a special symmetry assumption
(the isotropy of the pressureThe one conclusion that emerges and that applies to all solutions
considered here is that the ratio of the mean pressure to the energy density tends to one-third as the
singularity is approached. This means that in a certain weak sense the dynamics for particles of
unit massm is approximated near the singularity by that for massless particles. For this reason
both cases are often considered together in the following, although the main emphasis is on the
casem=1.

The results will now be summarized. There are, broadly speaking, two possible types of
asymptotic behavior of solutions of the Einstein—Vlasov system with Bianchi | symmetry near the
singularity. They will be referred to as convergent and oscillatoryALefenote the eigenvalues of
the second fundamental form of the homogeneous hypersurfaces. Then the mean curvature of the
homogeneous hypersurfaces is given bl=t\ ; +\,+ 5. Define the generalized Kasner expo-
nents byp; =\;/tr k. In the convergent type, the tend to limits as the singularity is approached.
There are three different cases, depending on these limiting values. The first case is that where the
limiting values arg(3,3,3). The well-known homogeneous and isotropic solutions of the Einstein—
Vlasov systerare of this type. The second is that the limiting values(@rg3) or some permu-
tation thereof. The existence of solutions of this kind in the case of massless particles is shown in
Sec. VI. These limiting values of the generalized Kasner exponents are not realized by any Bianchi
type | space—time when the matter model is a perfect {eee the Appendix The third is that the
limiting values satisfy the Kasner relatiqu + p5+ p5=1. Any solution for which one of the
eigenvalues becomes negative at some time has this asymptotic behavior, and so there are plenty
of examples. This is proved in Theorem 5.1. Note that the special case of this result when two of
the p; are equal is closely related to the homogeneous special case of a result SffRepiane
symmetric space—times. In the oscillatory type fheundergo infinitely many oscillations, in a
sense that will now be specified. There are two cases to be considered, according to whether two
of the eigenvalues are always equal or not. Consider first the case where two eigenvalues are equal
and suppose, without loss of generality, thgt=A5. Associate to any solution a string of symbols
(which may be finite or infinite, depending on the soluji@s follows. Moving backward from
some fixed time, add axto the string each time that —\, changes from being:0 to being>0
and add & each time it changes from beirrg0 to being<<0. That this makes sense follows from
the fact, proved in Sec. Il, that the set of times wheyre\, can have no limit point unless this
equality holds at all times. Thus, a finite time interval can only contribute a finite number of
symbols. The solution is said to undergo infinitely many oscillations if the resulting string of
symbols is infinite. Similarly, if there is some time where all eigenvalues are distinct, then a string
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of symbols is associated to the solution by adding, or z each time\q, \,, or A3, respectively,
becomes strictly larger than the other two eigenvalues.

Unfortunately it could not be shown whether any oscillatory solutions exist. If they did, then
the behavior of Bianchi | models with kinetic theory as matter model would be much more
complicated than in the case of a perfect fluid. If it could be shown that they existed, the question
would remain whether the sequences of symbols they produce have some regularity or whether
they are chaotic. In the absence of analytical techniques capable of deciding this question, it would
be desirable to carry out a numerical investigation. This could provide evidence as to the existence
(or otherwisg and nature of oscillatory behavior. It might also suggest new approaches to proving
theorems about the global dynamics.

To each type of solution discussed above corresponds a characteristic behavior of the pres-
sures. The solutions considered in the following all have diagonal energy-momentum tensors, and
so three pressurd®, are defined by three diagonal components. The remaining diagonal compo-
nent is the energy densify The quantitiedR;=P;/p must have a sum that converges to unity at
the singularity. When the limiting values of the are(3,3,3) or (0,3,3), then the limiting values of
theR, are(3,3,3) or (0,3,3), respectively. When the sum of the squares of the limiting values of the
p; is equal to unity, then th&, tend to(0,3,3) or a permutation thereof, unless opghas the
limiting value zero. In the latter case tlg tend to(1,0,0 or a permutation thereof.

The paper is organized as follows. In Sec. Il some basic facts about the solutions are collected.
Section 1l is concerned with a simplified system, which in some cases models the asymptotic
behavior of the solutions of the original system. Some estimates for the pressures are derived in
Sec. IV. Section V contains the main results. Section VI contains proofs of the existence or
nonexistence of solutions with certain kinds of asymptotic behavior.

Il. BASIC FACTS

The Einstein—Vlasov system is the system of equations that describes the kinetic theory of
self-gravitating particles in general relativity. A thorough introduction to general relativistic kinetic
theory and to the collisionless case, in particular, can be found in Ref. 11. For particles all of the
same massn=0, the system can be written in the following form in the case of Bianchi type |

symmetry:

— kiK' + (tr k)2=16mp, (2.2
TOiZO, (22)
hgi;= —2kij 2.3
&tkij=tr kk”_2k||k:_8’7TT|]_47Tpg”+47T tr Tg” s (24)

oo g 2
E jv %T_ ) ( 5)
pZJ’ f(t,v*)(m?+g,0 v YA detg)¥? dv?! dv? dov?, (2.6
Tij :f f(t,vk)vivj(m2+g,svrvs‘)*llz(detg)ll2 do?! dv? dvd. (2.7

Equationq2.1)—(2.4) are the Einstein equations written if-2 form, (2.5) is the Vlasov equation,
and(2.6) and(2.7) are the definition of the energy-momentum tensor in terms of the matter fields
needed to complete the system. In these equatigns the induced metric of the homogeneous
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hypersurfaces;; is the second fundamental forrinis the phase space density of particiess the

energy densityTo; andT;; are components of the energy-momentum tensor, akidstthe mean
curvatureg”k;; . With the exception of all these quantities depend only on the time coordinate

This time coordinate is Gaussian, i.e., it is constant on each homogeneous hypersurface and
defines a parametrization by proper time when restricted to any geodesic normal to these hyper-
surfaces. The space—time metric is of the form

ds?=—dt?+g;;()dx dx. (2.9

In the following it is always assumed, when talking about solutiond2f)—(2.7), that the
functionf(t,v) is non-negative and has compact support for each fixi¢ds assumed thétis C*

except in Sec. lll, wheré may be a distribution. The case of primary interest here is the case
m=1. Since, however, solutions @2.1)—(2.7) with m=1 resemble solutions witm=0 close to

the singularity, it is useful to also allow the case=0 from the beginning. Note that the real
distinction here is between massless particles on the one hand and, on the other hand, massive
particles, which all have the same mass. In the latter case it is convenient to choose the mass of a
particle as a unit of mass so that the numerical value of the mass of a particle in the system of units
used is unity.

For a given Bianchi | geometry, the Vlasov equation can be solved expli€Tthis is not
possible for the other Bianchi types. The reason is explained in RefTh2.result is that if is
expressed in terms of the covariant componenthen it is independent of time. This means that
if ty is some fixed time andly(v;)=f(tgy,v;), then(2.6) can be rewritten as

P:f fo(vi)(m?+g"v,w)*(detg) Y2 dvy dv, dug, 2.9

and(2.7) can be rewritten in a similar way. The explicit solution allows certain special subclasses
of solutions of(2.1)—(2.7) to be identified. The first of these will be referred to as reflection-
symmetric, and is defined by the conditions that

fo(vy,vp,03)=Fo(—vy,—vo,03)=fo(v1,—v2, —v3), (2.10

and that the initial values afj; andk;; are diagonal. Equatio(2.10 implies thatT;; is diagonal.

It then follows from(2.3) and(2.4) thatg;; andk;; are always diagonal. The second case, which
will be referred to as LR$ocally rotationally symmetricis obtained by supplementing.10 by

the conditions that

fo(v1,02,03) =F(v1)?+(v2)%v3), (2.1

for some functiorF and thatg;;=0,,, k1;=Kk» initially. Equation(2.11) implies thatT,;=T,, and

it follows from (2.3) and (2.4) that g,;,=0,, and k;;=K,, everywhere. A solution will also be
called LRS if it satisfies the definition obtained from that just given by a permutation of the indices
1,2,3. A solution will be called isotropic if

fo(v1,02,03) =F((v1)%+ (v2) %+ (v3)?), (2.12

and if g;; andk;; are proportional to5; on the initial hypersurface, and hence everywhere. If a
solution satisfies the conditions @y andk;; in the definition of reflection-symmetric, LRS or
isotropic for allt in some interval, but no assumption is madefdhen the solution will be said

to have reflection-symmetric, LRS or isotropic geometry, respectively, on that interval. It follows
from (2.4) that T;; has a corresponding symmetry property.
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In this paper only reflection-symmetric solutions(2f1)—(2.7) are considered. The alternative
notationa?=g,,/g11(to), b2=0,./9,(to), C2=0390s5(t,) is used when it is convenient. Yet another
form of (2.6) can then be obtained by doing a change of variablg2.19),

p=f fo(awy,bw,,cwz)(m?+ 85w, wg) ¥ dw,; dw, dws. (2.13

The geometric interpretation of theg; is that they are the components of the momentum in an
orthonormal frame. Similarly,

Ti= f fo(awy ,bw,,cwg)w?(m?+ 6"Sw,wg) ~ Y2 dw; dw, dws. (2.149

In order to study the dynamics of the solutions of the syst2rh—(2.7) in detail, it is useful
to introduce certain dimensionless variables that remain finite at the singularity. It follows from
(2.1) that trk never vanishes, except in the case of flat space—time, which is excluded from
consideration in the following. By replacirtgby —t if necessary, it can be arranged thak4r0
everywhere. It will be assumed that this has been done. Define

ki =ki; /tr k, (2.15
p=pl(tr k)?, (2.16
i—ij =T /(tr k)%, (2.17
t

(t)=— ﬁotr k(t")dt’. (2.18

In terms of these variables equatiaf@sl) and(2.4) become
—kikl+1=16mp, (2.19
9.Kl=—12mp(K - 16)) + 84T +4m(K — o)tr T. (2.20

The following lemma provides some information about the range of

Lemma 2.11 et a solution of(2.1)—(2.7) with m=0 or m= 1 be given, which is the maximal
globally hyperbolic development of initial data on the hypersurfaed,. Then trk(t) is a
monotonic function defined on an interv@)} ,»). By translatingt, it can be assumed th&{=0.
Then lim_,q tr k= —o0 and lim_,., tr k=0. Moreover,—3/t=<tr k(t)< — 14.

Proof: That trk(t) is monotonic and defined on an interval of the form,) with
lim;_, tr k = —o was shown for the case=1 in Ref. 13. Essentially the same argument applies
for m=0. In the latter case the coefficients of the characteristic system are only Lipschitz instead
of C!, but this causes no problems. Now it follows frof®.4) that 3(tr k)2<a,(tr k)< (tr k)2.
Comparing the solution with the ordinary differential equations corresponding to these inequalities
then gives the desired estimatgs$. Ref. 7).

This result implies that the integral definingdiverges ag—0 and ast—~. Hence, the
solution of (2.19—(2.20 exists globally in7.

The solution 0f(2.19-(2.20, of course, contains only a small part of the information of that
contained in the solution d2.1)—(2.7). The former is only a projection of the latter. Nevertheless,
it will be seen that a lot of information about the solution of the full equations can be obtained by
studying this projection. Consider now the #ebf triples of real numberk},k3,k3 that satisfy
3:(k)2<1 and= k!=1. This is a compact subset Bf. In fact, it is a disk in a plane. A solution
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of (2.19-(2.20 defines a point oK at each timer. It is on the boundary oK in the plane iff is
identically zero and in the interior otherwise. This point depending,monsidered as a mapping
from R to K, will be referred to as the projection of the given solution. The projection of a vacuum
solution, which lies on the boundary &f, is constant. The vacuum solutions are, of course, the
well-known Kasner solutions and the boundaryKaiay be referred to as the “Kasner circle.” Let
C denote the point3,3,3). If a solution has isotropic geometry on a time interval, then its projec-
tion lies at the poinC during this time. Conversely, if its projection lies @ton a given time
interval, then it can be made to have isotropic geometry by a time-independent rescaling of the
spatial coordinates. Lelt;, L,, and L, be the subsets dk defined byk3=k3, ki=k3, and
kl k2, respectively. A solution has LRS geometry on a time intefuplto a constant rescaling
of the spatial coordinates as ab@vié and only if its projection lies on one of the lings, L,, or
L, during this time. LetL;" denote the open half df; which ends at the point with coordinates
(—3,2,% or a permutation thereof, and lef denote the opposite half-line, which ends at the point
with coordinateg1,0,0 or a permutation thereof. L&t andV; denote these end points. L&
be the open region bounded by ,L; and the boundary of, and letA, andA; be defined by
cyclically permuting(1,2,3 in this definition. LetB; be the subset dk wherek;<0.

The components of the metric satisfy the evolution equations

dgii_ T d 9ii
F_ZKigii, dr\g;

which imply thatg;; or their ratios increase or decrease exponentially if certain sign conditions are
satisfied by thes; . There are, of course, corresponding statements for the scale factorsand

c. Given an initial datunt, for f the quant|t|e5p and T! are determined uniquely by theg; by
means of Eqs2.13 and(2. 14) The quantities andT' are given in terms op andT! and trk by

the definitions(2.16 and (2.17), while the off-diagonal componemﬁ are zero by assumption.
Thus, (2.19), (2.20, and(2.21), together with the equation

gii
i

(2.2))

o]-ai (2

ii

9(tr K)=—(tr K)(1—12mp+4m tr T), (2.22

derive from(2.4), form a closed system of ordinary differential equations, which, for fikgd
formally determine the quantitidg, g;;, and trk as functions ofr in terms of initial data. If the
coefficients of this system were locally Lipschitz, it would follow from the standard uniqueness
theorem for ordinary differential equations that they determine them uniquely. It will now be
shown that, in fact, fom=1 this dependence is analytic. To do this it is convenient to use the
expressions fop and T; of the type(2.9). Analyticity is a consequence of the following lemma.

Lemma 2.21 et W be a mapping_otJ XR3to R, whereU is an open subset @t>. Suppose
that W extends to & mappingW of UXR3to C, whereU is an open neighborhood &f in C3,
and that\N( ,y) satisfies the Cauchy—Riemann equations for each fixer3. Finally, suppose
that eachze W has an open neighborho®isuch that the supports of the functiongz,-) are
contained in a common compact sub&bf R3 Then the functionF(x) = [rsW(x,y)dy is
analytic. B

Proof: It suffices to show that the funct|d1'=1(z) Tr3W(z,y)dy is complex analytic, and this
is true if F is C! and satisfies the Cauchy—Riemann equatiéiiie assumptions on the smooth-
ness and support o justify differentiation under the integral, and so the Cauchy—Riemann
equations for+ follow from the Cauchy—Riemann equations for. W

A consequence of the analyticity of the coefficients in the system of ordinary differential
equations is that the solutions are analytic. It follows that if a solution withl has LRS or
isotropic geometry on some nonempty open time interval, then it must have LRS or isotropic
geometry, respectively, for all values ef The same conclusion holds if there is a sequence of
times having a limit point where the geometry is LRS or isotropic, respectively.
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lll. THE ASYMPTOTIC SYSTEM

In this section a certain system of ordinary differential equations is introduced and the quali-
tative behavior of its solutions analyzed. This system is used later to study the asymptotic behavior
of solutions of the systert2.1)—(2.7). This system can be obtained formally fra&11)—(2.7) by
replacing the C! function f(t,u;,v,,v3) by a measure of the form
f(t,v,) 8(w,—v,(1)dv3—v3(t)), wheresis a Dirac measure, and takimg= 0. Solutions of this
system can be interpreted as certain distributional solutions of the Einstein—Vlasov system for
massless particles. These are intermediate between smooth solutions and the even more singular
solutions, which are in one to one correspondence with dust solufiBasthe correspondence
between dust and distributional solutions of the Vlasov equation see RefTH& mathematical
results that will now be derived are independent of this interpretation.

The system of ODEs to be conS|dered is the special case of the equ@ibBsand (2.20
obtained by settmg’ 1—T2 0 andT3 p. Note that, in contrast to the general cas¢219 and
(2.20), these specialized equations suffice to determine all unknowns occurring in them from
initial data. The explicit form 0f2.20 in this case is

9, kk=—8mpkl, (3.1)
d,k3=—8mpk3, (3.2)
0, k3=—8mp(k3—1). (3.3

If initial data are chosen at some time that satisfy the cond&]p(rli‘) 1, then the solution also
satisfies it. Only solutions with this property are considered here. It follows @ and(3.2)
that 9, (k3/k}) =0 wheneveik!#0. Letr be the constant value &&/k:. Then

k3=rki, (3.4)
=1—(1+r)kk (3.5

Substituting(2.19), (3.4), and(3.5) into (3.1) gives
0.ki= (kDA (1+r+r2)kg—(1+1)]. (3.6

Proposmon 3.1: Let (kl,kz,k) be a solution of(3.1)—(3.3 satisfying =, (k) 1 and
3,(k)2< 1. Definer =k&/k! wheneverk!#0. Then

(i) if kl is zero initially it is always zero;

@iy if kl is initially (and hence alwayshonzero, then is constant;

(i) when k!#0 it is a monotonic function with lim, . ki=(1+r)/(1+r+r?) and
lim, .. kl 0; and

(iv) in that case lim,_.(k3—k®)=—r(r+2)/(1+r+r?).

Proof: Statement(i) follows from (3.1). Statemen{ii) has been demonstrated above. State-
ment (iii) follows from (3.6). The last conclusion is then an immediate consequence of the defi-
nitions.

Of course analogous statements holkl ifand k2 are interchanged, since these two quantities
occur symmetrically in the hypotheses.

IV. PRESSURE ESTIMATES

The results of this section are all variations on the theme that if the space—time is expanding
in a certain direction, then the pressure in that direction tends to decrease. It is assumed throughout
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that the geometry is reflection-symmetric. A solution®fl)—(2.7) with m=0 satisfies tT/p=1.
This condition never holds when=1, but the next lemma shows that it does hold asymptotically.
Lemma 4.1:Suppose that some solution (£.1)—(2.7) with m=1 is defined on an interval
(—90,7y), with f not identically zero. Then lim,_, tr T/p=1.
Proof: It was shown in Ref. 7 that lim,_,, p=c. Thus, the result will follow if it can be
shown thalp— implies trT/p— 1. To do this, choose some radiuz0 and writep=p;+p, and
tr T=(tr T),+(tr T),, where the first summand is the integral over the redish<L of the
integrand in(2.13 or (2.14), respectively, and the second is the integral over the complementary
region. Using the fact that @&x?)Y?—x%/(1+x?)Y?=(1+x?) "2 it can be seen that
po—(tr T),<(1+L%)"1p,. Hence

2

and
L? 47
tr T=tr Tzzmz(p—(?)lﬁ(ﬂ L2)Y 3 foll.e |- (4.2

By choosingL sufficiently large, the quantity?/(1+L?) can be made as close to unity as desired.
For fixedL, the quantity in brackets on the right-hand side(4®) approacheg asp becomes
large. This suffices to give the conclusion of the lemma. _

For a given initial datunf,, the equatior(2.14) defines the pressurds as functions of, b,
andc. The following results concern the qualitative behavior of these functions.

Lemma 4.21f f, is not identically zero and<C' min{1,b,c} for some constant’'>0, there
exists a constar€>0 such thaffi=Ca %b lc ! and T3/ Ti<C(a/b)*3 In the casen=0 the
conclusion holds under the weaker hypothesis &aC’' min{b,c}.

Proof: Let p be a point ofR® wheref,+0, whose first coordinate, is nonzero. Lets be a
positive number such thédtis bounded below by some positive constgmn the closed cub&/
of side 25 centered ap and such thatv; does not vanish anywhere on this cube. Consider now the
image W' of the cubeW under the mappingw, ,w, w3)—(a *w;,b~*w,,c 1w;). On W the
functionsw,/w, andw;/w, are bounded. Under the assumptions of the lemma they are bounded
by the same constant oA’. It follows that|w;|/(1+|w|?)Y2 is bounded below on any such cube
by a positive constant that is independentagfb, andc, which satisfy the hypotheses of the
lemma. The integral defining; can be bounded from below by the integral of the same quantity
over W. It follows that

Ti=Cna b ¢} (4.3

and this proves the first part of the lemma. To get a lower boundT{st3, the domain of
integration in the definition of these two quantities will be divided into the regjens>R|w,|
and|w,|<R|wj;|, whereR is a positive number that will be specified later. Corresponding to this
decomposition of the domain of integration, there are decompositinsTi;+Ti, and
T5=T3,+T5,. The volume of the region whefev,|>R|w,| and f(aw; ,bw,,cw;)#0 can be
bounded by an expression of the fo@R *c b2, and soT3;<CR lc b~ 3. On the other
hand,T3,<R?T},. Thus,

T2<CR ¢ b 3+R?*Ti<(CR Y(a/b)?+RATE, (4.4
where in the last ste@.3) has been used. ChoosiRg (a/b) % givesT3<C(a/b)**T?, and this
proves the result fof3/T}.
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446 Alan D. Rendall: Bianchi | solutions of the Einstein—Vlasov system

Lemma 4.3Suppose that some solution @.1)—(2.7) is defined on the intervat-oe, 7)), with
f not identically zero. Ifkl—k3=A and k!—k3=A on this interval for someA>0, then
TiTi<ce** ™ fori=2,3.

Proof: It suffices to note that under the assumptions of this lemma there will be a time interval
(—o,7,) where the hypotheses of Lemma 4.2 hold, so that) can be applied.

The time derivatives of the quant|t|$ cannot, in general, be expressed in terms of the
dimensionless quantitig®.9)—(2.11), so as to get a closed system of ordinary differential equa-
tions. However, they can be estimated in terms of these quantities. Note first that

! ,dT,
gr=—(trk)” +2T [1-127p+4m tr T]. (4.5

Next, a change of variables {2.7) gives, in the diagonal case,

Ti=g" | fo(vq1,02,03)(v)2(M?>+g"v,vs)  Y4detg) Y2 dv, dv, dug. (4.6)
Hence,
1
d_t1:(3ki+k§+kg)ﬁ+gllf fo(v1,02,03)(V1)?F(v1,02,03)
X (M?+g"v,vg) ¥ detg) Y2 dv, dv, dug, 4.7
where
F(v1,02,03)=(=g"k1(v1)*~ g7%3(02)*~ g% (v)?)- (4.8
Note now that
[F(v1,02.09)|<([ka|+ K3+ k3D (M +g"v ), (4.9

and so the integral if4.7) can be bounded in modulus by fF+. Putting this information into
(4.5 gives the desired bound.

Lemma 4.4:Consider a maximally extended solution &.1)—(2.7) with m=1 andf not
identically zero. Ifg;;— as r—, then lim_, T;/p=0. If, on the other handg,; is bounded
above and alg; are bounded below by a positive constant on an interval of the feorw), then
T1/p is bounded below by a positive constant on that interval.

Proof: It follows from (2.13 and(2.14) that Ti<Ca 2p, and this proves the first statement.
To get the other conclusion, choose a cuBg as in the proof of Lemma 4.2. Then
Ti=cCa b lc ! while p<Ca b ¢! HenceTi/p=C>0.

V. THE MAIN RESULTS

Lemma 5.1 (compactness lemmiagt a sequence of reflection-symmetric global solutions of
Egs.(2.1)—(2.7) be given. Then there exists a subsequence sucrk'tfaaattdp converge uniformly
on compact sets oR. Here TI also converges uniformly on compact subsgtfier possibly
passing to a subsequence once maaad the limiting quantities satisf{2.19 and(2.20).

Proof: The quantmesk' are contained in the compact $eand so are, in particular, uniformly
bounded. By(2.19, p is_ unn‘ormly bounded. It follows thaT' is uniformly bounded. Equation
(2.20 now shows thay k' is uniformly bounded. By Ascoli’'s theorem there exists a subsequence
such thatk' converges unlformly on the intervit-1,1]. Applying the theorem again shows that
this subsequence has a subsequence sucfkthmnverges uniformly of—2,2]. Continuing in
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this way, we obtain a collection of subsequences indexed by a positive imeg#r the proper-
ties that for thenth subsequenck' converges uniformly oi—n,n], and each sequence is a
subsequence of the previous one. The diagonal sequence has the propek}ycﬂrmlerges on
each compact subset of the real line. By the Hamiltonian consjsatgo converges uniformly on
compact sets along this subsequence. In the diagonal case the derlﬁﬂﬁ\m‘e bounded, as was
shown in Sec. IV and applying Ascoli's theorem as before gives the remaining conclusions.

Theorem 5.1:Let a global solution of Eqg2.1)—(2.7) be given for whichf is not identically
zero. If at some timer;, the projection of the solution lies in the g8t for somei, then(i) the
projection lies inB; for all 7<my; (ii) if there exists some,>7; such that the projection of the
solution lies in the complement &; , then it lies in the complement of &; for 7>,; and iii)
asT— —oo the projection converges to a point of the boundary of the rel§itimat is not one of the
pointsV;

Proof: Suppose without loss of generality that 1. It follows from (2.20 that

9 Kr=—am(p—tr T)(3k}—1)— 8 tr Tk} +87TL. (5.1)

If at some timekl< =<0, then the first and second terms on the right-hand sidé.a4f are non-
negative while the third term is positive. Hen@;kl>0 This implies the first conclusion of the
theorem. Moreover, it means that if the projection once le®4eis can never reenter it. A similar
statement, of course, applies to any otBer and this givesii). To prove(iii) note first thal‘aTkl

is bounded below by a positive constant as longpais. This shows that liminf,_, p=0.
Equation(5.1) also implies that the integral @f on the interval(—o,r,] must be finite so that for
eachi the integral of the right-hand side @2.20 is absolutely convergent. Hence, ed¢hends
to a limit as7— —oo. By what has already been said it can only be a point of the boundafy of
The monotonicity ok} shows that this limit cannot be one of the poikts .

Theorem 5.2:Let a global solution of Eqg2.1)—(2.7) be given for whichf is not identically
zero. If at some timer; the projection of the solution lies in the sAf for somei, then asr
decreases eithéi) the projection converges to a point of the boundanKads 7— —o; or (ii) it
reachesL for somej or C at a finite time beforer; or (iii) it stays inA; for all 7<<7; and it has
a point of one of the Ilneia+ or the pointC as an accumulation point.

Proof: Suppose W|thout loss of generallty thiat 1. When the projection lies i\, the
|nequalltlesk1>k2, ki>k3, and k1> hold. Suppose that on the time intervatoc,r;) the
mequalltlesk1 k3=A and k1 k3=A are satisfied for som&>0. Then, by Lemma 4.3,
follows that on thls time mtervaTllT and T1/T3 can be bounded below by a decreasing func-
tion, which tends toe as — —. Moreover, by Lemma 4.1, f/p—1 ast——«. Now, define a
sequence of solutions ¢2.1)—(2.7) by u,(7)=u(7—n), 7e(—2,7;), whereu denotes any of the
functions that make up the solution andis a positive integer. By Lemma 5.1 there exists a
subsequence such tHe}tandp converge uniformly on compact subsets. By the statements made
above, tfT must tend to the same limit g@salong this sequence. Alsiﬁ tends to this same limit
andT2 andT3 tend to zero. Applying Lemma 5.1 again shows that the limits of these sequences
satisfy (2.19 and(2.20. Because of the values of the limits they, in fact, satisfy the asymptotic
system(3 1)—(3.3). The solution of the asymptotic system obtained inherits the properties that
kl=kZ andk!=k3 The only solutions of the asymptotic system that satisfy these inequalities on
an mterval of the form{—<,7;) are the vacuum solutions. If for some choice of subsequence this
vacuum solution is not that corresponding to the paiit, then the projection of the original
solution must converge to that point, by Theorem 5.1. Otherwise every subsequence of the se-
quence of translated solutions has a subsequence that converges to the same solution of the
asymptotic system. Hence, the whole sequence converges to this solution and the projection of the
original solution converges td; . In both cases the solution of the original system converges to
a point of the boundary dof.

J. Math. Phys., Vol. 37, No. 1, January 1996

Downloaded—-17-Jan-2008-t0-194.94.224.254 .~Redistribution-subject-to-AlP-license-or-copyright;~see-http://jmp.aip.org/jmp/copyright.jsp



448 Alan D. Rendall: Bianchi | solutions of the Einstein—Vlasov system

It remains to consider the case where the above estimate is not satisfied far-ghyf the
solution does not readh;” for somej or C in finite time, then it stays im; for all 7<7;. Then it
must have as an accumulatlon point either a pomtpn‘or somej, C, orV+ for somej. In the
first two cases this gives ca$i@) of the conclusion of the theorem. In the third case the solution
entersB;, and so by Theorem 5.1, café of the conclusion holds.

In case(iii ) of this theorem we can also consider a limit of translates of the solutions whose
existence is guaranteed by Lemma 5.1. If the ratiisanda/c tended to zero as— —o for the
original solution, then by Lemma 4.2 the rati®$/T5 and T3/ T3 would tend to infinity and the
solution would belong to casg@). Thus, in caséiii) it can be assumed without loss of generality
(after possibly interchanging the indices 2 ang tBat b/a is bounded asr——«. Hence
. (k1 - k2 5) is finite. Sinced (k1 k2 5) is bounded, it follows thekl k —0 asr——». Hence,
the solution obtained as a limit of translates has LRS geometry. It also satisfie3. Informa-
tion about the asymptotics of LRS solutions can thus be used to obtain information about the
asymptotics of the solutions, which fit into ca@é) of Theorem 5.2 but do not fit into case.

Theorem 5.3:Let a solution of Eqs(2.19—(2.20 be given that satisfies the LRS condition
k3=k3. If at some timer, the projection satlsf|ek}< 5, then either(i) the projection of the
solution tends to the poirt-3,3,%) as r— —oc; (ii) it tends to the point0,3,3) as r——o; (iii) it
reaches the point,3,3) at a finite time beforerl, or (iv) it tends to the point3,33) asr——o.

Proof: Suppose first thekis 1— A for someA>0. Then by Lemma 4.2 the ratio 36=T5 to
T} increases without limit. Passing to a limit of translates in the familiar way gives a solution of
the equatlom7k1= — 8wkl 1p for which k satisfies the same inequality as before. There are only
two such solutions, namely that for Whlph=0 and that for whictk!=0. In the first of these cases
the original solution must enter the regiBr, and hence by Theorem 5.1 belong to cagef the
conclusion of the present theorem. The only way of avoiding this is if, no matter which subse-
guence is chosen, the limiting value kﬁ is zero. Hence, the projection of the original solution
must converge to the poiri,3,3). Thus, the solution belongs to cas® of the conclusion. Now
consider the case where there isAp 0 with the given property. If, despite this, the ratio§
to T1 tends to infinity, we can argue as before to show that the solution belongs té)caséi).

If, on the other hand, this ratio remains bounded, then the edtiomust remain bounded, and
hence n‘kl remains smaller thag forever thenfT1 (3— 1) is finite. It then follows as in the
discussion following the proof of Theorem 5.2 trkét—> Thus the solution either belongs to case
(iii) or case(iv).

Theorem 5.4:Let a solution of the equationt®.1)—(2.7) with m=1 andf not identically zero
be given. Therk!— % andT!/p—0 for eachi as r—sx.

Proof: In Ref. 13, it was shown that the scale factarsb, andc are bounded below by a
positive constant on any interval of the foffm,). Using (5.1), this statement can be strength-
ened. Suppose thiat were negative on an interval of the foffm ). Then it would follow, as in
the proof of Theorem 5.1, that the mtegralmbn this interval was finite. Bup is increasing on
this interval, a contradiction. It follows that eakhmust become zero after a finite time, and once
this happens it must immediately become positive and stay positive. Thus,dofficiently large,

a, b, andc are increasing. Consider now the behavior of the quantitylaninc}. Suppose first

that it tends to infinity asr—c. Then, by Lemma 4.4 the ratio/p tend to zero asr—.
Construct a limit of translates as in the proof of Theorem 5.2, except that this time the translations
should be done in the opposite direction. Then the limiting solution Satl&ﬂ|¢§ 127Tp(k'

3). This is the equation that is satisfied by a Bianchi | solution of the Einstein equations coupled
to dust. It is well known and also easy to see directly that in the case of duskeamhverges to

1 as r—». Because a convergent subsequence can be extracted from any subsequence of the
sequence of translates by integers, it follows tat 3 for the original solution of the Einstein—
Vlasov system as well. Next, consider the case wleeig bounded on an interval of the form
[7,,%) while min{b,c}— as r—o. Then, by Lemma 4.4 the ratid&/p and T3/p converge to

zero ast—x while T{/p remains bounded away from zero. Equati®nl) implies thatd k] is
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bounded below by a positive constankif< % andT3/Tt and TY/ T} are less than A for some
constantA>0. However, this contradicts the boundednesa.@ince the volume tends to infinity
as r—oo, at least one o, b, or c must tend to infinity. It follows that to complete the proof we
may assume without loss of generality treatand b are bounded while tends to infinity. By
Lemma 4. 4T3/p—>0 while T{/p andT%/p are bounded below by a positive constant. Now the
mtegralf k i(m)dr is finite fori=1,2 anda,k, is bounded. Hencék} andk2 tend to zero ag—o

andk —)1 But the given behavior of the pressures shows thaki@r and sufficiently large
times a,kg is negative, a contradiction. This completes the proof.

VI. A COMPACTIFICATION

This section is devoted to a finer examination of LRS solutions of the Einstein—Vlasov system
with massless particles. For LRS solutions wig=k3, let k=k!, g=b/a, Q=T/p. Then
k2= 3(1-k) andp=(1/16m)(3+k— 3k?). The essential equations describing the dynamics are

3. k=%1+3k)(1-k)(Q—Kk), (6.
d,0=3(1-3Kk)q. (6.2
The quantityQ can be expressed entirely in termsgpénd the initial data as follows:

_ 2 Jfo(v)vi(gPvi+v3+v3) " duy du, dug
Jfo(vi)(g vl+v2+v3)12 dv, dv, dug

(6.3

Substituting(6.3) into (6.1) makes the equation®.1) and (6.2) into an autonomous system of
ordinary differential equations fdt andg. Lemma 4.2 shows th&d(q)=0(q*® asq—0. This
means that the syste(f.1)—(6.2) can be extended in @' manner to the boundary=0. More-

over, Q does not contribute to the linearization of the extended system at the criticalgpoihit

k=0. The eigenvectors of the linearization are directed alondtied q axes, with eigenvalues

—% and 3, respectively. It follows(see, e.g., Ref. J@hat the dynamical system has an unstable
manifold that is a curve tangent to thexis at the point0,0). This shows that for any initial value

fo it is possible to find LRS solutions of the Einstein—Vlasov system, where the distribution
function has the initial valué, and where the quantltlds converge t0a(0,3,3) as 7— —». Note

that the stable manifold is just theaxis, and so does not give rise to any smooth solutions of the
Einstein—Vlasov system. The information about the linearization also determines the nature of the
phase portrait near the singular point, and shows that there are solutions fork&/mpproaches
zero, but turns back before reaching it. A typical feature of Bianchi models is that the matter
becomes dynamically negligible near the singularity. No attempt will be made here to make this
notion precise, but one aspect of it is that the projection of the solution should tend to a point of
the boundary oK as 7— —. The solution whose existence has just been shown is an exception
to the rule. For anisotropic Bianchi | models with a perfect fluid, no exceptional solutions of this
kind exist. However, they do occur for other Bianchi typés.

The critical points of the systerf6.1)—(6.2) in the region where €q and —i<k<1 are the
points of the form(3,q,), whereq, has the property tha®(q,)=3. Differentiating (6.3 and
estimating the result in an elementary way leads to the inequety=Q(1— Q). This shows that
the functionQ is strictly increasing fog>0. Taking account of the limiting values g, it follows
that there is precisely one valug for which Q(qgo,)=3. Moreover, at this poinjQ’=3. The

eigenvalues of the linearization at the corresponding critical point-gtes\/ s— goQ’(do). They

both have negative real parts and the critical point is a sink. In particular, no solution emerges
from this critical point. Thus, it is seen that if the projection of any LRS solution for massless
particles approaches the poldtas 7— —o, then the projection must stay @tfor all time, i.e., the
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solution must have isotropic geometry. This should be compared with the results of N&xman
isotropic singularities in solutions of the Einstein equations coupled to a radiation fluid.

APPENDIX: FLUIDS WITH NONLINEAR EQUATION OF STATE

Consider a perfect fluid with equation of stgie=f(p) that satisfies the following general
assumptionsti) f is a continuous function frorfD,») to itself with f(0)=0, which isC* for p>0;
(i) 0=f’(p)=<1 for all p>0; and(iii) there exists a consta@<1 such thap<Cp for p<1.

Assumptiong(i) and(ii) are standard. The third assumption is, wiiigrand (ii) are satisfied,
equivalent to the assumption made in Ref. 7 that the equation of state is not asymptotically stiff at
low densities. In the case of a linear equation of sfdi®) =kp, the assumptiong)—(iii) are
satisfied if and only if &k<1. In a Bianchi | space—time, it follows from the momentum
constraint(2.2) that the four-velocity of the fluid is orthogonal to the hypersurfaces of homoge-
neity. Hence, the energy densjiymeasured by an observer whose word line is orthogonal to the
hypersurfaces of homogeneity, is the same as that measured by a comoving observer. Equations
(2.19 and(2.20 are valid, as in the case of the Einstein—Vlasov system. For a fluid, it can be
assumed without loss of generality that the solution is reflection symmetric, because given any
initial data, it suffices to do a linear transformation of the coordinates that simultaneously diago-
nalizes the metric and second fundamental form in order to transform the given data to data for a
reflection-symmetric space—time. N _

In the case of a fluid@j=p &} and hencd=p s}, wherep=p/(tr k)2. If the equation of state
is linear, themd can be expressed as a functionpoflone, and2.19 and(2.20 then reduce to a
system of ordinary differential equations that suffice to deternki]nérom initial data. For a
nonlinear equation of state, this is no longer the case. The equafidt® and(2.20 no longer
form a closed system and must instead be considered as the projection of a bigger system, as in the
case of the Vlasov equation. This is one reason why the linear case has been studied preferentially
in the literature. Nevertheless, it turns out that the projection can be analyzed very effectively in
the general case.

The first question that needs to be addressed is that of global existendeeinthe equivalent
of Lemma 2.1 for a fluid. This follows from the results of Ref. 7. The assumiionhas been
used at this stage. A direct calculation shows that the quarktjty k3)/(k}—k3) is independent of
rwheneverki—k3 is nonzero. Moreover, iki—k3 is zero at some time, it remains zero. Hence,
the projection of each solution is constrained to move on a straight likepassing through the
centerC. This is already a much stronger statement than could be proved in the case of the Vlasov
equation. To find out how the projection moves on this straight line, the time derivative of the
dimensionless version of the density will be calculated. For a fluid it is given by

3,p=(p—P)(1—24mp). (A1)

Noting that the Hamiltonian constraint implies thatrg4<1 with equality only at the poin€, it

can now be seen that the projection moves monotonically from the boundKrataf= —< to the
centerC of K at r=«. This qualitative behavior is independent of the equation of state, satisfying
(i)=(iii ). The only difference is in the speed with which the projection moves along the radial line
at different times. EquatioitAl) also makes clear that this picture changes completely if the
equations of state considered here are replaced by the limiting case of a stifpfiujd,
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