ELSEVIER

18 January 1996

Physics Letters B 367 (1996) 145-150

PHYSICS LETTERS B

On the relation between the holomorphic prepotential and the
quantum moduli in SUSY gauge theories *

J. Sonnenschein?, S. Theisen®, S. Yankielowicz?
2 School of Physics and Astronomy, Beverly and Raymond Sackler Faculty of Exact Sciences,
Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
b Sektion Physik, Universitdt Miinchen, Theresienstrafie 37, 80333 Miinchen, FRG

Received 30 October 1995
Editor: L. Alvarez-Gaumé

Abstract

We give a simple proof of the relation AdyF = 5= by (Tr @?), which is valid for N = 2 supersymmetric QCD with massless
quarks. We consider SU(N,) gauge theories as well as SO(N.) and SP(N.). An analogous relation which corresponds to
massive hypermultiplets is written down. We also discuss the generalizations to N = 1 models in the Coulomb phase.

A lot of activity has followed the beautiful work of
Seiberg and Witten [1] on the exact non-perturbative
low energy effective action (in the Coulomb phase) of
the pure and QCD-like SU(2) N = 2 supersymmetric
gauge theories. In [2] it was generalized to SU(N¢)
N = 2 theories and in [3,4] to SU(N¢) N = 2 the-
ories with matter in the fundamental representation.
Recently this work has been extended to SO(N¢ ) and
Sp(Nc) gauge groups [5-7].

In the present letter we prove and discuss relations
between the prepotential 7 and the quantum moduli of
the N = 2 theory. The most interesting relation reads

] i 2
Aoy F = 5-bi(Trd?) (1)
where ¢ is the adjoint complex scalar in the N = 2

gauge multiplet, and b, is the one-loop coefficient of
the beta-function. This relation holds for all N = 2

* Work supported in part by GIF - the German-Israeli Foundation
for Scientific Research.

theories, either pure or with massless matter quarks.
For the case of pure SU(2) this relation is essentially
proven in [8] where the modular transformations of
the prepotential F are considered. In [9] the general-
ization of the Seiberg-Witten approach to N = 2 string
theory is investigated. In particular, the exact non-
perturbative result on pure SU(2) and SU(3) N =2
Yang-Mills theory were recovered from the tree-level
Type II string theory at the corresponding points in
moduli space, in the limit of o’ — 0, where gravity is
decoupled. In this work it was observed that starting
from the local case u = 1 (Tr#?) behaves as a period
and the relation (1) holds with the dilaton playing the
role of A. This relation turns out to be crucial in ob-
taining the rigid theory from the local one.

In the pure N = 2 gauge theory, the low energy
effective action up to terms with two derivatives is
completely determined by one holomorphic function
of N = 2 chiral superfields .A;, the prepotential 7 (.A).
For Ny > 0, we also have to include (matter) hy-
permultiplets, whose contribution to the low energy
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effective action is not determined by a holomorphic
structure. However, for the purpose of this note, we
won’t need their couplings. For the massless case, the
perturbative piece of the prepotential is

(a-A)? _ 1 l(adj) >, li(matter)
(T“)f"“"(“‘t) 2mi I(adj.)
2
xgo(a A)? ln((aAA) ) (2)

The sum is over all positive roots and /(adj.) is the
index of the adjoint representation of the gauge group
G whereas [;(matter) is the index of the representation
of the ith matter hypermultiplet. From this expression
the perturbative beta-function, which is purely one-
loop, follows.

The prepotential may be considered as a holomor-
phic function of the chiral superfields A; and the scale
A. Defining a; = Ajs-0 and ap, = ”7;‘5") one then
finds that (a;, ap,) are the periods of an abelian dif-
ferential of the second kind (having poles with zero
residue) for the case of Ny > 0 massless hypermulti-
plets or of the third kind (having poles with non-zero
residue) for Ny > O massive hypermultiplets. These
differentials are defined on an (auxiliary) hyperellip-
tic Riemann surface 3, of genus r = rank(G) and
the periods are with respect to a symplectic homology
basis with one-cycles («;, B;). The Riemann surfaces
for pure SU(N¢) [2], SU(Nc¢) with hypermultiplets
[3,4], SO(Nc) without {5] and with [6,7] matter,
and finally also for Sp(N¢) [7] have been found by
now. In particular Ref. [7] gives curves with genus
equal to the rank of G. The hypermultiplets were al-
ways chosen in the defining representation and their
number such that the theory is either asymptotically
free or has vanishing beta function. Recently curves
for certain N = 1 supersymmetric theories were con-
sidered in [10,4,11] with matter in the adjoint and/or
fundamental representations. We first treat N = 2 the-
ories with G = SU(N¢). The remaining classical
groups and some N = 1 cases will be dealt with below.

The Riemann surface for SU (N¢ ) is the genus N¢ —
1 hyperelliptic curve 2y, —

V=Wl F (3)

where

= (det(x1 — @)} =

Z skxN‘ —k (4)

k=2

F = F(x,m;, A) is a polynomial of its arguments, in-
dependent of the s; and F(x) ~ x™/ for large x. If
we parametrize (¢) = >, a;H; where H; are the gen-
erators in the Cartan subalgebra, we get in the semi-
classical limit s, = $a;a; Tr(H;H;). The exact (non-
perturbative) expression is s; = u = 5(Tr¢?) where
¢ is the Higgs field, i.e. the scalar component of the
N =1 chiral superfield contained in the N = 2 chiral
superfield.

The meromorphic differential A is [3,4] ! (the
prime denotes differentiation w.r.t. x)

_opwnyZ D) dx +Fly’) dx (5)

1
A= —(WF
27ri(
where the normalization is chosen such that (i
i, Nc—l)a,'=f/\ap fﬂ/\andb"ka,=

f wy, dgap, = f Wi Wy = 3;—/\ =1L EC: -
,Nc, are a ba81s of holomorphic dlfferentlals
(abehan differentials of the first kind) on 3 y._;. The
constant b = b( A, m) must be chosen such that for the
massless case there are no poles at zeroes of F and the
pole at infinity has zero residue. In the massive case
A must have poles at the zeroes of F with residues
mj. One finds that in the massless case b = 0. A also
has a double pole at infinity with residue — 3 m;
which vanishes in the massless case. It is, therefore,
an abelian differential of the second and third kind in
the massless and massive cases, respectively.
The effective (field dependent, dimensionless)

. . . . 2
gauge coupling is given by the matrix 7;; = (,’Zd]; o
F is thus a homogeneous function of weight two of

a;,m;, A and satisfies the Euler equation?

2F = (Adp+ Y mjdm, + > aida) F (6)
i i

Taking derivatives w.r.t. to s; and using the definition
of the ap, one obtains

I Here and below relations between abelian differentials are al-
ways up to exact differentials.
2Here and below, A is always meant 10 be AN_/.
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3 N
(-?s—k(AaA + %ijamj)}-

d d
- ——an — anp.—a; 7
Ei (ai 35, 0 T D5 a;) (7N
Using now the above results we arrive at

—(Aa,\ + Z mjdm, ) F

Tl

The right hand side of this equation can be evaluated
with the help of a Riemann bilinear relation [12].
Since they make a distinction between A being abelian
of second or third kind, we will treat the massless and
massive cases separately. We first discuss the massless
case, where the iﬁtegf&m on the ugut hand side of
Eq. (8) can be done explicitly. The mass dependent
terms on the left hand side of Egs. (7) and (8) are
now absent and A has a double pole at w = 1/x =0
with expansion

A= (AW 24 Ao+ yw+..)dw (9

with A_; = 5 (2N¢ — Ny); there are no further poles
of A. The Riemann bilinear relation now reads

S [aform [ [
A B
-2mi 3 a2 (10)

where w{¥) are the coefficients of wy in its expansion
around infinity:

o 4 w(k)w +...)dw

wi = (@,
=(—.—-Wk-2+0(wk—l)) (11)
i

i.e. w((,") = ——#Sk,z. We then have
ask(AaAf) =2miA_s ol
= —(2Nc — Nf)dio (12)
p .

Integration gives

AaAf=’;(2NC — Np)s2 (13)

where comparison with the weak coupiing expression
shows that a possible contribution const. A? is absent

fram tha right hand cida T at ne hriefly rammant an
1Tom uld Tighh AalndG 5168, OV US ofiChy COmMcit Ol

this result. Taking derivatives with respect to a; and
a; and using the definition 9,0, F = 75 = 5-0;; +
Ari( Elf){j one obtains

d i
A= Tij = 5= (2Nc = Ny)dada, Tr(@’)
i
~ ;(21\/0 — Ny) Tr(HH,) (14)

where in the last step we have taken the semi-classical
limit, i.e. have suppressed instanton corrections.

We note that the relation (14) is compatible with
perturbation theory. It is well known [13] that F
{or, equivaiently, the Wilsonian fieid dependent gauge
coupling) acquires a contribution only at one loop

]n\lp] Thic maanc that c. |c amial {nn tn nnnnartuirha_
WV RKES IHVAILS LHGL 07 15 Cludl \ up WU nUpel uroa

tive contributions) to its classical value. This agrees
with the general observation that correlators of low-
est components of gauge invariant chiral superfields
are “topological”, i.e. they do not depend on positions
[14]. Thus they get contributions only from discon-
nected diagrams. Moreover, they depend holomorphi-
cally on the parameiers, notably on the gauge cou-
pling. This in fact implies (since there is no depen-
dence on @ in perturbation theory) that there are no
perturbative quantum corrections to the classical re-
sult. Note, however, that the exact beta function is
proportional to d,,d,, (Tr ¢*), which includes instanton
corrections. The above discussion also applies to all
the other invariants s, and the absence of logarithms,
which would have appeared in perturbative contribu-

tinne i nacascarv for them ta he alahally dafinad -~
110115, 15 IIRCOSsary 10T uilill 1O o8 gibvany GCinea CO-

ordinates on the quantum moduli space.

Let us now turn to the remaining classical groups
with Ny hypermultiplets in the defining representation
N [7].Here the Riemann surfaces are given by curves
of the form [7]

xy' =W+ F (15)

where now for x — oo, W ~ x" and F ~ xNrtv
where v = 4, 3,0for SO(2r), SO(2r+1) and Sp(2r),
respectively. The meromorphic differential A is
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- dx (16)

with the asymptotic behavior at infinity A ~
s (U(adj.) — Npl(Nc)) 4% where I(adj.) = 2(Nc —
2), N¢c + 2 and l(_c) = 2,1 for SO(N¢) and
Sp(N¢), respectively. The combination of the indices
of the representations appearing in the asymptotic
expression of A, is exactly the one-loop coefficient

L. of the hata_6
b of the beta-function for an N = 2 supersymmetric

gauge theory with Ny hypermultiplets in the defining
representation. Introducing the local uniformization
variable x = 1/¢£? one finds that (we are again only
considering the massless case here)

1
Ay =——(l(adj.) = Nfl(Nc)) (17)

Likewise one ﬁnds the asymptotlc behavior of wk =
ds A as wy = (w(‘,"’ + (u}”’f + ...)d¢ with w
—L8;1. Note that in the notation of Ref. [7] s, is the

[ WY AN NN :

quadratic invariant: s, = 3 1r\(p ). Inserting this into
the Riemann relation ( 8) we get

a 20 ]
5. (AAF) = ;‘(t(adm ~ NA(NG)S)  (18)

Let us now turn to the massive case. Here we have
to use the Riemann bilinear relation for one abelian
differential of the first kind (w;) and the other of the
third kind (A) with first and second order poles. We
will concentrate on the case of SU(N¢). The other
groups can be treated similarly. In fact, the meromor-
phic differential A now has simpie poies at x; = m;
with residues m; and a double pole at infinity where it

hahavag ag
viliavis as

A=(Aaw 2+ A w™ + Ao+ .. )dw (19)

with

1O
Ap=—x— m

LTL
i=1

1
A_p = =—(2N¢c — Ny),
2t

4 Lilicmnne snlat: e

The relevant bilinear relation gets ¢

both of these coefficients as well as from the residues
of the poles at x; = m;. The contribution from A,
is the same as in the massless case. The contribution
from the poles at m; and the pole at infinity is

ont

vilaas o frry
ity luuuuua Irom

Xi o0
2m'Zresx,.A/wk+277iresooA/wk

X0 n
Ny 70
- Z m | @ (20
=
where xp is an arbitrarily chosen point on the Riemann
surface > . This leads to

9
P (A&A + Zm,a,,,,) F= —(2NC — Np)biz
o
—Zﬁii /Wk (2n
i ;

Recall that w; = d;, A so that this relation can be inte-
grated w.r.t. s, leading to a generalization of Eq. (13):

(Ad, +Xi:m,-6m,.)f - i(ch — Np)(Tré?)

[
I (22)
VAL \=2)
i
Note that now, in contrast to the massless case, the
right hand side seems to depend on all the moduli
s¢. We have not attempted to do the remaining inte-
grals explicitly. But let us demonstrate that this ex-
pression has in fact the correct decoupling limit. We
decouple one of the hypermultiplets by taking the lim-
its, say, my, = M — 00, Ay, — 0 while keeping
Nc—N,+1
AT = MAY
-M f y Wk We ﬁrst change variables x = M¥ and then
perform the decoupling limit. In this limit y{x) —
MNe xNe and the integral becomes LM2* [ 4 —
£ 84,2 The integrals fori=1,.. ., Nf —1 only change
in such a way that @y turns into the holomorphic dif-

ferential approprla[e for the curve with N = i flavors.

We thus find that on the right hand side of Eq. (21)
we get the change (2N¢—Ny) — (7Nr~—(N:——l\)

The left hand side changes as Ay, BAN +Z,-| midy, —

-1
I\NI_JUAN;—I + Li-l In,'aml..

“N7 fixed. To perform the integral

Tha jwmdaea ~a o o
The independence of the choice follows from the fact that the

residues of meromorphic differentials on Riemann surfaces sum
up to zero. For more details on this relation, see Refs. [12].
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Let us now briefly mention that in all cases where
Ad,\F is proportional to u, u is in fact invariant un-

der Sp(2r;Z) transformations (a: ) — (GD) =

(é g) (aD). This is essentially

for SU(2). A simplified version of hi

easily generalized to arbitrary groups. From F(&)
F(@(a)) it followsthat 3, F (a(a)) = (&%) ap,. This

intaorated ta viald

ealatinn can ha
1 08 INWEETaed 10 yiC:l

1CIagUVIUILL LAl

+a B Cap (23)

This implies that F — a ap = $Ad, F is invariant.
Finally, one may con51der N = 2 models in their
Coulomb phase also for matter superfields in represen-
tations other than the adjoint or fundamental represen-
tations. For those cases it is plausibie that the b, factor
in Eq (22) will be replaced by 2N, — Y, [;(matter).
The gauge kinetic terms of the low energy effec-
tive action of supersymmetric gauge theories in their
Coulomb phase can be determined from hyperellip-
tic curves not only for N = 2 supersymmetric models
but also for N = 1 ones [10]. As in the N = 2 case,
the ground state of these N = 1 models is described
by an hyperelliptic quantum moduli space character-
ized Dy its smgmanues and monuuromxes The deter-
mination of the curve follows from the classical sin-
gularities, instantons corrections and the global sym-
metries of the theory. For instance the curves which
correspond to SU(N¢) N = 1 models with one ad-
joint representation and N fundamentals (denoted by
(Naa = 1,Ny)) takes the form of Eq. (3)[4]. The
corresponding polynomial F is given now by F =
F(x,A,my,Y;;) where m;; and Y;; are the quark mass

nd tha Who
matrix and the matrix of Yukawa coup!mgo When Y

is a unit matrix and m is diagonal the model admits an
additional supesymmetry. The curves in that case turn
into those of N = 2 models with Ny hypermultiplets.

Starting with a curve that corresponds to a given
N = 1 model in its Coulomb phase one can follow
the same steps taken above and prove an analogous
relation to the one given in Eq. (22). We now discuss
the relation for certain N = 1 classes of models. Using
the curves of [4], it turns out that for the class of

5 25 RRllly> OO0 Uial 0L LRIC Rldas

models (1, Ny) the relation is the same as that given
in Eq. (22)apart from a replacement of m; by the

eigenvalues of the matrix Y~im
In case of (2, 0) N = 1 models the condition for a

P P af tha adinint

bUUlUlllU plldbc lb Lllal l.llC uctculuuaul. Ul UIC aujuiii
mass matrix vanishes [10]. The curve for SU(N¢ =
2) {10}isidentical to that of the N = 2 case with N =
0 when one replaces A2 N~z With 2A N=1Mag. Where myq
is the mass of the massive adjoint superfield. A similar
situation occurs in the (2, 1) model [11]. We there-
fore anticipate that the (2, Ny) curves will coincide

with those of the (1, Ny) modeis by a substitution of
2N.—N; _ %Ne—=N;_N.

o . T , _
Naively, it seems that the L.h.s. of the refation, for in-

stance for N = 0, takes the form of Ad; F +mMagOmy F,

and on the r.h.s. the term proportional to s; involves

the b, pertaining to the one adjoint case. This is quite
surprising since a priori we expect such a b to appear
only when the massive adjoint decouples. The full de-
termination of the relation and the decoupling for this
class of models as well as those which involve other
representations is under current investigation.

The reiaiion discussed in this paper appears as a
simple partial differential equation for the prepotential
F. In order to determine F completely one needs more
equations. Already in the pure SU(2) case one needs
one more independent relation. It would be great if one
could obtain enough relations which would, in turn,
determine F in a simple way.

Finaliy we note that while the iocai counterpart of
this relation seems to be quite important [9], the full

physical meaning of the relation still alludes us. For

fixed A, in the massless case, we can rewrite it as
(Lafaa, 2)F = ——b, (Trép?) (24)

This equation looks completely quantum mechanical.
Moreover, as discussed in this letter, its non-trivial
content is associated with the non-perturbative coniri-
butions on both sides. The left hand side of (24) looks

ag if it is related to the “anomalous dimension” of F

22 0 18 I03aQl00 1O LIS QOO0 s CAIeiisiadd LS,

i.e. to the deviation of F from its classical dimension
2. This is due to quantum effects associated with the
appearance of A. The right hand side involves the beta
function. It is tempting to think that one could under-
stand this relation in terms of RG ideas. So far we
have not been successful in doing it.
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