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Abstract. We prove that the maximal development of any spherically symmetric spacetime
with collisionless matter (obeying the Vlasov equation) or a massless scalar field (obeying the
massless wave equation) and possessing a constant mean curvatureS1 ×S2 Cauchy surface also
contains a maximal Cauchy surface. Combining this with previous results establishes that the
spacetime can be foliated by constant mean curvature Cauchy surfaces with the mean curvature
taking on all real values, thereby showing that these spacetimes satisfy the closed-universe
recollapse conjecture. A key element of the proof, of interest in itself, is a bound for the volume
of any Cauchy surface6 in any spacetime satisfying the timelike convergence condition in
terms of the volume and mean curvature of a fixed Cauchy surface60 and the maximal distance
between6 and 60. In particular, this shows that any globally hyperbolic spacetime having a
finite lifetime and obeying the timelike-convergence condition cannot attain an arbitrarily large
spatial volume.

PACS numbers: 0420, 0420D

1. Introduction

Given an initial data set for the gravitational field and any matter fields present, what can
be said of the spacetime evolved from these initial data?

In the asymptotically flat case, one would like to know such things as how much
gravitational energy is radiated to null infinity, the final asymptotic state of the system,
whether black holes are formed, the nature of any singularities produced, and whether
cosmic censorship is violated. For example, it is known that the maximal development
of sufficiently weak vacuum initial data is an asymptotically flat spacetime that is free of
singularities and black holes [1]. In this case the gravitational waves are so weak that they
cannot coalesce into a black hole; instead, they scatter to infinity. Further it is known that an
initial data set containing a future trapped surface or a future trapped region must be singular,
provided the null-convergence condition holds [2, 3]. In these cases, the gravitational field
is already sufficiently strong that collapse is inevitable.

In the cosmological case (spacetimes with compact Cauchy surfaces), the questions one
asks are a bit different, as one expects these spacetimes to be quite singular. In fact, it is
known that spacetimes with compact Cauchy surfaces are singular, provided a genericity
condition and the timelike-convergence condition hold [2, 3]. So, here one would like to
know such things as the nature of the singularities, whether the spacetime has a finite lifetime
(in the sense that there is a global upper bound on the lengths of all causal curves therein),
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whether it expands to a maximal hypersurface (a hypersurface of zero mean curvature)
and then recollapses or is always expanding (contracting), and whether cosmic censorship
is violated. For example, it is known that if the initial data surface is contracting to the
future (past), then any development satisfying the timelike-convergence condition must end
within a finite time to the future (past) [2, 3]. Can more be said about the behaviour of the
cosmological spacetimes?

The closed-universe recollapse conjecture asserts that the spacetime associated with the
maximal development of an initial data set with compact initial data surface expands from
an initial singularity to a maximal hypersurface and then recollapses to a final singularity
(all within a finite time), provided that the spatial topology does not obstruct the existence
of a maximal Cauchy surface (e.g.S3 or S1 × S2) and provided the matter satisfies certain
energy and regularity conditions [4, 5, 6]. It has also been conjectured that such spacetimes
admit a unique foliation by constant mean curvature (CMC) Cauchy surfaces with the
mean curvatures taking on all real values (see, e.g. conjecture 2.3 of [7] and the weaker
conjecture C2 of [8]). Just what energy conditions the matter must satisfy is an open
problem. However, in the study of the weak form of this conjecture (which merely asserts
that the spacetime has a finite lifetime), the dominant energy and non-negative pressure
conditions together have proven sufficient for the cases studied [9, 10]. More subtle is the
problem of what regularity conditions the matter needs to satisfy. The difficulty here is that
the maximal development of an Einstein-matter initial data set may not contain a maximal
hypersurface because of the development of a singularity in the matter fields, such as a
shell-crossing singularity in a dust-filled spacetime, before the spacetime has a chance to
develop a maximal hypersurface. While not for certain, it is thought that those matter fields
that do not develop singularities when evolved in fixed smooth background spacetimes will
not lead to the obstruction of a maximal hypersurface.

Here, we study the maximal development of spherically symmetric constant mean
curvature initial data sets onS1 × S2 and matter consisting of either collisionless particles
of unit mass (whose evolution is described by the Vlasov equation) or a massless scalar
field (whose evolution is described by the massless wave equation). It has already been
established that if the mean curvature is zero on the initial data surface, i.e. it is a maximal
hypersurface, then its maximal evolution admits a foliation by CMC Cauchy surfaces with
the mean curvature taking on all real values [11]. Further, it is known that if the mean
curvature is negative (positive) then the initial data can be evolved at least to the extent
that the spacetime can be foliated by CMC spatial hypersurfaces taking on all negative
(positive) values [11]. Left unresolved was whether the maximal evolution in the latter two
cases actually contains a maximal spatial hypersurface and, hence, can be foliated by CMC
hypersurfaces taking on all real values. The non-existence of a maximal spatial hypersurface
would be reasonable if such spacetimes could expand (contract) indefinitely; it is known,
however, that these spacetimes have finite lifetimes [9, 10]. Therefore, it would seem that
their maximal development should contain a maximal Cauchy surface. We show that it
does.

Theorem 1. The maximal development of any spherically symmetric spacetime with
collisionless matter (obeying the Vlasov equation) or a massless scalar field (obeying
the massless wave equation) that possesses a CMCS1 × S2 Cauchy surface6 admits
a unique foliation by CMC Cauchy surfaces with the mean curvature taking on all real
values. In particular, it contains a maximal Cauchy surface and its singularities are crushing
singularities.

By the maximal development of a globally hyperbolic spacetime, we mean the maximal
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development of an initial data set induced on a Cauchy surface in the spacetime. This is
well defined as the maximal developments associated with any two Cauchy surfaces are
necessarily isometric [12]. Further, recall that a spacetime with compact Cauchy surfaces is
said to have a future (past) crushing singularity if the spacetime can be foliated by Cauchy
surfaces such that the mean curvature of these surfaces tends to infinity (negative infinity)
uniformly to the future (past) [7]. That the future and past singularities associated with the
spacetimes of theorem 1 are crushing is then a simple consequence of the existence of a
CMC foliation with mean curvature taking on all real values. Note that the existence of
a crushing singularity need not imply that an observer that ‘runs into’ such a singularity
must be physically crushed as the singularity is approached nor even that the spacetime is
inextendible through such a singularity. Indeed, such a singularity can be associated with a
Cauchy horizon, as is exemplified below.

As a consequence of theorem 1, the maximal development of the spacetimes studied is
rather simple. They expand from an initial crushing singularity to a maximal hypersurface
and then recollapse to a final crushing singularity—all in a finite physical time. That is,
they satisfy the closed-universe recollapse conjecture in its strongest sense as well as the
closed-universe foliation conjecture.

While the maximal development of the spacetimes in theorem 1 is about as complete
as one could expect, given the existence of a complete CMC foliation, these spacetimes
may still be extendible (though there is no globally hyperbolic extension). In other words,
theorem 1 does not eliminate the possibility that these spacetimes violate cosmic censorship.
In fact, cosmic censorship is violated in the vacuum case. This is easily seen by realizing
that the maximal development in this case is either of the two regions wherer < 2M

of an extended Schwarzschild spacetime of massM (r is the area radius), modified by
identifications so that the Cauchy surface topology isS1 × S2. (To achieve this topology,
a point with standard Schwarzschild coordinates(t, r) is identified with the point with
coordinates(t + C, r), whereC is a constant.) Although the ‘singularity’ corresponding to
r → 2M is a crushing singularity, this is actually a Cauchy horizon. Is this vacuum case
exceptional? It is worth noting that if a crushing singularity corresponds tor → 0, then
the singularity must in fact be a curvature singularity. This follows easily from the fact
that RabcdR

abcd > (4m/r3)2, for any spherically symmetric spacetime satisfying the null-
convergence condition, and the fact that in our case the mass functionm is bounded away
from zero by a positive constant [10]. If we could show thatr must go to zero (uniformly)
at the extremes of our foliation, then the spacetime would indeed be inextendible, thereby
satisfying the cosmic censorship hypothesis. Establishing such a result appears to be difficult
and the vacuum case shows that such a result will not always hold (though this case may
be exceptional). Using a different approach, Rein has shown that for an open set of initial
data, there is a crushing singularity in whichr → 0 uniformly, and which, therefore, is a
curvature singularity [13]. While this is encouraging, the extent to which the spacetimes of
theorem 1 satisfy cosmic censorship remains to be seen.

The proof of theorem 1 involves a combination of three ideas. First, it is known
that spherically symmetric spacetimes withS1 × S2 or S3 Cauchy surfaces and satisfying
the dominant energy and non-negative pressure (or merely ‘radial’ non-negative pressure)
conditions have finite lifetimes [9, 10]. Second, using a general theorem (which is
independent of symmetry assumptions) established in section 3, it follows that the spatial
volumes of Cauchy surfaces in the spacetime are bounded from above, which allows us
to bound various fields describing the spacetime geometry. Third, introducing a new time
function to avoid the problems associated with ‘degenerate’ maximal hypersurfaces (i.e.
surfaces where the mean curvature cannot be used as a good coordinate), the theorem then
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follows using the methods developed in [11]. Furthermore, it is worth noting that our
method uses only a few properties of the matter fields themselves. Namely, we use the fact
that they satisfy the dominant energy and ‘radial’ non-negative pressures conditions and,
roughly speaking, the fact that the matter fields are nonsingular as long as the spacetime
metric is nonsingular. This latter property has not been given a precise formulation, as
it seems difficult to do so, and serves merely as a heuristic principle—the arguments for
collisionless matter and the massless scalar field in [11] providing an example of what it
means in practice.

In theorem 1 we have restricted ourselves to spacetimes withS1 × S2 Cauchy surfaces
and have not considered similar spacetimes withS3 Cauchy surfaces. The problem with
theS3 case is that there exist two timelike curves on which the symmetry orbits degenerate
to points. When we then pass to the quotient of our spacetime by the symmetry group,
the field equations on the quotient spacetime are singular on boundary points corresponding
to the degenerate orbits. Experience has shown that this degeneracy can have nontrivial
consequences on the evolution of the spacetime. For example, in the study of the spherically
symmetric asymptotically flat solutions of the Einstein–Vlasov equations, it has been shown
that if a solution of these equations develops a singularity, then the first singularity (as
measured in a particular time coordinate) is at the centre [14]. However, currently it is not
known how to decide when a central singularity must occur. In the case of asymptotically
flat spherically symmetric solutions of the Einstein equations coupled to a massless scalar
field, Christodoulou has shown that naked singularities do form in the centre of symmetry
for certain initial data (and that they can form nowhere else) [15]. Note that the degeneracy
of the orbits in these spacetimes is of the same type that occurs in the spherically symmetric
spacetimes withS3 Cauchy surfaces. Similar problems occur in the study of the vacuum
spacetimes withU(1) × U(1) symmetry and havingS3 or S1 × S2 Cauchy surfaces. Here
the dimension of the orbits is non-constant and, consequently, this case is much harder to
analyse than theT 3 case, which has orbits of constant dimension [16]. The spherically
symmetric spacetimes withS1 × S2 Cauchy surfaces, having no degenerate orbits, avoid
these complications.

It would, of course, be preferable to strengthen theorem 1 by removing the requirement
that there exist a CMC Cauchy surface in the spacetime. While such a result seems plausible,
the methods currently used are not adequate to cover this more general case. Strengthening
our results in this direction is a subject for future research.

Our conventions are those of [3], with the notable exception that traceH of the extrinsic
curvatureKab of a spatial hypersurface measures theconvergenceof the hypersurface to
the future. Thus, surfaces with negativeH are expanding to the future, while those with
positiveH are contracting to the future.

2. Proof of theorem 1

Fix a spacetime(M, g) satisfying the conditions of theorem 1. Both classes of spacetimes
considered here (the Einstein–Vlasov and massless scalar field spacetimes) satisfy the
dominant energy condition (the Einstein tensorGab satisfiesGabv

awb > 0 for all future-
directed timelike vectorsva andwb) as well as the timelike-convergence condition (the Ricci
tensor satisfiesRabt

atb > 0 for all timelike ta). While the Einstein–Vlasov spacetimes also
satisfy the non-negative pressure condition (Gabx

axb > 0 for all spacelikexa), in general
the massless scalar field spacetimes do not. However, they do satisfy the weaker ‘radial’
non-negative pressure condition (Gabx

axb > 0 for all spatial vectorsxa perpendicular to the
spheres of symmetry). It was shown in [9, 10] that the spherically symmetric spacetimes with
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S3 or S1×S2 Cauchy surfaces satisfying the dominant energy and the non-negative pressures
conditions (or merely the ‘radial’ non-negative pressures condition) have a finite lifetime, i.e.
the supremum of the lengths of all causal curves is finite. Therefore, our spacetime(M, g)

has a finite lifetime. It then follows immediately from lemma 2 (established in section 3)
that the volumes of all spatial Cauchy surfaces in(M, g) are bounded from above.

Denote the mean curvature of the Cauchy surface6 by t0. This initial data surface must
be spherically symmetric. In the caset0 6= 0, this follows from the uniqueness theorem for
such hypersurfaces (see, e.g. theorem 1 of [4]) since if a rotation did not leave6 invariant,
we would have a distinct CMC Cauchy surface with identical (nonzero) constant mean
curvature. The case wheret0 = 0 then follows from the fact that there is a neighbourhood
N of 6 in M such thatN can be foliated by CMC hypersurfaces, each having a different
CMC, and the fact that those with non-zero CMC must be spherically symmetric. As the
theorem has already been proven in the case wheret0 = 0 (6 is a maximal hypersurface)
[11], we shall taket0 to be negative (6 is expanding to the future). The case where the
mean curvature is initially positive follows by a time-reversed argument. As was shown
in [11], in a neighborhood of the hypersurface6, the spacetime can be foliated by CMC
Cauchy surfaces. Define the scalar fieldt at any point to be the value of the mean curvature
of the CMC hypersurface passing through that point, i.e. so level surfaces oft are CMC
hypersurfaces and, in particular, the surfacet = t0 is 6. A further scalar fieldx can then
be introduced so that the spacetime metricg is given by

g = −α2dt2 + A2
[
(dx + β dt)2 + a2�

]
, (1)

where� is the natural unit-metric associated with the spheres of symmetry. The functions
α, β and A depend only ont and x (being spherically symmetric) and are periodic in
x with period 2π . The functiona depends only ont . The fields can be chosen so that∫

β(t, x) dx = 0 for eacht , where the integral is taken over one period of a surface of
constantt .

It was shown in [11] that the initial data induced on6 can be evolved so thatt covers
the interval(−∞, 0) and that, if it can be evolved to the closed interval(−∞, 0], i.e. a
maximal hypersurface is attained, the spacetime can be extended and foliated by CMC spatial
hypersurfaces taking on all real values. Therefore, our task is to establish the existence of a
maximal hypersurface. To accomplish this, we establish the existence of upper bounds ona,
A, and their inverses on the interval [t0, 0). We then introduce a new time functionτ = f ◦t

by introducing a functionf that allows us to avoid the problem associated witht being a
bad coordinate on ‘degenerate’ maximal hypersurfaces. Once this has been accomplished,
theorem 1 will follow from an argument similar to that used in [11].

First, we establish upper bounds on the area radiusr = aA, the mass function
m = 1

2r(1 − ∇ar∇ar), the volumeV (t) of level surfaces oft , and their inverses. Thatr
andm−1 are bounded from above follows from the results of [10] (note thatm is positive).
Further, the technique introduced in [17] was used in [11] to show thatm/r is bounded
from above on [t0, 0). Therefore,m andr−1 are also bounded from above on [t0, 0). (That
is, the massm cannot become arbitrarily large andr cannot become arbitrarily small in
this portion of the spacetime. This is non-trivial as bothm andr−1 can become arbitrarily
large on unbounded intervals, e.g. near an initial or final singularity.) As we have already
established that the volumes of all spatial Cauchy surfaces are bounded from above,V (t)

is bounded from above. In view of the fact that∂tV (t) is positive on [t0, 0) and that these
hypersurfaces are everywhere expanding,V is bounded from below by a positive constant,
and henceV −1 is bounded from above on [t0, 0).

Next, thata, A, and their inverses are bounded from above on [t0, 0) now follows easily
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from the facts thatr = aA,

V (t) = 4π

∫
a2A3 dx = 4πa−1

∫
r3 dx, (2)

and our upper bounds forV , r, and their inverses.
Next, we boundα′ using the lapse equation

− A−3(Aα′)′ + (KabK
ab + Rabn

anb) α = 1 (3)

whereKab is the extrinsic curvature of the CMC hypersurface,na is a unit timelike normal
to the CMC hypersurface, and a prime denotes a derivative with respect tox. (This
is equation (2.4) in [11].) Using the fact thatKabK

ab is manifestly non-negative and
Rabn

anb > 0 by the timelike convergence condition, it follows that(Aα′)′ > −A3. Using
the fact thatA is bounded from above and integrating in a CMC hypersurface, we find
that (Aα′)|p − (Aα′)|q > −C1 for some positive constantC1 and any two pointsp and
q in the hypersurface. Choosingq where α is extremal on the surface (soα′(q) = 0)
and using the fact thatA−1 is bounded from above shows thatα′ is bounded from below.
Choosingp where α is extremal on the surface (soα′(p) = 0) and using the fact that
A−1 is bounded from above, shows thatα′ is bounded from above. Therefore, there exists
a constantC2 such that|α′| 6 C2. Thus, even ifα is unbounded, it must diverge in
a way that is uniform in space: For any two pointsp and q in a CMC hypersurface,
|α(p) − α(q)| = | ∫ q

p
α′ dx| 6

∫ q

p
|α′| dx 6 πC2.

If we knew thatα were bounded from above on [t0, 0), we could then proceed to argue as
in [11]. While such a bound can be established rather easily for fields satisfying the dominant
energy and non-negative pressure conditions, such an argument fails for the massless scalar
field. The difficulty in establishing an upper bound onα is linked to the possibility that dt
may be zero on a maximal hypersurface, and thust is a bad coordinate. Note that when
the timelike-convergence condition is satisfied, this can only occur ifKab = 0 everywhere
on 6 (i.e. 6 is momentarily static) andRabn

anb = 0 everywhere on6. If the non-negative
energy condition (Gabt

atb > 0 for all timelike ta) and non-negative sum-pressures condition(
Gab(t

atb + gab) > 0 for all unit-timelike ta
)

are satisfied, thenRabn
anb = 0 implies that

Gabn
anb = 0 and, hence, by the Hamiltonian constraint equation, the Ricci scalar curvature

of the metric induced on6 must be zero. However, it is easy to see that there are no
such spherically symmetric geometries onS1 × S2. Namely, writing the metric in the form
A2(dx2 + a2�), with a constant, shows that the condition that the scalar curvature vanish
is that (A1/2)′′ = (1/4)A1/2a2. However, clearly there is no such positive functionA on
S1×S2, since the left-hand side has integral zero while the right-hand side is strictly positive.
Thus, the spherically symmetric Einstein–Vlasov spacetimes withS1 × S2 Cauchy surfaces
do not admit such ‘degenerate’ maximal hypersurfaces. However, it can be shown that there
are spherically symmetric massless scalar field spacetimes withS1 × S2 Cauchy surfaces
containing such hypersurfaces. To avoid this difficulty, we change our time function to one
that is guaranteed to be well-behaved even on a maximal hypersurface with dt = 0.

Fix any inextendible timelike curveγ that is everywhere orthogonal to the CMC
hypersurfaces. The length of the segment ofγ between any two CMC hypersurfacest = t1
and t = t2 is then simply

∫ t2
t1

α(γ (u)) du. Using the fact that there is a finite upper bound
on the lengths of all timelike curves in our spacetime, the integral∫ 0

t1

α(γ (u)) du = lim
t2→0

∫ t2

t1

α(γ (u)) du (4)

must exist, i.e.α(γ (t)) is integrable on any interval of the form [t1, 0). Fix some valuex0

of x and consider the functionα(t, x0). Sinceα′ is bounded, there is a constantC such
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that α(t, x0) 6 α(γ (t)) + C. It follows that α(t, x0) is also integrable on any interval of
the form [t1, 0). Using this fact, define the functionf on (−∞, 0) by setting

f (λ) = λ −
∫ 0

λ

α(u, x0) du. (5)

Noting thatf ′(λ) = 1 + α(λ, x0) and limλ→0 f (λ) = 0, we see thatf is an orientation-
preserving diffeomorphism from(−∞, 0) to (−∞, 0). Hence,

τ = f ◦ t (6)

is a new time function on our spacetime. Note that∂τ/∂t = 1 + α(t, x0).
The level surfaces ofτ clearly coincide with those oft and so are CMC hypersurfaces.

As a consequence the field equations for the geometry and the matter written in terms ofτ

look very similar to those written in terms oft . Using τ in place oft , the metric has the
same form as before,

g = −α̃2dτ 2 + A2
[
(dx + β̃dτ)2 + a2�

]
, (7)

where the new lapse functioñα is given by

α̃ = α

(
∂t

∂τ

)
= α

1 + α(t, x0)
, (8)

and similarly for the new shift̃β. In terms of our new coordinates (τ replacingt) and new
variables (̃α and β̃ replacingα and β, respectively), the field equations are the same as
in [11] with ∂τ replacing∂t , α̃ replacingα, β̃ replacingβ, and∂t/∂τ replacing the right-
hand side of equation (3). Explicit occurrences oft in the equations are left unchanged,t

being simply considered as a function ofτ , determined implicitly by equation (6). Using
equation (8), it is straightforward to show that∂t/∂τ = 1 − α̃(τ, x0). With this, the lapse
equation can be written as

− A−3(Aα̃′)′ + (KabK
ab + Rabn

anb)α̃ = 1 − α̃(τ, x0). (9)

Using the fact thatα′ is bounded, as argued above, it follows thatα(t, x) 6 α(t, x0) + C,
whereC is a constant. Therefore, by equation (8),α̃ is bounded from above.

It is now possible to apply the same type of arguments to the system corresponding
to the time coordinateτ as were applied in [11] to the system corresponding to the time
coordinatet to show that all the basic geometric and matter quantities in the equations
written with respect toτ are bounded and that the same is true for their spatial derivatives
of any order. Bounding time derivatives of all these quantities requires some more effort.
All but one of the steps in the inductive argument used to bound time derivatives in [11]
apply without change. (Note that in [11], derivatives with respect tot were bounded,
whereas here, derivatives with respect toτ are bounded.) The argument that does not carry
over is that which was used to bound time derivatives ofα andα′. To see why, consider
the equation obtained by differentiating equation (9)k times with respect toτ

− A−3(A(Dk
τ α̃)′)′ + (KabK

ab + Rabn
anb)Dk

τ α̃ + Dk
τ α̃(τ, x0) = Bk, (10)

whereDk
τ = ∂k

τ denotes thekth partial derivative with respect toτ . HereBk is an expression
which is already known to be bounded when we are at the step in the inductive argument
to boundDk

τ α̃ andDk
τ α̃

′. In lemma 3.4 of [11],Dk
t α was bounded by using the fact that

t was bounded away from zero. The analogous procedure is clearly not possible in the
present situation, wheret is tending to zero. This kind of argument was also used in [11]
to bound time derivatives of higher-order spatial derivatives ofα, but that is unnecessary,
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since such bounds can be obtained directly by differentiating the lapse equation once the
time derivatives ofα and α′ have been bounded. The same argument applies here, so all
we need to do is to prove the boundedness ofDk

τ α̃ andDk
τ α̃

′ using equation (10) under the
hypothesis thatBk is bounded. This follows by simply noting that equation (10) has the
same form for each value ofk and from the following lemma.

Lemma 1.Consider the differential equation

(au′)′ = bu + c + du(x0) (11)

wherea, b, c, d, andu are 2π -periodic functions on the real line andx0 is a point therein.
Suppose thata > 0, b > 0, d > 0, and thatd is not identically zero. Then|u| and
|u′| are bounded by constants depending only on the quantitiesK1 = max{a−1(x)} > 0,
K2 = ∫ 2π

0 |c(x)| dx > 0, K3 = ∫ 2π

0 d(x) dx > 0 andK4 = ∫ 2π

0 b(x) dx > 0.

Proof. First, if u(x0) > 2πK1K2, thenu > 0 everywhere. To see this, suppose otherwise
and letx1 be a point whereu achieves its maximum, sou(x1) > u(x0) > 2πK1K2 and let
x2 be a number such thatu > 0 on [x1, x2) andu(x2) = 0 (sox1 < x2 < x1 + 2π ). Then
on the interval [x1, x2], we have(au′)′ > c, from which it follows thatu′ > −K1K2 on
[x1, x2]. Integrating this and using the fact thatu(x2) = 0, we find thatu(x1) 6 2πK1K2,
contradicting the fact thatu(x1) > 2πK1K2. Therefore, asu is everywhere positive, it
follows that (au′)′ > c. Integrating this inequality starting (or ending) at a point where
u′ = 0, shows that|u′| 6 K1K2. Integrating equation (11) from 0 to 2π and using the fact
that u is positive givesu(x0)

∫ 2π

0 d(x) dx 6
∫ 2π

0 |c(x)| dx, and hence,|u(x0)| 6 K2K
−1
3 .

Using this and the fact that|u′| 6 K1K2 shows that|u| 6 K2K
−1
3 + 2πK1K2. Second,

if u(x0) < −2πK1K2, a similar argument shows thatu is everywhere negative and we
again obtain the same bounds on|u′| and |u|. Third, suppose that|u(x0)| 6 2πK1K2.
If max(u) > 2πK1K2(1 + 2πK1K3), using the inequality(au′)′ > c + du(x0), we can
argue much as before to see thatu is everywhere positive and again obtain the same
bounds on|u′| and |u|. Similarly, if min(u) < −2πK1K2(1 + 2πK1K3), it follows that
u is everywhere negative and we again recover the same bounds on|u′| and |u|. Next, if
|u| 6 2πK1K2(1 + 2πK1K3) everywhere,|u| is already bounded, and to bound|u′|, we
note that we have bounds for all terms on the right-hand side of equation (11), so it suffices
to integrate it, starting from a point whereu′ is zero to bound|u′|. �

At this stage, we have indicated how all geometric and matter quantities, expressed in
terms of the new time coordinateτ , can be bounded, together with all their derivatives. In
particular, this means that all these quantities are uniformly continuous on any interval of the
form [τ1, 0), whereτ1 is finite. It follows that all these quantities have smooth extensions
to the interval [τ1, 0]. Restricting them to the hypersurfaceτ = 0 gives an initial data set
for the Einstein matter equations with zero mean curvature. By the standard uniqueness
theorems for the Cauchy problem, the spacetime which, in the old coordinates, was defined
on the interval(−∞, 0), is isometric to a subset of the maximal development of this new
initial data set. It follows that the original spacetime has an extension which contains a
maximal hypersurface.

Lastly, that the foliation is unique now follows from the fact that compact CMC Cauchy
surfaces with non-zero mean curvature are unique [4], and that the spacetime is indeed
maximal follows from the fact that any spacetime admitting a complete foliation by compact
CMC Cauchy surfaces is maximal [7].
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3. A bound for the volume of space

It is well known that as we transport an ‘infinitesimal’ spacelike surfaceS along the
geodesics normal to itself, the ratioν of its volume to its original volume is governed
by the Raychaudhuri equation

d2

dt2
ν1/3 + 1

3

(
Rabt

atb + σabσ
ab

)
ν1/3 = 0, (12)

where t is the proper time measured along the geodesics normal toS, Rab is the Ricci
tensor, andσab is the shear tensor associated with the geodesic flow [2, 3, 18]. (This
equation is usually written in terms of the divergence of the geodesic flowθ = ν−1dν/dt .)
On the surfaceS, ν satisfies the initial conditionν = 1 and dν/dt = −H(p), whereH(p)

is the trace of the extrinsic curvature ofS at the pointp where the geodesic intersectsS.
Therefore, if the spacetime satisfies the timelike-convergence condition (Rabt

atb > 0 for all
timelike ta), it follows that as long asν remains non-negative,

d2

dt2
ν1/3 6 0, (13)

from which we find that

ν(t) 6
[
1 − 1

3H(p)(t − t0)
]3

. (14)

This equation bounds the growth of the volume of a local spatial region in the spacetime.
Using this result, it is not difficult to show that if we fix a Cauchy surface60, in a

spacetime satisfying the timelike-convergence condition, and construct from it a second
Cauchy surface6 by transporting60 to the future along the flow determined by the
geodesics normal to60, as long as these flow lines do not self-intersect (which will be
true if 6 is sufficiently close to60), then

vol(6) 6 vol(60)

[
1 + 1

3
sup
60

(−H)T

]3

, (15)

where vol(S) denotes the 3-volume of a Cauchy surfaceS andT is the ‘distance’ between
the two surfaces measured by the lengths of the geodesics normal to60 (which will be
independent of which geodesic is chosen by the construction of6). Therefore, we have
a bound on the volume of6 in terms of the volume of60, the extrinsic curvature of60,
and the distance between60 and 6. Does a similar result hold for more general Cauchy
surfaces6? For instance, a more general hypersurface6 may not be everywhere normal
to the geodesics from60, some geodesics normal to60 may intersect one another between
60 and6, and parts of6 may lie to the future of60 while other parts may lie to the past.
Can the simple bound given by equation (15) be modified to cover these cases? That it can
is the subject of the following lemma.

Lemma 2. Fix an orientable globally hyperbolic spacetime(M, gab) satisfying the
timelike-convergence condition (Rabt

atb > 0 for all timelike ta) and a smooth spacelike
Cauchy surface60 therein. Then, for any smooth spacelike Cauchy surface6,

vol(6) 6 vol(60)

[
1 + 1

3
sup
60

(|H |)1(60, 6)

]3

, (16)

where vol(S) denotes the three-volume of a Cauchy surfaceS, H is the trace of the extrinsic
curvature of60 (using the convention thatH measures theconvergenceof the future-
directedtimelike normals to a spacelike surface), and1(60, 6) is the least upper bound to
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the lengths of causal curves connecting60 to 6 (either future or past directed). Further,
for any Cauchy surface6 ⊂ D+(60),

vol(6) 6 vol(60)

[
1 + 1

3
sup
60

(−H)1(60, 6)

]3

. (17)

Note that forp, q ∈ M, 1(p, q) is not quite the distance functiond(p, q) as used in
[2] as d(p, q) = 0 if q ∈ J−(p). Instead,1(p, q) does not distinguish between future and
past: 1(p, q) = 1(q, p) = d(p, q) + d(q, p).

From lemma 2, we see that for a spacetime satisfying the timelike-convergence
condition, possessing compact Cauchy surfaces and having a finite lifetime (in the sense
that d(p, q) [equivalently1(p, q)] is bounded from above by a constant independent ofp

and q), then the volume of a Cauchy surface therein cannot be arbitrarily large. Further,
we see that if the spacetime admits a maximal Cauchy surface60 (H = 0 thereon), we
reproduce the result that there is no other Cauchy surface having volume larger than60

(though there may be surfaces of equal volume) [4].
In the following, df denotes the derivative map associated with a differentiable mapf

between manifolds. When viewed as a pull-back, we denote df by f ∗ and, when viewed
as a push-forward, we denote df by f∗. For a mapf : A → B, f [A] denotes the image
of A in B. Lastly, A \ B denotes the set of elements inA that are not inB.

3.1. Proof of lemma 2

To begin the proof of lemma 2, for each pointp ∈ 60, let γp denote the unique inextendible
geodesic containingp and intersecting60 orthogonally. Parameterizeγp by t so that the
tangent vector toγp is future-directed unit-timelike andγp(0) = p. Then, define the map
f : 60 → 6, by

f (p) = γp ∩ 6. (18)

Note that for eachp ∈ 60, f is well defined sinceγp intersects6 at precisely one point as
6 is a spacelike Cauchy surface for the spacetime.

Next, let K be the subset of60 defined by the property thatp ∈ K if and only if the
geodesicγp does not possess a point conjugate to60 between60 and6 (although it may
have such a conjugate point on6). Note that this is precisely the condition that for each
p ∈ K the solutionν to equation (12) alongγp, satisfying the initial conditionsν = 1 and
dν/dt = −H(p) at p, be strictly positive on the portion ofγp betweenp and f (p). It
follows thatK is closed. Furthermore,f mapsK onto 6. To see this, recall that for any
point q ∈ 6 there exists a timelike curveµ connectingq to 60 having a length no less than
any other such curve. Furthermore, such a curveµ must intersect60 normally, is geodetic
and has no point conjugate to60 between60 andq. (See theorem 9.3.5 of [3].) Therefore,
the pointp = µ ∩ 60 is in K andµ ⊂ γp, sof (p) = γp ∩ 6 = µ ∩ 6 = q. Therefore,f
mapsK onto 6. However, in general,f will not be one-to-one betweenK and6.

Let C denote the set of critical points of the mapf on 60. That is,p ∈ C if and only
if its derivative mapf∗ : (T 60)p → (T 6)f (p) is not onto. Then, by Sard’s theorem [19],
f [C] (the critical values off ), and hencef [K ∩ C], are sets of measure zero on6. Now,
note that6 can be expressed as the union off [K \ C] and a set having measure zero. To
see this, we write

6 = f [K] = f [(K \ C) ∪ (K ∩ C)] = f [K \ C] ∪ (f [K ∩ C] \ f [K \ C]) . (19)
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The last two sets are manifestly disjoint and the latter is a set of measure zero (as it is
a subset of a set of measure zero). Therefore, we need only concern ourselves with the
behaviour off on the set of regular points off within K. This is useful since, by the
inverse function theorem [19],f is a local diffeomorphism betweenK \ C andf [K \ C].
As we shall see, for allp ∈ K \C, the pointf (p) is not conjugate to60 on γp, from which
it follows that K \ C is an open subset of60.

Denote volume elements associated with the induced metrics on60 and6 by eabc and
εabc, respectively, chosen so thateabc and εabc correspond to the same spatial orientation
class (which can be done as the spacetime is both time-orientable and orientable). Then the
Jacobian of the mapf is that unique scalar fieldJ on 60 such that

(f ∗ε)abc = Jeabc. (20)

Note thatJ is zero onC and positive onK \ C.
With these definitions, we have

vol(6) =
∫
f [K\C]

ε

6
∫

K\C
(f ∗ε)

6
[

sup
K\C

(J )

] ∫
K\C

e

6
[

sup
K\C

(J )

]
vol(60). (21)

The first step follows from the facts that6 = f [K] andf [K ∩ C] is a set of measure zero.
That we have an inequality in the second step follows from the fact that althoughf is a
local diffeomorphism, it may not be one-to-one betweenK \ C and f [K \ C]. The third
step follows from the definition ofJ given by equation (20) and the fact thatJ is bounded
from above by its supremum. Lastly, the fourth step follows from the fact thatK \ C is a
subset of60. So, to prove lemma 2, we need to show that, on the setK \ C, J is bounded
from above by the relevant expressions in lemma 2.

To that end, defineφ : 60 × R → M by settingφ(p, t) = γp(t). Of course, ifγp is
not future and past complete, this will not be defined for allt . Next, defineT : 60 → R
by settingT (p) to a number such thatγp(T (p)) = f (p), i.e. T (p) is the ‘time’ along the
geodesicγp at whichγp intersects6. Note that iff (p) lies to the future of60, thenT (p)

is positive, while iff (p) lies to the past of60, thenT (p) is negative.
Fix a pointp ∈ K \ C and define the mapg : 60 → M by settingg(q) = φ(q, T (p)).

Should γq(T (p)) not be defined, theng is not defined for that point of60. However,
it will always be defined for some neighborhood ofp as g(p) = f (p). Notice thatg
simply ‘translates’ points on60 along the geodesics normal to60 a fixed distanceT (p)

(independent of point), i.e. it is a translation along the normal geodesic ‘flow’. Therefore,
the derivative map ofg at a point is precisely the geodesic deviation map. In particular, dg

is injective (one-to-one) from(T 60)p to (T M)f (p) if and only if f (p) is not conjugate to
60 on γp (by the definition of such a conjugate point).

Noting thatf can be written asf (q) = φ(q, T (q)), we see that the derivative maps of
f andg at p [both of which are maps from(T 60)p to (T M)f (p)] are related by

(df )ab = (dg)ab + ta(dT )b, (22)
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whereta is the unit future-directed tangent vector toγp at f (p). From this we see that df
is injective [from(T 60)p to (T M)f (p)] if and only if dg is injective. Therefore, onK \ C,
not only is df injective, but dg is also injective, and hencef (p) is not conjugate to60 on
γp.

Define êabc at f (p) by parallel transportingeabc at p alongγp. Then

(f ∗ê)abc = (g∗ê)abc = ν(T (p))eabc. (23)

The first equality follows from (22) and the fact thatta êabc = 0. The second equality follows
by recognizing that the coefficient of the last term on the right-hand side is precisely the ratio
of the volume of an ‘infinitesimal’ region in60 to its original volume as it is transported
along the geodesic flow normal to60. As the transport is done fromp to f (p), the
coefficient isν(T (p)), whereν is the solution of equation (12) satisfying the stated initial
conditions. (In other words,ν(t) is the Jacobian of the geodesic deviation map.)

Denote the future-directed normal to6 atf (p) by na. Then there exists a unit-spacelike
vectorxa ∈ (T 6)f (p) such thatta = γ (na +βxa), whereγ = (−tana) andβ =

√
1 − γ −2.

Now for one of the two volume elementsεabcd on M associated with the spacetime metric,
we haveεabc = nmεmabc and êabc = tmεmabc, which gives the following relation between
these two tensors atf (p):

êabc = γ εabc + γβxmεmabc. (24)

Therefore,

(f ∗ê)abc = γ (f ∗ε)abc, (25)

where we have used (24) and the fact that the pull-back ofxmεmabc by f must be zero asxm

is in the surface6 and the contraction ofεabcd with four vectors all in a three-dimensional
subspace must be zero. Therefore, using (25) and (23), we see that

(f ∗ε)abc = (−tana)
−1ν(T (p))eabc, (26)

which gives, when compared with (20),

J (p) = (−tana)
−1ν(T (p)). (27)

Since(−tana)
−1 6 1 andν(T (p)) is bounded from above by (14), we have

J (p) 6
[
1 − 1

3H(p)T (p)
]3

. (28)

So, if 6 ⊂ D+(60), we have 06 T (p) 6 1(60, 6) and −H(p) 6 sup60
(−H), and

therefore,

sup
K\C

(J ) 6
[

1 + 1

3
sup
60

(−H)1(60, 6)

]3

, (29)

which with (21) establishes equation (17). More generally, as

−H(p)T (p) 6 |H(p)||T (p)| 6 sup
60

(|H |)1(60, 6), (30)

we have

sup
K\C

(J ) 6
[

1 + 1
3 sup

60

(|H |)1(60, 6)

]3

, (31)

which with (21) establishes equation (16). This completes the proof of lemma 2.
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