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Abstract 

We give a simple proof of the relation AanF = &bl (Tr #2), which is vaiid for N = 2 super-symmetric QCD with massless 
quarks. We consider SU( NC) gauge theories as well as SO( NC) and SP ( NC). An analogous relation which corresponds to 
massive hypermultiplets is written down. We also discuss the generalizations to N = 1 models in the Coulomb phase. 

A lot of activity has followed the beautiful work of 
Seiberg and Witten [ 11 on the exact non-perturbative 
low energy effective action (in the Coulomb phase) of 
the pure and QCD-like SU( 2) N = 2 supersymmetric 
gauge theories. In [ 21 it was generalized to SU( NC ) 
N = 2 theories and in [ 3.41 to SU( NC ) N - 2 the- 
ories with matter in the fundamental representation. 
Recently this work has been extended to 5’0( NC) and 
Sp ( NC ) gauge groups [ 5-71. 

In the present letter we prove and discuss relations 
between the prepotentia13 and the quantum moduli of 
the N - 2 theory. The most interesting relation reads 

where 4 is the adjoint complex scalar in the N - 2 
gauge multiplet, and 6, is the one-loop coefficient of 
the beta-function. This relation holds for all N = 2 

*Work supported in part by GIF - the German-Israeli Foundation 
for Scientific Research. 

theories, either pure or with massless matter quarks. 
For the case of pure SU( 2) this relation is essentially 
proven in [ 81 where the modular transformations of 
the prepotentia13 are considered. In [ 91 the general- 
ization of the Se&erg-Witten approach to N - 2 string 
theory is investigated. In particular, the exact non- 
perturbative result on pure SU( 2) and SU( 3) N = 2 
Yang-Mills theory were recovered from the tree-level 
Type II string theory at the corresponding points in 
moduli space, in the limit of (Y’ -+ 0, where gravity is 
decoupled. In this work it was observed that starting 
from the local case u G $ (Tr 42) behaves as a period 
and the relation ( 1) holds with the dilaton playing the 
role of A. This relation turns out to be crucial in ob- 
taining the rigid theory from the local one. 

In the pure N = 2 gauge theory, the low energy 
effective action up to terms with two derivatives is 
completely determined by one holomorphic function 
of N = 2 chiral superfields di, the prepotential3(d). 
For Nf > 0, we also have to include (matter) hy- 
permultiplets, whose contribution to the low energy 

0370-2693/%/$12.00 0 1996 Elsevier Science B.V. All rights reserved 
SSDI 0370-2693(95)01399-7 



146 .I. Sonnenschein et d/Physics Letters 3 367 119961145-150 

effective action is not determined by a holomorphic 
structure. However, for the purpose of this note, we 
won’t need their couplings. For the massless case, the 
perturbative piece of the prepotential is 

The sum is over all positive roots and I(adj.) is the 
index of the adjoint representation of the gauge group 
G whereas li (matter) is the index of the representation 
of the ith matter hypermultiplet. From this expression 
the perturbative beta-function, which is purely one- 
loop, follows. 

The prepotential may be considered as a holomor- 
phic function of the chiral superfields Jti and the scale 
A. Defining a; = Ails& and ao, = y, one then 
finds that (a;, ao;) are the periods of an abelian dif- 
ferential of the second kind (having poles with zero 
residue) for the case of Nf 2 0 massless hypermulti- 
plets or of the third kind (having poles with non-zero 
residue) for Nf > 0 massive hypermultiplets. These 
differentials are defined on an (auxiliary) hyperellip- 
tic Riemann surface ZZr of genus r = rank(G) and 
the periods are with respect to a symplectic homology 
basis with one-cycles ((~i, pi). The Riemann surfaces 
for pure SU( NC) [ 21, SU( NC) with hypermultiplets 
[ 3,4], SO( NC) without [S ] and with [6,7] matter, 
and finally also for Sp ( Nc ) [ 71 have been found by 
now. In particular Ref. [7] gives curves with genus 
equal to the rank of G. The hypermultiplets were al- 
ways chosen in the defining representation and their 
number such that the theory is either asymptotically 
free or has vanishing beta function. Recently curves 
for certain N = 1 supersymmetric theories were con- 
sidered in [ 10,4,11] with matter in the adjoint and/or 
fundamental representations. We first treat N = 2 the- 
ories with G = SU( Nc ) . The remaining classical 
groups and some N = 1 cases will be dealt with below. 

The Riemann surface for SU ( NC ) is the genus NC - 
1 hyperelliptic curve C.N~ _ I 

Y2 -W’+F (3) 

W = (det(x1 - 4)) E .x?‘L. - 2 SkXN~--k 
k-2 

(4) 

F = F( X, mj, A) is a polynomial of its arguments, in- 
dependent of the Si and F(x) N xNJ for large X. If 
we parametrize (4) = ci UiHi where Hi are the gen- 
erators in the Cartan subalgebra, we get in the semi- 
classical limit ~2 = iaiaj Tr( HiHj). The exact (non- 
perturbative) expression is s2 = u = i(Tr42) where 
$J is the Higgs field, i.e. the scalar component of the 
N = 1 chiral superfield contained in the N = 2 chiral 
superfield. 

The meromorphic differential A is [ 3,4] ’ (the 
prime denotes differentiation w.r.t. X) 

A = $-( WF’ - 2FW’) (’ ;f) dx 

where the normalization is chosen such that (i = 

(&khan differentials of the first kind) on zNc _ 1. The 
constant b = b( A, m) must be chosen such that for the 
massless case there are no poles at zeroes of F and the 
pole at infinity has zero residue. In the massive case 
/\ must have poles at the zeroes of F with residues 
mj. One finds that in the massless case b = 0. h also 
has a double pole at infinity with residue - C mj 
which vanishes in the massless case. It is, therefore, 
an abelian differential of the second and third kind in 
the massless and massive cases, respectively. 

The effective (field dependent, dimensionless) 

gauge coupling is given by the matrix rij = $&. 
_LF is thus a homogeneous function of weight two of 
ai, mj, A and satisfies the Euler equation 2 

2~=(Aa,,+~m&,,j +xuia,,)F (6) 
j i 

Taking derivatives w.r.t. to sk and using the definition 
of the uo; one obtains 

’ Here and below relations between abelian differentials are al- 

ways up to exact differentials. 

* Here and below, A is always meant to be AN,. where 
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-&(“a* + Cmj&j>3 
j 

=c 
i 

Using now the above results we arrive at 

(8) 

The right hand side of this equation can be evaluated 
with the help of a Riemann bilinear relation [ 121. 
Since they make a distinction between A being abelian 
of second or third kind, we will treat the massless and 
massive cases separately. We first discuss the massless 
case, where the integrals on the right hand side of 
Eq. (8) can be done explicitly. The mass dependent 
terms on the left hand side of Eqs. (7) and (8) are 
now absent and A has a double pole at w = l/x = 0 
with expansion 

A-(A_*W_2+AQ+A,w+...)dw (9) 

with A-2 = & (2Nc - Nf ); there are no further poles 
of A. The Riemann bilinear relation now reads 

where 0:‘) are the coefficients of Wk in its expansion 
around infinity: 

wk = (W, (k) + Wjk)W + . . .)dw 

= (-kwk-* + O(wk-1)) (11) 

i.e. whk) = -$6~. We then have 

a, (Aa*3) = 2miA_2 ohk) 

= 32Nc - N,f)&,z (12) 

Integration gives 

(13) 

where comparison with the weak coupling expression 
shows that a possible contribution const. A* is absent 
from the right hand side. Let us briefly comment on 
this result. Taking derivatives with respect to ai and 
aj and using the definition &,&,3 = rij = &6, + 
4~i( $)ij one obtains 

d 
11 ZTij = &NC - N&,&,T~(4*> 

N i(2Nc - NJ) Tr(HiHj) (14) 

where in the last step we have taken the semi-classical 
limit, i.e. have suppressed instanton corrections. 

We note that the relation ( 14) is compatible with 
perturbation theory. It is well known [ 131 that 3 
(or, equivalently, the Wilsonian field dependent gauge 
coupling) acquires a contribution only at one loop 
level. This means that $2 is equal (up to nonperturba- 
tive contributions) to its classical value. This agrees 
with the general observation that correlators of low- 
est components of gauge invariant chiral superfields 
are “topological”, i.e. they do not depend on positions 
[ 141. Thus they get contributions only from discon- 
nected diagrams. Moreover, they depend holomorphi- 
tally on the parameters, notably on the gauge cou- 
pling. This in fact implies (since there is no depen- 
dence on 0 in perturbation theory) that there are no 
perturbative quantum corrections to the classical re- 
sult. Note, however, that the exact beta function is 
proportional to &,a,, (Tr p), which includes instanton 
corrections. The above discussion also applies to all 
the other invariants Sk, and the absence of logarithms, 
which would have appeared in perturbative contribu- 
tions, is necessary for them to be globally defined co- 
ordinates on the quantum moduli space. 

Let us now turn to the remaining classical groups 
with Nf hypermultiplets in the defining representation 
& [ 71. Here the Riemann surfaces are given by curves 
of the form [7] 

XY2 =W*+F (15) 

where now for x + 00, W N x’ and F m xN/+y 

where Y =4,3,0forS0(2r), S0(2r+l)andSp(2r), 
respectively. The meromorphic differential A is 
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1 WF’-2W’F 

A-% YF 
dx (16) 

with the asymptotic behavior at infinity A w 
&(l(adj.) - N$(&))$ where l(adj.) = 2(Nc - 

2), NC + 2 and 1(&) = 2, 1 for SO(Nc) and 
Sp( NC ) , respectively. The combination of the indices 
of the representations appearing in the asymptotic 
expression of A, is exactly the one-loop coefficient 
bt of the beta-function for an N = 2 supersymmetric 
gauge theory with Nf hypermultiplets in the defining 
representation. Introducing the local uniformization 
variable x =i l/S’ one finds that (we are again only 
considering the massless case here) 

A-2 = -~(V@.) - Nfl(&)> (17) 

Likewise one finds the asymptotic behavior of Wk = 
&‘,,A as ok = (w?) + wik)e + . . .)d[ with 6~;~) = 
- h Sk, 1. Note that in the notation of Ref. [ 71 s 1 is the 
quadratic invariant: si = 3 Tr(42). Inserting this into 
the Riemann relation (8) we get 

&A&%3) = z(l(adj.) - Nf/(&)&,i) (18) 

Let us now turn to the massive case. Here we have 
to use the Riemann bilinear relation for one abelian 
differential of the first kind ( Wk) and the other of the 
third kind (A) with first and second order poles. We 
will concentrate on the case of SU( NC). The other 
groups can be treated similarly. In fact, the meromor- 
phic differential A now has simple poles at xi - m; 
with residues mi and a double pole at infinity where it 
behaves as 

A = ( A_2~-2 + A-] w-’ + A0 + . . .)dw 

with 

(19) 

Nf 

A-2 =&PC -N.f), A-, =-‘~rni 
W ;, 

The relevant bilinear relation gets contributions from 
both of these coefficients as well as from the residues 
of the poles at x; = mi. The contribution from A-2 
is the same as in the massless case. The contribution 
from the poles at mi and the pole at infinity is 

I# M 

2ri c res, A wk + 2niresa3A wk 
i J 

.\‘I) J” 

=- (20) 

where x0 is an arbitrarily chosen point on the Riemann 
surface 3. This leads to 

Aah + C mib, 

i 

3= $(2Nc - Nf)&,2 

(21) 

Recall that wk = d, A so that this relation can be inte- 
grated w.r.t. Sk leading to a gerN%diZatiOn of Eq. ( 13): 

(ha,, +xm;6&)3= &(2Nc - Nf)(Tr42) 
i 

00 

- cl T?li A 
i m, 

(22) 

Note that now, in contrast to the massless case, the 
right hand side seems to depend on all the moduli 
Sk. We have not attempted to do the remaining inte- 
grals explicitly. But let us demonstrate that this ex- 
pression has in fact the correct decoupling limit. We 
decouple one of the hypermultiplets by taking the lim- 
its, say, mNI F M -+ co, ANI -i 0 while keeping 

A :;I:‘+’ = MA,, Nc--NJ fixed. To perform the integral 

-M sr Wk we first change variables x = Mf and then 
perform the decoupling limit. In this limit y(x) -+ 
MNC nNC and the integral becomes $ M2-k $,” $ + 

$&,2. The integrals for i = 1, . . . , Nf - 1 Only change 
in such a way that Wk turns into the holomorphic dif- 
ferential appropriate for the curve with Nf - 1 flavors. 
We thus find that on the right hand side of Eq. (21) 
wegetthechange (ZNc-Nf) + (2Nc-(Nf-1)). 

The left hand side changes as AN,~,,, +x2 m;a,,,, -+ 

AN,-] ‘.AN~_ 1 + Ci-1 NJ-’ mid,,, . 

3 The independence of the choice follows from the fact that the 
residues of meromorphic differentials on Riemann surfaces sum 
up to zero. For more details on this relation, see Refs. [ 121. 
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Let us now briefly mention that in all cases where 
AaA3 is proportional to u, a is in fact invariant un- 

der Sp ( 2r; Z) transformations (“n”) -+ (2) = 

This is essentially proven in 183 

for St( 2). ‘A simplified version of his proof can be 
easily generalized to arbitrary groups. From f( 5) = 

$(6(a)) itf0lloWsthat&j3(ii(a)) = ($$)ii,,.This 
relation can be integrated to yield 

f(a) - 3(a) + iaTBTDa + $aLCTAaD 

+ aTBTCaD (23) 

mis implies that 3 - haTao p ;I&?,_? is invariant. 
Finally, one may consider N = 2 models in their 

Coulomb phase also for matter supertields in represen- 
tations other than the adjoint or fundamental represen- 
tations. For those cases it is plausible that the bt factor 
in Eq. (22) will be replaced by 2N, - xi li(matter) . 

The gauge kinetic terms of the low energy effec- 
tive action of supersymmetric gauge theories in their 
Coulomb phase can be determined from hyperellip- 
tic curves not only for N - 2 supersymmetric models 
but also for N = 1 ones [ lo]. As in the N - 2 case, 
the ground state of these N - 1 models is described 
by an hyperelliptic quantum moduli space character- 
ized by its singularities and monodromies. The deter- 
mination of the curve follows from the classical sin- 
gularities, instantons corrections and the global sym- 
metries of the theory. For instance the curves which 
correspond to SU( Nc ) N - 1 models with one ad- 
joint representation and Nf fundamentals (denoted by 

( Nad - 1, Nf)) takes the form of Eq. (3)[4]. The 
corresponding polynomial F is given now by F = 
F( X, A, mij, Kji> where mij and xj are the quark mass 
matrix and the matrix of Yukawa couplings. When Y 
is a unit matrix and m is diagonal the model admits an 
additional supesymmetry. The curves in that case turn 
into those of N = 2 models with Nf hypermultiplets. 

Starting with a curve that corresponds to a given 
N- 1 model in its Coulomb phase one can follow 
the same steps taken above and prove an analogous 
relation to the one given in Eq. (22). We now discuss 
the relation for certain N - 1 classes of models. Using 
the curves of [ 41, it turns out that for the class of 
models ( 1, Nf) the relation is the same as that given 
in Eq. (22)apart from a replacement of m; by the 

eigenvalues of the matrix Y-l m. 
In case of (2.0) N = 1 models the condition for a 

Coulomb phase is that the determinant of the adjoint 
mass matrix vanishes [ lo]. The curve for SU( NC = 
2) [ lo] is identical to that of the N = 2 case with NJ = 
0 when one replaces Ai_z with $A+~rn,+ where mad 
is the mass of the massive adjoint superheld. A similar 
situation occurs in the (2,1) model [ 111. We there- 
fore anticipate that the (2, Nf) curves will coincide 
with those of the ( 1, Nf) models by a substitution of 

A 
2N,-NJ - NC-N{ N; 
N&i-l N A Nd-2 mad * 
Naively, it seems that the 1.h.s. of the relation, for in- 

stance for Nf = 0, takes the form of &~3+m,&,,,3, 
and on the r.h.s. the term proportional to s2 involves 
the bl pertaining to the one adjoint case. This is quite 
surprising since a priori we expect such a bl to appear 
only when the massive adjoint decouples. The full de- 
termination of the relation and the decoupling for this 
class of models as well as those which involve other 
representations is under current investigation. 

The relation discussed in this paper appears as a 
simple partial differential equation for the prepotential 
3. In order to determine 3 completely one needs more 
equations. Already in the pure SU( 2) case one needs 
one more independent relation. It would be great if one 
could obtain enough relations which would, in turn, 
determine 3 in a simple way. 

Finally we note that while the local counterpart of 
this relation seems to be quite important [ 91, the full 
physical meaning of the relation still alludes us. For 
fixed A, in the massless case, we can rewrite it as 

(c aiaai - 2)3 = &bl (Tr#2> 
i 

(24) 

This equation looks completely quantum mechanical. 
Moreover, as discussed in this letter, its non-trivial 
content is associated with the non-perturbative contri- 
butions on both sides. The left hand side of (24) looks 
as if it is related to the “anomalous dimension” of 3, 
i.e. to the deviation of 3 from its classical dimension 
2. This is due to quantum effects associated with the 
appearance of A. The right hand side involves the beta 
function. It is tempting to think that one could under- 
stand this relation in terms of RG ideas. So far we 
have not been successful in doing it. 
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