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We examine the rates at which energy and momentum are radiated into gravitational waves by
a large set of realistic cosmic string loops. The string loops are generated by numerically evolving
parent loops with different initial conditions forward in time until they self-intersect, fragmenting
into two child loops. The fragmentation of the child loops is followed recursively until only non-
self-intersecting loops remain. The properties of the final non-self-intersecting loops are found to be
independent of the initial conditions of the parent loops. We have calculated the radiated energy and
momentum for a total of 11625 stable child loops. We find that the majority of the final loops do
not radiate significant amounts of spatial momentum. The velocity gained due to the rocket effect
is typically small compared to the center-of-mass velocity of the fragmented loops. The distribution
of gravitational radiation rates in the center of mass frame of the loops, v° = (Gu®)"'AE/AT, is
strongly peaked in the range v° = 45-55; however, there are no loops found with v° < 40. Because
the radiated spatial momentum is small, the distribution of gravitational radiation rates appears
roughly the same in any reference frame. We conjecture that in the center-of-mass frame there is a
lower bound ~v2;, > 0 for the radiation rate from cosmic string loops. In a second conjecture, we
identify a candidate for the loop with the minimal radiation rate and suggest that v, = 39.003.
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I. INTRODUCTION

Cosmic strings are one-dimensional topological defects
that may have formed if the vacuum underwent a phase
transition at very early times [1-4]. The resulting net-
work of strings is of cosmological interest if the strings
have a large enough mass per unit length, u. If Gu/c? 2
10—%, where G is Newton’s constant and c is the speed
of light (i.e., 4 2 10?2 g/cm), then cosmic strings may
be massive enough to have provided the density pertur-
bations necessary to produce the large scale structure we
observe in the Universe today.

The main constraints on g come from observational
bounds on the amount of gravitational background ra-
diation emitted by cosmic string loops ([4-6] and ref-
erences therein). A loop of cosmic string is formed
when two sections of a long string (a string with length
greater than the horizon length) meet and intercommute.
Once formed, loops begin to oscillate under their own
tension, undergoing a process of self-intersection (frag-
mentation) and eventually creating a family of non-self-
intersecting oscillating loops. The gravitational radiation
emitted by each loop as it oscillates contributes to the to-
tal background gravitational radiation. Determining the
rate at which realistic loops radiate energy into gravita-
tional waves is needed in constraining their mass per unit
length, and thus understanding the potential cosmologi-
cal importance of strings.
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A number of calculations have been carried out to de-
termine the rate at which special families of cosmic string
loops convert their energy into gravitational radiation
[7-10]. However, these loops all possess some amount
of symmetry and therefore are not representative of re-
alistic cosmic string loops. In order to generate a more
realistic set of loops, Scherrer and Press used a fragmen-
tation scheme where initial (parent) loops are evolved
forward in time and are allowed to fragment into a set of
(non-self-intersecting) child loops [11]. Because the prop-
erties of the child loops were found to be independent of
the initial conditions used for the parent loops, they then
argued that the child loops are representative of realis-
tic cosmic string loops. Radiation rates for one such set
of child loops were computed by Scherrer, Quashnock,
Spergel, and Press (SQSP) [12] using a method devel-
oped by Quashnock and Spergel [13].

In a recent pair of papers, we introduced and tested a
new method for calculating the rates at which energy and
momentum are radiated by cosmic strings [14,15]. Using
this new method, we investigated the special families of
cosmic string loops previously examined in the literature.
Our investigation found that many of the published ra-
diation rates were numerically inaccurate (typically too
low by a factor of 2). In order to apply our new method
to more realistic sets of loops, as well as to provide an
independent check of the work by SQSP, we have written
a loop fragmentation code similar to that of Scherrer and
Press which evolves initial (parent) loops forward in time
until they self-intersect, fragmenting into two child loops.
The fragmentation procedure is then performed recur-
sively on the child loops until only non-self-intersecting
loops remain. After successfully testing our fragmenta-
tion code on a large number (10000) of loops for which
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the intersection points have been found analytically by
Embacher [16], we used the code to fragment 900 parent
loops, to generate a total of 12418 child loops. Following
Scherrer and Press [11], we used two sets of parent loops
with very different initial conditions to generate the child
loops. Several properties of the child loops (such as the
size and velocity distributions) were compared to those of
the loops generated by Scherrer and Press. As expected
we find that both fragmentation codes have generated
similar sets of child loops.

We also calculated the energy and spatial momentum
radiated into gravitational waves for a total of 11625
child loops. The distributions of the radiation rates of
the child loops are found to be independent of the initial
conditions used to generate the parent loops. We find
that the majority of loops radiate their energy approx-
imately spherically symmetrically, so that the radiated
spatial momentum is small. We estimate that the veloc-
ity a loop gains due to the rocket effect is v, < 0.1c. This
is consistent with earlier numerical results [13] as well as
heuristic estimates [17]. In the center of mass frame of a
loop, the rate at which the loop loses energy to gravita-
tional radiation is given by v° = (Gu?)"'AE /AT, where
here and throughout the rest of the paper 7 is the proper
time of the loop center of mass, G denotes Newton’s con-
stant, and we use units with the speed of light ¢ = 1. The
distribution of gravitational radiation rates is found to be
strongly peaked in the range v° = 45-55 and is similar to
the distribution found by SQSP for loops with large v°.
(SQSP calculate the gravitational radiation rates in the
center-of-mass frame of the initial parent loops, but be-
cause the spatial momentum radiated is small, the distri-
butions are similar in any reference frame.) However, our
investigation has found a much sharper decrease in the
number of loops with values of 4° smaller than 45, and
unlike SQSP we find absolutely no loops with v° < 40.
We conjecture that in the center-of-mass frame, there
are no realistic cosmic string loop configurations with v°
less than some 'ygﬁn > 0. In a second conjecture, we
identify a candidate for the cosmic string loop configu-
ration with the smallest radiation rate, suggesting that
72, = 39.003.

The remainder of the paper is organized as follows. In
Sec. IT A, we describe the fragmentation code used to
generate our set of realistic string loops. In Sec. IIB,
the analytic tests of our code are presented. Section IIC
compares the general properties of the loops generated by
our fragmentation code with those generated by Scher-
rer and Press and establishes that the two fragmentation
codes produce very similar sets of child loops. Section III
starts with a review of how the radiation rates calculated
in the center-of-mass frame of a loop are related to the
rates viewed from any other reference frame. This is fol-
lowed by an outline of the method used to calculate the
rate at which energy and momentum are radiated into
gravitational waves. The radiation rates are presented
for the loops generated by our fragmentation code, and
are compared to the results of SQSP. Two conjectures
are made regarding the existence of a minimum energy
radiation rate for any cosmic string loop. This is followed
by a short conclusion.
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II. GENERATION OF REALISTIC LOOP
TRAJECTORIES

A cosmic string loop which is well inside the cosmo-
logical horizon is specified by the position x(¢,0) of the
string as a function of two variables: time ¢ and a space-
like parameter o that runs from 0 to L. The total energy
of the loop is uL where u is the mass per unit length of
the string, and L is referred to as the “invariant length”
of the loop. If one examines only a single cycle of oscil-
lation, and Gu << 1, then gravitational back reaction
may be neglected. In this case, the string loop satisfies
equations of motion whose most general solution is

x(t, o) =

[a(t + o) + b(t — 0)]. (2.1)

N | =

Here, a and b are a pair of functions satisfying the “gauge
condition” |a’(u)| = |b’(v)| = 1, where a prime denotes
differentiation with respect to the function’s argument.
In the center-of-mass frame of the loop, a(u) = a(u + L)
and b(v) = b(v + L). Because the functions a and b
are periodic in this frame, each can be described by a
closed curve in three-space. In this paper these curves
are referred to as the a loop and the b loop. The gauge
conditions ensure that the a and b loops are parametrized
by their length. Together, the a and b loops define the
trajectory of the string loop. In Sec. II A we outline
the numerical code used to calculate the self-intersection
points of an arbitrary string loop. Section IIB provides
the analytic tests of our code. In Sec. II C we describe the
initial parent loops which were fragmented, and examine
several of the properties of the resulting child loops. The
energy and momentum radiated by the child loops are
examined in Sec. III.

A. Fragmentation code

The functions a(t+0) and b(t—o) determine the shape
of the string loop as a function of time. The condition
for a loop to self-intersect at a time ¢; is simply

x(ti,al) = X(ti,O'z) (22)

or equivalently
a(ti + 0'1) + b(tl — 0'1) = a(ti + (72) + b(t, — 0'2), (23)

with o3 # o1 +nL for n an integer. In order to determine
if a loop self-intersects, we divide the evolution of the
loop over a single oscillation (0 < ¢t < L/2) into 6N
time steps, where IV is an integer typically in the range
N € (200, 800). At each time step, N points are set down
on the loop at regular intervals in o. A piecewise linear
approximation to the loop is then made by joining the
N points with linear segments. Each segment is assumed
to have a constant velocity, given by the velocity of the
string loop at the point halfway between the ends of the
linear segment. The O(N?) pairs of segments are then
compared to see if any will cross within the next time
step. This introduces a lower bound of O(L/N) on the
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size of the smallest child loop which can be found by our
code.

A crossing is detected by first finding the time ¢o at
which the volume of the tetrahedron defined by the four
end points of the two segments goes to zero. This is easy
to compute since the segments are assumed to have con-
stant velocity. If the time ¢, is within the next time step,
then it is possible that an intersection may occur during
that time step. The vanishing tetrahedron volume only
means that the lines defined by the two segments are
coplanar; it does not ensure that the intersection point
lies on both (or either) of the two linear segments. We
calculate the intersection point of the two lines to check
whether the two segments actually cross. If they do, then
a possible intersection has been located. The intersec-
tion is characterized by the three coordinates (to,01,032),
where 07 and oy are the spatial coordinates of the in-
tersection point on the two linear segments. However,
since the piecewise linear loop is only an approximation,
the intersection found above may not correspond to a
true intersection on the real loop. Furthermore, even
if a true intersection does occur, the values (¢o,01,02)
would only locate it approximately. In order to find
the exact intersection point, Eq. (2.3) is solved using
the Newton-Raphson method with (¢o,01,02) supplied
as the initial trial solution, using the exact expressions
(not the piecewise linear approximation) for the loop’s
trajectory. Given a sufficiently good trial solution, the
Newton-Raphson method will always converge to the ex-
act intersection point if one exists. Each pair of linear
segments is checked for an intersection. It is possible
that more than one intersection will be found in a given
time step. In this case, the fragmentation takes place at
the earliest intersection.

The method we use to detect intersections is slightly
different from that used by Scherrer and Press. In their
code, linear segments are used to approximate the a and
b loops. This gives rise to a piecewise linear loop with
|

a(u) = sin(u)k — [cos(P)§ + sin(¢)Z] cos(u),
b(v) = [(a — 1) sin(v) — Fasin(3v)]% + [(a — 1)

The parameters o and ¢ are constrained to satisfy 0 <
a <1and —7 < ¢ < w. However, the symmetries in this
family of loops allow one to restrict attention to 0 < ¢ <
/2.

To test our code, we have fragmented 10000 loops
from this family, and compared them to Embacher’s ana-
lytic results. Embacher has calculated the fragmentation
points for the initial Turok loops only. The loops are not
allowed to intercommute. Thus, for this test, we allowed
our code to run only until the first fragmentation occurs
(or through one full oscillation if the loop does not self-
intersect). The number of linear segments used at each
time step to locate the approximate loop crossings was
N = 200 for each of the test loops. The two-dimensional
parameter space was divided into a (100 x 100) grid of
loops with 0 < @ < 1 and 0 < cos(¢) < 1. Figure 1
shows the results of our numerical fragmentation code.

cos(v) — 2acos(3v)]§ — 24/ (1 — ) cos(v)Z.
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approximately the same shape as the real loop. The vol-
umes of the tetrahedrons formed by the different pairs
of segments on the approximate loop are then used to
determine potential crossings as above. The difference is
that with our method, the kinks joining the linear seg-
ments are always equally spaced (in o) while the spacing
between any two kinks in the Scherrer-Press method is a
function of time.

When a string loop self-intersects, it fragments into a
pair of child loops. The a and b loops which define the
trajectories of the two child string loops are simply re-
lated to the a and b loops of the parent string loop [11].
At the instant the fragmentation takes place, the two in-
tersecting points on the parent string loop correspond to
two points on both its a loop and its b loop. The a and
b loops for the two child loops are generated by break-
ing the parent a and b loops at these points, and then
continuing each piece of the curve periodically in three-
space. The child a and b loops generated in this way will
not be closed curves. This is because the center of mass
of each child string loop will be in motion relative to the
center-of-mass frame of the parent string loop. After the
parent loop has fragmented, each child loop is then frag-
mented recursively until only non-self-intersecting loops
remain. The a and b loops of each child string loop are
known analytically since they are composed of sections
of the known a and b loops of the original parent string
loop. Thus, the trajectory of each child loop may be de-
termined with the same accuracy as that of the initial
parent loop.

B. Testing the fragmentation code

The self-intersection points for Turok’s two-parameter
family of cosmic string loops [18] have been determined
analytically by Embacher [16]. The a and b loops which
define this family of string loops are given by

(2.4)

[
Loops which were found to self-intersect are shown as
dark dots. Loops for which no intersection was found are
shown as light dots. Also shown is the analytic bound-
ary derived by Embacher dividing the parameter space
into self-intersecting and non-self-intersecting loops. Our
fragmentation code is in perfect agreement with the an-
alytic predictions. In the cases where an intersection
was predicted, the coordinates characterizing the inter-
section, (¢;,01,02), found by our code typically agreed to
six decimal places with the predicted values. This agree-
ment gives us good confidence that our fragmentation
code calculates intersection points correctly.

C. Fragmentation results

A realistic set of string loop trajectories may be gener-
ated by loop fragmentation in the following way. Parent
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FIG. 1. The figure shows 10000 loops from Turok’s

two-parameter family of cosmic string loops defined by the
parameters a and ¢. Loops which our code found to be
self-intersecting are shown as dark dots. Loops for which
our code found no self-intersection are shown as light dots.
The closed solid curve shows Embacher’s analytic result di-
viding the parameter space into regions corresponding to
self-intersecting and non-self-intersecting loops. It is in per-
fect agreement with our fragmentation code.

loops with very different initial conditions are recursively
fragmented into non-self-intersecting child loops. If the
properties of the final child loops are similar, indepen-
dent of the initial conditions used for their parent loops,
then they should be representative of the properties of re-
alistic cosmic string loops. We follow Scherrer and Press
[11] in the choice of what parent loops to fragment, and
begin with two sets of loops having very different initial
conditions. We take the a and b loops defining all the
parent loops to be of the form

M
az(s) = Z Qzm cos(MS + Ppm),

m=1

(2.5)

with similar equations for ay,a,, and b. It should be
noted that s is not the length along the a loop. The
actual length u(s) must be computed numerically. Fol-
lowing Scherrer and Press, we take M = 10 and take the
@’s to be random numbers in the range [0,27]. For the
first set of parent loops (referred to as type A loops), the
a,, and b,, coefficients are chosen to be random numbers
between 0 and 1. This gives equal amplitude to both the
high and low frequency modes, resulting in highly con-
voluted initial loops which each fragment into a large
number of child loops. For the second set of parent loops
(referred to as type B loops), the a,, and b, coefficients
are chosen to be random numbers between 0 and 1/m?.
This gives smaller amplitude to the high frequency modes
and results in loops which are much less convoluted than
the type A loops. As one would expect, the type B loops
typically fragment into a much smaller number of child
loops.

We have fragmented a total of 900 parent loops (200
type A, 700 type B). This resulted in a total of 12418
child loops (5723 from type A parents, 6695 from type
B). At each time step when fragmenting loops of type B, a
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total of N = 400 linear segments were used to find the ap-
proximate intersection points. For the more convoluted
type A loops, this number was increased to N = 600.
For both the type A and B cases, a number of loops were
rerun with N increased by 200. In both cases this re-
sulted in almost no new child loops being formed. Thus,
we are confident that we are not missing a large number
of small loops just below the resolution of our code.

We compared the loops generated by our fragmenta-
tion code to those generated by Scherrer and Press [11].
Scherrer and Press fragmented a total of 100 parent loops
(20 type A, 80 type B) for a total of 1172 child loops (561
from type A parents, 611 from type B). The two codes
produce very similar sets of child loops. The only differ-
ences are due to the better statistics of our results and
the slightly higher resolution of our code. (Scherrer and
Press use 256 linear segments to approximate both types
of loops in their simulations.) Details of the comparisons
between the different sets of child loops are given below.

Our fragmentation code evolves each parent loop for-
ward in time, checking for fragmentations. If the loop
does self-intersect, then the fragmentation procedure is
carried out recursively on each of the child loops until
only non-self-intersecting loops remain. The mean num-
ber and standard deviation of stable child loops gener-
ated by our code per parent loop are 29+ 6 (type A) and
10 + 4 (type B). This is slightly higher than the values
28 + 6 (type A) and 8 + 4 (type B) found by Scherrer
and Press. The slightly larger mean values found by our
investigation are due partly to improved statistics and
partly to the higher resolution of our code. The larger
number of segments used by our code to approximate the
loop at each time step allows us to detect smaller loop
fragmentations than was previously possible.

The number of stable child loops of a given generation
are shown in Fig. 2. (The initial parent loops are first
generation, their direct children are second generation,
etc.) The results for child loops descended from loops of
type A and B are shown in Figs. 2(a) and 2(b), respec-
tively. For comparison, the equivalent results found by
Scherrer and Press are shown in Figs. 2(c) and 2(d). It
should be noted that because the total number of loops
represented in each of the graphs is different, the scales
on the vertical axes are also different. The scales have
been chosen to allow direct comparison between the dif-
ferent graphs. As expected, the more convoluted type A
loops undergo more fragmentation than the B loops and
typically result in stable child loops of a higher genera-
tion. The larger mean number of child loops found by our
code causes the peaks of the distributions in Figs. 2(a)
and 2(b) to lie slightly to the right of the respective peaks
in Figs. 2(c) and 2(d). In addition, because we examine
more than 10 times the number of stable child loops than
Scherrer and Press, we find much less statistical noise in
our results. However, the overall distributions have very
similar shapes.

The invariant length distributions of the stable child
loops are shown in Fig. 3. Figures 3(a) and 3(b) show the
results for child loops descended from type A and type
B loops, respectively. The equivalent results found by
Scherrer and Press are shown in Figs. 3(c) and 3(d). All
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FIG. 2. The number of stable child loops belonging to a given generation and having initial parent loops of (a) type A and
(b) type B. The corresponding results found by Scherrer and Press are given in (c) and (d).
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FIG. 3. The number of stable child loops with a given invariant length having initial parent loops of (a) type A and (b) type
B. The corresponding results found by Scherrer and Press are given in (c) and (d). All the lengths are given in units where the

initial parent loop length is 1. The logarithms are base 10.
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of the lengths are given as a fraction of the initial parent
loop’s length, which we set equal to 1. Because the A
loops undergo more fragmentation, the size distribution
in this case is centered around smaller lengths than in
the B case.

Comparing our results to those found by Scherrer and
Press, we find that overall the distributions look similar.
However, there are two differences worth noting. First,
while the peaks of the distributions are at roughly the
same place, a slightly larger fraction of loops are found
to the left of the peaks in our results. This increase in the
number of loops of relatively small size is again due partly
to better statistics and partly to the increased resolution
of our code. The second difference has to do with loops
of extremely small size. We impose an artificial cutoff
of order (1/N) on the minimum loop size generated by
our code. This cutoff is equal to the size of the smallest
loop that. could be fragmented off of one of the initial
parent loops. Even though the same number of segments
are used to detect fragmentations on each child loop, this
cutoff is still imposed. Thus, our distributions have no
loops with length less than ~ (1/600) in Fig. 3(a) and
~ (1/400) in Fig. 3(b). While Scherrer and Press have
a cutoff of ~ (1/256) for the size of the smallest loop
fragmented off their parent loops, they do not impose this
cutoff on the subsequent child loops. If a child loop has
length 0.1, then that loop is allowed to generate a child
of its own with length as small as ~ (0.1/256). Thus
their code allows very small loops to be formed through
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multiple fragmentations. However, these very small loops
are biased in that they can only come from loops that are
already small. Figures 3(c) and 3(d) show that there are
very few loops generated in this way which have length
smaller than the cutoff we impose.

The total momentum of the string loops is conserved
when fragmentation takes place. Thus, when small loops
are fragmented off of larger ones, they typically have
large center-of-mass velocities. To determine whether the
loops used in this investigation break roughly in half, or
whether they tend to break off small child loops, one can
define a fragmentation fraction f to each fragmentation
which occurs. This fraction is given by the ratio of the
length of the smaller of the two child loops to the length
of the parent loop (0 < f < 0.5). Figures 4(a) and 4(b)
show the number of fragmentations with a given value of
f for the type A and B loops, respectively. Figures 4(c)
and 4(d) show the equivalent results found by Scherrer
and Press. While there is a larger amount of statisti-
cal noise in Figs. 4(c) and 4(d), these distributions are
seen to be fairly similar to those in Figs. 4(a) and 4(b).
The tendency of the type B loops to form child loops
of unequal size (small f) is clearly shown in Figs. 4(b)
and 4(d). This tendency is also found to a lesser extent
for the type A loops as is shown in Fig. 4(a). In all
four cases, the decrease in the smallest f bin is due to
the artificial cutoff introduced by the procedure used for
finding the fragmentations. The larger number of frag-
mentations found in the lowest f bins in Figs. 4(a) and

number of fragmentations

number of fragmentations

0.1 0.2 0.3 0.4 0.5
f

FIG. 4. The number of fragmentations with a given fragmentation fraction f for loops having initial parent loops of (a) type
A and (b) type B. Here f is the ratio of the length of the smaller of the two child loops to the length of the immediate parent
loop. The corresponding results found by Scherrer and Press are given in (c) and (d).
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4(b) are a result of the high resolution of our code.

The tendency of fragmentations to form child loops of
unequal size has a dramatic effect on the velocity distri-
bution of the loops. When a small loop is fragmented off
of a much larger loop, it is typically formed with a large
center-of-mass velocity. Figures 5(a) and 5(b) show the
velocity distributions of the stable child loops descended
from type A and type B parents respectively. The mean
velocity and standard deviation are v/c = 0.60 + 0.26
for case A and v/c = 0.73 £ 0.26 for case B. The equiv-
alent velocity distributions found by Scherrer and Press
are shown in Figs. 5(c) and 5(d), and have mean veloc-
ities and standard deviations of v/c = 0.55 & 0.24 and
v/c = 0.64 * 0.25 respectively. All of the velocities are
specified with respect to the center-of-mass frame of the
initial parent loops.

In this section we have shown that the stable child
loops generated by our fragmentation code are very sim-
ilar to those generated by Scherrer and Press, and argued
that the small differences are due to the improved statis-
tics of our results and the better resolution of our code.

III. GRAVITATIONAL RADIATION

As cosmic string loops oscillate, they lose their energy
in the form of gravitational radiation. If a loop radiates
its energy in a non-spherically-symmetric pattern, then
the loop will also radiate spatial momentum. In this sec-
tion we examine the rates at which the stable child loops
described in Sec. II radiate energy and spatial momen-
tum.

- (a)
&, 1200
1)
2
(3
S 800
St
[}
Ke)
g
2 400

0

0.25 0.5 0.75 1
v/c

(©

number of loops
® )
(=] o

B
=]

0.25 0.5 0.75 1
v/c

4343

The rates at which a cosmic string loop radiates energy
and spatial momentum as observed in the center-of-mass
frame are easily related to the rates observed in any other
frame. If we define the four-momentum of the gravity
waves emitted by a string loop in its center-of-mass frame
to be P* = (E,P) = (E,P?), where i = z,y,z, then
the average rate of energy and momentum loss by an
oscillating string loop in that frame is given by AP%/Ar,
where

AP (AE AP 3.1)

Ar C\Ar E) = Gﬂz(’)’o,’)’l)-
Here, AE/AT is the energy radiation rate (i.e., the
power) and AP?/At are the three spatial components
of the momentum radiation rate. All four quantities
are averaged over a single oscillation of the loop. In
any given reference frame, the dimensionless quantities
v* = (v°,+*) depend only upon the shape of the cosmic
string loop as it oscillates. They are invariant under a
rescaling (magnification or shrinking) of the loop, pro-
vided that the velocity at each point on the rescaled loop
is unchanged.

Because v< is a four-vector, we may easily calculate its
components in any other frame of reference. For example,
in a frame which is moving at velocity w in the center-
of-mass frame,

~0 0 7
7' =T(" —w*) (3-2)
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FIG. 5. The number of stable child loops with a given center-of-mass speed v = |#] with initial parent loops of (a) type A
and (b) type B. The corresponding results found by Scherrer and Press are given in (c) and (d). The speed of each child loop
is measured in the center-of-mass frame of the initial parent loop.
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C=1) (wiyut —Tyowi,  (3.3)

w
where w = |w| and T' = (1 — w?)~!/2. These equations
are simply the transformation laws of four-vectors (Egs.
11.19 of [19]). Note, however, that the observed radiation
rates in this new frame differ from AP*/AT = Gu?5*

AP' 1 AP Gu?_; o 7
== = i—gu|l L
Af T Ar r KT

Thus the numerical values found for the radiation rates
depend upon the observer’s frame of reference. In the
work of SQSP [12] it is stated that “Our v values have
been calculated in the parent loop center of mass, in
which the daughter loops can have large velocities, but
the results would be the same if calculated in the rest
frame of the daughter loops”; this statement is not true
unless v* = 0 in which case no spatial momentum is radi-
ated in the center-of-mass frame. We note, however, that
because the radiated spatial momentum in the center-of-
mass frame is typically small (as shown below) the grav-
itational radiation rate observed in any frame will differ
by only a few percent from that observed in the center-
of-mass frame [20].

To calculate the radiation rates of the child loops gen-
erated by our fragmentation code, we have used the piece-
wise linear method developed by Allen, Casper, and Ot-
tewill [14,15]. This method calculates v* exactly in the
center-of-mass frame for any loop for which the a and b
loops are composed of piecewise linear segments. Accu-
rate radiation rates for smooth loops are found by ap-
proximating the smooth a and b loops with piecewise
linear ones. This method has been carefully tested, both
against other methods and against a large class of loops
for which the exact radiation results are known [10,14,15].

We have calculated the v values for a total of 11625
non-self-intersecting child loops (5305 descended from
type A parents, 6320 from type B). Each loop was
boosted into its center-of-mass frame, and the (now
closed) a and b loops were approximated with 48 seg-
ments each. When testing the piecewise linear method,
it was found that the percent error in v* was approxi-
mately given by 200/N, where N is the total number of
segments used to approximate the string loop. Since we
have used a total of N = 96 segments for each loop, we
expect errors of no more than a few percent.

The distributions of gravitational radiation rates for
the stable child loops are shown in Figs. 6 and 7. Fig-
ures 6(a) and 6(b) show the results for loops descended
from type A and B parents respectively. Figures 7(a)
and 7(b) show the same results, but with 10 times the
number of v° bins. The distributions have very similar
shapes, independent of the initial parent loop type. We
have also calculated the radiation rates in three other
reference frames: the parent loop center-of-mass frame,
the frame in which the net spatial momentum radiated

1 o .
+ (1 - f) w (w7 )wt — 'yo'w‘).
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by a factor of 1/T' = A7 /At. The correct radiation rates
as observed in the new frame are

AP 1AP° Gup?_, :
— = — = 70 = Gu2(+° — wiv?
Af T Ar r w7 —wir')

(3.4)

and

(3.5)

is zero (w® = ¥%/4°), and the frame in which the energy
radiation rate appears smallest [w® = +¢/(v;77)]. Be-
cause the radiated spatial momentum is typically small
(as shown below), the individual radiation rates are not
greatly changed, and the distributions appear very simi-
lar in all four frames. In particular, the distributions all
show the dramatic fall off in the number of loops with
0 < 45.

For comparison, the distributions of gravitational ra-
diation rates found by SQSP [12] are shown in Figs. 6(c)
and 6(d). SQSP calculated energy radiation rates in the
parent loop center-of-mass frame for 455 child loops (240
descended from type A parents, 215 from type B). Both
their results and our own find the distribution of loops to
be peaked near v° = 50, and to fall off rapidly for larger
values. There is, however, a dramatic difference in the
results for v° < 40. While SQSP find a small number of
loops with very low values of 4°, we find that the distri-
butions fall off extremely rapidly for v° < 44, and did not
find a single loop with v° < 40. (It has been suggested
[20] that for certain loops, a lack of numerical resolution
in the computer code used to calculate v° could explain
the lowest «° values reported in [12].) Although the dra-
matic cutoff in the distribution of gravitational radiation
rates is a new result, a nonzero lower bound on +° was
not totally unexpected.

There are several reasons why a nonzero lower bound
on «° was not surprising. One reason is that an investi-
gation of all loop trajectories previously studied by other
authors found that none of those trajectories had v° < 44
[14], where here and below we consider only radiation
rates in the center-of-mass frame. A second piece of ev-
idence comes from a specific class of cosmic string loop
trajectories which we have recently studied, for which
exact v° values are known [10]. String loops within this
specific class are defined by a and b loops which have the
following form. The a loop is a closed curve consisting
of two equal length, colinear, straight segments. The b
loop is constrained to lie in the plane perpendicular to
the a loop. The loop trajectory with the absolute min-
imum value of v° for any loop in this specific class has
been identified and has

27

% =16 dz

0 xr

1 — cos(

2) =~ 39.003. (3.6)
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FIG. 6. The number of stable child loops with a given rate of energy loss in gravitational radiation, in units of Gu2, for
initial parent loops of (a) type A and (b) type B. Each bin has width 10. The corresponding results found by SQSP are given

in (c) and (d).

The b loop in this case has the shape of a perfect circle
(traversed once) as shown in Fig. 8(a). This string loop
has the lowest value of 4° which is currently known.
Finally, given the mounting evidence that loops with
arbitrarily small values of v may not exist, we have writ-
ten a computer code which searches the space of piecewise
linear loop trajectories for the loop with the minimum
value of 7°. The results of this search are preliminary;
however, after examining tens of thousands of loops, the
minimization routine has yet to find a loop with +° less
than the above value of v® = 39.003. Taken together,
this evidence leads us to make the following conjecture.

Conjecture. In the center-of-mass frame, there exists
a minimum gravitational radiation rate ¥2; > 0 for all
cosmic string loops.

While the value of 72, is not known, there is evidence
that it may equal 39.003... . Figure 8(a) shows the a and
b loops for the string loop with the smallest known value
of 4%, as described above. This loop is known to have
the minimum value of 4° for any loop in the special class
of loops for which the a loop lies along a line and the
b loop lies in the plane orthogonal to that line. Figures
8(b)-8(d) show the a and b loops for the three string
loops generated by our fragmentation code which have
the lowest values of 4°. All the string loops have been
boosted into their center-of-mass frames and all are seen
to have very similar a and b loops. In each case either
the a or the b loop lies approximately along a line, and
the other loop lies approximately in the plane orthogonal
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FIG. 7. The number of stable child loops with a given rate
of energy loss in gravitational radiation, in units of Gu?, for
loops having initial parent loops of (a) type A and (b) type
B. The bins have unit width.



4346

(a)
(b)

a(u) b(v)

a(u)
b(v)

PAUL CASPER AND BRUCE ALLEN

d
© b(v)
a(u)

a(u)
b(v)

FIG. 8. The a and b loops defining (a) the string loop with the lowest known value of 7° and (b)—(d) the three
string loops generated by our fragmentation code with the lowest values of 7°. The radiation rates for loops (a)-(d) are

~°22(39.003, 40.898, 41.506, 41.620), respectively.

to that line. The loop that lies in the plane has a near
circular shape, although in each case the fragmentation
process has left one kink on the loop. Out of 11 625 loops
examined, only six had v° < 42. All six of these loops
have the same general shape as the loop with the smallest
known value of 7°. Based on this evidence we make the
following conjecture.

Congjecture. The value of v, is v2,, = 39.003... and
is obtained from a cosmic string loop defined by an a loop
that has two straight segments along a line and a circular
b loop (traversed once) in the plane orthogonal to that
line.

Note that this second conjecture implies the first. While
we do not have a formal proof of either conjecture, there
is additional compelling evidence which supports them.

Additional evidence for our conjectures was found by
|

fOL du _]'OL dv [)'cz(u,v) - %]2
L T
Jo du [ dv

2:

S

where a prime means differentiation with respect to the
function’s argument. It is clear from this equation that s>
is nonnegative and lies in the range s> € [0,1/4]. We have
computed s? for each for the 11625 non-self-intersecting
child loops for which ¥* has been calculated. Figure 9
shows a scatter plot of v° vs s? for each of the child loops.
Here, we have included loops descended from both type A
and type B parent loops on the same plot. The individual
scatter plots are virtually indistinguishable.

The most important feature of Fig. 9 is that there
appears to be a lower bound on «° for each value of s2,
and the curve defining this lower boundary appears to be
a monotonically increasing function of s2. This suggests
very strongly that, in the center-of-mass frame, if there
is a cosmic string loop with an absolute minimum value
of 49, then it will be a loop which has s? = 0. However,

S ¥ i / “do [ol() B W),
[

investigating the correlation between the rate at which
cosmic string loops radiate gravitational waves and the
velocity of the loops as they oscillate in their center-of-
mass frame. One may easily prove that in the center-of-
mass frame the square of the velocity averaged over one
period of oscillation has a constant value for any cosmic
string loop:

L L/2 .2 L L

d dt , T 1

fo O'Lfo L/:( (U ) = = / du/ dv )'c2(u,v) — ;_’
fo do fo dt 0 0

(3.7)

where u =t + 0 and v =t — 0. However, this does not
mean that each point on the loop moves with velocity
1/ V/2 at each moment in time. In order to measure the
deviation of the square of the loop’s velocity from 1/2,
we compute the variance

(3.8)

one can easily prove that the only string loops which have
s2 = 0 are exactly the loops where either the a or b loop
lies along a line, and the other loop lies in the plane per-
pendicular to that line. (Here we shall assume, without
loss of generality, that it is the a loop which lies along a
line.) When a a loop is composed of two equal length,
co-linear straight segments, then the string loops belong
to the special class of loops investigated in [10]. When
the a loop is composed of an even number (more than
two) of co-linear straight segments, then the string loops
no longer belong to this special class of loops. However,
in this case numerical investigations have shown that, as
one would expect, the additional complexity in the string
loop trajectories caused by the additional segments on
the a loop (for any fixed b loop) inevitably leads to a
larger vlaue of 4¥°. Thus the string loop identified in the
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FIG. 9. Scatter plot of v° vs s® for 11625 child loops de-
scended from both type A and type B parent loops. s? is
the variance of the loop’s squared velocity [Eq. (3.8)]. This
figure suggests that there is a lower boundary corresponding
to a minimum value of v° for any value of s?. It also sug-
gests that the curve defining this lower boundary increases

monotonically as a function of s2.

second conjecture is the loop which appears to have the
absolute lowest value of v° among the class of loops with
s2 = 0. While the numerical evidence provided by Fig.
9 does not prove either of our conjectures, it does give
them considerable additional support.

If a loop radiates its energy asymmetrically, then the
loop will also radiate spatial momentum. When a loop ra-
diates momentum in a given direction, it begins to recoil
and accelerate in the opposite direction. This is known
as the rocket effect. The magnitude of the total radiated
spatial momentum of a loop is given in the center-of-mass
frame by

1
apP,\*> (AP)\? [aP\?|®
-|:(A‘r) +(A7‘) +(A’T>:| - (39)
The number of child loops with a given total radiated
momentum is shown in Fig. 10. Figures 10(a) and 10(b)
show the results for loops descended from type A and
type B parents, respectively. The shapes of the two dis-
tributions are very similar. In both cases, the majority of
loops radiate only a small amount of momentum. If M
and 7 are the mass and lifetime of a child loop, respec-
tively, then the velocity the loop gains due to the rocket
effect is approximately v, ~ (P/M)r ~ (P/E) < 0.1.
This is small compared to the typical velocity a child
loop acquires at its formation (see Fig. 5).

aP
AT

IV. CONCLUSION

We have generated and examined a large number of
realistic cosmic string loop trajectories. The trajectories
were found by using a numerical fragmentation procedure
similar to that of Scherrer and Press [11]. Our fragmen-
tation code has been successfully tested on a large set
of loops for which the self-intersection points are known
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FIG. 10. The number of stable child loops with a given
rate of spatial momentum loss in the center-of-mass frame, in
units of Gu?, for loops having initial parent loops of (a) type
A and (b) type B. Each bin has a width of 1/10.

analytically. Initial parent loops from two very differ-
ent classes were evolved forward in time until they self-
intersected. Once a loop self-intersects, it fragments into
two child loops. The child loops are then fragmented
recursively until only non-self-intersecting loops remain.
The set of stable child loops has been examined and com-
pared with the loops generated by Scherrer and Press.
We find that the loops generated by the two different
fragmentation codes are similar, though the improved
statistics and higher resolution of our code have iden-
tified a some what larger number of small, high velocity
loops.

The rates at which the stable child loops radiate energy
and momentum have been calculated in several different
reference frames. In the center-of-mass frame the radi-
ated spatial momentum is typically small. Thus the dis-
tribution of energy radiation rates appears similar in any
frame and the velocity gained due to the rocket effect is
negligible compared to the velocity a loop is formed with.
The distribution of gravitational radiation rates is found
to be highly peaked in the range v° = 45-55 and falls off
rapidly for larger values of 4°. There is a sharp cutoff
in the distribution for lower values of v°, with absolutely
none of the loops having v° < 40. This, along with sub-
stantial other evidence, leads us to conjecture that in the
center-of-mass frame there is a minimum value v2; > 0
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of the string radiation. Because the a and b loops for all
of the child loops with v° < 42 have roughly the same
shape as the a and b loops describing the loop with the
lowest known value of 4°, and because in the center-of-
mass frame this loop appears to have the minimum value
of v° within the class of string loops with s? = 0, we
conjecture that this loop has the smallest radiation rate
in the center-of-mass frame for all cosmic string loops,
and that 42, = 39.003. It is hoped that future work will
result in a formal proof of one or both of the conjectures.

Note added in proof. Since the time this paper was
submitted, we have generated and investigated a total of
12 830 additional child loops descended from two new sets
of initial parent loops. These two new parent loop types
differ from the A and B type loops in that the first set
of loops are defined to have 20 modes (with amplitudes
chosen in the same manner as the type A loops), and the
second set have 5 modes (with amplitudes chosen in the
same manner as the type B loops). This additional in-
vestigation has shown that the distributions of radiation
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rates (shown in Fig. 7 and 10), and the correlation be-
tween the gravitational radiation rate and the variance
of the loops squared velocity (shown in Fig. 9) do not
depend on the number of modes used to define the initial
parent loops. This provides additional evidence that the
cosmic string loop trajectories investigated in this paper
are representative of generic, realistic loop trajectories.
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