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Abstract. We prove that the maximal development of any spherically symmetric spacetime
with collisionless matter (obeying the Vlasov equation) or a massless scalar field (obeying the
massless wave equation) and possessing a constant mean custatusé Cauchy surface also
contains a maximal Cauchy surface. Combining this with previous results establishes that the
spacetime can be foliated by constant mean curvature Cauchy surfaces with the mean curvature
taking on all real values, thereby showing that these spacetimes satisfy the closed-universe
recollapse conjecture. A key element of the proof, of interest in itself, is a bound for the volume
of any Cauchy surfac& in any spacetime satisfying the timelike convergence condition in
terms of the volume and mean curvature of a fixed Cauchy sublg@nd the maximal distance
betweenX and Zp. In particular, this shows that any globally hyperbolic spacetime having a
finite lifetime and obeying the timelike-convergence condition cannot attain an arbitrarily large
spatial volume.

PACS numbers: 0420, 0420D

1. Introduction

Given an initial data set for the gravitational field and any matter fields present, what can
be said of the spacetime evolved from these initial data?

In the asymptotically flat case, one would like to know such things as how much
gravitational energy is radiated to null infinity, the final asymptotic state of the system,
whether black holes are formed, the nature of any singularities produced, and whether
cosmic censorship is violated. For example, it is known that the maximal development
of sufficiently weak vacuum initial data is an asymptotically flat spacetime that is free of
singularities and black holes [1]. In this case the gravitational waves are so weak that they
cannot coalesce into a black hole; instead, they scatter to infinity. Further it is known that an
initial data set containing a future trapped surface or a future trapped region must be singular,
provided the null-convergence condition holds [2, 3]. In these cases, the gravitational field
is already sufficiently strong that collapse is inevitable.

In the cosmological case (spacetimes with compact Cauchy surfaces), the questions one
asks are a bit different, as one expects these spacetimes to be quite singular. In fact, it is
known that spacetimes with compact Cauchy surfaces are singular, provided a genericity
condition and the timelike-convergence condition hold [2, 3]. So, here one would like to
know such things as the nature of the singularities, whether the spacetime has a finite lifetime
(in the sense that there is a global upper bound on the lengths of all causal curves therein),
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whether it expands to a maximal hypersurface (a hypersurface of zero mean curvature)
and then recollapses or is always expanding (contracting), and whether cosmic censorship
is violated. For example, it is known that if the initial data surface is contracting to the
future (past), then any development satisfying the timelike-convergence condition must end
within a finite time to the future (past) [2, 3]. Can more be said about the behaviour of the
cosmological spacetimes?

The closed-universe recollapse conjecture asserts that the spacetime associated with the
maximal development of an initial data set with compact initial data surface expands from
an initial singularity to a maximal hypersurface and then recollapses to a final singularity
(all within a finite time), provided that the spatial topology does not obstruct the existence
of a maximal Cauchy surface (e.§ or S* x $2) and provided the matter satisfies certain
energy and regularity conditions [4, 5, 6]. It has also been conjectured that such spacetimes
admit a unique foliation by constant mean curvature (CMC) Cauchy surfaces with the
mean curvatures taking on all real values (see, e.g. conjecture 2.3 of [7] and the weaker
conjecture C2 of [8]). Just what energy conditions the matter must satisfy is an open
problem. However, in the study of the weak form of this conjecture (which merely asserts
that the spacetime has a finite lifetime), the dominant energy and non-negative pressure
conditions together have proven sufficient for the cases studied [9, 10]. More subtle is the
problem of what regularity conditions the matter needs to satisfy. The difficulty here is that
the maximal development of an Einstein-matter initial data set may not contain a maximal
hypersurface because of the development of a singularity in the matter fields, such as a
shell-crossing singularity in a dust-filled spacetime, before the spacetime has a chance to
develop a maximal hypersurface. While not for certain, it is thought that those matter fields
that do not develop singularities when evolved in fixed smooth background spacetimes will
not lead to the obstruction of a maximal hypersurface.

Here, we study the maximal development of spherically symmetric constant mean
curvature initial data sets oftt x $? and matter consisting of either collisionless particles
of unit mass (whose evolution is described by the Vlasov equation) or a massless scalar
field (whose evolution is described by the massless wave equation). It has already been
established that if the mean curvature is zero on the initial data surface, i.e. it is a maximal
hypersurface, then its maximal evolution admits a foliation by CMC Cauchy surfaces with
the mean curvature taking on all real values [11]. Further, it is known that if the mean
curvature is negative (positive) then the initial data can be evolved at least to the extent
that the spacetime can be foliated by CMC spatial hypersurfaces taking on all negative
(positive) values [11]. Left unresolved was whether the maximal evolution in the latter two
cases actually contains a maximal spatial hypersurface and, hence, can be foliated by CMC
hypersurfaces taking on all real values. The non-existence of a maximal spatial hypersurface
would be reasonable if such spacetimes could expand (contract) indefinitely; it is known,
however, that these spacetimes have finite lifetimes [9, 10]. Therefore, it would seem that
their maximal development should contain a maximal Cauchy surface. We show that it
does.

Theorem 1. The maximal development of any spherically symmetric spacetime with
collisionless matter (obeying the Vlasov equation) or a massless scalar field (obeying
the massless wave equation) that possesses a M 52 Cauchy surfacez admits

a unique foliation by CMC Cauchy surfaces with the mean curvature taking on all real
values. In particular, it contains a maximal Cauchy surface and its singularities are crushing
singularities.

By the maximal development of a globally hyperbolic spacetime, we mean the maximal
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development of an initial data set induced on a Cauchy surface in the spacetime. This is
well defined as the maximal developments associated with any two Cauchy surfaces are
necessarily isometric [12]. Further, recall that a spacetime with compact Cauchy surfaces is
said to have a future (past) crushing singularity if the spacetime can be foliated by Cauchy
surfaces such that the mean curvature of these surfaces tends to infinity (negative infinity)
uniformly to the future (past) [7]. That the future and past singularities associated with the
spacetimes of theorem 1 are crushing is then a simple consequence of the existence of a
CMC foliation with mean curvature taking on all real values. Note that the existence of

a crushing singularity need not imply that an observer that ‘runs into’ such a singularity
must be physically crushed as the singularity is approached nor even that the spacetime is
inextendible through such a singularity. Indeed, such a singularity can be associated with a
Cauchy horizon, as is exemplified below.

As a consequence of theorem 1, the maximal development of the spacetimes studied is
rather simple. They expand from an initial crushing singularity to a maximal hypersurface
and then recollapse to a final crushing singularity—all in a finite physical time. That is,
they satisfy the closed-universe recollapse conjecture in its strongest sense as well as the
closed-universe foliation conjecture.

While the maximal development of the spacetimes in theorem 1 is about as complete
as one could expect, given the existence of a complete CMC foliation, these spacetimes
may still be extendible (though there is no globally hyperbolic extension). In other words,
theorem 1 does not eliminate the possibility that these spacetimes violate cosmic censorship.
In fact, cosmic censorship is violated in the vacuum case. This is easily seen by realizing
that the maximal development in this case is either of the two regions where2M
of an extended Schwarzschild spacetime of maésgr is the area radius), modified by
identifications so that the Cauchy surface topology’is< S2. (To achieve this topology,

a point with standard Schwarzschild coordinates) is identified with the point with
coordinategr + C, r), whereC is a constant.) Although the ‘singularity’ corresponding to

r — 2M is a crushing singularity, this is actually a Cauchy horizon. Is this vacuum case
exceptional? It is worth noting that if a crushing singularity corresponds te 0, then

the singularity must in fact be a curvature singularity. This follows easily from the fact
that R,,.a R > (4m/r3)?, for any spherically symmetric spacetime satisfying the null-
convergence condition, and the fact that in our case the mass fumetisrbounded away

from zero by a positive constant [10]. If we could show thahust go to zero (uniformly)

at the extremes of our foliation, then the spacetime would indeed be inextendible, thereby
satisfying the cosmic censorship hypothesis. Establishing such a result appears to be difficult
and the vacuum case shows that such a result will not always hold (though this case may
be exceptional). Using a different approach, Rein has shown that for an open set of initial
data, there is a crushing singularity in which— 0 uniformly, and which, therefore, is a
curvature singularity [13]. While this is encouraging, the extent to which the spacetimes of
theorem 1 satisfy cosmic censorship remains to be seen.

The proof of theorem 1 involves a combination of three ideas. First, it is known
that spherically symmetric spacetimes wih x $? or §° Cauchy surfaces and satisfying
the dominant energy and non-negative pressure (or merely ‘radial’ non-negative pressure)
conditions have finite lifetimes [9, 10]. Second, using a general theorem (which is
independent of symmetry assumptions) established in section 3, it follows that the spatial
volumes of Cauchy surfaces in the spacetime are bounded from above, which allows us
to bound various fields describing the spacetime geometry. Third, introducing a new time
function to avoid the problems associated with ‘degenerate’ maximal hypersurfaces (i.e.
surfaces where the mean curvature cannot be used as a good coordinate), the theorem then
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follows using the methods developed in [11]. Furthermore, it is worth noting that our
method uses only a few properties of the matter fields themselves. Namely, we use the fact
that they satisfy the dominant energy and ‘radial’ non-negative pressures conditions and,
roughly speaking, the fact that the matter fields are nonsingular as long as the spacetime
metric is nonsingular. This latter property has not been given a precise formulation, as
it seems difficult to do so, and serves merely as a heuristic principle—the arguments for
collisionless matter and the massless scalar field in [11] providing an example of what it
means in practice.

In theorem 1 we have restricted ourselves to spacetimesSkith S? Cauchy surfaces
and have not considered similar spacetimes WithCauchy surfaces. The problem with
the S° case is that there exist two timelike curves on which the symmetry orbits degenerate
to points. When we then pass to the quotient of our spacetime by the symmetry group,
the field equations on the quotient spacetime are singular on boundary points corresponding
to the degenerate orbits. Experience has shown that this degeneracy can have nontrivial
consequences on the evolution of the spacetime. For example, in the study of the spherically
symmetric asymptotically flat solutions of the Einstein—Vlasov equations, it has been shown
that if a solution of these equations develops a singularity, then the first singularity (as
measured in a particular time coordinate) is at the centre [14]. However, currently it is not
known how to decide when a central singularity must occur. In the case of asymptotically
flat spherically symmetric solutions of the Einstein equations coupled to a massless scalar
field, Christodoulou has shown that naked singularities do form in the centre of symmetry
for certain initial data (and that they can form nowhere else) [15]. Note that the degeneracy
of the orbits in these spacetimes is of the same type that occurs in the spherically symmetric
spacetimes withs® Cauchy surfaces. Similar problems occur in the study of the vacuum
spacetimes withU (1) x U (1) symmetry and having® or S* x $? Cauchy surfaces. Here
the dimension of the orbits is non-constant and, consequently, this case is much harder to
analyse than thg® case, which has orbits of constant dimension [16]. The spherically
symmetric spacetimes with* x $? Cauchy surfaces, having no degenerate orbits, avoid
these complications.

It would, of course, be preferable to strengthen theorem 1 by removing the requirement
that there exist a CMC Cauchy surface in the spacetime. While such a result seems plausible,
the methods currently used are not adequate to cover this more general case. Strengthening
our results in this direction is a subject for future research.

Our conventions are those of [3], with the notable exception that #aoéthe extrinsic
curvatureK,, of a spatial hypersurface measures tmvergenceof the hypersurface to
the future. Thus, surfaces with negati¥e are expanding to the future, while those with
positive H are contracting to the future.

2. Proof of theorem 1

Fix a spacetimgM, g) satisfying the conditions of theorem 1. Both classes of spacetimes
considered here (the Einstein—Vlasov and massless scalar field spacetimes) satisfy the
dominant energy condition (the Einstein tenggy, satisfiesG,,vw? > 0 for all future-
directed timelike vectors® andw®) as well as the timelike-convergence condition (the Ricci
tensor satisfie®,,t%t* > 0 for all timelike ). While the Einstein—Vlasov spacetimes also
satisfy the non-negative pressure conditigh,(x*x? > 0 for all spacelikex?), in general

the massless scalar field spacetimes do not. However, they do satisfy the weaker ‘radial’
non-negative pressure conditiofi {,x“x” > 0 for all spatial vectors® perpendicular to the
spheres of symmetry). It was shown in [9, 10] that the spherically symmetric spacetimes with
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5% or 1 x §? Cauchy surfaces satisfying the dominant energy and the non-negative pressures
conditions (or merely the ‘radial’ non-negative pressures condition) have a finite lifetime, i.e.
the supremum of the lengths of all causal curves is finite. Therefore, our spac¢afinge
has a finite lifetime. It then follows immediately from lemma 2 (established in section 3)
that the volumes of all spatial Cauchy surfacegMh, g) are bounded from above.

Denote the mean curvature of the Cauchy surfadey 7. This initial data surface must
be spherically symmetric. In the cage# 0, this follows from the uniqueness theorem for
such hypersurfaces (see, e.g. theorem 1 of [4]) since if a rotation did not feaweriant,
we would have a distinct CMC Cauchy surface with identical (nonzero) constant mean
curvature. The case wherg= 0 then follows from the fact that there is a neighbourhood
N of X in M such thatNV can be foliated by CMC hypersurfaces, each having a different
CMC, and the fact that those with non-zero CMC must be spherically symmetric. As the
theorem has already been proven in the case wigete0 (X is a maximal hypersurface)
[11], we shall takery to be negative Y is expanding to the future). The case where the
mean curvature is initially positive follows by a time-reversed argument. As was shown
in [11], in a neighborhood of the hypersurfa&gs the spacetime can be foliated by CMC
Cauchy surfaces. Define the scalar fielat any point to be the value of the mean curvature
of the CMC hypersurface passing through that point, i.e. so level surfacesref CMC
hypersurfaces and, in particular, the surface 7y is £. A further scalar fieldc can then
be introduced so that the spacetime megriis given by

g = —aldr® + A*[(dx + B dr)* + a*Q], (1)

where is the natural unit-metric associated with the spheres of symmetry. The functions
a, B and A depend only orr and x (being spherically symmetric) and are periodic in
x with period 2r. The functiona depends only on. The fields can be chosen so that
[ B(t,x)dx = 0 for eachs, where the integral is taken over one period of a surface of
constantt.

It was shown in [11] that the initial data induced @nhcan be evolved so thatcovers
the interval(—oo, 0) and that, if it can be evolved to the closed interyaloo, 0], i.e. a
maximal hypersurface is attained, the spacetime can be extended and foliated by CMC spatial
hypersurfaces taking on all real values. Therefore, our task is to establish the existence of a
maximal hypersurface. To accomplish this, we establish the existence of upper bounds on
A, and their inverses on the intervad,[0). We then introduce a new time functien= f ot
by introducing a functionf that allows us to avoid the problem associated witteing a
bad coordinate on ‘degenerate’ maximal hypersurfaces. Once this has been accomplished,
theorem 1 will follow from an argument similar to that used in [11].

First, we establish upper bounds on the area radius aA, the mass function
m = %r(l — V4V,r), the volumeV (¢) of level surfaces of, and their inverses. That
andm~! are bounded from above follows from the results of [10] (note thas positive).
Further, the technique introduced in [17] was used in [11] to show rfyat is bounded
from above onf, 0). Therefore;n andr—! are also bounded from above ag, D). (That
is, the massn cannot become arbitrarily large amdcannot become arbitrarily small in
this portion of the spacetime. This is non-trivial as betland»—! can become arbitrarily
large on unbounded intervals, e.g. near an initial or final singularity.) As we have already
established that the volumes of all spatial Cauchy surfaces are bounded from Eligve,
is bounded from above. In view of the fact thea¥/ (¢) is positive on [y, 0) and that these
hypersurfaces are everywhere expandivigs bounded from below by a positive constant,
and henceV 1 is bounded from above omg[ 0).

Next, thata, A, and their inverses are bounded from abovergrO) now follows easily
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from the facts that = aA,
V() = 471/a2A3d.x = 471a_1/r3d.x, 2)

and our upper bounds fdr, r, and their inverses.
Next, we boundx’ using the lapse equation

— A3(A)Y + (K K + Rypn®n®ya = 1 (3)

whereK,, is the extrinsic curvature of the CMC hypersurfaeg,is a unit timelike normal
to the CMC hypersurface, and a prime denotes a derivative with respect téThis
is equation (2.4) in [11].) Using the fact th&,,K* is manifestly non-negative and
R.,nn” > 0 by the timelike convergence condition, it follows thata’)’ > —AS. Using
the fact thatA is bounded from above and integrating in a CMC hypersurface, we find
that (Ae')|, — (Aa’)|, > —C, for some positive constard; and any two pointgp and
g in the hypersurface. Choosing where« is extremal on the surface (sd(g) = 0)
and using the fact thad~! is bounded from above shows thatis bounded from below.
Choosingp where« is extremal on the surface (sd(p) = 0) and using the fact that
A1 is bounded from above, shows thétis bounded from above. Therefore, there exists
a constantC, such thatja’| < C,. Thus, even ife is unbounded, it must diverge in
a way that is uniform in space: For any two poimisand g in a CMC hypersurface,
o (p) —a(q)| = | [ o/ dx| < []o'| dx < 7w Co.

If we knew thaie were bounded from above o [0), we could then proceed to argue as
in [11]. While such a bound can be established rather easily for fields satisfying the dominant
energy and non-negative pressure conditions, such an argument fails for the massless scalar
field. The difficulty in establishing an upper bound @ris linked to the possibility thatd
may be zero on a maximal hypersurface, and thisa bad coordinate. Note that when
the timelike-convergence condition is satisfied, this can only occit,jf= 0 everywhere
on X (i.e. ¥ is momentarily static) an@,,n“n” = 0 everywhere orE. If the non-negative
energy conditionG,,t%t” > 0 for all timelike%) and non-negative sum-pressures condition
(Gap(t*t” 4+ g**) > 0 for all unit-timelike 1) are satisfied, the®,,n*n” = 0 implies that
Gunn® = 0 and, hence, by the Hamiltonian constraint equation, the Ricci scalar curvature
of the metric induced orE must be zero. However, it is easy to see that there are no
such spherically symmetric geometries $hx $2. Namely, writing the metric in the form
A%(dx? + a?Q), with a constant, shows that the condition that the scalar curvature vanish
is that (AY2)” = (1/4)AY24%. However, clearly there is no such positive functianon
S1x 52, since the left-hand side has integral zero while the right-hand side is strictly positive.
Thus, the spherically symmetric Einstein—Vlasov spacetimes §iith S Cauchy surfaces
do not admit such ‘degenerate’ maximal hypersurfaces. However, it can be shown that there
are spherically symmetric massless scalar field spacetimesSwith S? Cauchy surfaces
containing such hypersurfaces. To avoid this difficulty, we change our time function to one
that is guaranteed to be well-behaved even on a maximal hypersurfacerwitf.d

Fix any inextendible timelike curver that is everywhere orthogonal to the CMC
hypersurfaces. The length of the segmeny dfetween any two CMC hypersurfaces- 1,
and: = 1, is then simplyffi2 a(y(u)) du. Using the fact that there is a finite upper bound
on the lengths of all timelike curves in our spacetime, the integral

0 2
[ avanai=tm [“ae ) @

must exist, i.ea(y(t)) is integrable on any interval of the forrm [0). Fix some valuexg
of x and consider the functioa(z, xg). Sincec«’ is bounded, there is a constafitsuch
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that a(z, xg) < a(y()) + C. It follows thata(z, xo) is also integrable on any interval of
the form 1, 0). Using this fact, define the functiofi on (—oo, 0) by setting

0
f) =A—/ a(u, xo) du. (5)
A

Noting that f'(A) = 1+ a(X, xg) and lim_o f (1) = 0, we see thalf is an orientation-
preserving diffeomorphism fromi—oo, 0) to (—o0, 0). Hence,

T=fot (6)

is a new time function on our spacetime. Note thator = 1+ «(z, xo).

The level surfaces of clearly coincide with those af and so are CMC hypersurfaces.
As a consequence the field equations for the geometry and the matter written in terms of
look very similar to those written in terms of Using t in place ofz, the metric has the
same form as before,

¢ = —a%dr? + A2 [(dx + Bdr)? + aZQ] , @

where the new lapse functianis given by

G—a (3,) -« ®)
0T 14 a(t, xo)

and similarly for the new shif8. In terms of our new coordinates ¢eplacingr) and new
variables ¢ and 8 replacinga and g, respectively), the field equations are the same as
in [11] with 9, replacingd,, & replacinge, B replacingg, andds/dt replacing the right-
hand side of equation (3). Explicit occurrencest oh the equations are left unchanged,
being simply considered as a function of determined implicitly by equation (6). Using
equation (8), it is straightforward to show that/ot = 1 — a(z, xo). With this, the lapse
equation can be written as

— AT3(A&) + (Kap K + Rypnn®)a = 1 — a(x, xo). 9)

Using the fact that:’ is bounded, as argued above, it follows that, x) < «(¢, xo) + C,
whereC is a constant. Therefore, by equation (&)is bounded from above.

It is now possible to apply the same type of arguments to the system corresponding
to the time coordinate as were applied in [11] to the system corresponding to the time
coordinater to show that all the basic geometric and matter quantities in the equations
written with respect ta are bounded and that the same is true for their spatial derivatives
of any order. Bounding time derivatives of all these quantities requires some more effort.
All but one of the steps in the inductive argument used to bound time derivatives in [11]
apply without change. (Note that in [11], derivatives with respect twere bounded,
whereas here, derivatives with respecttare bounded.) The argument that does not carry
over is that which was used to bound time derivativesr@nda’. To see why, consider
the equation obtained by differentiating equation X3)mes with respect ta

— A3 (ADF®)Y 4 (Kap K + Rapn®n®) DX& + D¥a(z, x0) = By, (10)

whereD¥ = 9* denotes théth partial derivative with respect ta Here B, is an expression
which is already known to be bounded when we are at the step in the inductive argument
to bound D*& and D*&’. In lemma 3.4 of [11],D*« was bounded by using the fact that

t was bounded away from zero. The analogous procedure is clearly not possible in the
present situation, whereis tending to zero. This kind of argument was also used in [11]

to bound time derivatives of higher-order spatial derivativeg 0but that is unnecessary,
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since such bounds can be obtained directly by differentiating the lapse equation once the
time derivatives ofx ando’ have been bounded. The same argument applies here, so all
we need to do is to prove the boundednes®b# and DX&’ using equation (10) under the
hypothesis thatB, is bounded. This follows by simply noting that equation (10) has the
same form for each value @fand from the following lemma.

Lemma 1.Consider the differential equation
(au") = bu + ¢ + du(xp) (11)

wherea, b, ¢, d, andu are Zr-periodic functions on the real line and is a point therein.
Suppose that: > 0, » > 0, d > 0, and thatd is not identically zero. Thenu| and
|u’| are bounded by constants depending only on the quanfiies maxa(x)} > 0,

Ko = [Z" |e(x)|dx >0, K3 = [ d(x)dx > 0 andKy = [ b(x)dx > 0.

Proof. First, if u(xg) > 27 K1K», thenu > 0 everywhere. To see this, suppose otherwise
and letx; be a point where: achieves its maximum, so(x;) > u(xg) > 27 K1 K, and let

x2 be a number such that> 0 on [x1, x2) andu(xz) = 0 (S0x1 < x2 < x1 + 27). Then

on the interval {1, x2], we have(au’) > ¢, from which it follows thatu’ > —K1K> on

[x1, x2]. Integrating this and using the fact thatx;) = 0, we find thatu(x;) < 27 K1K>,
contradicting the fact that(x;) > 27 K;1K,. Therefore, as: is everywhere positive, it
follows that (au’)’ > c. Integrating this inequality starting (or ending) at a point where
u' = 0, shows thatu’| < K1K». Integrating equation (11) from 0 tor2and using the fact
that u is positive givesu(xp) foz” dx)dx < foz” le(x)| dx, and hence|u(xo)| < K2K3 ™.
Using this and the fact thdi/'| < K1K, shows thatju| < Kngl + 27 K.1K>. Second,

if u(xog) < —27K1K>, a similar argument shows thatis everywhere negative and we
again obtain the same bounds pr| and |u|. Third, suppose thatu(xp)| < 27 K1K>.

If max(u) > 27 K1K>(1 4+ 27 K1K3), using the inequalityau’)’ > ¢ + du(xp), we can
argue much as before to see thatis everywhere positive and again obtain the same
bounds onju’| and |u|. Similarly, if min(u) < —27K1K>(1 + 27 K1K3), it follows that

u is everywhere negative and we again recover the same boun@s|@nd |u«|. Next, if

lu| < 2rK1K2(1 + 27 K1K3) everywhere)u| is already bounded, and to bound|, we
note that we have bounds for all terms on the right-hand side of equation (11), so it suffices
to integrate it, starting from a point wherg is zero to boundu/|. O

At this stage, we have indicated how all geometric and matter quantities, expressed in
terms of the new time coordinate can be bounded, together with all their derivatives. In
particular, this means that all these quantities are uniformly continuous on any interval of the
form [t1, 0), wherer, is finite. It follows that all these quantities have smooth extensions
to the interval f;, 0]. Restricting them to the hypersurface= 0 gives an initial data set
for the Einstein matter equations with zero mean curvature. By the standard uniqueness
theorems for the Cauchy problem, the spacetime which, in the old coordinates, was defined
on the interval(—oo, 0), is isometric to a subset of the maximal development of this new
initial data set. It follows that the original spacetime has an extension which contains a
maximal hypersurface.

Lastly, that the foliation is unique now follows from the fact that compact CMC Cauchy
surfaces with non-zero mean curvature are unique [4], and that the spacetime is indeed
maximal follows from the fact that any spacetime admitting a complete foliation by compact
CMC Cauchy surfaces is maximal [7].



Existence of maximal hypersurfaces 119
3. A bound for the volume of space

It is well known that as we transport an ‘infinitesimal’ spacelike surfacalong the
geodesics normal to itself, the ratio of its volume to its original volume is governed
by the Raychaudhuri equation

2
%vl/s + % (Rupt“t” + 0upo®) w13 =0, (12)
where is the proper time measured along the geodesics normé&l #®,, is the Ricci
tensor, ando,;, is the shear tensor associated with the geodesic flow [2, 3, 18]. (This
equation is usually written in terms of the divergence of the geodesicéleww —dv/dr.)

On the surfaces, v satisfies the initial conditiom = 1 and d/dt = —H (p), where H (p)

is the trace of the extrinsic curvature 8fat the pointp where the geodesic intersecdis
Therefore, if the spacetime satisfies the timelike-convergence condRjgrf (> > 0 for all
timelike 1), it follows that as long as remains non-negative,

* <o, (13)
dr2

from which we find that
v <[1-H(P) -] (14)

This equation bounds the growth of the volume of a local spatial region in the spacetime.

Using this result, it is not difficult to show that if we fix a Cauchy surfatg in a
spacetime satisfying the timelike-convergence condition, and construct from it a second
Cauchy surfacex by transportingX, to the future along the flow determined by the
geodesics normal t&g, as long as these flow lines do not self-intersect (which will be
true if X is sufficiently close toxy), then

3
vol(X) < vol(Xp) [1+ ;suq—H)T} , (15)
o

where vol(S) denotes the 3-volume of a Cauchy surfaécandT is the ‘distance’ between

the two surfaces measured by the lengths of the geodesics normial tehich will be
independent of which geodesic is chosen by the constructiof)ofTherefore, we have

a bound on the volume af in terms of the volume ok, the extrinsic curvature ofg,

and the distance betweety and £. Does a similar result hold for more general Cauchy
surfacesx? For instance, a more general hypersurfacenay not be everywhere normal

to the geodesics frory, some geodesics normal Ky may intersect one another between

Yo and Z, and parts of may lie to the future oy while other parts may lie to the past.

Can the simple bound given by equation (15) be modified to cover these cases? That it can
is the subject of the following lemma.

Lemma 2. Fix an orientable globally hyperbolic spacetini®/, g.,) satisfying the
timelike-convergence conditionR(,t“t> > 0 for all timelike 1) and a smooth spacelike
Cauchy surface& therein. Then, for any smooth spacelike Cauchy surtace

1 3
vol(Z) < vol(Zo) [1+ 3 sup(|H|)A(Zo, 2)] , (16)
%o
where volS) denotes the three-volume of a Cauchy surfScé is the trace of the extrinsic

curvature ofXy (using the convention thatl measures theonvergenceof the future-
directedtimelike normals to a spacelike surface), al, X) is the least upper bound to
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the lengths of causal curves connectifig to ¥ (either future or past directed). Further,
for any Cauchy surfac& c D1 (Z),

3
vol(X) < vol(Xp) |:1+ %SU[X—H)A(EO, E)i| . a7
o

Note that forp, g € M, A(p, q) is not quite the distance functiaf(p, ¢) as used in
[2] asd(p,q) =0if g € J=(p). Instead,A(p, ¢q) does not distinguish between future and
past: A(p, q) = Alq, p) =d(p,q) +d(q, p).

From lemma 2, we see that for a spacetime satisfying the timelike-convergence
condition, possessing compact Cauchy surfaces and having a finite lifetime (in the sense
thatd(p, q) [equivalentlyA(p, ¢q)] is bounded from above by a constant independeni of
andg), then the volume of a Cauchy surface therein cannot be arbitrarily large. Further,
we see that if the spacetime admits a maximal Cauchy sufaced = 0 thereon), we
reproduce the result that there is no other Cauchy surface having volume larget¢han
(though there may be surfaces of equal volume) [4].

In the following, df denotes the derivative map associated with a differentiable fnap
between manifolds. When viewed as a pull-back, we dengtdyl f* and, when viewed
as a push-forward, we denotg’ dy f,. For a mapf : A — B, f[A] denotes the image
of A in B. Lastly, A\ B denotes the set of elements Anthat are not inB.

3.1. Proof of lemma 2

To begin the proof of lemma 2, for each popmte X, let y, denote the unique inextendible
geodesic containing and intersectingzy orthogonally. Parameterizg, by ¢ so that the
tangent vector tg, is future-directed unit-timelike ang,(0) = p. Then, define the map
fi:X0— X, by

fp)y=y,NZ. (18)

Note that for eachp € %o, f is well defined since, intersectsx at precisely one point as
¥ is a spacelike Cauchy surface for the spacetime.

Next, let € be the subset oEq defined by the property that € K if and only if the
geodesicy, does not possess a point conjugatesipbetweenxy and = (although it may
have such a conjugate point @&). Note that this is precisely the condition that for each
p € K the solutionv to equation (12) along,, satisfying the initial conditions = 1 and
dv/dt = —H(p) at p, be strictly positive on the portion of, betweenp and f(p). It
follows that K is closed. Furthermoref mapsikC onto . To see this, recall that for any
pointg € X there exists a timelike curve connectingg to Xy having a length no less than
any other such curve. Furthermore, such a curvaust intersec, normally, is geodetic
and has no point conjugate Ky betweenXy andg. (See theorem 9.3.5 of [3].) Therefore,
the pointp = pNXgisin L andu C y,, SO f(p) = ¥, N X = uN X = q. Therefore,f
mapskC onto . However, in generalf will not be one-to-one betweeki and .

Let C denote the set of critical points of the mgpon X,. That is,p € C if and only
if its derivative mapf. : (T Xo), — (T X)s(, is not onto. Then, by Sard’s theorem [19],
fIC] (the critical values off), and hencef[X N C], are sets of measure zero aGh Now,
note thatX can be expressed as the unionfjfC \ C] and a set having measure zero. To
see this, we write

T = fIK] = fIK\NOUKEKNO] = fIC\ClU(fIENC]\ FIK\C]). (19)
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The last two sets are manifestly disjoint and the latter is a set of measure zero (as it is
a subset of a set of measure zero). Therefore, we need only concern ourselves with the
behaviour of f on the set of regular points of within K. This is useful since, by the
inverse function theorem [19]f is a local diffeomorphism betweefd \ C and f[K \ C].
As we shall see, for alp € K\ C, the pointf(p) is not conjugate t&, on y,, from which
it follows that I \ C is an open subset dL;.

Denote volume elements associated with the induced metricg,@and = by e,,. and
€qbe, respectively, chosen so thaf,. ande¢,,. correspond to the same spatial orientation
class (which can be done as the spacetime is both time-orientable and orientable). Then the
Jacobian of the may is that unique scalar field on Xy such that

(f*é)abc = Jeupc. (20)

Note thatJ is zero onC and positive onC \ C.
With these definitions, we have

vol(Z) = / €
FIK\C]

< (f*e)

K\C

< |:SU[XJ):| [ e
K\C K\C

< [sug])} vol(Zp). (21)

K\C

The first step follows from the facts that = f[K] and f[K N C] is a set of measure zero.
That we have an inequality in the second step follows from the fact that althgugha
local diffeomorphism, it may not be one-to-one betwéén C and f[K \ C]. The third
step follows from the definition of given by equation (20) and the fact thats bounded
from above by its supremum. Lastly, the fourth step follows from the factkhat is a
subset of¥y. So, to prove lemma 2, we need to show that, on th&lseC, J is bounded
from above by the relevant expressions in lemma 2.

To that end, defin® : Yo x R — M by setting¢(p, ) = y,(t). Of course, ify, is
not future and past complete, this will not be defined forzalNext, defineT : ¥y - R
by setting7 (p) to a number such that,(T'(p)) = f(p), i.e. T(p) is the ‘time’ along the
geodesicy, at whichy, intersectst. Note that if f(p) lies to the future ofxy, thenT (p)
is positive, while if f(p) lies to the past o&g, thenT (p) is negative.

Fix a pointp € K\ C and define the map : o — M by settingg(q) = ¢ (g, T(p)).
Should y, (T (p)) not be defined, therg is not defined for that point ok,. However,
it will always be defined for some neighborhood pfas g(p) = f(p). Notice thatg
simply ‘translates’ points orky along the geodesics normal &y a fixed distancel (p)
(independent of point), i.e. it is a translation along the normal geodesic ‘flow’. Therefore,
the derivative map of at a point is precisely the geodesic deviation map. In particular, d
is injective (one-to-one) froniT Xo), to (T M)y, if and only if f(p) is not conjugate to
Yo on y, (by the definition of such a conjugate point).

Noting that f can be written as'(¢) = ¢ (¢, T (¢)), we see that the derivative maps of
f andg at p [both of which are maps froniT o), to (T M)y (] are related by

df)p = (dg)*p +t“(dT)y, (22)
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wheret¢ is the unit future-directed tangent vectorytp at f(p). From this we see thatf
is injective [from (T Xo), to (T M)y (] if and only if dg is injective. Therefore, oiC\ C,
not only is df injective, but @ is also injective, and hencg(p) is not conjugate td&y on
Vp-

Defineé,,. at f(p) by parallel transporting,,. at p alongy,. Then

(f*é)abc = (g*é)abc = U(T(p))eubc- (23)

The first equality follows from (22) and the fact théé,,. = 0. The second equality follows
by recognizing that the coefficient of the last term on the right-hand side is precisely the ratio
of the volume of an ‘infinitesimal’ region irX to its original volume as it is transported
along the geodesic flow normal tBy. As the transport is done fromp to f(p), the
coefficient isv(T'(p)), wherev is the solution of equation (12) satisfying the stated initial
conditions. (In other words;(¢) is the Jacobian of the geodesic deviation map.)

Denote the future-directed normal ¥at f (p) by n“. Then there exists a unit-spacelike
vectorx? € (T )y () such that® = y(n® 4+ Bx?), wherey = (—t“n,) andpg = /1 — y 2.
Now for one of the two volume elements,.;, on M associated with the spacetime metric,
we havee,,. = n"€uape and égpe = t"e€nape, Which gives the following relation between
these two tensors at(p):

éabc = Y€abe + Vﬁmemabo (24)
Therefore,
(f*é)abc = y(f*e)abca (25)

where we have used (24) and the fact that the pull-back'ef,.,. by f must be zero as™
is in the surfacez and the contraction of,,.; with four vectors all in a three-dimensional
subspace must be zero. Therefore, using (25) and (23), we see that

(f*)ave = (—1na) (T (p))eabe, (26)
which gives, when compared with (20),
J(p) = (=1“ng) (T (p)). (27)
Since(—tn,)~* < 1 andv(T(p)) is bounded from above by (14), we have
I(p) <[1-HPT P (28)

So, if ¥ € D" (Zo), we have 0< T(p) < A(Zo, ¥) and —H(p) < sup;, (—H), and
therefore,

3
sup(J) < [1+ }sur(—H)A(Eo, 2)} , (29)
K\C 3 5

which with (21) establishes equation (17). More generally, as

—HPT(P) < IHPIIT (P)] < SURIH DA (Zo, %), (30)
we have
3
sup(J) < [1+ 3 sup(|H|) A (%o, 2)} , (31)
K\C o

which with (21) establishes equation (16). This completes the proof of lemma 2.
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