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The dynamics of solutions of the Einstein–Vlasov system with Bianchi I symmetry
is discussed in the case of massive or massless particles. It is shown that in the case
of massive particles the solutions are asymptotic to isotropic dust solutions at late
times. The initial singularity is more difficult to analyze. It is shown that the
asymptotic behavior there must be one of a small set of possibilities, but it is not
clear whether all of these possibilities are realized. One solution is exhibited in the
case of massless particles, which behaves quite differently near the singularity from
any Bianchi I solution with perfect fluid as a matter model. In particular, the matter
is not dynamically negligible near the singularity for this solution. ©1996 Ameri-
can Institute of Physics.@S0022-2488~96!03901-4#

I. INTRODUCTION

The simplest of all anisotropic cosmological models are those of Bianchi type I. They are the
space–times that admit a three-dimensional Abelian symmetry group whose orbits are space-like.
~For general information on Bianchi models see Ref. 1.! Just how simple their dynamics is
depends significantly on the nature of the matter content of the space–time. For a perfect fluid
with a linear equation of state, it has been known for a long time how to analyze the dynamics.2,3

For a noninteracting mixture of two fluids with linear equations of state, the time evolution is also
well understood and is asymptotic near the singularity and at large times to that of a single fluid.4

The case of a fluid with a nonlinear equation of state is discussed in an Appendix to the present
paper. The dynamics does not differ much from the picture in the linear case. When a magnetic
field is added to the fluid, things are already more complicated. In fact, as was shown by Collins,5

a Bianchi type I model with fluid and magnetic field resembles a model of the more complicated
Bianchi type II with fluid alone. It is also interesting to note that models of type VI0 with perfect
fluid and a magnetic field have a dynamical behavior resembling the notoriously complicated
‘‘Mixmaster’’ behavior of Bianchi type IX models.6 Thus, changing the matter model can have
effects on the complexity of the dynamics comparable with those encountered when passing to
more general symmetry types.

Amatter model for which the details of the global dynamics of Bianchi type I space–times has
not previously been studied mathematically is the collisionless gas, described by the Vlasov
equation. The only general facts that are known are that, with an appropriate choice of time
orientation,~i! the space–time is future geodesically complete~when maximally extended toward
the future!; and~ii ! there is a crushing singularity in the past where, except in the vacuum case, the
curvature invariantRabR

ab tends to infinity.
These fundamental facts were proved in Ref. 7, where it was shown that they hold for any

Bianchi type other than IX and for a general class of matter models. The aim of this paper is to
refine ~i! and ~ii ! in the case of Bianchi type I symmetry and matter described by the Vlasov
equation so as to get more detailed information about the asymptotics of the expanding phase and
the nature of the initial singularity. An aspect of the situation that makes this more difficult than in
the case of many other matter models is that for general initial data it is not possible to derive an
explicit closed system of ordinary differential equations that describes the dynamics. This is
because certain integrals that occur cannot be evaluated. In one special case, where massless
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particles are considered and the initial phase space density has the form of the characteristic
function of a ball, these integrals have been computed by Lukash and Starobinski.8 However, the
explicit expressions they obtain are sufficiently complicated that they do not seem to make a
rigorous analysis of the global dynamics any easier. On the other hand, they would probably be
useful for numerical calculations, since they would allow costly numerical evaluation of integrals
to be avoided.

The dynamics at late times of the models with massive particles can be described precisely.
All solutions become isotropic and can be approximated by dust solutions in this limit~Theorem
5.4!. On the other hand, the results of this paper do not give a complete picture of the dynamics
near the initial singularity of the space–times being studied. They merely reduce the possible types
of asymptotic behavior to a small number of alternatives. Improving on this is likely to require
new techniques. These results leave open the possibility that Bianchi I space–times with a matter
content described by kinetic theory may show complicated oscillatory behavior, and thus may be
very different from those with other types of matter content studied up to now. The mechanism
that allows for this complexity is simply the presence of anisotropy in the pressure that may
respond to changes in the geometry. It may be that the only reason that the dynamics is so simple
in the case of a perfect fluid is that this mechanism is excluded by a special symmetry assumption
~the isotropy of the pressure!. The one conclusion that emerges and that applies to all solutions
considered here is that the ratio of the mean pressure to the energy density tends to one-third as the
singularity is approached. This means that in a certain weak sense the dynamics for particles of
unit massm is approximated near the singularity by that for massless particles. For this reason
both cases are often considered together in the following, although the main emphasis is on the
casem51.

The results will now be summarized. There are, broadly speaking, two possible types of
asymptotic behavior of solutions of the Einstein–Vlasov system with Bianchi I symmetry near the
singularity. They will be referred to as convergent and oscillatory. Letli denote the eigenvalues of
the second fundamental form of the homogeneous hypersurfaces. Then the mean curvature of the
homogeneous hypersurfaces is given by trk5l11l21l3 . Define the generalized Kasner expo-
nents bypi5l i /tr k. In the convergent type, thepi tend to limits as the singularity is approached.
There are three different cases, depending on these limiting values. The first case is that where the
limiting values are~ 13,

1
3,
1
3!. The well-known homogeneous and isotropic solutions of the Einstein–

Vlasov system9 are of this type. The second is that the limiting values are~0,12,
1
2! or some permu-

tation thereof. The existence of solutions of this kind in the case of massless particles is shown in
Sec. VI. These limiting values of the generalized Kasner exponents are not realized by any Bianchi
type I space–time when the matter model is a perfect fluid~see the Appendix!. The third is that the
limiting values satisfy the Kasner relationp1

21p2
21p3

251. Any solution for which one of the
eigenvalues becomes negative at some time has this asymptotic behavior, and so there are plenty
of examples. This is proved in Theorem 5.1. Note that the special case of this result when two of
thepi are equal is closely related to the homogeneous special case of a result of Rein

10 for plane
symmetric space–times. In the oscillatory type thepi undergo infinitely many oscillations, in a
sense that will now be specified. There are two cases to be considered, according to whether two
of the eigenvalues are always equal or not. Consider first the case where two eigenvalues are equal
and suppose, without loss of generality, thatl25l3. Associate to any solution a string of symbols
~which may be finite or infinite, depending on the solution! as follows. Moving backward from
some fixed time, add anx to the string each time thatl12l2 changes from being<0 to being.0
and add ay each time it changes from being>0 to being,0. That this makes sense follows from
the fact, proved in Sec. II, that the set of times wherel15l2 can have no limit point unless this
equality holds at all times. Thus, a finite time interval can only contribute a finite number of
symbols. The solution is said to undergo infinitely many oscillations if the resulting string of
symbols is infinite. Similarly, if there is some time where all eigenvalues are distinct, then a string
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of symbols is associated to the solution by addingx, y, or z each timel1, l2, or l3, respectively,
becomes strictly larger than the other two eigenvalues.

Unfortunately it could not be shown whether any oscillatory solutions exist. If they did, then
the behavior of Bianchi I models with kinetic theory as matter model would be much more
complicated than in the case of a perfect fluid. If it could be shown that they existed, the question
would remain whether the sequences of symbols they produce have some regularity or whether
they are chaotic. In the absence of analytical techniques capable of deciding this question, it would
be desirable to carry out a numerical investigation. This could provide evidence as to the existence
~or otherwise! and nature of oscillatory behavior. It might also suggest new approaches to proving
theorems about the global dynamics.

To each type of solution discussed above corresponds a characteristic behavior of the pres-
sures. The solutions considered in the following all have diagonal energy-momentum tensors, and
so three pressuresPi are defined by three diagonal components. The remaining diagonal compo-
nent is the energy densityr. The quantitiesRi5Pi /r must have a sum that converges to unity at
the singularity. When the limiting values of thepi are~13,

1
3,
1
3! or ~0,12,

1
2!, then the limiting values of

theRi are~13,
1
3,
1
3! or ~0,12,

1
2!, respectively. When the sum of the squares of the limiting values of the

pi is equal to unity, then theRi tend to ~0,12,
1
2! or a permutation thereof, unless onepi has the

limiting value zero. In the latter case theRi tend to~1,0,0! or a permutation thereof.
The paper is organized as follows. In Sec. II some basic facts about the solutions are collected.

Section III is concerned with a simplified system, which in some cases models the asymptotic
behavior of the solutions of the original system. Some estimates for the pressures are derived in
Sec. IV. Section V contains the main results. Section VI contains proofs of the existence or
nonexistence of solutions with certain kinds of asymptotic behavior.

II. BASIC FACTS

The Einstein–Vlasov system is the system of equations that describes the kinetic theory of
self-gravitating particles in general relativity. A thorough introduction to general relativistic kinetic
theory and to the collisionless case, in particular, can be found in Ref. 11. For particles all of the
same massm>0, the system can be written in the following form in the case of Bianchi type I
symmetry:

2ki j k
i j1~ tr k!2516pr, ~2.1!

T0i50, ~2.2!

] tgi j522ki j , ~2.3!

] tki j5tr kki j22kil kj
l28pTi j24prgi j14p tr Tgi j , ~2.4!

] f

]t
12kj

iv j
] f

]v i
50, ~2.5!

r5E f ~ t,vk!~m21grsv
rvs!1/2~detg!1/2 dv1 dv2 dv3, ~2.6!

Ti j5E f ~ t,vk!v iv j~m
21grsv

rvs!21/2~detg!1/2 dv1 dv2 dv3. ~2.7!

Equations~2.1!–~2.4! are the Einstein equations written in 311 form, ~2.5! is the Vlasov equation,
and~2.6! and~2.7! are the definition of the energy-momentum tensor in terms of the matter fields
needed to complete the system. In these equationsgi j is the induced metric of the homogeneous
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hypersurfaces,ki j is the second fundamental form,f is the phase space density of particles,r is the
energy density,T0i andTi j are components of the energy-momentum tensor, and trk is the mean
curvaturegi j ki j . With the exception off all these quantities depend only on the time coordinatet.
This time coordinate is Gaussian, i.e., it is constant on each homogeneous hypersurface and
defines a parametrization by proper time when restricted to any geodesic normal to these hyper-
surfaces. The space–time metric is of the form

ds252dt21gi j ~ t !dx
i dxj . ~2.8!

In the following it is always assumed, when talking about solutions of~2.1!–~2.7!, that the
function f (t,v) is non-negative and has compact support for each fixedt. It is assumed thatf isC1

except in Sec. III, wheref may be a distribution. The case of primary interest here is the case
m51. Since, however, solutions of~2.1!–~2.7! with m51 resemble solutions withm50 close to
the singularity, it is useful to also allow the casem50 from the beginning. Note that the real
distinction here is between massless particles on the one hand and, on the other hand, massive
particles, which all have the same mass. In the latter case it is convenient to choose the mass of a
particle as a unit of mass so that the numerical value of the mass of a particle in the system of units
used is unity.

For a given Bianchi I geometry, the Vlasov equation can be solved explicitly.~This is not
possible for the other Bianchi types. The reason is explained in Ref. 12.! The result is that iff is
expressed in terms of the covariant componentsv i then it is independent of time. This means that
if t0 is some fixed time andf 0~v i!5f (t0 ,v i!, then~2.6! can be rewritten as

r5E f 0~v i !~m
21grsv rvs!

1/2~detg!21/2 dv1 dv2 dv3 , ~2.9!

and~2.7! can be rewritten in a similar way. The explicit solution allows certain special subclasses
of solutions of~2.1!–~2.7! to be identified. The first of these will be referred to as reflection-
symmetric, and is defined by the conditions that

f 0~v1 ,v2 ,v3!5 f 0~2v1 ,2v2 ,v3!5 f 0~v1 ,2v2 ,2v3!, ~2.10!

and that the initial values ofgi j andki j are diagonal. Equation~2.10! implies thatTi j is diagonal.
It then follows from~2.3! and~2.4! thatgi j andki j are always diagonal. The second case, which
will be referred to as LRS~locally rotationally symmetric! is obtained by supplementing~2.10! by
the conditions that

f 0~v1 ,v2 ,v3!5F„~v1!
21~v2!

2,v3…, ~2.11!

for some functionF and thatg115g22, k115k22 initially. Equation~2.11! implies thatT115T22 and
it follows from ~2.3! and ~2.4! that g115g22 and k115k22 everywhere. A solution will also be
called LRS if it satisfies the definition obtained from that just given by a permutation of the indices
1,2,3. A solution will be called isotropic if

f 0~v1 ,v2 ,v3!5F„~v1!
21~v2!

21~v3!
2
…, ~2.12!

and if gi j andki j are proportional tod i j on the initial hypersurface, and hence everywhere. If a
solution satisfies the conditions ongi j and ki j in the definition of reflection-symmetric, LRS or
isotropic for all t in some interval, but no assumption is made onf then the solution will be said
to have reflection-symmetric, LRS or isotropic geometry, respectively, on that interval. It follows
from ~2.4! thatTi j has a corresponding symmetry property.
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In this paper only reflection-symmetric solutions of~2.1!–~2.7! are considered. The alternative
notationa25g11/g11~t0!, b

25g22/g22~t0!, c
25g33/g33~t0! is used when it is convenient. Yet another

form of ~2.6! can then be obtained by doing a change of variables in~2.9!,

r5E f 0~aw1 ,bw2 ,cw3!~m
21d rswrws!

1/2 dw1 dw2 dw3 . ~2.13!

The geometric interpretation of thewi is that they are the components of the momentum in an
orthonormal frame. Similarly,

Ti
i5E f 0~aw1 ,bw2 ,cw3!wi

2~m21d rswrws!
21/2 dw1 dw2 dw3 . ~2.14!

In order to study the dynamics of the solutions of the system~2.1!–~2.7! in detail, it is useful
to introduce certain dimensionless variables that remain finite at the singularity. It follows from
~2.1! that trk never vanishes, except in the case of flat space–time, which is excluded from
consideration in the following. By replacingt by 2t if necessary, it can be arranged that trk,0
everywhere. It will be assumed that this has been done. Define

k̂i j5ki j /tr k, ~2.15!

r̂5r/~ tr k!2, ~2.16!

T̂i j5Ti j /~ tr k!2, ~2.17!

t~ t !52E
t0

t

tr k~ t8!dt8. ~2.18!

In terms of these variables equations~2.1! and ~2.4! become

2 k̂ j
i k̂i

j11516pr̂, ~2.19!

]tk̂ j
i5212pr̂~ k̂ j

i2 1
3d j

i !18pT̂j
i14p~ k̂ j

i2d j
i !tr T̂. ~2.20!

The following lemma provides some information about the range oft.
Lemma 2.1:Let a solution of~2.1!–~2.7! with m50 orm51 be given, which is the maximal

globally hyperbolic development of initial data on the hypersurfacet5t0 . Then trk(t) is a
monotonic function defined on an interval~t1 ,`!. By translatingt, it can be assumed thatt150.
Then limt→0 tr k52` and limt→` tr k50. Moreover,23/t<tr k(t)<21/t.

Proof: That trk(t) is monotonic and defined on an interval of the form (t1 ,`! with
limt→t1

tr k 5 2` was shown for the casem51 in Ref. 13. Essentially the same argument applies
for m50. In the latter case the coefficients of the characteristic system are only Lipschitz instead
of C1, but this causes no problems. Now it follows from~2.4! that 1

3~tr k)
2<]t~tr k)<(tr k)2.

Comparing the solution with the ordinary differential equations corresponding to these inequalities
then gives the desired estimates~cf. Ref. 7!.

This result implies that the integral definingt diverges ast→0 and ast→`. Hence, the
solution of ~2.19!–~2.20! exists globally int.

The solution of~2.19!–~2.20!, of course, contains only a small part of the information of that
contained in the solution of~2.1!–~2.7!. The former is only a projection of the latter. Nevertheless,
it will be seen that a lot of information about the solution of the full equations can be obtained by
studying this projection. Consider now the setK of triples of real numbersk̂1

1 ,k̂2
2 ,k̂3

3 that satisfy
(i( k̂i

i)2<1 and( i k̂i
i51. This is a compact subset ofR3. In fact, it is a disk in a plane. A solution
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of ~2.19!–~2.20! defines a point ofK at each timet. It is on the boundary ofK in the plane iff is
identically zero and in the interior otherwise. This point depending ont, considered as a mapping
fromR to K, will be referred to as the projection of the given solution. The projection of a vacuum
solution, which lies on the boundary ofK, is constant. The vacuum solutions are, of course, the
well-known Kasner solutions and the boundary ofK may be referred to as the ‘‘Kasner circle.’’ Let
C denote the point~ 13,

1
3,
1
3!. If a solution has isotropic geometry on a time interval, then its projec-

tion lies at the pointC during this time. Conversely, if its projection lies atC on a given time
interval, then it can be made to have isotropic geometry by a time-independent rescaling of the
spatial coordinates. LetL1 , L2 , and L3 be the subsets ofK defined byk̂2

25 k̂3
3 , k̂1

15 k̂3
3 , and

k̂1
15 k̂2

2 , respectively. A solution has LRS geometry on a time interval~up to a constant rescaling
of the spatial coordinates as above!, if and only if its projection lies on one of the linesL1 , L2 , or
L3 during this time. LetLi

1 denote the open half ofLi which ends at the point with coordinates
~2 1

3,
2
3,
2
3! or a permutation thereof, and letLi

2 denote the opposite half-line, which ends at the point
with coordinates~1,0,0! or a permutation thereof. LetVi

1 andVi
2 denote these end points. LetA1

be the open region bounded byL2
1 ,L3

1 and the boundary ofK, and letA2 andA3 be defined by
cyclically permuting~1,2,3! in this definition. LetBi be the subset ofK wherek̂i

i<0.
The components of the metric satisfy the evolution equations

dgii
dt

52k̂i
igii ,

d

dt S giigj j
D52~ k̂i

i2 k̂ j
i !S giigj j

D , ~2.21!

which imply thatgii or their ratios increase or decrease exponentially if certain sign conditions are
satisfied by thek̂i

i . There are, of course, corresponding statements for the scale factorsa, b, and
c. Given an initial datumf 0 for f the quantitiesr andTi

i are determined uniquely by thegii by
means of Eqs.~2.13! and~2.14!. The quantitiesr̂ andT̂i

i are given in terms ofr andTi
i and trk by

the definitions~2.16! and ~2.17!, while the off-diagonal componentsT̂j
i are zero by assumption.

Thus,~2.19!, ~2.20!, and~2.21!, together with the equation

]t~ tr k!52~ tr k!~1212pr̂14p tr T̂!, ~2.22!

derive from ~2.4!, form a closed system of ordinary differential equations, which, for fixedf 0 ,
formally determine the quantitiesk̂i

i , gii , and trk as functions oft in terms of initial data. If the
coefficients of this system were locally Lipschitz, it would follow from the standard uniqueness
theorem for ordinary differential equations that they determine them uniquely. It will now be
shown that, in fact, form51 this dependence is analytic. To do this it is convenient to use the
expressions forr andTi

i of the type~2.9!. Analyticity is a consequence of the following lemma.
Lemma 2.2:LetW be a mapping ofU3R3 to R, whereU is an open subset ofR3. Suppose

thatW extends to aC1 mappingW̃ of Ũ3R3 to C, whereŨ is an open neighborhood ofU in C3,
and thatW̃(•,y) satisfies the Cauchy–Riemann equations for each fixedyPR3. Finally, suppose
that eachzPW̃ has an open neighborhoodV such that the supports of the functionsW̃(z,•) are
contained in a common compact subsetK of R3. Then the functionF(x) 5 *R3W(x,y)dy is
analytic.

Proof: It suffices to show that the functionF̃(z) 5 *R3W̃(z,y)dy is complex analytic, and this
is true if F̃ is C1 and satisfies the Cauchy–Riemann equations.14 The assumptions on the smooth-
ness and support ofW̃ justify differentiation under the integral, and so the Cauchy–Riemann
equations forF̃ follow from the Cauchy–Riemann equations for W˜ .

A consequence of the analyticity of the coefficients in the system of ordinary differential
equations is that the solutions are analytic. It follows that if a solution withm51 has LRS or
isotropic geometry on some nonempty open time interval, then it must have LRS or isotropic
geometry, respectively, for all values oft. The same conclusion holds if there is a sequence of
times having a limit point where the geometry is LRS or isotropic, respectively.
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III. THE ASYMPTOTIC SYSTEM

In this section a certain system of ordinary differential equations is introduced and the quali-
tative behavior of its solutions analyzed. This system is used later to study the asymptotic behavior
of solutions of the system~2.1!–~2.7!. This system can be obtained formally from~2.1!–~2.7! by
replacing the C1 function f (t,v1 ,v2 ,v3) by a measure of the form
f (t,v1)d„v22 v̄2(t)…d„v32 v̄3(t)…, whered is a Dirac measure, and takingm50. Solutions of this
system can be interpreted as certain distributional solutions of the Einstein–Vlasov system for
massless particles. These are intermediate between smooth solutions and the even more singular
solutions, which are in one to one correspondence with dust solutions.~For the correspondence
between dust and distributional solutions of the Vlasov equation see Ref. 15.! The mathematical
results that will now be derived are independent of this interpretation.

The system of ODEs to be considered is the special case of the equations~2.19! and ~2.20!
obtained by settingT̂1

15T̂2
250 andT̂3

35 r̂. Note that, in contrast to the general case of~2.19! and
~2.20!, these specialized equations suffice to determine all unknowns occurring in them from
initial data. The explicit form of~2.20! in this case is

]tk̂1
1528pr̂ k̂1

1, ~3.1!

]tk̂2
2528pr̂ k̂2

2, ~3.2!

]tk̂3
3528pr̂~ k̂3

321!. ~3.3!

If initial data are chosen at some time that satisfy the condition( i( k̂i
i)51, then the solution also

satisfies it. Only solutions with this property are considered here. It follows from~3.1! and ~3.2!
that ]t( k̂2

2/ k̂1
1)50 wheneverk̂1

1Þ0. Let r be the constant value ofk̂2
2/ k̂1

1 . Then

k̂2
25rk̂1

1, ~3.4!

k̂3
3512~11r !k̂1

1. ~3.5!

Substituting~2.19!, ~3.4!, and~3.5! into ~3.1! gives

]tk̂1
15~ k̂1

1!2@~11r1r 2!k̂1
12~11r !#. ~3.6!

Proposition 3.1: Let (k̂1
1 ,k̂2

2 ,k̂3
3) be a solution of~3.1!–~3.3! satisfying ( i( k̂i

i)51 and
( i( k̂i

i)2,1. Definer5 k̂2
2/ k̂1

1 wheneverk̂1
1Þ0. Then

~i! if k̂1
1 is zero initially it is always zero;

~ii ! if k̂1
1 is initially ~and hence always! nonzero, thenr is constant;

~iii ! when k̂1
1Þ0 it is a monotonic function with limt→2` k̂1

15(11r )/(11r1r 2! and
limt→` k̂1

150; and
~iv! in that case limt→2`~k̂3

32 k̂2
2)52r (r12)/(11r1r 2!.

Proof: Statement~i! follows from ~3.1!. Statement~ii ! has been demonstrated above. State-
ment ~iii ! follows from ~3.6!. The last conclusion is then an immediate consequence of the defi-
nitions.

Of course analogous statements hold ifk̂1
1 andk̂2

2 are interchanged, since these two quantities
occur symmetrically in the hypotheses.

IV. PRESSURE ESTIMATES

The results of this section are all variations on the theme that if the space–time is expanding
in a certain direction, then the pressure in that direction tends to decrease. It is assumed throughout
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that the geometry is reflection-symmetric. A solution of~2.1!–~2.7! with m50 satisfies trT/r51.
This condition never holds whenm51, but the next lemma shows that it does hold asymptotically.

Lemma 4.1:Suppose that some solution of~2.1!–~2.7! with m51 is defined on an interval
~2`,t1!, with f not identically zero. Then limt→2` tr T/r51.

Proof: It was shown in Ref. 7 that limt→2` r5`. Thus, the result will follow if it can be
shown thatr→` implies trT/r→1. To do this, choose some radiusL.0 and writer5r11r2 and
tr T5(tr T)11~tr T)2 , where the first summand is the integral over the regionuwu,L of the
integrand in~2.13! or ~2.14!, respectively, and the second is the integral over the complementary
region. Using the fact that (11x2!1/22x2/~11x2!1/25~11x2!21/2, it can be seen that
r22~tr T)2<~11L2!21r2. Hence

~ tr T!2>
L2

11L2
r2 ~4.1!

and

tr T>tr T2>
L2

11L2 S r2S 4p

3 DL3~11L2!1/2i f 0i`D . ~4.2!

By choosingL sufficiently large, the quantityL2/~11L2! can be made as close to unity as desired.
For fixedL, the quantity in brackets on the right-hand side of~4.2! approachesr asr becomes
large. This suffices to give the conclusion of the lemma.

For a given initial datumf 0, the equation~2.14! defines the pressuresTi
i as functions ofa, b,

andc. The following results concern the qualitative behavior of these functions.
Lemma 4.2:If f 0 is not identically zero anda<C8 min$1,b,c% for some constantC8.0, there

exists a constantC.0 such thatT1
1>Ca22b21c21 andT2

2/T1
1<C(a/b)4/3. In the casem50 the

conclusion holds under the weaker hypothesis thata<C8 min$b,c%.
Proof: Let p be a point ofR3 where f 0Þ0, whose first coordinatew1 is nonzero. Letd be a

positive number such thatf is bounded below by some positive constanth on the closed cubeW
of side 2d centered atp and such thatw1 does not vanish anywhere on this cube. Consider now the
imageW8 of the cubeW under the mapping~w1 ,w2 ,w3!°~a21w1 ,b

21w2 ,c
21w3!. On W the

functionsw2/w1 andw3/w1 are bounded. Under the assumptions of the lemma they are bounded
by the same constant onW8. It follows that uw1u/~11uwu2!1/2 is bounded below on any such cube
by a positive constant that is independent ofa, b, and c, which satisfy the hypotheses of the
lemma. The integral definingT1

1 can be bounded from below by the integral of the same quantity
overW. It follows that

T1
1>Cha22b21c21, ~4.3!

and this proves the first part of the lemma. To get a lower bound forT1
1/T2

2 , the domain of
integration in the definition of these two quantities will be divided into the regionsuw2u.Ruw1u
and uw2u,Ruw1u, whereR is a positive number that will be specified later. Corresponding to this
decomposition of the domain of integration, there are decompositionsT1

15T11
1 1T12

1 and
T2
25T21

2 1T22
2 . The volume of the region whereuw2u.Ruw1u and f (aw1 ,bw2 ,cw3!Þ0 can be

bounded by an expression of the formCR21c21b22, and soT21
2 <CR21c21b23. On the other

hand,T22
2 <R2T12

1 . Thus,

T2
2<CR21c21b231R2T1

1<„CR21~a/b!21R2
…T1

1, ~4.4!

where in the last step~4.3! has been used. ChoosingR5(a/b)2/3 givesT2
2<C(a/b)4/3T1

1 , and this
proves the result forT2

2/T1
1 .
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Lemma 4.3:Suppose that some solution of~2.1!–~2.7! is defined on the interval~2`,t1!, with
f not identically zero. If k̂1

12 k̂2
2>A and k̂1

12 k̂3
3>A on this interval for someA.0, then

Ti
i /T1

1<Ce4At/3 for i52,3.
Proof: It suffices to note that under the assumptions of this lemma there will be a time interval

~2`,t2! where the hypotheses of Lemma 4.2 hold, so that~4.4! can be applied.
The time derivatives of the quantitiesT̂i

i cannot, in general, be expressed in terms of the
dimensionless quantities~2.9!–~2.11!, so as to get a closed system of ordinary differential equa-
tions. However, they can be estimated in terms of these quantities. Note first that

dT̂i
i

dt
52~ tr k!23

dTi
i

dt
12T̂i

i@1212pr̂14p tr T̂#. ~4.5!

Next, a change of variables in~2.7! gives, in the diagonal case,

Ti
i5gii E f 0~v1 ,v2 ,v3!~v i !

2~m21grsv rvs!
21/2~detg!21/2 dv1 dv2 dv3 . ~4.6!

Hence,

dT1
1

dt
5~3k1

11k2
21k3

3!T1
11g11E f 0~v1 ,v2 ,v3!~v1!

2F~v1 ,v2 ,v3!

3~m21grsv rvs!
23/2~detg!21/2 dv1 dv2 dv3 , ~4.7!

where

F~v1 ,v2 ,v3!5„2g11k1
1~v1!

22g22k2
2~v2!

22g33k3
3~v3!

2
…. ~4.8!

Note now that

uF~v1 ,v2 ,v3!u<~ uk1
1u1uk2

2u1uk3
3u!~m21grsv rvs!, ~4.9!

and so the integral in~4.7! can be bounded in modulus by 3 trkT1
1 . Putting this information into

~4.5! gives the desired bound.
Lemma 4.4:Consider a maximally extended solution of~2.1!–~2.7! with m51 and f not

identically zero. Ifgii→` as t→`, then limt→` Ti
i /r50. If, on the other hand,g11 is bounded

above and allgii are bounded below by a positive constant on an interval of the form@t1,`!, then
T1
1/r is bounded below by a positive constant on that interval.
Proof: It follows from ~2.13! and~2.14! thatT1

1<Ca22r, and this proves the first statement.
To get the other conclusion, choose a cubeC1 as in the proof of Lemma 4.2. Then
T1
1>Ca21b21c21 while r<Ca21b21c21. Hence,T1

1/r>C.0.

V. THE MAIN RESULTS

Lemma 5.1 (compactness lemma):Let a sequence of reflection-symmetric global solutions of
Eqs.~2.1!–~2.7! be given. Then there exists a subsequence such thatk̂ j

i andr̂ converge uniformly
on compact sets ofR. Here T̂i

i also converges uniformly on compact subsets~after possibly
passing to a subsequence once more!, and the limiting quantities satisfy~2.19! and ~2.20!.

Proof: The quantitiesk̂ j
i are contained in the compact setK and so are, in particular, uniformly

bounded. By~2.19!, r̂ is uniformly bounded. It follows thatT̂j
i is uniformly bounded. Equation

~2.20! now shows that]tk̂ j
i is uniformly bounded. By Ascoli’s theorem there exists a subsequence

such thatk̂ j
i converges uniformly on the interval@21,1#. Applying the theorem again shows that

this subsequence has a subsequence such thatk̂ j
i converges uniformly on@22,2#. Continuing in
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this way, we obtain a collection of subsequences indexed by a positive integern with the proper-
ties that for thenth subsequencek̂ j

i converges uniformly on@2n,n#, and each sequence is a
subsequence of the previous one. The diagonal sequence has the property thatk̂ j

i converges on
each compact subset of the real line. By the Hamiltonian constraintr̂ also converges uniformly on
compact sets along this subsequence. In the diagonal case the derivatives]tT̂i

i are bounded, as was
shown in Sec. IV and applying Ascoli’s theorem as before gives the remaining conclusions.

Theorem 5.1:Let a global solution of Eqs.~2.1!–~2.7! be given for whichf is not identically
zero. If at some timet1, the projection of the solution lies in the setBi for somei, then ~i! the
projection lies inBi for all t<t1; ~ii ! if there exists somet2.t1 such that the projection of the
solution lies in the complement ofBi , then it lies in the complement of allBj for t.t2; and~iii !
ast→2` the projection converges to a point of the boundary of the regionK that is not one of the
pointsVi

2 .
Proof: Suppose without loss of generality thati51. It follows from ~2.20! that

]tk̂1
1524p~r̂2tr T̂!~3k̂1

121!28p tr T̂k̂1
118pT̂1

1. ~5.1!

If at some timek̂1
1<0, then the first and second terms on the right-hand side of~5.1! are non-

negative while the third term is positive. Hence]tk̂1
1.0. This implies the first conclusion of the

theorem. Moreover, it means that if the projection once leavesB1 it can never reenter it. A similar
statement, of course, applies to any otherBj , and this gives~ii !. To prove~iii ! note first that]tk̂1

1

is bounded below by a positive constant as long asr̂ is. This shows that lim infr→2` r̂50.
Equation~5.1! also implies that the integral ofr̂ on the interval~2`,t1# must be finite so that for
eachi the integral of the right-hand side of~2.20! is absolutely convergent. Hence, eachk̂i

i tends
to a limit ast→2`. By what has already been said it can only be a point of the boundary ofK.
The monotonicity ofk̂1

1 shows that this limit cannot be one of the pointsVi
2 .

Theorem 5.2:Let a global solution of Eqs.~2.1!–~2.7! be given for whichf is not identically
zero. If at some timet1 the projection of the solution lies in the setAi for some i, then ast
decreases either~i! the projection converges to a point of the boundary ofK ast→2`; or ~ii ! it
reachesL j

1 for somej or C at a finite time beforet1; or ~iii ! it stays inAi for all t,t1 and it has
a point of one of the linesL j

1 or the pointC as an accumulation point.
Proof: Suppose without loss of generality thati51. When the projection lies inA1 the

inequalitiesk1
1.k2

2 , k1
1.k3

3 , and k̂1
1. 1

3 hold. Suppose that on the time interval~2`,t1! the
inequalities k̂1

12 k̂2
2>A and k̂1

12 k̂3
3>A are satisfied for someA.0. Then, by Lemma 4.3, it

follows that on this time intervalT1
1/T2

2 andT1
1/T3

3 can be bounded below by a decreasing func-
tion, which tends tò ast→2`. Moreover, by Lemma 4.1, trT/r→1 ast→2`. Now, define a
sequence of solutions of~2.1!–~2.7! by un~t!5u(t2n), tP~2`,t1!, whereu denotes any of the
functions that make up the solution andn is a positive integer. By Lemma 5.1 there exists a
subsequence such thatk̂ j

i and r̂ converge uniformly on compact subsets. By the statements made
above, trT̂ must tend to the same limit asr̂ along this sequence. Also,T̂1

1 tends to this same limit
and T̂2

2 and T̂3
3 tend to zero. Applying Lemma 5.1 again shows that the limits of these sequences

satisfy ~2.19! and ~2.20!. Because of the values of the limits they, in fact, satisfy the asymptotic
system~3.1!–~3.3!. The solution of the asymptotic system obtained inherits the properties that
k̂1
1> k̂2

2 and k̂1
1> k̂3

3. The only solutions of the asymptotic system that satisfy these inequalities on
an interval of the form~2`,t1! are the vacuum solutions. If for some choice of subsequence this
vacuum solution is not that corresponding to the pointV1

2, then the projection of the original
solution must converge to that point, by Theorem 5.1. Otherwise every subsequence of the se-
quence of translated solutions has a subsequence that converges to the same solution of the
asymptotic system. Hence, the whole sequence converges to this solution and the projection of the
original solution converges toV1

2. In both cases the solution of the original system converges to
a point of the boundary ofK.
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It remains to consider the case where the above estimate is not satisfied for anyA.0. If the
solution does not reachL j

1 for somej or C in finite time, then it stays inAi for all t,t1. Then it
must have as an accumulation point either a point onL j

1 for somej , C, or Vj
1 for somej . In the

first two cases this gives case~iii ! of the conclusion of the theorem. In the third case the solution
entersBj , and so by Theorem 5.1, case~i! of the conclusion holds.

In case~iii ! of this theorem we can also consider a limit of translates of the solutions whose
existence is guaranteed by Lemma 5.1. If the ratiosa/b anda/c tended to zero ast→2` for the
original solution, then by Lemma 4.2 the ratiosT1

1/T2
2 andT1

1/T3
3 would tend to infinity and the

solution would belong to case~i!. Thus, in case~iii ! it can be assumed without loss of generality
~after possibly interchanging the indices 2 and 3! that b/a is bounded ast→2`. Hence
*

2`
t1 ( k̂1

1 2 k̂2
2) is finite. Since]t~k̂1

12 k̂2
2) is bounded, it follows thatk̂1

12 k̂2
2→0 ast→2`. Hence,

the solution obtained as a limit of translates has LRS geometry. It also satisfiesr5tr T. Informa-
tion about the asymptotics of LRS solutions can thus be used to obtain information about the
asymptotics of the solutions, which fit into case~iii ! of Theorem 5.2 but do not fit into case~i!.

Theorem 5.3:Let a solution of Eqs.~2.19!–~2.20! be given that satisfies the LRS condition
k2
25k3

3 . If at some timet1 the projection satisfiesk̂1
1, 1

3, then either~i! the projection of the
solution tends to the point~2 1

3,
2
3,
2
3! as t→2`; ~ii ! it tends to the point~0,12,

1
2! as t→2`; ~iii ! it

reaches the point~13,
1
3,
1
3! at a finite time beforet1; or ~iv! it tends to the point~13,

1
3,
1
3! ast→2`.

Proof: Suppose first thatk̂1
1< 1

32A for someA.0. Then by Lemma 4.2 the ratio ofT2
25T3

3 to
T1
1 increases without limit. Passing to a limit of translates in the familiar way gives a solution of

the equation]tk̂1
1528p k̂1

1r̂ for which k̂1
1 satisfies the same inequality as before. There are only

two such solutions, namely that for whichr̂50 and that for whichk̂1
150. In the first of these cases

the original solution must enter the regionB1 , and hence by Theorem 5.1 belong to case~i! of the
conclusion of the present theorem. The only way of avoiding this is if, no matter which subse-
quence is chosen, the limiting value ofk̂1

1 is zero. Hence, the projection of the original solution
must converge to the point~0,12,

1
2!. Thus, the solution belongs to case~ii ! of the conclusion. Now

consider the case where there is noA.0 with the given property. If, despite this, the ratio ofT2
2

to T1
1 tends to infinity, we can argue as before to show that the solution belongs to case~i! or ~ii !.

If, on the other hand, this ratio remains bounded, then the ratioa/b must remain bounded, and
hence if k̂1

1 remains smaller than13 forever then*
2`
t1 ( 132 k̂1

1) is finite. It then follows as in the
discussion following the proof of Theorem 5.2 thatk̂1

1→ 1
3. Thus the solution either belongs to case

~iii ! or case~iv!.
Theorem 5.4:Let a solution of the equations~2.1!–~2.7! with m51 andf not identically zero

be given. Thenk̂i
i→ 1

3 andTi
i /r→0 for eachi ast→`.

Proof: In Ref. 13, it was shown that the scale factorsa, b, andc are bounded below by a
positive constant on any interval of the form@t1,`!. Using ~5.1!, this statement can be strength-
ened. Suppose thatk̂1

1 were negative on an interval of the form@t1,`!. Then it would follow, as in
the proof of Theorem 5.1, that the integral ofr̂ on this interval was finite. Butr̂ is increasing on
this interval, a contradiction. It follows that eachk̂i

i must become zero after a finite time, and once
this happens it must immediately become positive and stay positive. Thus, fort1 sufficiently large,
a, b, andc are increasing. Consider now the behavior of the quantity min$a,b,c%. Suppose first
that it tends to infinity ast→`. Then, by Lemma 4.4 the ratiosTi

i /r tend to zero ast→`.
Construct a limit of translates as in the proof of Theorem 5.2, except that this time the translations
should be done in the opposite direction. Then the limiting solution satisfies]tk̂i

i5212pr̂~k̂i
i2

1
3). This is the equation that is satisfied by a Bianchi I solution of the Einstein equations coupled
to dust. It is well known and also easy to see directly that in the case of dust eachk̂i

i converges to
1
3 as t→`. Because a convergent subsequence can be extracted from any subsequence of the
sequence of translates by integers, it follows thatk̂i

i→ 1
3 for the original solution of the Einstein–

Vlasov system as well. Next, consider the case wherea is bounded on an interval of the form
@t1,`! while min$b,c%→` as t→`. Then, by Lemma 4.4 the ratiosT2

2/r andT3
3/r converge to

zero ast→` while T1
1/r remains bounded away from zero. Equation~5.1! implies that]tk̂1

1 is
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bounded below by a positive constant ifk̂1
1, 1

3 andT2
2/T1

1 andT3
3/T1

1 are less than 12A for some
constantA.0. However, this contradicts the boundedness ofa. Since the volume tends to infinity
ast→`, at least one ofa, b, or c must tend to infinity. It follows that to complete the proof we
may assume without loss of generality thata and b are bounded whilec tends to infinity. By
Lemma 4.4,T3

3/r→0, while T1
1/r andT2

2/r are bounded below by a positive constant. Now the
integral*t1

` k̂i
i(t)dt is finite for i51,2 and]tk̂i

i is bounded. Hence,k̂1
1 andk̂2

2 tend to zero ast→`

and k̂3
3→1. But the given behavior of the pressures shows that fork̂3

3> 1
3 and sufficiently large

times]tk3
3 is negative, a contradiction. This completes the proof.

VI. A COMPACTIFICATION

This section is devoted to a finer examination of LRS solutions of the Einstein–Vlasov system
with massless particles. For LRS solutions withk2

25k3
3 , let k5 k̂1

1 , q5b/a, Q5T1
1/r. Then

k̂2
25 1

2(12k) and r̂5~1/16p!~121k2 3
2k

2!. The essential equations describing the dynamics are

]tk5 1
4~113k!~12k!~Q2k!, ~6.1!

]tq5 1
2~123k!q. ~6.2!

The quantityQ can be expressed entirely in terms ofq and the initial data as follows:

Q5q2F* f 0~v i !v1
2~q2v1

21v2
21v3

2!21/2 dv1 dv2 dv3
* f 0~v i !~q

2v1
21v2

21v3
2!1/2 dv1 dv2 dv3

G . ~6.3!

Substituting~6.3! into ~6.1! makes the equations~6.1! and ~6.2! into an autonomous system of
ordinary differential equations fork andq. Lemma 4.2 shows thatQ(q)5O(q4/3) asq→0. This
means that the system~6.1!–~6.2! can be extended in aC1 manner to the boundaryq50. More-
over,Q does not contribute to the linearization of the extended system at the critical pointq50,
k50. The eigenvectors of the linearization are directed along thek andq axes, with eigenvalues
2 1

4 and
1
2, respectively. It follows~see, e.g., Ref. 16! that the dynamical system has an unstable

manifold that is a curve tangent to thek axis at the point~0,0!. This shows that for any initial value
f 0 it is possible to find LRS solutions of the Einstein–Vlasov system, where the distribution
function has the initial valuef 0 and where the quantitiesk̂i

i converge to~0,12,
1
2! ast→2`. Note

that the stable manifold is just thek axis, and so does not give rise to any smooth solutions of the
Einstein–Vlasov system. The information about the linearization also determines the nature of the
phase portrait near the singular point, and shows that there are solutions for whichk̂1

1 approaches
zero, but turns back before reaching it. A typical feature of Bianchi models is that the matter
becomes dynamically negligible near the singularity. No attempt will be made here to make this
notion precise, but one aspect of it is that the projection of the solution should tend to a point of
the boundary ofK ast→2`. The solution whose existence has just been shown is an exception
to the rule. For anisotropic Bianchi I models with a perfect fluid, no exceptional solutions of this
kind exist. However, they do occur for other Bianchi types.17

The critical points of the system~6.1!–~6.2! in the region where 0,q and21
3,k,1 are the

points of the form~ 13,q0!, whereq0 has the property thatQ(q0!5
1
3. Differentiating ~6.3! and

estimating the result in an elementary way leads to the inequalityqQ8>Q(12Q). This shows that
the functionQ is strictly increasing forq.0. Taking account of the limiting values ofQ, it follows
that there is precisely one valueq0 for which Q(q0!5

1
3. Moreover, at this pointqQ8>2

9. The

eigenvalues of the linearization at the corresponding critical point are2 1
66

1
2A 1

92q0Q8(q0!. They
both have negative real parts and the critical point is a sink. In particular, no solution emerges
from this critical point. Thus, it is seen that if the projection of any LRS solution for massless
particles approaches the pointC ast→2`, then the projection must stay atC for all time, i.e., the
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solution must have isotropic geometry. This should be compared with the results of Newman18 on
isotropic singularities in solutions of the Einstein equations coupled to a radiation fluid.

APPENDIX: FLUIDS WITH NONLINEAR EQUATION OF STATE

Consider a perfect fluid with equation of statep5 f (r) that satisfies the following general
assumptions:~i! f is a continuous function from@0,̀ ! to itself with f~0!50, which isC1 for r.0;
~ii ! 0<f 8~r!<1 for all r.0; and~iii ! there exists a constantC,1 such thatp<Cr for r,1.

Assumptions~i! and~ii ! are standard. The third assumption is, when~i! and~ii ! are satisfied,
equivalent to the assumption made in Ref. 7 that the equation of state is not asymptotically stiff at
low densities. In the case of a linear equation of statef (r)5kr, the assumptions~i!–~iii ! are
satisfied if and only if 0<k,1. In a Bianchi I space–time, it follows from the momentum
constraint~2.2! that the four-velocity of the fluid is orthogonal to the hypersurfaces of homoge-
neity. Hence, the energy densityr measured by an observer whose word line is orthogonal to the
hypersurfaces of homogeneity, is the same as that measured by a comoving observer. Equations
~2.19! and ~2.20! are valid, as in the case of the Einstein–Vlasov system. For a fluid, it can be
assumed without loss of generality that the solution is reflection symmetric, because given any
initial data, it suffices to do a linear transformation of the coordinates that simultaneously diago-
nalizes the metric and second fundamental form in order to transform the given data to data for a
reflection-symmetric space–time.

In the case of a fluidTj
i5pd j

i and henceT̂j
i5 p̂d j

i , wherep̂5p/~tr k)2. If the equation of state
is linear, thenp̂ can be expressed as a function ofr̂ alone, and~2.19! and~2.20! then reduce to a
system of ordinary differential equations that suffice to determinek̂ j

i from initial data. For a
nonlinear equation of state, this is no longer the case. The equations~2.19! and ~2.20! no longer
form a closed system and must instead be considered as the projection of a bigger system, as in the
case of the Vlasov equation. This is one reason why the linear case has been studied preferentially
in the literature. Nevertheless, it turns out that the projection can be analyzed very effectively in
the general case.

The first question that needs to be addressed is that of global existence int, i.e., the equivalent
of Lemma 2.1 for a fluid. This follows from the results of Ref. 7. The assumption~iii ! has been
used at this stage. A direct calculation shows that the quantity (k̂1

12 k̂2
2)/( k̂1

12 k̂3
3) is independent of

t wheneverk̂1
12 k̂3

3 is nonzero. Moreover, ifk̂1
12 k̂3

3 is zero at some time, it remains zero. Hence,
the projection of each solution is constrained to move on a straight line inK passing through the
centerC. This is already a much stronger statement than could be proved in the case of the Vlasov
equation. To find out how the projection moves on this straight line, the time derivative of the
dimensionless version of the density will be calculated. For a fluid it is given by

]tr̂5~ r̂2 p̂!~1224pr̂!. ~A1!

Noting that the Hamiltonian constraint implies that 24pr̂<1 with equality only at the pointC, it
can now be seen that the projection moves monotonically from the boundary ofK at t52` to the
centerC of K at t5`. This qualitative behavior is independent of the equation of state, satisfying
~i!–~iii !. The only difference is in the speed with which the projection moves along the radial line
at different times. Equation~A1! also makes clear that this picture changes completely if the
equations of state considered here are replaced by the limiting case of a stiff fluid,p5r.
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