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Abstract 

We discuss Einstein's equations in the context of normal conformal Caftan connections, derive a 
new conformal representation of the equations, and express the equations in a conformally invariant 
gauge. The resulting formulation of the equations is used to show the existence of asymptotically 
simple solutions to Einstein's equations with a positive cosmological constant. The solutions are 
characterized by Cauchy data on a space-like slice and by the intrinsic conformal structure on the 
conformal boundary at space-like and null infinity. 
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1. Introduction 

Einstein's field equations show a very peculiar transformation behaviour under conformal 

rescalings of  the metric field. In a suitable representation the equations for the rescaled 

metric retain their hyperbolicity even under conformal rescalings with conformal factors 

which vanish on subsets of  space-time. The consequences of  this property for the long- 

time behaviour of  gravitational fields have been worked out in detail for de Sitter-type 

space-times [5,7], i.e. for solutions to Einstein's field equations 

Ric(~) ---- X~ (1.1) 

with negative cosmological constant X (the signature (+,  , , - )  of the metric is assumed 

here, cf. Section 2 for our convention concerning the Ricci tensor). Beside the global non- 

linear stability of  the de Sitter space-time and other asymptotically simple solutions it 

has been shown that the conformal properties of  the equations allow to deduce sharp and 
complete information on the fall-off behaviour of  the gravitational field. 
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The purpose of the present article is twofold. On the one hand our investigation of the 
"conformal structure of the field equations" will be completed in a certain sense. The ar- 

tificially introduced gauge freedom of admitting arbitrary conformal rescalings will be 
extended by allowing in addition transitions to arbitrary symmetric connections which are 

compatible with the conformal structure of the metric ~. From this results a new confor- 

real representation of the Einstein equations (1.1). The purpose of this generalization is to 

increase the flexibility in choosing gauge conditions, in particular to admit a class of con- 

formally invariant gauge conditions based on the use of conformal geodesics. These curves 
have been found useful before in the construction of coordinates in asymptotic regions of 

solutions to Einstein's equations [8]. The present article contains a systematic study of con- 
formal geodesics in the context of the Einstein equations. It turns out that their use allows to 

specify explicitly certain quantities, which appear in the field equations and determine the 
gauge, in terms of the initial data. As a consequence the evolution equations get a surpris- 

ingly simple form which is ideally suited for a detailed analysis of the asymptotic behaviour 

of the solutions. 
On the other hand we use the new conformal representation to analyse the behaviour of 

solutions to Einstein's field equations at large. The discussion of the conformal properties 
of Eqs. (1.1) in the first part of this article is sufficiently general to apply to cosmological 

constants of arbitrary sign. However, since the study of the case ~. = 0 requires a rather 

detailed analysis, it will be given in a separate article. 
In the present paper we investigate solutions to (1.1) with ~. > 0. Although quite a 

number of properties of such solutions will be exhibited on the way, we shall focus on the 

question of existence of solutions, which apparently has not been addressed before in any 
generality. For investigations of such solutions concerned with their geometrical properties 

and directed towards applications to physics, the reader is referred to the article [12] and 
the references given therein. 

We give an outline of our existence result. To describe the inital data, we consider sets 

(S, h, ~) respectively (S, h, X, w). Here S, S denote smooth, orientable, three-dimensional 
manifolds, the latter being compact with boundary 0S, while h and h denote smooth (neg- 
ative definite) Riemannian metrics, )~ and X denote smooth, covariant, symmetric, rank 2 

tensor fields on S and S respectively, and to denotes a smooth function on S which is positive 
on the interior and satisfies to = 0, dto ~ 0 on 0S. 

A triple (S, h, ~) is called a "smooth Cauchy data set for the Einstein equations", if the 
fields h, 9~ satisfy on S the constraint equations induced by Eqs. (1.1) with some constant 
~. > 0 on space-like hypersurfaces (cf. (5.1)). A smooth Cauchy data set (S, h, )~) is 
called "smoothly conformally compactifiable with conformal extension (S, h, X, to)", if 
there exists an embedding S --~ S which allows one to identify S with the interior S \ 0S of 
S such that after this identification we have h = to2h, X = to ~ on S. In the theorem below 
we shall consider smoothly compactifiable Cauchy data sets which are "asymptotically 
simple", i.e. which satisfy the fall-off conditions inherent in the requirement of asymptotic 
simplicity, a notion which is discussed in detail in Section 5.1. The existence of a certain 
class of such data has been shown in [2]. 
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With a smoothly conformally compactifiable Cauchy data set (S, h, )~) with conformal 

extension (S, h, X, o9) we associate the manifold M = S x [0, oo[. We denote the part 

0S x [0, ~ [  of its boundary by 2" and identify S - S x {0}, ,~ - S x {0}, 0S = 0S x {0}. 
For given ot ~ R + we set hT/~ = ~ x [0, or[ C AT/, M~ = S x [0, or[ ~ hT/~, 2"~ = 2" f3 M~. 

Up to some subtleties, which will be explained later on, we can now state the following 
theorem. 

Theorem 1.1. Let (S, h, )~) be a smoothly conformally compactifiable, asymptotically sim- 

ple Cauchy data set for the Einstein equations (1.1) with positive cosmological constant )~ 

which has conformal extension (S, h, X, to). On 2" let there be given a smooth Lorentzian 

conformal structure CI of  signature (+, - ,  - ) .  Suppose the data h, ~(, Cz satisfy on O S 

the corner conditions (cf. Section 5.4). Then there exists for some ct > 0 a solution ~ to the 

Einstein equations (1.1) on ,('lc~ with the following properties. The metric ~, induces h as 

the first and ~( as the second fundamental form on ~S and for any smooth function $2 on M~ 
with 12 > 0 on/~7/a, 12 = 0, dl2 :fi 0 on 2"~, the metric 1-2 2 ~ on ilia extends to a smooth 

Lorentz metric g on Ma which induces on 2"~ a conformal structure which coincides with 

the restriction of  Cz to 2"c~. The solution ~ is unique up to diffeomorphisms and extensions. 

The theorem asserts the existence of solutions to quite an unusual type of initial bound- 

ary value problems for Einstein's equations. Null geodesics with respect to the metric 
approach end points on Z~ only after infinite "time", as measured in terms of an affine 

parameter. Therefore any such null geodesic is future complete. The example of Anti-de 
Sitter space-time (cf. Section 4) suggests that time-like geodesics never end on Z~, while 

space-like geodesics may do so. Again, in the direction in which the latter approach 2-~, they 

are complete. Thus Za represents a boundary at space-like and null infinity. The boundary 
data, which are provided by the restriction of the conformal structure Cz to the set Z~, are 
thus prescribed on a cylinder which represents space-like and null infinity for the solu- 

tion (Ma, ~). The solutions considered here will be called "Anti-de Sitter-type (AdS-type) 

solutions". 
The "location of infinity" is determined solely in terms of the solution ~ to the quasi-linear 

field equations whose existence we want to establish. Thus we are dealing with a kind of 
free boundary value problem and much of our discussion is devoted to the reduction of this 

problem to an initial boundary value problem with a fixed boundary. Another major part of 
the analysis is concerned with the question which data may be prescribed on the boundary 

at infinity, a problem which has not been investigated so far. 
Neither the equations nor our initial and boundary conditions prefer a time direction. 

Therefore our result implies for suitably extended boundary data also the existence of an 
extension of the solution into the past of the initial hypersurface S. The solutions so obtained 
could be called global in space-like directions. Contrary to the case of solutions to Einstein's 
equations with vanishing cosmological constant, in the present case this notion presumes 
the existence of null geodesics which are complete in the future or in the past and whose 

end points generate the boundary 2. 
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The existence of solutions of this type has first been conjectured by Penrose [ 15,16]. 
They represent space-times which he called "asymptotically simple". The hypersurface 2- 
denotes their conformal boundary. Up to questions of extensibility, all such solutions which 

are smooth have been characterized here by initial data on a space-like hypersurface and 
boundary data on 2-. As has been recognized before in the case of a negative cosmological 

constant [5,7], it is seen now that the concept of asymptotic simplicity is natural for Einstein's 

field equations also in the case of a positive cosmological constant. 
In a certain context Hawking [10] suggested as a boundary condition for solutions 

to Einstein's equations with positive cosmological constant that the intrinsic conformal 

structure on the conformal boundary 77 be conformally flat.  This condition is a special 

case of our boundary conditions. Note that it slightly restricts the Cauchy data on the space- 
like slice by the comer conditions. However, such conditions are not peculiar to the special 

situation considered here, they occur naturally in any initial boundary value problem. 
It appears difficult to give a simple description and treatment of the initial boundary 

value problem considered here without referring, explicitly or implicitly, to the conformal 

structure. Null geodesics, which appear to suggest themselves for this purpose, are not 
particularly helpful. In regions sufficiently far into the future of the initial hypersurface, 

null geodesics may be expected to have past as well as future end points on 2- in the future 

of S and therefore can hardly be used to control the behaviour of the solution in terms 

of the initial and boundary data. To illustrate the point, we indicate in Section 7.2 how 
the boundary data are described by using conformal geodesics, which satisfy a system of 

equations given in terms of the metric ~. 
Nevertheless, at the expense of an enormous technical complication it may be possible to 

rederive the above result in terms of the "physical" metric ~ alone. This raises the question, 
whether anything may be gained by dispensing with the conformal techniques. It may be 
asked in particular, whether the condition of asymptotic simplicity, which may appear an 

excessively strong requirement on the data, is imposed only to allow the application of 
the conformal methods. As discussed at the end of Section 5.1, there can be constructed 
smoothly conformally compactifiable initial data sets for Eqs. (1.1) which do not satisfy 

the condition of asymptotic simplicity [2]. In that case the conformal curvature diverges on 
open subsets of the boundary OS. Most likely this behaviour spreads into space-time, thus 

restricting severely the extensibility of the solution beyond the domain of dependence of 
the initial hypersurface S. 

In this context it is worthwhile to remark also on the issue of the global existence of 
solutions to the Einstein equations with a positive cosmological constant. This problem is 
of quite a different nature as the corresponding problems where the cosmological constant 
is non-positive, whereas in those cases the global solutions are "conformally finite", this is 
not true any longer in the case of a positive cosmological constant (cf. Section 4). 

The natural starting point for our discussion of the conformal representation of the Ein- 
stein equations is provided by Cartan's theory of conformal connections, which is reviewed 
in some detail in Section 2. In Section 3 it is used to obtain the desired conformal repre- 
sentation of the Einstein equations and the essential properties of conformal geodesics. The 
results on conformal geodesics which are decisive for their use in the conformal Einstein 
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equations are derived in Lemmas 3.1 and 3.2. 

In Section 6 it is shown that solutions to the reduced conformal field equations indeed 

provide solutions to Einstein's equations if appropriate data are prescribed. This discus- 
sion allows to trace the relationship of the present conformal representation of the Einstein 

equations with their conformal representation used in [5,7]. We shall, however, not comment 

on it. 
Section 5 contains the critical step in our treatment of the problem. Using the previous 

results we show that the semiglobal problem considered in the theorem can be reduced 

to the analysis of local initial boundary value problems for the conformal field equations. 

Another application of Cartan's theory, this time to a three-dimensional problem, is made in 
Section 7, where it is shown how the covariant boundary conditions considered in Theorem 

1.1 are related to the "maximal dissipative" boundary conditions which are considered in 

Section 5. 

The initial boundary value problem for a symmetric hyperbolic system obtained in Sec- 
tion 5 is quite close to, though not quite identical with, a type of mixed problem studied by 

Gu~s [9]. Nevertheless, as discussed in Section 8, Gu~s' results carry over to the present case 

and imply the existence of solutions to the general mixed problem formulated in Section 5 

and consequently of the problem considered in Theorem 1.1. 
It appears, that this article contains the first general treatment of an initial boundary value 

problem for Einstein's field equations. To some extent our analysis relies on special features 
of the conformal boundary. It may be useful, though, to point out the general properties of 

the field equations observed in Sections 5-7 which determine the nature of the boundary 

conditions. 

2. The normal  conformal Cartan connection 

In the following we consider a smooth n-dimensional manifold M, n > 3, endowed with 
a smooth conformal structure C. We think of C as being given by a class of smooth metrics 

of signature (p, q) on M, p + q = n, such that two metrics g, ~ ~ C are related by a smooth 

conformal rescaling 

= £22g, 1"2 E C°° (M) ,  I2 > O. 

The pair (M, C) will be called a conformal space. 
With the conformal structure C there is associated the "normal conformal Cartan connec- 

tion" on a bundle H ( M )  of second-order frames over M. In this section we shall outline its 
construction and those of its properties which will be needed later on. For further details, 
and for some discussion of the case of a Lorentzian conformal structure (p = 1, n ----- 4) 
we refer the reader to [8,13,14] and the literature cited therein. Our representation of the 
subject will be geared to later applications, therefore a number of transformation formulas, 

etc. are explicitly given. 
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2.1. Some conformal groups, Lie algebras, etc. 

We call the pseudo Riemannian space with manifold M,  = I~ n and metric g ,  = rli j dx i dx j , 

where the x i are the standard coordinates on R n and rli j : 0 if i ~ j ,  tli j : 1 if i = j = 

1 . . . . .  P, ~lij = - -1  if i = j = p + 1 . . . . .  n, the "flat standard structure of  signature 
(p,  q)". The point of  M,  where x i = 0 will be called the "origin" of  this space and denoted 

by o. The (local) group H ( p ,  q) of  transformations f which smoothly map a neighbourhood 

U of  the origin onto another such neighbourhood U' ,  such that the origin is left fixed and 
the conformal structure induced by g ,  on U, U f respectively is preserved, i.e. 

t f g ,  = $ 2 2 g , ,  $2 E C ° ° ( U ) ,  $2 > 0 

is generated by: 

(i) The group C O ( p ,  q) of smooth conformal maps of (M, ,  g , )  into itself. An element 
of  this group is given by a matrix C of the form C = $2-1 A, where $2 E R + and A 
satisfies 

tlij A i k A j I : r]kl, 

i.e. A is in the subgroup O(p ,  q) of isometries of  the fiat standard structure which 
leave the origin fixed. 

(ii) The (local) group of "special conformal transformations". An element of  this group 
is characterized by some a E R n and acts near the origin by 

X i -~- ½ a i rl(x, x)  
X i 

1 + r/(x, a)  + l r / (x ,  x)r/(a,  a ) '  

where O(x, a) = rlikxia k, etc. Since these transformations are not defined everywhere 

on M,,  H ( p ,  q) does not act as a group of conformal transformations on the fiat 
standard structure. In the following, two methods will be studied by which H ( p ,  q) is 
made into a transformation group. 

The first way of doing this is useful for the discussion of group theoretical properties. In 
this case the flat standard structure is conformally embedded into a conformal space, the 

M6bius space, which by its construction allows to extend the local action of H ( p ,  q) to the 
whole space. Consider the space with manifold R n+2 and metric o~ = BAC dx A dx C, where 
x A, A = 0, 1 . . . . .  n q- 1 are the standard coordinates o n  R n+2 and the coefficients of  the 
metric are given by the matrix 

0 0 - 1 )  

B = (BAc)  = 0 tli j 0 . 

--1 0 0 

The metric induced by g on the s e t  N p , q  = {X E R n + 2  \ { 0 }  I BAcxAx  c = 0} is degenerate 
in the direction of  the "null generators" 

~. ) ,~X, ~. E R * ,  X E Np,q. (2.1) 
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Using the action of ~* on Np,q indicated by (2.1), we consider the quotient space Qp,q = 
Np,q/~*. It may be identified with the quadric in pn+l (R) defined by the quadratic form as- 

sociated with B. From (~n+2, ~) it inherits a conformal structure into which the flat standard 
structure of signature (p, q) can be conformally embedded. In homogeneous coordinates, 
in which Qp,q is represented by Np,q, such an embedding is realized by the map 

Rn ~ X i F) ~Q(x)(lrl(X, X), X i, 1) E Np,q, (2.2) 

which satisfies t F ~  = $22g.. Here 12 6 C~(M.)  is an arbitrary positive function. The 

manifold Qp,q endowed with this conformal structure is the "Mrbius space of signature 

(p, q)". The group O(p + 1, q + 1) of isometries o fg  which leave the origin fixed is given 
by matrices A satisfying tABA = B. Since these maps also leave fixed the set Np,q, they 
induce conformal maps of Qp,q into itself. The mappings so obtained form the "Mrbius 

group" C(p, q) ~- O(p + 1, q + I) /{E,  - E } ,  which comprises in fact all conformal maps 

of Qp,q. Here, as for other matrix groups considered in this article, E denotes the unit 
element. The embedding (2.2) with I2 = 1 shows that the subgroup K(p + 1, q + 1) of 

O(p + 1, q + 1) which leaves fixed the ray R • (0 . . . . .  0, 1) in [~n+2 induces the local 
transformations of H(p, q) on the embedded flat standard structure. The transformations 

in H(p, q) thus extend to all of ap,q .  It is furthermore seen that the group H(p, q) is the 
semi-direct product C O (p, q) × ~ R n* with multiplication defined by 

(C, b)(C', b') = (CC', bC' + b'), 

and we have a 2 : 1 group homomorphism 

K ( p +  1,q + 1) 9 -F ( 

C,C' ~CO(p ,q) ,  b,b' E R n* 

~2 -1 0 0 \ 
$ 2 - 1 f  i Ai k 0 ) 

$'2"1 l f l  fl fl Al k 
> (C, f C) E H(p,q), 

where C = $2-1A, 12 E R +, A E O(p,q), f ~ ~n , ,  and indices are moved, as will be 
done in the following, with r]i j . 

We shall use the decomposition of the Lie algebra o(p + 1, q + 1) -~ c(p, q) (cf. [13] 
for more details.) described in the matrix notation above by the 1 : 1 map 

- w  zj 0 ) 
o(p + 1, q + 1) 9 d i u' j Z i 

o dj oJ 

""-> (Z i, u i j  -- o)~i j ,  b j )  E R n ~ co (p ,  q)  ~ Rn* _~ c (p ,  q) ,  

where u i j ~ o(p, q), 09 ~ R. 
To describe the adjoint action Ad of the group H(p, q) on c(p, q) we need the map 

R n* 9 b  > S(b) E R  n * ® R  n ® R  n* (2.3) 

which is defined, in index notation, by 

bj > S(b)i  k I =- 8 k ibl "l- 8 k Ibi - r]ilTlkJbj. 
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It is important that the expression on the right is symmetric in the lower indices and takes, 

for fixed index i, values in co(p, q). If  f E R n*, z e R n, we denote the contraction of  f 

with S(b) by (f ,  S(b)), and the contraction of  z with S(b) by S(b)z, such that we have, 

e.g. (f ,  S(b)z)i = fk(t~ k ibl -k- ~k lbi -- rlilrlkJbj)z I. An important identity needed in various 

calculations is given by 

Ad(C- l ) (S (b )Cz)  = S(bC)z, z e R n, C 6 CO (p ,q ) ,  b e R n*. (2.4) 

Observing that the adjoint action of  K(p  + 1, q + 1) on c(p, q) factorizes as 

K (p  + 1, q + 1) 2:1 H(p,  q) ad GL(R n (9 co(p, q) (3 ~n*), 

we can deduce the map Ad from the matrix representation above. For s = (C, f C) 6 
H(p,  q) and z 6 Rn, U e o(p, q), co 6 •, d e R n*, we get 

ad( s - l ) ( z ,  U - ogE, d) = (C- l z ,  C- I  ( s ( f ) z  k- U - OgE) C, 

( -½ ( f  , S(T)z) - T (U - ogE) + d) C). (2.5) 

From this ensues, for z e R n, U, V e co(p, q), o9, ot e R, d, b e R n*, the commutator 

[(0, V - orE, b), (z, U - ogE, d)] 

= ((V - orE)z, - S ( b ) z  + [V, U], b(U - wE) - d (V  - orE)) (2.6) 

in the Lie algebra c(p, q). The maps Ad(s), s e H(p,  q), respect the decomposition of  

c(p, q) given above in the sense that 

Ad(s)(co(p, q)) C co(p, q) ~ g~,., Ad(s)(R n*) C R n*. 

Furthermore, it follows from the formulae above that Ad(s - I ) ,  s e H (p, q), induces a map 

of  R" ~ co(p, q) ~ {0} ~ o(p + 1, q + 1)/R n* into itself, which we denote by A-d(s- l) ,  

and which is given for s = (C, f C) by 

(z, U - ogE, 0) --+ ( C - l z ,  C - I ( s ( f ) z  + U - ogE) C, 0 ) .  (2.7) 

We denote by o9 = (0 "i, ogi J ,  ogj) the (R" ~ co(p, q) ~9 Rn*)-valued Maurer-Cartan form 

on the M6bius group C(p, q). The exPlicit form of the Maurer-Cartan equation 

do9 = -[co,  co] 

can be determined from the commutator (2.6) as 

d(r i = _ogi k A o rk, 

do) i k = __ogi I A ogl k -~- S(ogp)q i k A t7 q , 

dogk = --ogi A ogi k ,  

where we use an obvious extension of  the map (2.3) to a map from Rn*-valued r-forms to 
R n* ® R" ® R"*-valued r-forms, r = O, 1, 2 . . . .  
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2.2. The bundle H (M) of  second-order frames 
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The second way to make H(p,  q) into a transformation group is suggested by the fol- 

lowing observation. Since f ~ H(p ,  q) leaves the origin fixed, its tangent map To(f)  at 

that point acts as a linear transformation on the tangent space To(M.). The elements in 

C O (p, q) are completely characterized by this action. To characterize in a similar way the 

special conformal transformations f ,  which induce the identity transformation on To(M. ), 

we investigate their effect on a structure of  higher order. Such a structure is given by those 

subspaces of  the tangent spaces Th (T M.)  at points h ~ To(M.) which are horizontal with 

respect to the Levi-Civita connections associated with metrics conformal to g..  These sub- 

spaces are mapped into each other by the tangent maps To(f) ,  f ~ H(p,  q), and the group 
of  special conformal transformations acts effectively and transitively on them. This action, 

which generalizes to general conformal structures, will be studied in the following. 

Given the conformal structure C on M we denote by C O ( M )  the principal bundle of  

conformal frames fx = (x, {ek }k=0, J ..... q=n- 1 ) with x ~ M, ek ~ Tx M, such that for g ~ C 
there is an a E R + with 

g(ei, ej) : a2rlij. (2.8) 

Its structure group is CO(p ,  q) and its projection to M will be denoted by zr'. We shall 

consider a frame alternatively as an n-tupel of  tangent vectors or as the isomorphism given 

by R n ~ z ~ ziei E Tx (M).  We also identify a frame field with the local section it defines. 

Let {xU}u=l,2,...,n be a local coordinate system on an open subset U of  M which maps 

U onto an open set V C R n, ei : e ~ i (X)0#, i = 1,2 . . . . .  n, a frame field defining a local 

section of  C O ( M )  over U, and O "j the dual 1-form field satisfying 

(cri e j ) : ( ~ r i u d x V ,  e # jOl~)=tril~etZj : • i j .  (2.9) 

A local bundle coordinate system is given by 

C O ( M )  D Jr t-1 (U) 9 e i ( x )C i j  > (x/t, C i j )  c V × CO(p ,  q). (2.10) 

We denote the Killing vector field generated by u ~ co(p, q) on C O ( M )  by Zu and the 
Rn-valued solder form on C O ( M )  by oJ .  

Suppose V is a connection on M which is torsion free, i.e. it holds 

Veie! - Vetei = [el, el], (2.11) 

and which respects the conformal class in the sense that for any g e C we have 

Vx g~v = -2dx  g~v, 

where dxdx z is a l-form on M which depends on g. Such a connection is sometimes called 

a "Weyl connection". However, in order to avoid any (misleading) allusion to Weyl's theory 

of  gravitation [21 ] we will call such a connection "conformal for g (for C)". It is not required 

to be metric with respect to any metric in the conformal class C. A connection with these 
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properties can be represented by a torsion free co(p,  q)-valued connection form w i j on 

C O ( M )  and V will also be called "torsion free connection on C O ( M ) " .  
For given z 6 R n the connection V distinguishes on C O ( M )  a "horizontal vector field" 

H z by the requirements (09, Hz) = O, (#J, Hz) = z j .  Defining for given fx ~ C O ( M )  an 
isomorphism, whence a frame on C O ( M ) ,  by 

{ Rn ~ c o ( p , q )  > T fx (CO(M)) ,  
F v ( A )  : (z, u) ' n z ( f x )  + Z , ( f x ) ,  

(2.12) 

we obtain a section C O ( M )  ~ fx ~ F v ( f x )  E F C O ( M )  of the bundle F C O ( M )  of 
frames of C O ( M ) .  

The connection coefficients of V with respect to the frame field ek are defined on U by 

1-'i k tek = Veiet. Suppose that V* is another torsion free connection on C O ( M )  and let 

F/* k l denote its connection coefficients with respect to e~. From the fact that the connections 

are torsion free ensues, that the components of the difference tensor V* - V with respect to 

the frame field ek are given on U by Fi *k t - Fi k t = S(b)i k I. Here bk is some Rn*-valued 

function on U which is given by the components of a l-form b on M with respect to the 
frame ek, i.e. bk = (b, ek) = bue# k. The l-form b is defined uniquely and everywhere on 

M by the connections V, V*. 

Suppose, we are given connections V, V* as above and conformal frame fields f = 

{ek}k=l ..... n and f = {~k}k=l ..... n on U. Denote the connection coefficients of V with 

respect to f by F and with respect to f by if' and those of V* with respect to f by F* and 

with respect to f by F*. If~k = ejCJ k with gome C O ( p ,  q)-valued function c i j  on U, 

then we have the well-known formula F/J k = ( c - l )  j l(~i(C l k) + Fp I qC p i f  q k) and a 

similar formula for the starred quantities. It follows S([~)i j k - Fi *j k - f"i j I, = S(bC)i j k 
which corresponds to the transformation behaviour of bk under transformations of the frame. 

If we denote by Hz* the vector fields horizontal for V*, we get the equation 

n z  ( f x )  = n z ( f x )  - Zs(b(fx)z)(fx),  Z C. ~n, (2.13) 

where b denotes the 1-form on M defining the difference tensor of V, V* and b( fx )  the 
•n*-valued function such that tzrrb = b j ( f x ) b  j. Equivalently, if w i j ,  o)*ij denote the 

connection forms defined on C O ( M )  by the connections V, V* respectively, then to*ij  = 

(.oi j + S ( b ( f x ) )  k i j~r k. For b ~ R n* we consider at fx  ~ C O ( M )  the frame 

Ffx,b : (Z, U) > n z ( f x )  + Zu( f x )  -t- Zs(b)z(fx) .  

The set H (M) of these frames defines a subbundle of the bundle of frames of C O (M) with 

projection q : FA, b -+ fx.  We identify R n* with a subgroup of G L ( R  n ~ co(p,  q)) by 

idR.* 0 ) 
9 G L ( R  n ~ co(p,  q)). (2.14) R n* 9 b > - S ( b )  idco(p,q) 

The resulting action of R n* on the bundle of frames of C O ( M )  gives for b e •n. 
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((F(fx))b)(z ,  u) = F(fx)(Z, - S ( b ) z  -t- u) 

= nz ( fx )  -t- Zu(fx)  - Z s ( b ) z ( f x ) .  (2.15) 

With the action so described the bundle (H(M),  CO(M),  q) acquires the structure of a 
principal fibre bundle with structure group ~n*. The frame Fv defined on CO(M)  by the 

connection V, the frame {ek }k=0,...,4 with respect to which the connection coefficients have 
been given, and the coordinates x tt define a bundle coordinate system 

Ho(M) ~ q - l ( z r ' - l ( u ) )  9 (Fv( fx) )b  ~ ( fx ,b)  

> (x, C, b) c V × CO(p,  q) x R"*. 

(2.16) 

The transformation law for the horizontal vector fields under the transition V ~ V* shows 

that the definition of the bundle (H (M), C O (M), q) is independent of the connection which 
has been chosen to describe the construction of the bundle. From the same relation follows 

also, that each torsion free connection on C O (M) defines a section of H (M) and vice versa. 
We shall discuss now a smooth action of the group H(p,  q) on H(M)  by which the latter 

becomes the space of a principal fibre bundle over M with structure group H(p,  q) and 

projection zr • F( fx )  --~ x. Any C ~ CO(p,  q) acts on CO(M)  by the map Rc " fx 
fxC =- (x, ekCk). We denote its tangent map by T(Rc) .  Using the action (C, (z, u)) --~ 

Ad(C)(z,  u) = (Cz, Ad(C)u) of CO(p,  q) on R n ~ co(p, q), we can define a right action 

of C O (p, q) on H(M)  by (FC)(z,  u) = T(Rc)  { F(Ad(C)(z ,  u)) ]. The action on the right 
of the group H(p,  q) on H(M)  is then defined for s = (C, b) ~ H(p,  q), F E H(M)  by 

Fs = (FC)b. 
Alocalsect ionM D U -~ H(M)determinesaframefieldU ~ x ~ q ( a ( x ) ) e  CO(M)  

and subspaces of the tangent spaces Tq(~(x))(CO(M)) which are horizontal for a uniquely 

defined torsion free connection on the restriction of C O (M) to U. The coordinates (2.16) 
yield in an obvious way bundle coordinates for (H(M),  M, st). 

2.3. The natural form on H(M)  

Let V be a torsion free connection on CO(M).  Denote by 6J i k the associated connection 

form and by Fv the associated section of H(M)  over CO(M).  We consider (ek, &i k), 
where 8k is the solder form, as an R n ~ co(p, q)-valued form on CO(M).  It allows 

to define a unique R n ~ co(p, q)-valued 1-form (a t', toi k) on H(M)  by the conditions: 
(i) it vanishes on tangent vectors which are vertical for the bundle (H(M),  CO(M),  q), 
(ii) under the action o f s  ~ H(p,  q) it transforms with Ad(s-1),  and (iii) the pull-back of 
(o.k, toi k) by Fv coincides with (#k, &i k). 

On the other hand we have the R n ~ co(p, q)-valued solder form • on the bundle 
(H(M),  CO(M) ,  q), defined at F ~ H(M)  by 27(F) = F - t  o T(q). It can be shown from 

its definition and from the definition of the section Fv that it satisfies conditions (i)-(iii) as 
well. Therefore 27 coincides with the form (tr, 09) considered above and it follows that the 
form (a, to) is defined independently of the chosen connection V. We call 27 = (a, to) the 

"natural form on H(M)" .  
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Since the connection V is torsion free, the forms #i ,  &i J satisfy the first structure equation 
d6.i _ _ ~ i  J A #J  on C O ( M ) .  From this ensues that 27 = (or, o9) satisfies 

dcy i = - o . ) i j  /~ ¢7 j on H ( M ) .  (2.17) 

This follows immediately for vectors tangent to F v ( C O ( M ) ) .  Since 27 = (a, o9) vanishes 

on vectors Zv tangent to the fibres of  ( H ( M ) ,  C O ( M ) ,  q), the term on the right-hand side 
of  the equation vanishes if it is applied to at least one vertical vector field. But it follows 

immediately from the definition of tr, that iz~ dtr = Lz~tr - d( iz~a)  = L z v a  = 0 on 

H ( M ) .  

2.4. The normal conformal Cartan connection on H ( M)  

A Cartan connection on ( H ( M ) ,  M, Jr) with respect to the groups H ( p ,  q), C(p ,  q) is 
given by a c(p,  q)-valued 1-form o9 on H ( M ) ,  the "Cartan Connection form", satisfying 

(1) (o9; Zu) = u for the vertical vector field Zu generated by some u E h(p ,  q). 

(2) 09 is invariant under the adjoint representation and the right action of H ( p ,  q) on 

H ( M ) ,  i.e. tRs o9 = Ad(s  - l )  o9 for any s ~ H ( p ,  q), where Rs denotes the right 
action of s on H ( M ) .  

(3) (w; X) # 0  for any tangent vector X :# 0. 
Using the identification of  c (p ,  q) with R n (3co(p,  q)(9 R n*, we write o9 = (tr i , ogi k, ogk) 

and consider the "Cartan structure equations" 

dtyi  = --o9i k /X ty k + A i, 

d 09i k = _o9i  l A (1) l k + S(o9p)q i k A (7 q + ~'2 i k, 

dwk = -og i  A o9i k + ,Qk, 

as defining equations for the "curvature form" $2 = ( A i , ~'-2 i k, ff2k )" 

(2.18) 

(2.19) 

(2.20) 

It follows then from the conditions above that the restrictions of  the structure equations 
to the fibres coincide with the Maurer-Cartan equations and that ($-2; Zu/x  .) = 0 for 
u E h(p,  q). Thus we have 

• 1 r ~ i  _ k  1 k o.l A i = ½TiklCr k Ar t  l, ff2'j = ,2l,, jklO Act  l, I'2j = 2Kjk la  A 

with certain functions T i kl, K i jkt, Kjkl on H ( M)  such that 

T i kl = T i [k/], K i jkl = K i j[kll, Kjkl = Kj[kl]. 

The natural form JU = (~r/, ogJ k) can be supplemented by an Rn*-valued form &l on 
H ( M )  such that (~r i, wkj ,  t3l) becomes a Caftan connection form. For this purpose we 
choose a connection V on C O ( M )  and consider the associated section Fv of  H ( M )  over 
C O ( M ) .  A tangent vector h at a point of  F v ( C O ( M ) )  can be decomposed uniquely into a 
component tangent to Fv  (C O (M)) and a component vertical in ( H  (M), C O (M), q) which 
is generated by some v in the Rn*-part of  c(p ,  q). We set (6~j; h) = v. The requirement that 
( cri, wkj ,  &t) be invariant under the adjoint representation and the right action of H ( p ,  q) 
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on H ( M )  defines a unique extension of t3  to H ( M ) .  T h e  resulting form is in fact a Cartan 

connection form on H (M) for which the Cartan structure equations read 

do'i : - t o ik  A o "k, (2.21) 

da;i k : --o)i 1 A o) 1 k -~- S(Cop)q i k A t7 q + ~=~i k, (2.22) 

d•k : --¢~)i A o) i k -]- A'~k. (2.23) 

We note a few properties of  it. It follows from the adjoint action (2.5) of  H ( p ,  q )  on c ( p ,  q )  

that K, i jkl has a tensorial transformation law under the action of  H ( p ,  q) .  Taking the 

differential of  the first of  the structure equations and using the other equations to simplify, 

we get the Bianchi identity 

~ i  J /x  ~J = 0, i.e. ~(i [jkl] : 0, (2.24) 

which implies in particular 

~ i  ikl : _ f ( i  Ilk + ~ i  kil. (2.25) 

As shown by Cartan [3], a specific Caftan connection can be singled out on H(M) ,  the 

"normal conformal Cartan connection", by requiring the tensor ~i jkl to be trace free. If 

(~i, w i j ,  w j )  is another Caftan connection form on H ( M )  with (o "i, w i j )  the same forms 

as before, then &j - wj  vanishes on vectors vertical in (H(M) ,  M, it), whence has an 

expansion 

COj -- tOj -~- A j k o  k (2.26) 

with some functions Ajk  on H ( M ) .  Subtracting the second structure equations for the two 

different forms from each other, we get 

0 = Ajt t~ t A t~ i + Aklt71 A ¢7k~ i j - -  rlikAklo'l A o P ~ p i  -~- ~,=~i J _ ff2i J ,  

whence 

~ i  jrs -- K i jrs = - A j r  8i s "1- A j s  ~i r - (Asr  - Ars )~  i j 

-k-rlik ( Akrrls j -- Aksrlrj  ), 

from which ensue 

g i j i s  - K i j i s  = (n - 2 ) A j s  - (As j  - A j s )  at- rlikAikrlsj ,  

~ i  irs -- K i  irs : - n ( A s r  -- Ars ) ,  r l JS (Ki j i s  - K i j i s )  = 2(n - 1)rlikAik.  

From these equations follows the requirement that the new Caftan connection satisfies the 
condition 

K '  j i s  = O, (2.27) 
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which entails by the Bianchi identity K i irs : 0 is equivalent to 

1 (  1 ) 
Ajs  -- - ~ i  n 2 jis -- n ,is 2(n -- 1) rlPqK" piq~js . (2.28) 

Since the function so defined on H (M) transforms like a tensor under the group H (p, q), 
we can use it, together with Eq. (2.26), to supplement the natural form on H ( M )  in a 
unique way by an Rn*-valued form tok such that for the resulting Cartan connection, the 

"normal conformal Cartan connection on H(M)" ,  the associated tensor field K i jrs satisfies 

K i jis : O. 

We note further properties of it. Besides the first Bianchi identity (2.24) we obtain by 

taking the differential of the other structure equations the second Bianchi identity 

dff2ij  : $'2i k A o)kj -- 09 i k A ~,.~kj _ S ( ~ l ) k  i j  A t7 k. (2.29) 

Observing that I2 i i = 0, we find from this the third Bianchi identity 

12k A trk = 0 or, equivalently, K[jkt] = O. (2.30) 

Furthermore we get the fourth Bianchi identity 

dff2j -~ ~2 k A o)kj --tO k A ff2kj.  (2.31) 

Finally, we have for t = (C, b) ~ H ( p ,  q)  the transformation law 

A d ( t - 1 ) ( O ,  ~)i J, ~ k )  ~ (0, C - l i  kff2 k i c l j ,  ( - -bi~)i  l -~- ff21)C l j ) .  (2.32) 

In the bundle coordinates (2.16) the normal conformal Cartan connection form is given 
explicitly by 

tTi(x, C, b) = C - l i  kt7 k ~ d x  ~, (2.33) 

O-) i j (X, C, b) = C - l i  k ( d C  k j q'- l"p k i f l  jo. p I z dx~)  -t- S(b)l  i jo.l 

= c - l i k  ( d C k j  q - ( F p k l - ~ -  S ( b C - l ) p k l ) C l j o r P # d x # ) ,  (2.34) 

ogj(X, C,  b) = dbj - bktokj  q- l bk S(b) l  k j t r l  -- Ajktr  k (2.35) 

with 

l ( ~ i l ~ ,  i 1 ) 
- ijk 17pq~(~i piqtljk , A jk  = Ajk (X ,  C)  = n 2 j ik -- n 2(n -- 1) 

where the tensors on the right-hand side are given here by their components with respect to 
the frame ci = e jCJ  i. For the curvature we get the expressions 

C i jk '  ~- g i  jkl = g i  jkl + 2 { Aj[k 8i 1] -- 17 ip ApIkrll]j -- A[kl]Sij  }, (2.36) 

g jk l  = g j k l (X ,  C, b) = - - b i g i j k l  -- V k A j l  + VIA jk  + Sk i j A i l  -- Sl i j A i k  

= - b i  Ci jkl -- V k A j l  + V l A j k .  (2.37) 

The tensor given by (2.36) is the "conformal Weyl tensor". 
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In our later applications we shall consider time-orientable conformal structures of  

Lorentzian signature (p = 1) on orientable manifolds. As is natural, we assume then 

all constructions being restricted to the bundle COt+ (M) of  positively oriented frames with 

future directed time-like vector. This has structure group COt+ (p, q), the component of  

C 0 (p, q ) connected to the unit element. Accordingly we will consider the group H+ ~ (p, q ), 
the component of  the unit element in H(p ,  q). 

2.5. Change of  the section 

Let U ~ x ~ sa(x)  ~ z r - l ( u ) ,  A = 1,2, denote smooth local sections of  H ( M )  over 

some open subset U of  M and let U 9 x ~ s(x)  ~ H(p ,  q) denote the smooth map which 

satisfies sz(x) = s l (x )s (x) ,  x ~ U. Denoting by WA = (era i, 09 a i k, (-Oaj) the pull-back 

of  the normal Cartan form with respect to the section SA and by Ls the left translation in 
the group H(p ,  q), we get the relation 

w2(x) = Ad(s (x )  -1)o91 (x) + Ts~x)(Ls~x)-i )Tx(s(.)). (2.38) 

The special case where s(x)  = (E, f ( x ) )  ~ H(p ,  q) with a smooth map U 9 x ---> 

f ( x )  ~ R n* gives Tstx)(Ls(x)-l)Tx(s(.))X = (0, (d f ,  X)) for any tangent vector X of  U 
and it follows from (2.38), (2.5) that 

(0. 2 i,  0) 2 i k, O)2j) : (0"1 i,  S ( f ) j  i k ~1 j + 0)1 i k, -½  fi S ( f ) j  i k¢71 j 

__fitOl i k -1"- O)lk @ d A ) .  

Writing 

O) A i k = I"Aj i kO.J, O)ak = FA j  k O "j, A = 1, 2, 

this gives 

r z j  i k = r , j  i k + s ( f ) j  i k, r z j k  = r , j ~  + V j f k  -- ½f i  S ( f ) j  i k, 

whence also 

-A2k j  : --Alkj  + Vj fk  -- l f i  S ( f ) j i k ,  

where in the last two equations V denotes the connection defined by wl i k respectively 

F l j i k  , 

Let now g, ~ denote two metrics related by g = ~(22g and V, ~' the Levi-Civita connection 

associated to g, ~ respectively. We express in the following all connection coefficients, tensor 
fields, etc. with respect to the same frame field ej, which is assumed to be orthonormal with 

respect to g. Let ~ J k,/~, j k denote the connection coefficients with respect to g and 
respectively such that ~ j k = r / j  k + s(12 -1 d~(2) i  j k and assume that the connection ~' 

has connection coefficients given by ~. j k = 1]. J k + S(f)i j k. From the transformation 
laws given above it follows, that 

h k  - -  / ']k - -  V j ( ~ ' ~ - l V k  ~ )  --  l $"2-1 Vi'$"2 S(~'-~-I V~'~)j i k, 
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Fj'k = l"jk + Vj ( fk )  -- l fi  S ( f ) j  i k, 

whence 

P j k :  Fjk -- V j ( fk  "q-~(2-lVk~'2)-{- 1 { f i  S ( f ) j i k  -- ~'-2-1~i~'2 S(~'2-lw,.Q)jik ] 

= [)k -- qTj(fk + ~ ' 2 - 1 V k  $'2) - -  l ( f i  -}- I 2 - 1 V i ~ ) S ( f  + ~2-1V$-2)j i k • 

(2.39) 

2.6. Conformal geodesics 

With any conformal structure there is associated a distinguished class of  curves in the 

underlying manifold, the "conformal circles", which obey a system of ordinary differential 

equations of  third order [22]. These curves can be obtained, after a reparametrization, 

as projections of  a class of  distinguished curves on the bundle H ( M ) ,  the "conformal 

geodesics" [14]. We shall in the following discuss the latter, which are particularly useful 

for us, since they supply in addition to a curve in M a frame field and a connection in the 

conformal class along that curve. 

The normal conformal Caftan connection allows to define for any z ~ R n a smooth 

"horizontal vector field" H z on H (M) by requiring ((a i, off k, Wl); Hz) = (z i, O, 0). A 

conformal geodesic is an integral curve y (r)  of  H z. Occasionally we shall also use this 

name for its projection to(r) = r r (y( r ) )  to M. In the bundle coordinates (2.16), y ( r )  has 

the representation y ( r )  = (x(r) ,  C( r ) ,  b(r ) ) ,  where 

~ijC i k Cj  l = ¢~-21]kl (2,40) 

with some O ( r )  > 0 and x ( r )  is the coordinate representation of  K(r). The curve y 

represents a frame field {Ck}k=l ..... n along : ry  with ck = c~Ox~, = ejCY k and, with respect 

to this frame, the components bk = bvc~ of a 1-form field b~ dx v along x(r ) .  

If  y is a conformal geodesic as above and s = (C, f )  ~ H ( p ,  q), we may ask, whether 

Rs(y )  is again a conformal geodesic. We find from (2.5) that for arbitrary z i 

d i 

= A d ( s - l ) ( z  i, O, O) = (z 'i, O, O) 

for some z 'i only if fk = 0 and in that case z ri = c - l i j z j ,  i.e. 

T(gs)Hz = Hc-,z i f s  = (C, 0) ~ H ( p , q ) .  (2.41) 

Evaluation of  the forms (2.33)-(2.35) at d ( y ( r ) ) / d r  yields the differential equations 

d 
- - x  ~ = e ~ i Ci jZ J (2.42) 
dT 

d c i  dr J +([" l ik  + S ( b C - l ) l i k ) C k j C l m z m = O '  (2.43) 



H. Friedrich/Journal of Geometry and Physics 17 (1995) 125-184 141 

d 
~rbJ _ ( l bkS(b) t k j + a j t ) z  t = 0. (2.44) 

It should be observed that in these equations tensor A is given with respect to the frame 
ck. Writing Ljl = AuveU je~ l  and dj = bue# j ,  we have Ljt = A i k C - l i j c - l k  l, dj = 

bk C- l k  J, and the last two equations take the form 

d i 
-~-~TC j + (El i k + S(d)l  i k )Ck j  Cl mZ m = 0, (2.45) 

d 
-d'-~Tdj -- ((Fp k j  ..{_ I S ( d )  p k j )dk  + Ljp)CP qZ q = 0 .  (2.46) 

From these equations follows that (x u (r) ,  by (r))  satisfy 

(V~t) u = - S ( b ) v  u ,r.~v~o, (2.47) 

(V~b) u = ( l boS(b)v ¢r u + Lvu)Yc v, (2.48) 

where the dot denotes differentiation with respect to r. With an obvious meaning of  the 

notation we write Eqs. (2.47), (2.48) in the short form: 

V~,t --- - 2 ( b ,  ~)~ + (2, ~t)b, (2.49) 

V~b ---- (b, 2)b - ½(b, b)~ + L(~, .). (2.50) 

In a similar way we find that the frame vector fields Ck satisfy the equations 

V~ck = - ( b ,  Ck)-~ -- (b,/c)ck + (ck, x)b.  (2.51) 

Here indices are moved with the fixed metric in the conformal class which is indicated 

in the equations by (., .). It should be clear from the context where the covariant or the 

contravariant form of b or ~ appears on the right-hand sides of  the equations. 

3. Conformal Einstein spaces 

Most results of  this section could be stated, as in Lemma 3.1, for Einstein spaces of 

arbitrary signature and dimension n > 3. To avoid lengthy distinctions between various 

possible cases and since we want to employ the two-component spinor calculus later on, 

we restrict our discussion mainly to the four-dimensional Lorentz case. 

3.1. The conformal Einstein equations 

Suppose the Lorentz metric ~ on the oriented four-dimensional manifold 19/ admits a 
time orientation and is a smooth solution to the Einstein equations 

Rtzv = ~.guv (3.1) 
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with cosmological constant ~.. For a given positive, smooth function I2 on AT/, consider the 

rescaled metric 

g ~- ,~2~,  (3.2) 

its associated Levi-Civita connection V, and the fields 

g = ~ V u V u J 2 +  l R : 2 ,  Luv=½(Ruv-~Rguv), 
d u vXp = $'2- l C # vXp, 

where R, R#v, C t' vXp denote the Ricci scalar, the Ricci tensor, and the Weyl tensor of  g 

respectively. The Einstein equations for ~ are equivalent to the equations 

V u V v ~  = --$2 Luv + Sguv, (3.3) 

Vug = - L u v V V I 2 ,  (3.4) 

V~.Lpv - V p L k v  = Vu~f-2 d u ukp, (3.5) 

VudU vXp = 0, (3.6) 

6J-2g - 3 VuI2 VUl2 = 3.. (3.7) 

The derivation and discussion of  these equations and their application to the study of  certain 

classes of  solutions to the Einstein equations at large can be found in [7] and the references 

given therein. We may think of  them as being obtained from the Einstein equations by 

introducing an artificial gauge freedom corresponding to the rescalings (3.2). 

Although we shall in the following consider a somewhat different conformal representa- 

tion of  the Einstein equations, we note for later use the constraint equations (cf. [6]) induced 

by the equations above on a hypersurface S with normal vector field n satisfying g(n, n) = 

e = + 1. For this purpose we express the equations with respect to a frame ck, k = 0, 1, 2, 3, 

defined near S which is orthonormal with respect to g. If  S is space-like (e = l) we assume 

that co = n, that indices a, b, c . . . .  take values l, 2, 3, and that n, if used as an index, 

takes value 0. If  S is time-like (e = - 1 )  we assume that ca = n, that indices a, b, c . . . .  

take values O, l, 2, and that n, if used as an index, takes value 3. Orthogonal projections 

of  tensors into the hypersurface S are then given by their components with respect to the 

interior frame Ca. We write in particular 

La = Lan, dab -~ danbn, dabc --~ danbc, 

respectively for the projections of  the fields 

Luvn v, dlxv~.pnV n p, dlzvxpn v 

into S and set E = n(I2). The tensor field dab is called the "n-electric" part and da* 0 = 

da*on = --½dacdeo ca the "n-magnetic" part of  the tensor dijkt. Here the star denotes the 
four-dimensional dual and eaOc the totally symmetric Levi-Civita symbol which takes the 
value 1 if the indices are different and in the natural order. Then, 
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dab : dba,  d a a : O, dabc : - -dacb,  d[abc] : 0, 

dabcd = 2{ha lcdd lb  + hblddcla }. 

We define the four-dimensional connection coefficients with respect to the frame ck by 

V¢ i c j  = Fi k j c k  and assume that V n c k  = 0 near S. Denoting the Levi-Civita connection 

of  the induced metric h on S by D, we have Dc,  Cb = F a d  bCd on S, and the second 
fundamental form of S is given by 

Xab = g ( V c a n ,  Cb) = I-'a j n lljb = - F a  j b Ojn. 

The constraint equations take the form 

DaDb~'2  = - e r ,  Xab --  ,.(2 Lab  q- Shab,  (3.81) 

Da,U = e Xa CDcI2  - 12 L a ,  (3.9) 

Dars = - - D b  a"2 Lba -- e ~, L a ,  (3.10) 

D a L b c  - D b L a c  = D e l 2  decab --  E ,~ dca b - e (Xac  L b  --  Xbc L a ) ,  (3.1 l) 

D a L b  - D b L a  = Def f2deab q- Xa CLbc --  Xb CLac,  (3.12) 

OCdcab = e ( X  c adbc --  X c bdac) ,  (3.13) 

D a d a b  = x a c d a b c ,  (3.14) 

DbXca - DcXba  = ~ dabc "k- hab L c  - hac L b ,  (3.15) 

lab = $-2 dab + Lab  q - e { X c  C(Xab --  I x d  d h a b )  --  XcaXb c -I- ~XcdxCdhab}, (3.16) 

~. = 6 I-2 g -- 3eZ '2 -- 3DaI-2 D a $ 2 .  (3.17) 

To obtain the constraint equations we use the decomposition 

Ri jk l  = ~'2 d i j k l  q- g i k L l j  - -  g i l L k j  -k L i k g l j  - -  L i t g k j ,  

of the curvature tensor Ri j k l  of g, the decomposition 

rabcd = 2{ha[cld]b + hbldlcla } (3.18) 

of  the curvature tensor rabcd of h, where lab = rab --  l r h a b  and rab, r denote the Ricci 

tensor and scalar respectively, and finally the Gauss equation and the Codazzi equation 

Rabcd = rabcd -I- XacXbd -- XadXbc,  Ranbc = DbXca --  DcXba .  

Another conformal representation of  the Einstein equations will now be derived. The 
Levi-Civita connection ~' of  the solution ~ to the Einstein equation (1.1) and a frame which 

is orthonormal for ~ define a section of  the bundle H(hT/) associated with ~. The new 
representation of  the Einstein equations is obtained by expressing the structure equations as 
well as the Bianchi identity (2.29) with respect to an arbitrary section of  H (.~7/). The latter 
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is given by a frame ck, k = 0, 1, 2, 3, which is orthonormal for the arbitrary metric g in the 
conformal class of ~ and by a connection V which is conformal for ~,. 

We write V, V for the Levi-Civita connections of g, ~ respectively and denote the 1-forms 
dual to ck, which satisfy (2.9), by trJ. The connection coefficients of V, ~', and V in the 
frame ck are denoted by/'-) J k,/~," j k, P / j  k respectively. For the difference tensors defined 
by the connections we have in short notation 

£7 - f7 = S(b) ,  £7 - V = S ( f )  

and in index notation 

Fi j k -- Fi j k ~--" t~J ibk + 8 j kbi -- rlikrlJlbl, 

I]" J k -- l"i j k = 8J i f k  -or ~J k f i  -- rlikrlJl f l  

with l-forms b = bka k and f = fka k on 37/such that 

and 

f u  = bu - 12 -1Vu  12 

(3.19) 

(3.20) 

f k  = f~cU k = 1Fk J j .  (3.21) 

We shall now consider the normal conformal Cartan connection on the bundle H(hT/). 
The pull-back to M of the curvature form J2j by the section defined by the connection ~' and 
the frame Ck vanishes by (2.37) because ~ satisfies the Einstein equation (3.1). Using instead 
the section defined by the connection V and the frame cg, we get from the transformation 
law (2.32), that the resulting tensor  Ki jk  is given by 

Kjkl  = - d i d  i jkt  (3.22) 

with 

dk = l-2 bk 

and 

d i jkl : ~ 2 - 1 c i  jk l ,  (3.23) 

where C i jkl is the conformal Weyl tensor of g. 
The Cartan connection form and the forms determined by it on H(AT/) are pulled back 

now to M with the section defined by the connection X~ and the frame ck. The  forms 
obtained on 37/will be denoted by the same symbol as the original forms on H(AT/). We 
write CO i j : Pk i jork, O)j : ['kjt7 k and Vk = Vck, etc. The structure equations take the 
form 

,~p i q = O, Ai  kpq : 0, Apq -~- 0, Akp q = 0, (3.24) 

where 

,~ ,p iqC i ~ ( ~ i ;  c p ACq)Ci : ( p p l q  __ l~qlp)Cl __ [Cp, Cq], (3.25) 
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Ai jpq  ~ ( Z ~ i j ;  Cp A C q ) = C p ( r q  i j ) - - C q ( F p  i j ) _  f'k i j ( r p  k q _  rq kp)  

"t- Fp i k Fq k j -- ~q i k ~ p k j __ t~i q ~pj + t~i p ~qj __ ~i j ( ~pq __ ~qp ) 

at-tlik ( f'pkrlqj -- Fqk?lpj ) -- ~) d i jpq, (3 .26)  

Apq ~ l ( A i i ; C p  ACq)  : Vp fq  -- V q f p  - ['pq ~l- ["qp, (3.27) 

Akpq ~ (Ak,  ep A eq) = fTpFqj - VqPpj -[-didijpq. (3.28) 

Using (3.19), (3.21)-(3.23) we can express the Bianchi identity (2.29) in the form 

~Tid i jkl = f i d  i jkl (3.29) 

or, equivalently, 

Vi di jkl = 0. (3.30) 

The coupled system of Eqs. (3.24), (3.29) respectively (3.30) gives the new conformal 
representation of the Einstein equations. For the rest of the article we shall only refer to 
this system, or to the system obtained from it by using (3.19) to replace Fq i J by Fq i J and 

fk, as to the "conformal Einstein equations". The fields 12 and dj,  whose occurrence in the 
field equations reflects the artificial gauge freedom are, of course, not governed by a field 
equation. They will be taken care of later by our gauge conditions. The relationship of the 
resulting equations with the Einstein equations (3.1) and with the conformal representation 
of the Einstein equations used in our previous work can be traced in detail in our discussion 
of the evolution of the constraints in Section 6. 

3.2. The conformal f ield equations in spinor f o r m  

In the following the two-component spinor calculus will be used. We quickly review our 
conventions, following in most parts those in [7]. For a detailed account of spinor techniques 
we refer to [18]. Indices a, b, c . . . .  a', b', c' . . . . .  take values 0, l and the summation rule is 
implied. The basic antisymmetric spinors, which are used to lower or lift indices, are given 
by eab, e ab with e01 = e 01 = I. It follows that ebae bc = ea c is a Kronecker delta symbol. 
Analogous rules hold for the primed e-spinors. Their invariance group is given by 

S L ( 2 ,  C) = {t a b ~- G L ( 2 ,  C)  l eab ta c tbd = ecd]. 

The constant van der Waerden symbols trj aa', ak  bb' are defined by the maps 

~4 ~ (X j )  __~ xad  : x J t T j a a '  1 ( X 0 q-X 3 
= ~ X I _ ix  2 

R 4 , ~ ( ~ j ) _ _ . > ~ a a , = ~ j t r j  1 ( ~0"~-~3 
aa' = - ~  ~1 +i~2  

x I + ix  2 
x 0 _ x 3 ) ' 

~0 - -  ~3 7 ' 

which identify [~4 respectively R 4. with hermitian 2 x 2 matrices. Since the van der Waerden 
symbols satisfy 
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~J k f f j  aa,a k ad  Ea b b' " = Ea' = (73 aaraj bbr, Ojk aJ  aa 'ak  bb' = ~ab ~a'b ~, 

the 2 • 1 homomorphism of the simply connected group B~ + x SL(2,  C) onto the product 
C O+ t (1, 3) = R + × O+ t (1,3) of the group of positive real numbers with the component of 

the Lorentz group connected to the unit element is realized by 

R + × SL(2, C) 9 (~., t a b) -~ )~ta b ~-~ t i j  : )2 a i aa,t a b ~a' b' aj bb' E CO+tO, 3). 

This map induces an isomorphism of Lie algebras 

~ (~ sl(2, C) 9 1)ab = ~ e b  a q -Uab  ~-~ v i j  
a i  r . , 

~-- aa' I)a b aj  ba _~_ a t  aa' ~)a b,aj ab' E co(l ,  3) 

with inverse 

• ~__.~1 13 ° 1 i aC'aJ l a i  cc 'a j  co(l ,  3) 9 v t j b ~-- ~1) j ( a  i bc' -- cc,6b a) 6 ~ ~ s/(2, C). 

(3.31) 

Restricting to )~ = 1, i.e. to the group SL(2 ,  C), we obtain from q~ a 2 • 1 homomorphism 
of SL (2, C) onto O+ t (1, 3). We denote this map by q~' and the induced isomorphism of the 

Lie algebra sl(2, C) onto the Lie algebra o(1,3) by q~'.. 
Suppose g is a metric in the conformal class C. Ifek is a frame field which is orthonormal 

with respect to g and Ot j the dual 1-form field, we associate with them the frame eaa, : 

ek a k bb' and the l-form field Ol aa' ~Jtv. aa' The duality and normalization conditions 

then take the form 

(olbb ', eaa, ) : Ca bSa ' b', g(eaa' ,  ebb') : eabea'b'. 

ygt 
It will be assumed that there exists a principal fibre bundle SL(1(4) ~ 1(4 with structure 

group SL(2,  C) which provides a twofold covering SL(191) ~ O~+(AT/) of the bundle of 

positively oriented and time oriented g-orthonormal frames which is a morphism of principal 
fibre bundles with respect to the h0momorphism q~'. The question of the existence of such 
a spin structure poses no problem for us, since in the situations studied in this article there 
exist globally defined orthonormal frames. Also, it is irrelevant for our work which spin 
structure is chosen if there exist more than one. 

We consider SL(igl) in the following as the set of spin frames ~ = (6~)~=0.1 at points of 
A:/which are normalized by e(Sa, 8b) = Cab and the action of t ~ SL(2,  C) on 8 6 SL(lVl) 
as being defined by 8 . t  = (~btba)a=O, 1. Spinors K, # at a point p ~ S define a pair of 
complex conjugate null vectors at p one of which we write K/2. Therefore any 6 E SL(i91) 
determines a frame eaa' : Sa~a' satisfying the normalization condition given above. We 
can assume that the map ~p' is given by 8 ~ (ek 8~$~, ~a' = O'k ) k = 0 , 1 , 2 , 3 .  

In an obvious way the map ~p' can be extended to obtain the twofold covering C SL ()(4) 0--> 
C O+ ~ (M) of the positively oriented and time oriented g-conformal frames by the principal 
fibre bundle with structure group R + ×SL(2, C) and bundle space given by the set CSL()(,I) 
of spin frames satisfying e(t~a, 6b)  = ~.2eab with some L ~ ~+. 
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Any spinor field on M induces a function on C S L ( M )  whose values at a point 6 E 
CSL( I ( / I )  is given by the components of the spinor field with respect to the spin frame 6. 

Under the action of the group on the fibres, this function transforms under a representation of 
the group determined by the index structure of the spinor field. We shall call such functions 
"invariant". 

If ~p' is used to pull-back the connection form which represents the unique torsion free 
connection V on O+~ (37/) and the map q3'.- 1 is applied, we obtain an s t (2 ,  C)-valued con- 

nection form on S L ( i g l )  which will be called the Levi-Civita connection form on SL(I( , t )  

and denoted by w a b, a notation maintained for its canonical extension to C S L ( I ( 4 ) .  In a 

similar way any connection form on C O+ ~ (M) representing a torsion free connection V can 
be pulled back by ~p and combined with q~,J to obtain an • ~ s l (2 ,  C)-valued connection 
form &a b on C S L ( ~ I ) .  Finally we pull-back to CSL( I ( , I )  the R4-valued solder form on 

C O+ ? (M), transvect it with the appropriate van der Waerden symbol and denote the result- 

ing form by cr aa' . The l-form f which relates by (3.19) the connection V to ~z, implies an 
invariant function on C S L ( ) f 4 ) ,  which we write as f a d .  Eq. (3.19) takes on C S L ( M )  the 

form 

coa b = o)a b + fbc  '~rac'. (3.32) 

We shall express now the conformal Einstein equations as a system of equations for forms 

on C S L ( I ( 4 ) .  The function S2 pulls back to an invariant function on C S L ( I ( 4 ) ,  denoted by 

the same symbol, which is constant on the fibres. The 1-form dk and the tensor field F/j 
on hT/are represented by invariant functions on C S L ( ~ 4 )  which we write daa' respectively 

dPcc,aa,. T h e  conformal Weyl tensor is represented by a completely symmetric spinor field 

which induces an invariant function denoted by ePabcd. We set 

Kaa,bb, cc, = _ d  ee' ( ~eabcSe, a, Sb, c, -1.- ~e, a,b, c, geagbc ). 

It will be convenient to express the conformal field equations interms of the forms 

if2, t7 aa' , (~ga b, (?0 = (?0 a a = faa 't3raa' , o)a b, (~-)aa' = dabcc'aa 'Occ' , 

1 t." _bb' tTcc' ,Qa b = -- l ~ a  bcdffC d' /~ tTdd', ~)aa I ~ ~aalbb,cc, O A 

where the relation (3.32) is assumed. With the notation 

,~aa' ~ dtTaa' + oga b A t7 ba' + CO a' b' /k t7 aft , 

Aa  b = dooa b + alga c A CO c b -- CObc' A t3r ac' -- ,.(2 at2 a b, 

A =  A a a = d & - & c c ,  A a  cc', 

Aaa '  = dC°aa' -~- (~)ac' /x ~_o c' a' "4- t~°ca' /X (~)c a - -  ~'2aa' , 

A a  b = d~"2a b -- ~2a c A toC b + ooa c A ,QC b, 

where it should be observed that in the first and the last equation the connection form defined 
by V occurs, the conformal Einstein equations take the form 

.~,aa' = O, A a  b = O, A = O, Aaa ,  = O, A a  b = 0. (3.33) 
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Although the third of these equations is in fact the contraction of the second we added it to 
the list for later convenience. It may also be noted that in view of (3.32) the first equation 
still holds if in the expression for ,,.~aa' the connection form w a b is replaced by (~)a b- 

On M a representation of the conformal Einstein equations is obtained by taking the 
pull-backs of Eqs. (3.33) with respect to a local section of S L  (AT/), considered as subbundle 
of CSL(I ( , I ) .  The section defines a spin frame field aa whence the frame field Caa' = aa$a' 

satisfying g ( C a a , ,  Cbb, ) : Cab 8a'b'. T h e  pull-back of the solder form gives the 1-form field 
dual to Caa', which we denote again by t7 aa'. T h e  pull-backs of the connection forms can 
then be written as 

o)a b = Fcc'  a b~TCC', ~ a  b = f 'cc '  a b¢7CC', 

with connection coefficients satisfying 

rcc'ab = rcc'ba, Fcc' a b : r cc ,  a b q- 8c a fbc' .  (3.34) 

The connection coefficients used in calculations with tensors are given by 

Fbbr aat ~ a t - a t 
cc' Ebb, a cec ,  + Ebb'  c '~c a ,  

l~bb t aa t : a t a ~ cc' ['bb' a cEc, ..{_ ~ .bb  t c, Ec a .  

Evaluation of the pull-backs of the other forms with repect to Caa, yields the conformal 
field equations in the form 

0 = "~bb' aa' cc, Caa ' : ( . .~aa'; Cbb, A Cc#)Caa,  

: _ [Cbb ,  ' Ccc, ] _[_ ( E b b  ' aa' cc' - -  Fcc '  aa' bbt)Caa, ' (3.35) 

0 : A a bcc'dd'  ~ ( A a  b; Ccc' A Cdd, ) 

= Ccc,(~,dd ' a b )  - -  C d d ' ( ~ c '  a b )  - -  ~ c '  f d l~ fd  ' a b -'1- ~ d '  f c f ' f c '  a b 

-~ ' -" f ' ^ a ^ a ^ ^ - - r c c ,  f d, f ' d f ,  a O + F d d  , c , l - ' c f ,  O-]- l"cc ,  f F d d ,  f b - - F d d ,  a f f ' c c ,  f O  

--¢~cc'bd'  Ed a + ¢i)dd,bc ' ,S c a --I- ~'2~ a bcdEc,d , ,  (3.36) 

0 = Zacc,ad, =-- (A; Ccc, m Cdd, ) 
^ ^ 

= Vcc, faa,  - Vaa, f¢c, - ¢~¢c,aa, + ¢'aa,c¢,, (3.37) 

0 : Aaa ,bb ,  cc, ~- ( A a a ,  , Cbb, A Ccc, ) 
^ ^ 

= V b b ' ~ c c ' a a '  --  Vcc ,  dPbb,aa , - -  gaa ,bb , cc , ,  (3.38) 

0 = A a b c c '  =- l I A a b ,  Chc' A Cch' A C hh ' )  = V h c,~)abch, (3.39) 

where fTaa,, Vaa' denote covariant differentiation with respect to the corresponding connec- 
tion in the direction of Caa,. 
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3.3. Conformal geodesics on conformal Einstein spaces 

We shall later employ the conformal geodesic equations to fix a gauge for the conformal 

Einstein equations. Their use in this context depends on the fact that in Einstein spaces the 
tensor Lu~ entering the conformal geodesic equations has the simple form 

1 ( 1 ) 
Luv -= - k•v kgtz~ = ~.~'uv, ~. - - -  ~. (3.40) 

n 2 2 ( n - l )  2 ( n - l )  

The following two lemmas will allow us to obtain complete information on the quantities 

which control the conformal gauge. This result is critical for our use of  conformal geodesics 
in the context of  the conformal field equations. 

Lemma 3.1. Suppose that x ( r ), b( r ) ,  ck ( r )  is a solution of the conformal geodesics equa- 

tions (2.49)-(2.51) with respect to the metric ~ such that x ( r )  is a time-like curve in 

1(4 defined on some open interval I. l f  ~ satisfies the Einstein equations (3.1), then the 

"conformal factor" O ( r )  > 0, obtained from (cf (2.40)) 

(O-2rlkl : g(Ck, Cl), (3.41) 

is given for r ~ I by 

O ( r )  = 0), + (r  -- r0){~, + l ( ' r  -- "r0)2(~,, 

where ro ~ I ,  69, = Olro > 0, 69, = Olro, ¢0, = ¢0lro, and the dot denotes the derivative 
with respect to r. 

We take in (3.41) k = l, differentiate, and use (2.51), (3.41) to get 

V~O = O(b,  ~t), (3.42) 

which entails with Eq. (2.49), where we assume (~t, ~t) -- ~(~t, ~t), 

~'~(O 2 bt, ~t)) = 0. (3.43) 

Since (.t, ~t) > 0, we can, possibly after multiplication of 69 by a constant positive factor, 

assume that 

O 2 (J:, 3C) : 1, O > 0, r E I.  (3.44) 

By differentiating (3.44) we get 

6) = - (93 (k ,  V.tk). (3.45) 

Using (3.42), (3.44) we rewrite Eq. (2.49) as 

b = O2~7~t3~ -I- 2 0 0 ~ t  = Vot(O23c) .  (3.46) 

Inserting this in (2.50), contracting with ~, observing (3.45) and 

(~7t.l? , V t.I~) : ~(3~,  Vx~) -- (.i', ~72.~) = ~Vx( O 1  ~ 2 -2)  _ (~, ~72~), 
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we obtain 

(k, 92~t) = ~ 3 (9 + 2L(~t, £) . (3.47) 

Inserting again (3.46) into (2.50) and observing the expressions derived so far yields 

} 1 
92k = - 3  9~k + - 3  + L(.t, k) ~t + ~--gL(~t, .). (3.48) 

Differentiation of (3.45) gives in view of the equations above 

= (gL(~t, yc) + ½ 0 3 ( 9 ~ ,  9 ~ ) .  (3.49) 

Taking a further derivative we finally arrive at 

9 3 0  = O(VL)(Y¢, Yc, k)  + 36)L(~t, .t) + 3oL(:t, 9x~). (3.50) 

With (3.40) Eqs. (3.48), (3.50) take the form 

(3.51) 

(3.52) 9 3 ( 9 = 0 .  

The last equation implies the desired result• 

Lemma 3.2. Suppose that x (r), b(r), ck (r) is as in Lemma 3.1 and ~ satisfies the Einstein 
equations (3.1). I f  Yc = co at r = ro E I, then 

bk(z) =blzclzk = (9-1(6~, da.) 

= o - l  ( - t - ~ 2 0 , O  - 2 000 ~ + ldc,dC.l, d a , )  , t e l ,  (3.53) 

where O f  l da. = balrofor a = 1, 2, 3. 

The field dk = bueUk is obtained as solution to Eqs. (2.42), (2.45), (2.46) with z i = 

8~. We can assume, that the orthonormal frame ek with respect to which the equations, 
in particular the connection coefficients F / j  k, are expressed, has been chosen such that 
Ck = ejC j = O-lek.  Then (2.45) reads 

t~i k (9 : ['0 i k "t- S(d)o i k 

which gives upon contraction 

6) = do. (3.54) 

Eq. (2.46) reads 

d/= (f'okj + ½S(d)okj)dkO -~ + ~ ooj 0 -~. 
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These equations imply 

dj = ½Ooj (2~. + dkd k) 69-1, 

whence 

151 

(3.55) 

da ( r )  -- da (r0) for a = 1, 2, 3, (3.56) 

and 

D ~ d 0 = I r/oo (2~. + dkdk) 69-1 = ½(2r/00 ~. + (9 2 - I d a d a l ) 6 9  - I ,  (3.57) 

which gives the result. 

Remarks. 
(i) We note that Eqs. (3.48), (3.50) constitute a system of differential equations for the 

projections of  conformal geodesic solely in terms of x ( r ) ,  O ( r ) .  It has been derived 

without any assumptions on the metric ~ and therefore holds also if ~ is a solution to 
Einstein's field equations with non-zero energy momentum tensor. 

(ii) It is an important fact, which will be used in the derivation of the subsidiary equations 
later on, that the functions 69, dk satisfy Eq. (3.55). 

(iii) Note that 

fk = 69-1(dk -- ck(69)) = 69-1(0, da - Ca(69 ) ) (3.58) 

(cf. (3.20)) contains information about the frame and thus is not explicitly known.  
It may happen that the function ~9 vanishes at some point on a conformal geodesic. 

If  fk and ck remain smooth there, it follows that da = Ca(69) at such points, which 
allows to calculate the value of  ck(69) explicitly. The value of oiJci(69)Ci((-~) ) : 

(9 2 - 8~bCa (69)Cb(69) at a point where 69 = 0 is by (3.57) the limit of  (92 _ ~abdadb  : 

dkdk = 2 170o 6 .  69 - 2 ~.. It follows that 

oiJci(69)cj(69) : -2~. where 69 = 0. (3.59) 

This behaviour reflects in a most remarkable way the causal properties of  conformal 

boundaries of  asymptotically simple space-times. 

4. Anti-de Sitter-type space-times 

4.1. Anti-de Sitter covering space 

The prototype of a solution to Einstein's equations (3.1) with positive cosmological 
constant ~. is given by the universal covering space of  the Anti-de Sitter solution (cf. [ 11 ]), 
the Anti-de Sitter covering space (CADS). Its underlying manifold is M = •4 and the metric 

is given by 

: (3/~.) (cosh 2 r dt 2 - dr  2 - sinh 2 r dt~2), (4.1) 
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where t E R, d~r 2 : d0 2 + sin 2 0 d~b 2 is the standard line element on the unit 2-sphere, and 

r _> 0, 0, 4~ are polar coordinates in R 3. In the following we consider the value ~. = 3. The 

space-t ime is simply connected, geodesically complete, and conformally flat. 

The features of  this space-t ime of interest in our analysis are demonstrated particularly 
clearly by constructing its conformal boundary at space-like and null infinity [ 11,15-17]. 

Performing the coordinate transformation 

X = 2 a r c t g ( e  r ) - l r e ,  0 < X  < Ire (4.2) 

and rescaling ~ with the conformal factor I-2 = 1/cosh r = cos X yields 

g = I22~, = dt 2 - do) 2 (4.3) 

with dw 2 = dx 2 + sin 2 X (d02 + s in2 0 d4~2), the standard line element on the unit 3-sphere 

in R 4, parametrized by 

x I = c o s l ,  x 2 = s i n x c o s 0 ,  x 3 = s inx  sin0 cos4~, x 4 = s inx  sin0 sin4~, 

0_<X_<re ,  0 < 0 < z r ,  0_<c.b_<2re. 

We have obtained above the embedding of  CAdS into the Einstein cosmos, given by the 
manifold R × S 3 with line element (4.3). 

Important for us is the fact that a boundary, the set 2- = {X = ire}, can be attached to 

CAdS in such a way that the conformal structure of  the metric (4.1), which is represented 
also by the metric (4.3), extends smoothly through this boundary. Since 2- is defined by this 
property and since it may be shown, that all space-like and null geodesics of  CAdS attain 

two end points on 2-, it is called the "conformal boundary" of  CAdS at space-like and null 
infinity. We denote by M the manifold with boundary given by the part 0 < X < ½re of the 
Einstein cosmos and denote by g the restriction of the metric (4.3) to M. 

For completeness we note the well-known fact that time-like geodesics emanating from 

a given point in CAdS are refocussed such that they keep meeting periodically in an infi- 
nite sequence of different points of  CAdS [11,15]. Taking into account that Anti-de-Sitter 

space-t ime admits a symmetry group of maximal dimension, this can be deduced from the 
following observation. The line element 

d r Z - c o s h 2 r ( d r / 2 + s i n h Z d c r 2 ) ,  Irl < ½re, I / > 0 ,  (4.4) 

for which r is an affine parameter on time-like geodesics, is transformed by 

r = Arsh(cos r sinh r/), t = arctg(tan r / c o s h  r/) (4.5) 

into the line element (4.1) with ~. = 3 and, if we use (4.2) to embed (4.4) into CADS, the 
geodesics parametrized by r converge at the point X = 0, t = -½re as r ~ -½re and at 
the po in tx  = 0 ,  t =  ½ r e a s r ~  I jr. 

The property, that the conformal boundary is time-like in (M, g), which shows clearly, 
that CAdS is not globally hyperbolic, will determine the type of PDE problem we shall 
consider later on. For example, to construct solutions to Maxwells equations on CADS, data 
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have to be prescribed on a space-like hypersurface which extends like {t = 0} up to 2- and 

on the boundary 2- at space-like and null infinity. 

We study now a class of  conformal geodesics on CADS. Since these curves are defined 
by the conformal structure we can analyse them in terms of the metric g. The frame field 

defined by co = Or, 

/cos~ . ) 
cl = s i n s  s in00 x + ~ si-~-0-ctgx - s i n < p c t g 0  0~ 

+(cos  q~ + sin q~ cos 0 ctg X)00, 

f s i n q ~  ) 
c2 = cos tp sin 00 x + ~. -  s i - ~ c t g x  - cosq~ctg0 0~ 

+ ( -  sin q~ + cos ~p cos 0 ctg X)Oo, 

c3 = cos 0O x + 0~ - sin 0 ctg X O0 

is orthonormal with respect to the metric g and we have the commutation relations [ci, cj  ] = 

ci I j c l ,  ci  I j  rllk = 2eOikj whence V i C  j -~- Yi I j c l ,  Yi l j  rllk = 80ikj and 

Rjikl  ~-" m =-. _ E 0 jiEOmkl, R i j  2(8 ° i~Oj rlij),  

L,j = ½(Rij -  R ij)= go i oj _ ½o,j. 

We write x ° ---- t, x I ---- 0, x 2 = tp, x 3 ---- X- With respect to the frame cj the conformal 

geodesic equations read 

~o = z O, Jcc~ = zac  a a, ~0 = _ 2 ( b i z i ) z  0 -I- ( z i z i ) b  O, 

~a : _ 2 ( b i z i ) z  a d- ( z i z i ) b  a, [~0 : (b i z i )bo  - l ( b i b i ) z o  -b l z o ,  

ba - e o c e a z C b e  = (b i z i )ba  - l (b ib i ) za  1 z c - ~ O a c  • 

The solution of these equations satisfying the initial conditions 

x t Z ( 0 ) = x .  ~, ~ t ~ ( 0 ) = 8  ~0,  b~ = 0  

is given by 

( 1 )  o xlZ(r ,x ,  v ) = x ~ + 2 8 ~  arctg r , b ~ ( r ) = ½ r S ~ .  (4.6) 

Various interesting observations follow from this simple result. The first is related to the fact 
that the "life-time" of conformal geodesics is a somewhat curious notion. If one considers 
the conformal embedding of  Minkowski or de Sitter space-t ime into the Einstein cosmos 
(cf. [11]), one finds the following property. In (4.6) the value of x ° can be fixed such that 
the points x~ (r,  x.),v with r ~ R a n d x a , a  = 1, 2, 3, parametrizing the points ofS3,  cover 

the embedded space-times. This property of  the global conformal structure of  Minkowski 
and de Sitter space-t ime stands in sharp contrast to the properties of  CADS. Conformal 
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geodesics, considered as curves on the underlying manifold, allow reparametrizations of 
the form 

af +b 
r - c f + ~ ,  a,b,c, d E R ,  a d - b c ¢ O  

(eft, e.g. [8]). To cover CAdS by conformal geodesics we would need to apply to (4.6) an 
infinite number of such reparametrizations, under which the curves (4.6) extend analytically. 

Important for our later applications is the fact that the conformal geodesics (4.6) through 

points of the embedded CAdS stay in the embedded CAdS and that the conformal boundary 

I is ruled in a neighbourhood of its intersection with {t = 0} by conformal geodesics. This 

allows us to use conformal Gauss coordinates based on the "initial hypersurface" {t = 0} 
of CAdS for analysing in a convenient way the space-time and its asymptotic structure 

"near"{t = 0}. 

4.2. AdS-type space-times 

A smooth orientable and time-orientable four-dimensional space-time (AIr, ~) is called 

"asymptotically simple" [15,16], if there exists a smooth space-time (M, g), a smooth 
function Y2 E C °° (M), and an embedding j : Aqr > M, by which we identify/~t with the 
open subset j (/~/) of M, such that 

(i) ~2 > 0 on M, the set 2- = {12 = 0} is non-empty and the boundary o f / ~  in M, and 

d/2 # 0 on 2-. 
(ii) g = ff22g on M. 

By the first condition 2- is a smooth hypersurface in M. We will in the following assume 

that M is a manifold with boundary 2 such that M = M 132-. We shall call I the "conformal 
boundary" and (M, g, I2) a "conformal extension" of the space-time (AT/, ~). The strong 

smoothness requirements have been made here only for convenience of presentation, but are 

obviously not necessary for the definition ofa  conformal boundary. In Section 8 we will refer 
to the case of lower differentiability. It is customary to add a completeness requirement to 

the definition of asymptotic simplicity to ensure that nothing is left out in the construction of 
the conformal boundary. We shall not state such a condition, since in our later consideration 

it will not be satisfied. However, it will then be clear from the context, how the boundary is 
to be determined. 

In the following will be studied solutions to Einstein field equations (3.1) with cosmo- 
logical constant X > 0, which are asymptotically simple. Such solutions will be called 
"AdS-type space-times". We discuss first a few properties of such spaces. 

4.3. Properties of AdS-type space-times near the conformal boundary 

If  (M, g, $2) is a conformal extension of an AdS-type space-time, Eq. (3.7) restricted 
to the conformal boundary implies that 2" is a time-like hypersurface because ~. > 0. Eq. 
(3.6), expressed in terms of the conformal Weyl tensor C tz vxp of g, reads 

~2 V~C ~ ~xp - VuY2 C ~ ~xp = O. 



s : t  3 x / ~ ,  

Da dac = O, 

where 
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Thus VuS2 C u vzp = 0 on 2- and, since Vul-2 is space-like, it follows (most easily in the 

spinor formalism) that also C u v~p = 0 on 2-. Thus we can extend the field d Iz vxp smoothly 

to 2- and the Einstein equations in the representations (3.3)-(3.7) hold on M. These equations 
are by their definition invariant under the transitions 

g > 02g,  ~ ~ 012 (4.7) 

and associated transformations of  the derived fields if 0 E C ~ ( M ) ,  0 > 0 on M. Under 

such rescalings we have 

h > (01~:) 2h, glz > ( 0 - I s  -t- 0-2V~I2Vtz0) lz ,  (4.8) 

where h denotes the metric induced by g on 2-. The constraints (3.8)-(3.17), which hold on 

2- with e = - 1 ,  simplify considerably, since 12 = O, and Da,(2 : O. We assume that the 

unit normal n of  2- points into/~/. After a short calculation we find 

~' = C3(A'2 ) = ~/-~/3 = cons t .  > O, (4.9) 

whence 2? is invariant under the rescalings (4.7), and 

Xab = t hab, La = - D a t ,  Lac = lab - l t2 hac, (4.10) 

d* b : - - v /~ /~ . ) kab ,  (4. I I) 

kce 6e ab = kcab = - O a  lcb q- Db lca 

is the Cotton tensor of  h and t is a smooth, gauge-dependent, real-valued function on 2-. 

From (4.8) follows that by a suitable choice of  scaling (4.7) we can simultaneously and 

arbitrarily fix the function t and the scaling of  h. We notice that all fields implied on 2- can 

be expressed in terms of  t, the inner metric h, and tensor fields derived from it. 

4.4. Conformal  geodesics  near  the conformal  boundary 

We want to show in the following that conformal geodesics starting on 2- with suitable 

initial conditions stay on the hypersurface 2-. We keep the assumptions above on the frame 

ck on 2", extend the frame into a neighbourhood U of  2- by the requirement Vc3ck = 0 and 

write again n =c3 .  Then if3 i j  = 0 and ffijk = --f f ikj  on U. Furthermore, we assume that 

x "  denotes Gauss coordinates on U based on 2-, such that 2- = {x 3 = 0}. Then c ~ 3 = 
•#3, C3a = Oon U. 

We express the conformal geodesic equations (2.49), (2.50) on U in terms of  x tz, bk = 

b~c  Iz k, write .ic ~ = c Jz k Z k, and find that the equations split into 

3~3 = C  3 kZ k = Z  3, ~3 = --]-'a 3 b zaz b -- 2(bkzk)z  3 + (ZkZk)b 3, 

b3 -~ Fa c3 zabc + (bkzk)b3 - l (bkbk)z3 + L33 z 3 + La3 z a, 
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and, for a, u = 1,2, 3, 

~a = C  a aZ a, ~a = _ F c  a b z C z b 2 ( b k z k ) z a + ( z k z k ) b  a, 

ba = fie c azebc + (bkzk)ba _ l (bkbk)z  a + L3aZ 3 + LcaZ c. 

Since the conformal geodesics depend only on the conformal structure, we may assume 

a choice of  scaling where t = 0 on 2". We give initial data 

x~'(o) = x ,  ~, . e ' ( o )  = ~,~, h i (o)  = b j ,  

for a conformal geodesic, such that x 3 = 0, ~3 = 0, b3. = 0, whence also z3(0) = 0. 

Thus the solution xV(r),  zk(r),  bk(r) will start with a tangent vector tangent to 77 and 

it follows from the conformal geodesic equations and from the fact that t = 0 implies 

Fa 3 b = O, Fa c 3 = O, L3a = 0 on 77, that the solution is of  the form xV(z), bk(r) with 

x3(r )  = 0, z3(r) = 0, b3(r) = 0, i.e. the conformal geodesic remains on 2-. Furthermore, 

with an ansatz c = /~ n for a solution of  Eq. (2.51) along our conformal geodesic, this 

equation reduces in the present gauge to/~ n = - ( b ,  .,?)/5 n, which clearly has a real-valued 

solution/5 # 0. Thus given on some point of  our conformal geodesic initial data for a frame 

which include a vector normal to 77, the corresponding solution to (2.51) will be a frame 

field along the conformal geodesic which contains a vector field normal to 2". 

Observing now (4.10), we find that x a (r) ,  z a (r) ,  ba (r)  satisfy the equations 

~a = C  a aZ a, ~a = _ f fc  a b z C z b 2 ( b k z k ) z a + ( z k z k ) b  a, 

[~a : Fe c azebc + (bkzk)ba _ l (bkbk)z a + lcaz c, 

which are in fact the conformal geodesic equations for the conformal structure which is 

determined by the interior metric h on 77. Furthermore, those of  the vector fields solving 

(2.5 l) along this conformal geodesic, which are tangent to 77, are also obtained as solutions 
to the interior conformal geodesic equation. 

We assume now x~( r ) ,  zk(r),  ha(r)  as above for k, /z  = 0, 1, 2, 3, a = 0, l, 2. If  

we perform a rescaling (4.7) which leaves the metric h unchanged and set b3(r) = 

- ~ ' ( 3 / i )  g(xV(r)) with the resulting function g = -~ /~-7-~nVVt , /2 ,  we find that this 
is again a solution to the conformal geodesic equations. We collect these results in the 
following lemma. 

Lemma 4.1. A conformal geodesic in an AdS-type space-time which passes through a 

point p o f  the conformal boundary Z, is tangent to Z at p, and satisfies there (b, n) = 

- ~ f~  / k ) g, where n is the inward pointing unit normal vector o f  Z at p, remains in Z and 

defines a conformal geodesic for  the interior conformal structure o f  2-. Eqs. (2.5 1) admits 

as solutions frame fields on 2- which contain a vector field normal to Z. Those o f  the vector 

fields which are tangent to Z represent solutions o f  Eq. (2.5 1) with respect to the interior 
conformal structure o f  Z. 
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5. Formulation of  the initial boundary value problem 
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5.1. General considerations, gauge conditions and initial data 

Suppose that (M, g, $2) is a conformal extension of an oriented and time-oriented CADS- 

type space-time (AT/, ~) which does not contain any closed causal curve, but which contains 

a smooth, oriented, compact, space-like hypersurface S with boundary OS which intersects 

the conformal boundary Z such that S N Z = OS. We assume that the causal future J+(S)  

of S coincides with the future domain of  dependence of the set S U Z + and that this set can 

be mapped diffeomorphically onto [0, l [ x S such that Z + is mapped onto [0, l [ × OS. We 

denote here by/7+ the part of 2- in the future of S (including OS). For the causal notions 

used here and in the following we refer to [l 1]. The rest of  this article is devoted to the 

initial boundary value problem which we need investigate to answer the question: 

Which data implied by ~ respectively g, S2 on S U 17 + do we need, to reconstruct in 

a neighbourhood of  S in J+(S)  up to diffeomorphisms the solution ~ of  Einstein's field 

equations (3.1) with positive cosmological constant ;~ ? 

It is well known (cf. [4]) that h, ~, the first respectively second fundamental form induced 

on S = S \ 0S by ~, are the data which determine the solution ~ of (3.1) uniquely on the 

domain of  dependence of  S up to diffeomorphisms. These fields satisfy the constraint 

equations 

b ' % ~  - b t ~  '~ ,, = 0, ? _ (~,~ ,,)2 + ~ , ~  = 2 ~ (5. l) 

induced by (3.1) on S, where b denotes the Levi-Civita connection and ~ the Ricci scalar 

of h. On S we may choose I2 = Y2, and ~7 = h(.f2) = ~ , ,  where h denotes the future 

directed unit normal field of  S with respect to ~. The functions 12,, Z', are restricted only by 

smoothness and positivity requirements and by their behaviour near OS, where we require 

in particular Z' = n(~2) = Y2,1Z,  to be smooth. Here n denotes the future directed unit 

normal field of S with respect to g. We can now determine the first respectively second 

fundamental form 

h~/~ = 1-22h~, X~/~ = $2()~c~¢~ + z'/Ttc~/~) (5.2) 

of g on S and, as will be shown later on, all initial data on S for the conformal field equations. 

To answer the question, which data may be prescribed on the boundary, we cannot fall 

back on known results and it should be discussed in conjunction with the evolution equations. 

To determine the form of these equations we have to decide in particular on a specific gauge, 

i.e. on a choice of the conformal scaling, of  the orthonormal frame, and of  a coordinate 
system near the "initial hypersurface" 2-. We shall describe now how to fix a gauge in terms 
of  the conformal geodesic equations. To simplify the discussion, it is convenient to assume 

that the intial hypersurface S has been chosen such that the unit normal vector field n is 

tangent to 2- on 0S, i.e. 

Z' = n(S2) = 0 on OS. (5.3) 
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This allows us to choose 

, U = 0  o n S .  (5.4) 

Observing (4.8) the function I2, is chosen such that 

.~ = 0 on 0S. (5.5) 

We assume that at each point of  S starts a future directed conformal geodesic x~( r ) ,  by (r), 

ck(r) with r = 0 on S, such that we have on S in terms of  the metric ~ and its associated 

Levi-Civita connection 

future directed, orthogonal to S, ~(~t, ~) = ~Q-2, 

b = .(-2 - I  dl2 whence (b, ~) = 0, 

CO = JC, g(ci ,  Cj) ----- ~ - 2  rlij ' 

(5.6) 

(5.7) 

(5.8) 

where the second equation in (5.7) follows from (5.4). We note here that once the gauge 

has been fixed by (5.6), (5.7), neither the point set run through by a conformal geodesic nor 

its parameter r depends on the remaining freedom of prescribing on S the frame satisfying 

(5.8). 
The following statements will be true in a suitably determined neighbourhood W of S in 

J +  (S) which is chosen such that its intersection with each conformal geodesic is connected. 

The curves xU(r)  define a smooth, time-like congruence in W, ck a smooth frame field, and 

bvdx ~ a smooth l-form. If  we set x ° = r on W and extend a local coordinate system xct, 

a = 1, 2, 3, on S into W by the requirement that x ~ remains constant along the conformal 

geodesics, we obtain smooth local coordinates x u , / z  = 0, 1, 2, 3, on W, which we shall 

call conformal Gauss coordinates based on S. The coefficients c u k = (dx u, c~) of Ck with 

respect to the conformal Gauss coordinates satisfy on W c u 0 = 8 u 0, but in general c o a = 0 

only on S. We fix a smooth conformal factor 12 whence the metric g on W by requiring 

g(ci, Ck) = rlik. In terms of  the metric g and its Levi-Civita connection V the conformal 
geodesics are represented by (3.20) in the form x~(r ) ,  fv ( r ) ,  Ck(r) with 

f u  = b~ - ~ - !  V~ I2, (5.9) 

such that f u  = 0 on S. It follows from Lemma 4.1, the assumption (5.5), and the initial 
conditions that the conformal geodesics starting on 0S remain in 2 -+. Because of  (5.5) we 
can write g = I2, s, with a smooth function s, on S. From the initial conditions, Lemmas 
3.1, 3.2, and (3.17) follows on W 

I2 = ~ ,  (1 - ½r2s , ) ,  (5.10) 

and 

bk = ~2-1(~2, da,)  with da, = ( c ~ O c t S 2 ) , ,  (5.11) 

where we assume, that the functions I2,, s, ,  (cct a Oct ,.(2 ) , ,  initially defined on S, are extended 
to W such that they are constant along the conformal geodesics. 
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We will adopt in the following the notation used in our discussion of the conformal 

Einstein equations in Section 3. The conformal field equations will be expressed with 

respect to the connection V given by 

- V = S(b), respectively x~ - V = S ( f ) .  

On S the connection V coincides with the connection V defined by g. Thus we have on S 

for the connection coefficients with respect to the frame ck 

ffaCb = l"aCb, - - f faOc hcb = f fabo  = Xa b = XaflCC~aCflchCb , 

Fa °o = O, (5.12) 

with 

Fad b Ca = OcaCb, Xab = g(£7c~C0, Cb), 

where D denotes the Levi-Civita connection defined by the metric h induced by g on S. By 

our choice of gauge we have 

rOik =0, ffOj = 0  on W. (5.13) 

Using (5.9) and the connection defined by g to express (2.35) on S, we find 

ffaj = (d30, Ca) - t j a  = - t j a ,  

where Ljk  = Alzvc# j C v k and 

A u  v = _ i f 2 - 1  V i x V v f f  2 .q_ I guy ~ - 2 V a I 2  Va$2 + 112-2;~guv 

since g is conformal to a solution to Ric[~] = ~.~. Using the data given so far and (5.4), 

(3.8), (3.16), (3.17) we find 

ffaO = ~('2-1 Xa b Dba,2, 
+ cd, h f ' a b = g - 2 - 1 { D a D b ~ 2 - - 1 D c D C f f 2 h a b } - - l { r - - ( X c C ) 2  XcdX l a b  (5.14) 

Using (3.15), (3.16) the rescaled Weyl tensor d i jkl can be determined. It is specified com- 

pletely by 

dab =-- daObO = $ 2 - 2  { Oa D b ff2 - l h a b O C  Oc I2 + ~'2 (lab -- l r hab ) ] 

-] -at2-1 [XCc Xab -- XCa Xcb -- l ha b ((XCc)2 _ xCd Xcd)} (5.15) 

and 

dabc =~ daObc = ,(2-1 { D b Xca - Dc Xba -- ha[b De Xcle -I- ha[b Dcl X e e } ,  

or equivalently, 

d* b = -I-2 - I  De Xf(a Eb) ef  (5.16) 
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It Can be shown (cf. [6]), that the conformal data so defined satisfy in fact the constraints 

(3.8)-(3.17) on S. 

Definition. Initial data/~t~, )2,~ solving on the manifold S the constraint equations implied 
by (3. l) are said to satisfy the condition of "asymptotic simplicity", if the conformal data 

derived from them as above extend smoothly to OS. 

This definition raises the question of "how many" such data exist. This problem will not 

be discussed in detail in this article. However, to illustrate the nature of the problem, we 
remark on an important subclass of data for which the complete analysis has been given. 

In analogy to the condition of time-symmmetry in the standard Cauchy problem for 
Einstein's field equations we consider the case 

)(ab = 0 on S. (5.17) 

It follows then from (5.4) that also Xab = 0 on S. As described above, we can then determine 

all conformal data on S from hab. We find from (3.9), (3.15), (3.16), (3.8) that La = O, 

dabc = O, l r = I a = L a - $ ' 2 1 r  + on a a, I D a D a ~  = ~ S and thus can write (3.17) in 
the form 

2 I2 DaDa$2 ---- - l r  $'22 d- )~ q- 3 Da~-2Da$2. (5.18) 

Setting in this equation I2 = 1, or rewriting it in terms of the metric h = $2-2h induced by 
on S \ 0 S, we see that (5.18) is equivalent to the Hamiltonian constraint ? = 2~. = const. > 0 
which we assumed to be satisfied by hab. 

The construction of solutions to this constraint, which satisfy the fall-off conditions which 

are implicit in the smoothness requirement on the conformal fields, has been described in 
all details in [2] where the following result has been shown (observe the different signature 
used in that article, the metric h used here is negative definite). 

Suppose ~. is a positive real number, S is a smooth, compact, orientable, three-dimensional 
manifold with boundary OS, and h is a smooth, negative definite metric field on S. Denote 

by tz the second fundamental form induced by h on 8S and by #* its trace free part with 
respect to the first fundamental form on OS. If and only if the metric h is such that the 
conformally invariant condition 

/z* = 0 on OS (5.19) 

is satisfied, there exists a (unique) solution g2 ~ C°°(S)  of (5.18) with .f2 > 0 on S \ OS, 

I'2 = 0, dI2 ~ 0 on OS and it follows that the fields given on S \ OS by 

E = 0 ,  g = ½OaOa~-2 + ~--~$'2r, La = 0 ,  dabc = 0 ,  

Lab -~- --g2-1(Oa Ob~2 -- 1 Oc OC~,-2hab) + 1 rhab,  

dab = ~-2-2{Do Db~'2 -- 1 Dc DC$-2 + $2(lab -- l r hab)} 

extend smoothly to S and solve there the constraint equations (3.8)-(3.17). 
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It turns out that if the condition (5.19) is not satisfied, there still exists a unique solution 

I2 of (5.18) which is positive on S \ 0 S and vanishes on 0 S. This solution will be smooth on 

S also under conditions slightly weaker than (5.19). In any case, if (5.19) is not satisfied, the 
field dab(P) diverges like p ( p ) - 2  as the distance p(p)  of the point p ~ S from the part of 
the boundary OS where (5.19) is violated goes to zero. Most likely this blow-up behaviour 

will spread and the solution of the conformal field equations determined by the data on 
S \ OS will blow up at parts of the boundary of its domain of existence. If such a spreading 

of the blow-up behaviour does occur, it should "most easily" be established by using the 
conformal field equations, which would allow to localize the problem to a neighbourhood 

of OS. Since the conformal factor will be bounded below by a positive number near most 

parts of the boundary of the domain of existence, also the "physical" conformal Weyl tensor 
will diverge at parts of the boundary. Thus we would obtain a statement on the blow-up 

behaviour of the physical fields not depending on the use of the conformal method. This 

suggests that smooth AdS-type space-times with boundary at space-like and null infinity 
which is diffeomorphic to R x OS exist only if the initial data implied by the "physical" 

metric ~, satisfy the fall-off conditions encoded in the smoothness requirement of asymptotic 
simplicity. 

Recently, in a context somewhat different from the one discussed here, the investigations 
in [2] have been generalized into various directions, in particular to the case where the 

second fundamental form ~(ab does not vanish [1 ]. By the methods developed in [1] the 

existence of a more general class of data satisfying the condition of asymptotic simplicity 
can be shown. 

5.2. The reduced field equations 

In the following ck will always denote the specific frame field on hT/determined by the 
gauge discussed in Section 5.1 and a k the dual 1-form field. We shall employ a splitting 

of fields with respect to the time-like vector field ~v'~c0, which in the frame coa, has the 
representation 

~.aa' = EO aEO ' a' q_ 81 abl ' at (5.20) 

With the exception of the factor ~ in (5.21) we will follow the conventions of [7]. For 
later use we need, however, more details about the underlying structures. The coefficients 

(5.20) are used to define the projected van der Waerden symbols 

~Tj ab =¢3rj (aa I~'b)at, ¢YJab = ~(ba'crJa)a I, 

such that ao ab  aO ab both vanish and 

b '  ' " ' b ~J k = ~ J a b ( T k  ab, j = 1 , 2 , 3 ,  Eab Ea , = I raa, rbb -~-~JafZ' fa , '~eb ~je , 

rljk aJ  ab O'k cd = -- ~jk ~7J ab ~Tk cd = --Ea(ced)b ~ habcd. 

The simply connected group which leaves eab as well as Tab' invariant is given by 

SU(2, C) = {t a b E SL(2, C) I raa ' tabU' b' = rbb'}. 
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There is a surjective 2 : 1 group homomorphism 

ca" • " t a cd S U ( 2 ,  C)  g tao---> t ' j  : a t a b  ctbdcYj  E O+ (3, R), 

where i, j = 1, 2, 3. It implies an isomorphism of Lie algebras which is given by 

su (2 ,  C)  9 u a b  ~-~ u i j  : 2 f f i a b U a c c r j c b  E o(3, •) 

and has inverse 

o(3, R) 9 b l i j  U a b  ~--- l u t j f f i a c ~ J b c  E su(2 ,  C) .  

For any frame eaa, = eka  k aa' with e0 = co we get a decomposition 

= 1_  bb p eaa'  -~ taa ,T  ebb, _ ~b area b 

• b ~ a I with r b ebb, = ~/~co and a frame eab ~- r(b ea)a r in the subspace orthogonal to co which 

satisfies, with respect to the metric h induced by g on that subspace, the normalization 

condition h(eab, ecd) = habcd. 

At p e M the vector co induces a hermitian form which for spinors x , /z  is defined 

by (x, # )  ~ ~/2g(co ,  x/2).  The set of  spin frames 8 e SL(19I) which are normalized 
with respect to this hermitian form by qC2g(co, ~a ~a') = Z'aa' defines a subbundle SU(I(/1) 

of SL(I(/I) with structure group S U ( 2 ,  C).  The  structure of  this group is reflected by the 

property of  the spin frames 6 E S U ( ~ I )  that the normalized spinor 80 determines uniquely 

the spinor 81 and vice versa• 
The map which associates with 8 E SU(191) the frame e~bak ab is a 2 : 1 bundle morphism 

of SU(1(4) onto the bundle of  positively oriented frames orthogonal to co with respect to 
the homomorphism q~". 

Any spinor field on M supplies an invariant function on SU(i f4)  and vice versa• If/Za, is 
the function corresponding to a primed spinor field, we define a bijective complex linear map 

a t 

IZa ' -">" ]J~a : 'ra ~a '  which allows to associate with any primed spinor field an unprimed 

spinor field. This map is extended in an obvious way to spinor fields of  higher valence 
and various index positions such that it commutes with contractions. It should be observed 

that the position of the contracted index of  r aa' is always chosen as shown above. The 
map is related to the hermitian conjugation map which associates to any unprimed spinor 

a I _ 

field another such field by #~ --+ # +  = ra /Za'. Again, this map is extended by complex 
semi-linearity to more general spinor fields such that it commutes with contractions and 
satisfies, e.g. lz ++ = (--1)kl2al...ak. al ...ak 

If  a tensor field/~ is represented at 8 6 S U ( t f l )  by the components gala, 1 ...aka k ,, it can be 
£ / t -  

expanded in terms of the components of  the frame eab = ~(a rb) S a, orthogonal to co if 
• aja! 

and only if it is "spatial", i.e. ff r J IZala~l ...aja,j...aka~k = 0 for j = 1 . . . . .  k. In that case the 

components of /z  in the frame eab are given by 

t alklZ . . . .  U(albl) . . . (akbk)" ll~albl...akbk -~- 7;bl al • • • ~bk alal . . .ajaj . . .aka k 
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Conversely, any spinor field with 2k unprimed indices which has the symmetries in the 

index pairs considered above corresponds to a spatial spinor. For a tensor field # which 

is represented on S U ( 1 ( 4 )  by a component function/za~, this tells us, that we obtain an 
orthogonal splitting by writing IZaa, = "Cca, rcb'IZab, 1 , cc' , _ T:c = raa r Ltcc a ' # c a ,  where Iz, a = 

b' r~c IZa)b' represents the spatial part of/~. Again, this procedure can be extended in an 
obvious way to spinors of higher valence. 

Finally we note that a spatial tensor which is represented by the component function 

lZalbl ...akbk = lZ(atbt )...(akbk) represents a real tensor field if and only if it satisfies the reality 

condition #+ = ( -  1)k#a I bl ...akb k . albl ...akbk 
We shall discuss now the data and the propagation equations inherent in the conformal 

Einstein equations in terms of spinors and the gauge discussed in Section 5.1. By x u will 

be denoted conformal Gauss coordinates and we will sometimes write as before r -- x °. 
The frame vectors are projected onto 

! 

T a d  ~ Or, = Cl z abOla. Caa' = Cab = ~'(a a Cb)a ' 

We set 

b ~ b ~ 
Fabcd = rb Fab'cd,  l a b  = rb )Cab,, 

b ~ c' d ~ - a ~ c' 
~v/2 Xabcd ~ - -F 'abdc- l -  ~b 75 c T d l-'ab,c,d, = "gb (Vaa ,  Tcc,)~d , (5.21) 

a' b' 
t~acbd = T c 75d ¢IJaa,bb ~ . 

From the gauge conditions (5.1 3) follow 
t 

A b =  f b ~ ,  F c C o b = r  cc F c c ' o b = - A b ,  

x / ~  X(ab)cd ----- ~ / 2  Xabcd - -  g-ab f c d ,  ¢i)c c bd = O. 

The initial data on S are given in terms of spinor expressions as follows: 
(i) The coefficients c a ab are  determined by the choice of the frame ck. This choice is not 

critical away from the boundary OS. T h e  specific choice near the boundary will be 
discussed later on. By our gauge conditions c o ab = O. 

(ii) Again, by our gauge f a b  = O. 

(iii) Let Dab  denote the covariant derivative in the direction of Cab with respect to the con- 

nection D and define connection coefficients Yabcdef  by setting Da b Ce f  = Yab cd e fCcd.  

The coefficients Yabcd = _ 21 Yabcf  d f satisfy Yabcd = Y(ab)(cd). The second fundamen- 
tal form on S is given by Xabcd ~ g(VcaoCO,  Ccd) and coincides because of our gauge 
conditions with the restriction of (5.21) to S. It satisfies Xabcd = X(ab)(cd)  = Xcdab. 

The connection coefficients Fabcd  are  given by 

1 
Fabcd = Yabcd --  - ~ X a b c d .  

Defining for the function Yabcd the operation of hermitian conjugation by the same 
formal rule as for invariant functions, we find that the two terms in the last expression 

may be distinguished by using the properties 

+ + 
}/abcd : --) tabcd'  Xabcd : )(abcd. 
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(iv) It follows directly from (5.13), (5.14) that 

¢l)abc d = $2-1DabDcd$2 -- l $2-2habcd{3 Def $2 D ef $2 + ~.} 

--Ecd -~2 ~r2 - 1Xab ef Def $2 

= $2-1D(ab Dcd) $2 -- ~2{r - (Xef ef)2 Jr- XefghX efgh } h~bcd 
--Scd -~2 $2-1Xab ef Def  $2. 

(v) Denoting by Sabcd the trace-free part of the Ricci tensor of h, we finally get 

CPabcd = dabcd + id*bcd = $2-2 D<~bDcd)$2 

+$2-1 (Sabcd -t- X ef ef X(abcd) -- X ef (abXcd)ef d- V/-2D f (aXbcd)f)" 

It may be noticed that the first four terms on the right-hand side of the last equation 
represent real spatial tensors while the last term represents a purely imaginary spatial 
tensor on S. This corresponds to the decomposition into the electric part dabcd and the 
magnetic part d*bc d which both represent real spatial tensors. 

The propagation equation will be expressed with respect to the covariant directional 
derivative operators 

a t 
P = raa'Vaa ', ~)ab : r(a Vb)a', 

given explicitly by 

P = V00, + VII, = v~Or,  ~)01 = l ( v 0 0 '  - -  V l l ' ) ,  

D 0 0  = - - V 0 1 , ,  D I I  = V I 0 ' .  

We want to extract from Eqs. (3.35) to (3.39) a system of propagation equations for the 
unknowns 

C# ab, ffabcd, t~acbd, ~acbd. (5.22) 

These equations will imply in particular equations for 

fab, Xabcd, 

which for later convenience will be added to the list. For Eqs. (3.35)-(3.38) the choice of 
evolution equations is suggested by our gauge conditions. Contracting these equations with 
r cc' and projecting as indicated above, we get with $2 as in (5.10) and with 

dab = (cct abOc~$2 ) . ,  ( 5 . 2 3 )  

derived from (5.11), 

Or ¢0 ab = -- fab -- X(ab) ef  cO ef ,  (5.24) 

Or Ca ab ~--- --X(ab) ef  cct ef ,  Ot : 1, 2, 3, (5.25) 

1 f Or fab = -- Z(ab) ef f e f  -- -'~ (1)abf , (5.26) 



H. Friedrich /Journal of Geometry and Physics 17 (1995) 125-184 165 

OrXabcd ~ --X(ab) ef  xefcd -- ~2 6ab X(cd) ef  f e f  + ¢l)ab(cd) 

1 _  f + 
2 Cab (Pcdf _ 1 ~f2 (~abcd q- ~)abcd ), (5.27) 

1 e Or~cbd = --X(ac)ef Fefbd + ~(8abX(cd)ef + eadX(bc)ef ) f ef -- X(ac)(b fd)e 

f) q~ (¢l)acdb -- Cab ¢I)cdf -'[- ~ ~ ~abcd, (5.28) 

Or ¢l) acbd ~- -- X (ac) ef  ¢l) e f  O d _ ½0z ~'2 ( ~abcd -~- (P + abcd) 

+ -~2 (de debaOce -- d e 04) + acde). (5.29) 

We consider two ways to deduce useful evolution equations from (3.39). We have the 
splitting 

d t r 
Aabcd = ~'d Aabcd' = Td d v f  d'~abcf Pabcd -- 3 = ~8d(cCab ) 

with 

eabcd = A(abcd) = _ 1  (e~abcd  -- 2"~(df~babc) f ) ,  Cab "~- Aabf  f = "~ef~abef.  

The equations 

0 = - 2  Pabcd = P~Pabcd -- 2D(d fqbabc)f (5.30) 

can be used as propagation equations for the rescaled Weyl spinor ¢babcd (cf. [7]). If we 
introduce the unknown 

lJtabcd ~ Kabcddt)abcd, 

obtained by multiplying the components of the spinor field with the square root of suitable 
binomial coefficients 

a + b + c + d  ' 

the propagation equations can be rewritten as an equation of the form 

Or~ + A ab c u ab O# ~ • B ( F ,  ~ )  (5.31) 

for the unknown "column vector" ~p with complex-valued components 

~ p ~ a b c d ,  p = a + b + c + d = O , l , 2 , 3 , 4 .  

The right member is a linear function of the ~p with coefficients given by the Fabcd. The  

constant matrices A ab are such that the system is symmetric hyperbolic. We shall call the 
system consisting of Eqs. (5.24)-(5.29) and (5.30), or equivalently (5.31), the "standard 
system" of reduced field equations. We note for later comparison, that for (5.31) we have 
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-1 0 000 

0 
AO’--to- - 1 i 0 fi (5.32) 

0 

0 0 001 

The standard system is well suited to study the evolution of the fields in regions away 

from the boundary Z and it has the advantage of being given by a simple analytic expression. 

However, it turns out that we can extract from (3.39) another system of symmetric hyper- 

bolic propagation equations which simplifies the analysis of the evolution near a time-like 

boundary considerably. This system is given by 

-2Poooo=O, -2JhKll- +o=o, -2&P~*l =o, 

-21/2pom + hc,, = 0, -2P1,,, =O. 
(5.33) 

Expressed in terms of the unknowns 

$fp = cp #abed, p = a + b + c + d, 

co=c4= 1, ct = c2 = c3 = 2/2, 

it also takes the form (5.3 1). We have in this case 

(5.34) 

(5.35) 

The form of the matrix A" is decisive for the discussion of the boundary value problem. 

We shall call the system consisting of Eqs. (5.24~(5.29) and (5.33) the “boundary adapted 

system” of reduced field equations. The system is symmetric hyperbolic. 

Remark. As compared with the conformal representation of the Einstein equations used in 

[7] and previous articles, the new conformal representation shows two important advantages. 

On the one hand we have complete information on the conformal factor in terms of the initial 

data. Thus the “location of infinity” is known a priori in terms of our chosen coordinates. 

On the other hand the analysis of the reduced field equations is considerably simplified 

by the fact that Eqs. (5.24)-(5.29) are ordinary differential equations, if the field C&cd is 

considered as given. Thus the question, which boundary data may be prescribed in the initial 
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boundary value problem considered here, is essentially reduced to an investigation of  the 

properties of  the system (3.39). Both facts become even more important in the analysis of  

the asymptotic behaviour of  the solutions of  Einstein's field equations with cosmological 
constant ;. = 0. 

5.3. The structure o f  the normal matrix and the boundary conditions 

To study the solution of  the conformal field equations near the boundary 2,  we have 

to choose coordinates and frame vector fields adapted to the boundary. The following 

discussion will refer to a suitable open neighbourhood U in W of a given point on OS which 

is determined such that in particular the intersections of  U with conformal geodesics are 

connected and that 

1 + l r 2 s ,  > 0 on U. 

We assume that the frame Ca on S n U is chosen such that c3 is orthogonal to and inward 

directed at 0S and D c 3 c a  = 0 on S n U ,  where D denotes the inner covariant derivative on 

S. Furthermore, we choose coordinates x a, u = 1,2, 3 on S n U such that x 3 vanishes on 

0S and (dx '~, c3) = 3 a 3 on S n U. A conformal Gauss gauge satisfying such assumptions 

near OS will be called "boundary-adapted gauge". We set 

t a t a t 
p a a  = EO a E o  p - -  E1 a ~ l r  , 

t 

Pab = ~:b a Paa' = --26"(a 06'b) 1 

The constant coefficients in the relation Caa, = C k 0 "k aa' are chosen as usual such that we 

have real vectors ~/2c0 = • a a ' c a a ' ,  ~ /r2c3 = aa'  , p Caa = # a b c a b  • 2 c01 on S n U. With 

this choice of  frame (3.17) entails 

Cab(O) = dab = --V/~-/6) PaO on 0S. (5.36) 

We write ) (abcd  = X(ab)cd and split all fields on 2" into their parts orthogonal and tangent to 

2". Contraction with pab will be denoted by an upper index _1_ and projection onto the part 

tangent to 2- by an upper index I. These indices will appear on the left respectively on the 

right, if the operation is performed on the first respectively on the second pair of  indices of 

the fields considered in the following. From (5.36), (3.9), (3.10) follows on OS 

P abc3 ab = C31 = q ~ ,  P(a ec3 b)e = C3I = 0, (5.37) 

P(a exb)ecdpCd = ~1-1- = O, ~ ± ±  = pab~abcdpCd = )~±± = 0, (5.38) 

P(a edpb)ecdpCd = tgcd(l~cde(aPb) e = ~1± --- 0, pabcl)abcdpCd = ~_l__k = --2S,. 

(5.39) 

The following result, to some extent suggested by Lemma 4.1, shows that the decisive 
properties of  the normal matrix are independent of  the given data. 
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L e m m a  5.1. For any solution o f  the reduced f ield equations (5.24)-(5.29) which takes on 

O S the values (5.37)-(5.39) we have, irrespective o f  the values taken by the f ield ~abcd, on 

Z n U  

Cab(~'2) = dab = - - ~  Pab, (5.40) 

3 1 
= - -  I 2 . Pab, (5.41) Cab V'2(1 + ~r  s , )  

and the normal matrix A 3 = Aab c 3 ab f o r  the part  (5.33) o f  the boundary-adapted system 

is given on Z fq U by 

I 
- 1  0 0 0 0 

0 0 0 0 0 
A3 - 1 0 0 0 0 0 (5.42) 

1 + ½  r2s* 0 0 0 0 0 

0 0 0 0 1 

The propagation equations (5.25), (5.27), (5.29) imply on 2 the equations 

Or c3 ab = --)(ab ef c3 ef , 

Or ()(abcdP cd) "= -- f(ab ef )(ef cdpCd -1- ~1) abcdP cd, 

Or ( (i) abc d pcd ) = _ )(ab ef  ¢i) ef c d pcd. 

This system splits into 

OrC31 = 1)~11 C3± -'1- )~11 . C31, 

or21± = ½21± ;~-± + ~ , .  ;~l- + ~l±, 

o r a l ±  = ½)~1± ~ ± 1  + )~11 . ~1±, 

from which ensues 

c 31 = O, )~11 = O, ~1± = O, 

a n d  

Orc 3± = ½ 2 ± l  c 3± +2  ±1 .c31, 

Or2±± = ½2±zi±± +2±1 .;~w± + ~ ± ± ,  

Ores±± = ½~±±2±± + 2±1. ~1±, 

from which follows 

c3± _ x/~ 
l 1 + ~r2S. 

whence our result. 

~d_/ _ 2 r S ,  

1 + 1 .t.2S, ' 
t~ -t--l- _ 

(5.43) 

(5.44) 

(5.45) 

(5.46) 

2 s,  

1 + ~ "t-2s, 
(5.47) 
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In the following we will consider the initial boundary value problem for the boundary 

adapted reduced field equations with data prescribed on S n U and 2- n U. The normal 

matrix of the boundary adapted system is determined by (5.42). It follows that "maximal 

dissipative" boundary conditions (cf. [9,19]) are described by a condition of the form 

~111J - a ~ o o o o  - c ~o'o'o'o'  = d o n  2" n U 

with complex-valued functions a, b on 2- satisfying 

lal + Icl _< 1 

(5.48) 

(5.49) 

and a complex-valued function d on 2. which represents the freely specifiable boundary 

data. 

Remark. The differences of the matrices A 01 in (5.32) and (5.35) and of the associated 

normal matrices could suggest that the freedom to prescribe boundary data is larger for 

the standard system of reduced equations. The uniqueness result for the solution of the 

conformal field equations, which is based on the use of the boundary adapted system of 

reduced equations shows that this cannot be true. The difference between the two types of 

reduced systems shows up again in the discussion of the conservation of the constraints 

near the boundary 2, where we obtain different systems of subsidiary equations in the two 

cases. In the case of the standard system the discussion of the conservation of the constraints 

would be quite involved. If we require that the constraints be satisfied, it should follow that 

the freedom we have in prescribing boundary data for the standard systems is in fact the 

same as that considered in the case of the boundary adapted system. 

5.4. Comer  conditions 

Suppose we want to solve the initial boundary value problem for the conformal field 

equations with data given on S and a boundary condition of the type (5.48). As is natural, 

we will assume that the functions a, c on 2" have at least the smoothness which we want 

to obtain for the solution. Given intial data on S near OS in the boundary adapted gauge 

introduced in Section 5.3 and using the boundary adapted reduced field equations, we can 

determine, up to a given order k which should be consistent with the smoothness properties 

of the data, a formal expansion of the solution on S near OS in terms of the coordinate 

r = x °. Restricting this expansion to OS we get in particular a formal expansion of the 

function $1111 - -  a ~/0ooo - c ~0'0'0'0', if we assume that a, c ~ C k (2"). It is then natural 

to assume, that the free datum d in (5.48) is given as a function of the coordinates on 2-, 

in particular of r, such that it allows a formal expansion up to order k in r and that this 
expansion coincides up to this order with the expansion of the left-hand side of (5.48) 

(cf. the discussion in [9]). We will refer to this requirement as to the "comer condition of 
order k" and if the condition is satisfied to any order just as to the "comer condition". Given 

C °° initial data on S and assuming that a, c E C ~ (2-), we obtain a formal expansion of the 
left-hand side of (5.48) to any order. Borel's theorem tells us how to construct functions 
d ~ C°°(2.) having the same formal expansion at OS. In the case of weak differentiability 
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there arise some subtleties with the corner conditions pointed out in [19]. We have no 

reason to analyse these in this article. We shall show in Section 7 that we can prescribe 

instead of the function d in (5.48) a smooth conformal structure on 2- as boundary datum. 

Of course, in this case we also have to observe corner conditions. It is immediately seen 

from the discussion in Section 7 how the corner conditions are to be expressed in terms of  

the conformal structure and we will not discuss this any further. 

6. The subsidiary equations 

In the following we will consider solutions to the reduced field equations on some subsets 

of  S x [0, oo[. As before we identify S with S x {0} and 2- with aS x [0, oo[. The purpose 

of  this section is the proof of  a "reduction lemma". For convenience it will be stated for 

smooth solutions. By the way it will be derived it will become clear, however, that it remains 

true also under weaker smoothness assumptions. 

Lemma 6.1. 
(i) Suppose V is an open subset of  S and U is an open neighbourhood of V in S x 

[0, oo[. Assume the quantities (5.22) given on U represent a smooth solution of  the 

reduced equations (standard or boundary adapted)for data on V which satisfy the 

constraint equations. Denote by g the metric for which the frame obtained from (5.22) 

is orthonormal and by D+ (V) the future domain of  dependence of  V in U with respect 

to g. Then the conformal field equations are satisfied on D+ (V) by the fields (5.22). 
(ii) Suppose p is a point in OS, U is an open neighbourhood of  p in S x [0, oo[ and V is 

the intersection of  U with S U iT. Assume the quantities (5.22) given on U represent a 

smooth solution of  the boundary adapted reduced field equations for data given on V 

in the boundary adapted gauge which satisfy on V N S the constraint equations (no 

assumptions are made on boundary conditions on V f) Z). Denote by g the metric for 

which the frame obtained from (5.22) is orthonormal and by D ÷ (V) the future domain 

of  dependence of  V in U with respect to g. Then the conformal field equations are 
satisfied on D+ (V) by the fields (5.22). 

6.1. Derivation of  the subsidiary equations 

The conformal field equations read 

( ~ i ,  Cp /k Cq) = 0, ( A i k ,  Cp /NCq) -~- 0, (Ak, Cp A Cq) ~- 0, Aabcd = 0, 
(6.1) 

where we assume the expressions 

• 1 r ' ~  . ! i  k ~ l j  = ~azt l  jkl a AOr 1, ,.-Qj : l ( - - d id i j k l ) t Tk  AtY l --bi ff2ij 

for the curvature forms, where 

--2Aabcd -- PCbabcd -- 2 D f d ~abcdf --2(Pabcd -- 3 = ~ed(cCab)), 
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and where the functions £2, dk = £2bk are given by (5.10), (5.11) such that Eq. (3.55) is 

satisfied which implies 

bk + bo bk - ½rlok (b ib  j - 2~.£2 -2) : 0. (6.2) 

The reduced equations are given by 

ico ,ui : O, ico Ai k = O, ico Ak = 0 

and by PaOcd = 0 in case we use the standard system respectively by (5.33) if we use the 

boundary adapted system. The reduced equations incorporate the gauge defined by 

(t3ri,Ck) = ~ i k ,  (o.)ij,co) = 0 ,  (tOk, CO) = 0  

and they are solved for data satisfying the constraint equations on S = {r = 0}. Conse- 

quently the solution u = (c u k, Fi j k, fk, Fij, d i jkl)  of the evolution equations satisfies 
all equations on S. To show that it also satisfies all equations in the domain of dependence 

of S with respect to the metric g for which the frame ck is orthonormal, we derive a linear 
symmetric hyperbolic system of subsidiary equations for the quantities 

(,~i, Cp m Cq), ( Ai k, Cp m Cq), (A k, Cp m Cq), p,  q :~ O, Cab, (6.3) 

and 

where 

Sk =- bk - f k  - -  £ 2 - 1 V k £ 2 ,  

}/jk ~ Fjk -- Vjbk -- ½biS(b)j i k q- ~£2-2r]jk, S[pq], (6.4) 

Spq = ['pq - - V p f q  -- ½ fk  S ( f ) p  k q. 

The fields (6.3), (6.4) will be called "zero quantities" in the following. It may be observed 
here, that the first two expressions in (6.4) may in principle be singular where £2 vanishes. 

It will be seen however that this creates no problems with the uniqueness property required 
for the subsidiary system even in the case )~ > 0, where we have a time-like boundary. Since 

the zero quantities vanish on S, we will be able to derive with the help of the subsidiary 
equations estimates which imply that the zero quantities vanish everywhere in the domain 
of dependence of S and the boundary 2-. This will show that in fact all conformal field 

equations (6.1) are satisfied. 
We shall use the identity 

( A i j ,  Cp A Cq) = r i jpq  -- ( ~ k ;  Cp A Cq)l-'k i j  __ £2dijpq 

-t~ i qSpj d- ~i pSqj - 6 i j(Spq - Sqp) q- llik (Spktlq j -- Sqkrlpj ), 

where r i jpq is the curvature tensor defined by the connection coefficients/-]. J k (of which 
we do not know at the present stage whether they define a torsion-free connection) and the 
ck. This identity corresponds to the usual decomposition of the curvature tensor into its 
irreducible parts and Spq, which will be seen to be symmetric, represents the content of the 
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Ricci tensor of  g. Finally it follows by (2.39) from ~k = 0, Yjk = 0, that the solution u will 
be such that the field Fjk derived from the metric ~ = S2 -2 g satisfies the equation 

Fjk = Fjk -- ~rj (fk "[- A"2-1Vk ~('2) -- l ( j ~  --I- A ' 2 - 1 V i f f 2 ) S ( f  "t- ~(2-1V~f2)j i k 

q-•f f2-2gjk : 0, (6.5) 

which implies that g is a solution to Einstein's vacuum field equations Ric[~] = )~ ~. 

Denoting by L0 the Lie-derivative in the direction of co we get 

L0(,~ 'i, Cp A Cq) : ILo ~, i ,  Cp A Cq) a t- (,E i, L 0 Cp A Cq) -I- (~ , i ,  Cp A L 0 Cq). 

Using the reduced equations, the definition of A i k, and the fact that by the way we have 

given ~(2 i j it satisfies the Bianchi identity (2.24), we obtain 

Lo ,~i = (ico d + dico) z~, i = icod2? i = ico( Ai k A cr k -- 0.) i k A ,.,.Ek). 

Observing that ico z~'i ~--- O, we finally get for p, q = 1, 2, 3 

L0 (/7i, Cp A Cq) = (A  i 0, Cp A Cq) -- (.~i,  c I A Cq)((.o I 0, Cp) 

- ( I ?  i, Cp A c l ) ( J  0, Cq). (6.6) 

By similar arguments we derive for p, q = l, 2, 3 

LO ( Ai  k, Cp A Cq) = - - S ( ( A I ,  Cp A Cq))Oi k -- ( A i  k, CO A Cp A Cq) 

- - (o) lo ,  c p ) ( A i k , C  I A C q )  -- (o)lo, c q ) ( A i k ,  C p ACl )  , (6.7) 

LO ( Ak ,  Cp A Cq ) : --( Ak ,  cO A Cp A Cq ) --  (0) I 0, Cp) ( Ak ,  Cl A Cq ) 

--(  (-0l 0, Cq) ( Ak ,  Cp A Cl) , (6.8) 

where 

and 

Ai  k ---- d 57i k -- ff2i j A 09 j k -t- O) i j A if2 j k @ S(ff21)j i k A t7 j 

Ak  =dY2k -- O j  AO)J k q-O)j AA'2J k . 

By straightforward calculations we find 

A i j ---- ff2d i j p q ~ P  A t7 q --J- [ l f f 2  Vm dm stkEj itkErpq s 

q-•m(d mi pqlTrj - dmjpqr~ i r ) ]  o'r A O "p A o "q, 

and 

A k  = - b j A  j k -~- Yij tTi A t'2 j k. 

(6.9) 

The right member  of  the first of  these two equations, whence also the right member  of  the 
last equation, can he expressed as a linear expression of the zero quantities. It follows that 
also the right members of  Eqs. (6.6)-(6.8) are linear in the zero quantities. 

(6.1o) 
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We know already that 80 = 0. The gauge conditions and Eq. (6.2) imply that ?'Ok ---- 0. It 
follows directly from the definitions and the gauge conditions that 

fToSp = gpo - f'p j 06j, p = 1, 2, 3, (6.1 i) 

and, using Eq. (6.2), 

VOYpk = --)lqk l~p q 0 -- bOYpk -- bk YpO + Ook (b j }/pj - 2~.j2-2 (~a) (6.12) 

for p = 1, 2, 3 and k = 0, 1,2, 3. Using again the propagation equations we derive 

*OSlpq] = 1 ( ( A o ,  c p ACq) q- f i ( A i o ,  cp ACe) ) 

- t - l (Fp l 0(A j j ,  C I A Cq) -- Fq l o (AJ  J' Cl A Cp)). (6.13) 

The derivation of the equations for Cab is similar to that given in [71. Writing 

Hijk = 7p  dp kij 

in terms of spinors and decomposing into irreducible parts, we get the identity 

d t - 
Haa'bb'cc' = - - rd  c' Aabcd 6a'b' -- rc Aa'brc'd ' Eab 

= - - r  d c'(Pabcd 3 -- -~ 6 d(cCab) )6a'b 

' - _ 3 ~  ~ ,  . --rc d (Pa'b'c'd' ~ed (c't~a b ))eab. (6.14) 

This implies the further identity 

_ 3  PCab - ~(a CCb)c "1- 2 ~)ef Pabef d- 2~df2X b h eh (Pcdbe ~Ee(bCcd)) 

= 2 V  cc' Aabcc,. (6.15) 

On the other hand we get by a direct calculation which uses the symmetries of dijkl 

v k  Hijk : dllj  kP ( Al i], Ck A Cp) -- dij IP ( AI k, Cp A Ck ) 

q--I (~'k, Cq A Cp)Tqdi j  kp q_ dplijs[pll. (6.16) 

From (6.14) to (6.16) follows the equation for Cab, the right member of which is again linear 
in the zero quantities. That the equation is symmetric hyperbolic is seen immediately in the 
case, where the standard system has been used for the evolution. In this case (6.15) reduces 

to 

CCt t .  PCab -- D(a CCb)c -- -~2 Xe d fd~f(aCbe) : 2V Habcc 

In case the boundary adapted system has been used for the propagation, Eq. (6.15) can be 
written in the form 

P Coo + DooCol = Uoo, P C01 + DooCll  -- DI1COO = U01, 
P Cl l  - D11Col = Ul l  (6.17) 

with linear functions Uab of the zero quantities. 
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Eqs. (6.6)-(6.8), (6.11)--(6.13), (6.15), with the right-hand sides written as linear expres- 
sions in the zero quantities as explained above, constitute the system of subsidiary equations. 

It is an important property of this system that Eqs. (6.11), (6.12) decouple from the remain- 
ing subsidiary equations and form a linear system of ordinary differential equations. Since 
the zero quantities vanish on S, the functions ~k, Yjk vanish on the set {~2 > 0}. The re- 

maining part of the subsidiary system then has coefficients which extend continuously to 2". 
It is symmetric hyperbolic and its cone of characteristic rays is inside the null cone defined 

by the metric g. This implies, irrespective of the sign of ~., that the zero quantities vanish 

in the domain of dependence of a given subset of S with respect to the metric determined 
by the solution of the reduced equations. Thus the conformal field equations are satisfied 

in that region. Near a time-like boundary as represented by 2" the argument is slightly more 

involved. 

6.2. Conservation o f  constraints near a time-like boundary 

In case the boundary adapted gauge and system of reduced equations have been used 

to propagate the fields near the boundary 2-, the subsidiary equations can be written with 
respect to conformal Gauss coordinates near a given point on aS in the form 

F ~ V u u  = G u, 

where V is the Levi-Civita connection for g and F u, G are matrix-valued functions such 

that the F u are hermitian, F u V u x  ° is positive definite near OS, and, as follows from (6.17) 

and Lemma 5.1, the normal matrix of the subsidiary system satisfies the decisive condition 

F 3 = 0  on Z fqH. (6.18) 

Furthermore, we find that 

det  (FU~u) = (ru~#) p ((r#~u) 2 -4- 2~00~11) >_ (r#~u)P gUV~u~v 

with some positive integer p. Let now t > 0 be a smooth function defined in the neighbour- 

hood U of OS where we solved the boundary adapted reduced equations. We assume that 
each level set of t intersects S as well as 2- in space-like surfaces, that these intersections 
approach a closed subset of 0 S as the function t approaches 0, and that the gradient of t with 
respect to the metric obtained from the solution to the propagation equations is time-like 

and lies in a compact region of the interior of the future null cone. For a 6 R, a _> 0 we set 
Ta = {p E M I t ( p ) = a } ,  Va = {p 6 M l O  < t (p )  < a} and la = 2-N Va, Sa = S N  V a. 
Fix a small A > 0. Integrating VtL (t ~ F u u) = t fi H u with H = t ~ + G + Vu FU over Va 

for a ~]0, A], observing (6.18), our assumptions on the function t, and the fact that u = 0 
on Sa, we get after a partial integration 

f n u ( t ~ F # u ) d S a = f ( t ~ H u ) d l z g < C i ( f n u ( t F ~ F t Z u ) d S s ) d s ,  

Ta Va 0 
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where C >_ 0 is a constant which does not depend on a, dSs denotes the volume element 

induced on Ts by g, and n u is the future directed unit normal to Ts. Gronwall 's lemma 

implies now, that u = 0 on Va, which we wanted to show. 

7. Covariant boundary conditions 

The discussion in Section 5 suggests looking for solutions of  initial boundary value 

problems for the conformal field equations where the boundary data are given in the form 

(5.48). It appears, however, that boundary conditions of  this general form are not suitable 

for geometric discussions. On 2- the frame vector field c3 -- n normal to the boundary 

is singled out naturally. We have prescribed initial conditions for the conformal geodesic 

curves everywhere on S, which fix in particular the time-like vector field co on 2-. Rotations of 

the frame on 2- which leave the normal vector and the time-like vector field on 2- unchanged 

are given by Caa, --~ e(a'-a)i¢Caa ,. Under these rotations the components of  the rescaled 

Weyl spinor transform according to ~tabcd ~ e (2 -k ) i~abc  d with k = a + b + c ÷ d. Thus 

the boundary condition (5.48) and condition (5.49) can only be given an invariant meaning 
under such transformations if we require the transformation behaviour a ~ e-4i~a,  c 

c, d --~ e-2ieVd. We shall restrict ourselves to boundary conditions, where the functions a, 

c are constant. This is only sensible, if we assume that a vanishes. Thus we shall consider 

boundary conditions of  the form 

1/fl111 - -  C l~lY0'0 '  0 '  = d ,  c = cons t . ,  Ic l  < 1. (7.1) 

Note that the assumption, that the data correspond to fields given in a boundary adapted 

gauge, is part of  their specification. In general there does not exist a boundary adapted gauge 

in a complete neighbourhood of  0S in which the quantity d could be given. Therefore it 

is important that the transformations of  d under changes of  the boundary adapted gauges 

are controlled in terms of  the changes on 0S. Consider in a fixed boundary adapted gauge 

the function d = d(r ,  x 1, x 2) along a given conformal geodesic on 2- which is specified 

by the values of  the coordinates x I , x 2 at points of  OS. A change to another boundary 
adapted gauge implies a change of  the frame field Cad ~ e (a'-a)i@(xl'x2)caa, on OS. As a 

consequence of  the conformal geodesic equation (cf. (2.41)) this entails the transformation 
d(r ,  x 1 , x 2) ~ e-2i~(x~'x2)d(r, x 1, x2), i.e. the phase factor remains constant along the 

geodesic. Thus d has to be given as a spin weighted quantity on 2- which has a transformation 

law that is correlated to transformations of the data on S as described above. 

Still, there is no obvious way to compare such boundary conditions for different choices 

of  the frame if the field co, which in general cannot be fixed by a natural requirement, is 

also changed. In the following we shall study an example of a boundary condition, which 

has a covariant meaning. 

7.1. Boundary conditions in terms o f  fields on 2- 

We assume again that n = c3 is the inward pointing unit normal on 2- and use the spinor 
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f a ~ 
paa ~ 60aEora _ El aE1 ~ 

to project fields into 2" in analogy to the splittings we performed with respect to the time-like 
b' spinor r aa'. We set tab : Pb tab' = 2 e(a Oeb) I. The n-magnetic and n-electric parts of  

the rescaled Weyl tensor daa'bb'cc'dd' = qbabcd ea'b' ec'd' + C~a'b'dd' eab ecd, which represent 

tensor fields in 2", are given by 

nabcd : l pba'pee'pdC' f f ' ' *  : - - l  i(~abcd -- qgabcd P aaa'ee~cc~ff 

respectively 

t t d -  

Eabcd = l pb a'pee'pd c p f f  daa,ee,cc,ff ' : l (q~abc d _]_ qbabcd), 

where the star denotes again the four-dimensional dual and 

t~aq-b a' b . . . .  c d cd ~ Pa Pb Pc Pd ~)a'brc'd ' 

the p-conjugated of  ~abcd. The magnetic part admits a decomposition 

Babcd ~ babcd q- bab ~'cd "-I- "Cab bcd d- 1 b (3~:ab~:cd -- 2ea(c Ed)b), 

where 

babcd ~ b(abcd), ~'abbabcd = O, bab = b(ab), ~abbab = O, b =/~. 

A similar decomposition is obtained for the electric part. The spinor field babcd on 2-, which 

represents the trace free part of  the projection of  the magnetic part into the space orthogonal 

to r aa', has as non-vanishing components only 

bl l l l  ~- - l i (q~ l l l l  - ~0'o'0'o') = BIIl l  

and b0ooo, which is the complex conjugate of  bil l  I. Also bll = - ½i (~b0111 -- ~1'0'0'0') is 

the complex conjugate of  boo, bol = 0, b = - i  (q~ooll - q~vvo'0'). Similarly the field eabcd 

is completely represented by the component el ll~ = ½(4~1111 + ~0'0'0'0') = El ll2. From 
this we find that some of  the boundary conditions (7.1) can be expressed with respect to 

tensor fields in 2-. In case c = 1 condition (7.1) can be replaced by 

Blil l  = d, (7.2) 

while in the case c = - 1 we can write 

El l l l  = d (7.3) 

with suitable data d. 
To relate such boundary conditions given with respect to different choices of  co, we try 

to exploit the special properties of  the conformal boundary. We assume that we are given 
a solution of  the conformal field equations which is such that either condition (7.2) or 

condition (7.3) is satisfied with some given function d on 2-. We denote by Dab, T,  and 
• . a ! 

~ab the inner covariant derivative on 2" in the direction of  P(b Ca)a', aa' , and "~ C a a  "~(a e Cb)e  

respectively, such that we have Dab = ½tab T + 8ab. We know then from (4.11), that 
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Dab Babcd = O, D ab Eabcd = 0 o n  2-. Using the expansions above f o r  Dab a n d  Babcd, w e  

find that the first of these equations is equivalent to 

! T b + ($abbab ~ 1 bab T T ab -- 3 - ~ a b  2 ~ 0 13 l;ab "k lrefDabbabef, (7.4) 

2 T bcd + 3cdb = 2(bcd D e f r e f  q- be f  Defrcd) 

3 b T rcd+ (2ec e 6d f _~_ rcdref) Dabba6e f (7.5) 2 

For given babcd, i.e. for given datum (7.2), we can read these equations as partial differ- 
ential equations for the fields ba¢, b. The principal part of the system is given explicitly by 

writing the system (7.4), (7.5) in the form 

-c~'  I, 2 r u 0 Ou boo = f l  , 

--C~0, 0 2 r/z bll f2 

t 

where r r' = z "aa c # aa' and the right-hand side depends linearly o n  bac, b and on the "source 
t e r m "  Dabbabef. Thus the equations form a linear symmetric hyperbolic system. 

We could use it to determine Babcd on 2- from known data on 0 S and the boundary data 
(7.2) if we knew the interior metric on 2-. We could then compare boundary conditions 

given with respect to different gauges. A similar statement is true for the electric part of 

the rescaled Weyl tensor. There is a basic difference between the electric and the magnetic 

part. By (4.11) the magnetic part Bahia is essentially given by the Cotton tensor of the 
interior metric h on 2-. This offers a possibility to relate the data (7.2) to the metric h. The 
following result, expressed in terms of the notation used in Lemma 6.1, allows, to express 

the boundary conditions purely in terms of the interior conformal structure on 2" which is 
not subject to any constraint except the requirement that corner conditions be satisfied. 

Lemma  7.1. Suppose the fields (5.22) represent a solution of  the conformal field equations 

with cosmological constant ~ > 0 on S x [0, a[, a > O,for which 2- = O S × [0, a[ represents 

the conformal boundary at space-like and null infinity, g denotes the metric for which the 

frame supplied by (5.22) is orthonormal, and h is the interior metric induced by g on 2-. We 

assume that the gauge considered in Section 5 can be extended to all of  S × [0, a[. 

(i) If  we know on aS the data implied by (5.22) in the boundary adapted gauge and if 

we know the conformal class of  h on 2-, we can calculate on 2- the datum (7.2) with 

respect to the gauge considered in Section 5. 

(ii) Conversely, given on OS the data implied by (5.22) and on Z the data (7.2), both 

in the conformal gauge considered in Section 5, the conformal class of  h on 2- is 
determined uniquely as a solution of  a quasi-linear symmetric hyperbolic system of 

partial differential equations on 2-. 

To show (i) we recall that by Lemma 4.1 the gauge can be determined on 2- for given 
data on a S by solving the conformal geodesics equations defined by the interior conformal 
structure of 2-. With respect to this gauge we can calculate the Cotton tensor, which by 
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(4.11) determines the magnetic part of the rescaled Weyl tensor on 2". From this we can 
read off the desired datum (7.2). 

The demonstration of the second part is more complicated. In dimension n = 3 the 
curvature of the normal conformal Caftan connection is represented by ~2j alone, since 

by (3.18) a trace free tensor possessing the symmetries of a curvature tensor vanishes. It 

follows then from (2.32) that Kjkl has a tensorial transformation law under transformations 

t ~ H ( p ,  q).  This tensor, the Cotton tensor, vanishes if and only if the conformal structure 
can locally be represented by a flat metric. All algebraic properties which are obtained if 
Kjkl is represented with respect to the Levi-Civita connection V of a metric g hold in any 

representation. In addition to its antisymmetry in the last pair of indices and the property 
(2.30), it satisfies K i il ~-" O. If ~ijk denotes the totally antisymmetric Levi-Civita symbol 

with respect to g we have a representation 

K j k l  -~- K j i  Ei kl 

with a symmetric and trace-free tensor field Kji .  We consider the system 

0 : ~,i  ~_ dtTi d- o~ i k A O "k, (7.6) 

0 : A i k ~ d toi k -~ o)i l A o) I k - -  S (o )p )q  i k A t7 q , (7.7) 

0 = Ak -- dwk + o)i A CO i k - -  ~)k,  (7.8) 

0 = A j  -- d ~ j  - E2k/x w k j ,  (7.9) 

provided by the structure equations and the fourth Bianchi identity (2.31). 

We want to determine a frame field cj,  j = 0, 1, 2 on 2" which coincides on 0S with the 
frame supplied by the data and satisfies the gauge conditions 

( a i , C k )  : t~ik, (O) i j , C 0 )  : 0,  (O)k, C0) : 0, 

which by Lemma 4.1 corresponds to the gauge used in Section 5. Writing E2j = 1 Kj  i t i  kltTk A 

t7 t, we evaluate the system 

ico E i  =- O, ico Ai  k : -  O, ico Ak = 0, A j  = O, (7.10) 

in terms of the frame cj and coordinates x ~, t~ = 0, 1, 2, satisfying (dx ~, co) = 8~, x ° = 0 

on 0S. The first three of these equations involve only the derivative operator co. The last 
equati6n takes in terms of the Levi-Civita connection V of the metric for which the frame 
cj is orthonormal, the form 

0 = V i Ki j .  (7.11) 

By (4.11) certain components of the tensor field K 0 can be expressed by the data (7.2). 
After these components have been given, the system obtained from (7.10) constitutes by 
(7.4), (7.5) a symmetric hyperbolic system. Given the data on aS, the (unique) solution of 
this system (cf. [20]) close to OS determines the conformal structure on 2". In fact, we get 
the frame in the gauge considered in Section 5. By arguments similar to those used in the 
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derivation of the subsidiary system it follows that the forms cr i, w i k, toj, I21 supplied by 

the solution to (7.10), which satisfy (7.6)-(7.9) on 0 S, satisfy in fact (7.6)-(7.9). 

7.2. Description o f  the boundary data in terms o f  the metric ~, 

Conformal geodesics allow a convenient description of the covariant boundary condition 

studied above in terms of fields directly related to the metric ~. We begin with a few obser- 
vations concerning conformal geodesics in terms of the metric ~ which satisfies the Einstein 
equation (3.1). Suppose that x ( r ) ,  b ( r ) ,  ck ( r )  are as in Lemma 3.1. We reparametrize these 

quantities by the arclength tr of  x ( r )  with respect to ~ and write 4 -- (dx/dtr )  = ~tf, 

t9 = 69 f ,  etc. We can assume that f = O and we have along the conformal geodesic 

~7~4 -- y (7. ! 2) 

with some vector field y orthogonal to 4, which satisfies by Eq. (2.49) 

b = y + ( 9 4 = y  + (b, 4)4. (7.13) 

From this and Eq. (2.50) follows Viy  = - ~ ( y ,  y) 2, which entails that ~(y,  y) is constant 
along the conformal geodesic. Since :t is time-like, there can occur two cases. I f b  is propor- 
tional to ~t at one point it remains so and the conformal geodesic is up to a reparametrization 

a metric geodesic. If  y ~ 0 at some point, this property will also be preserved and x ( a )  is 

a curve of non-vanishing acceleration y. 
Setting ak = 09 ck, we obtain a frame which is orthonormal for ~. It satisfies by (2.51 ) 

the equation fTiak = -- (b, ak )4 + (ak, 4)b  which, in view of (7.12), (7.13), can be rewritten 
in the form V~ak + ~(4, 4){g(ak,  V¢4)4 -- g(ak, 4)V$4} = 0, showing that the frame ak is 
Fermi-transported. It follows that the coefficients x k, yk of the expansion 4 = xkak, y = 

ykak are constant along the conformal geodesic. 
We write now O = I2 and describe our gauge conditions in terms of x(cr), y(tr), the 

conformal factor ~2 and its differential dl2 on S, which is known by (5.4). The smooth 
congruence of conformal geodesic curves in AT/is obtained by solving the equations 

~'~4 = y, ~'~y = - ~ ( y ,  y ) 4 ,  

with initial conditions x(0) ~ S, 4(0) is future directed and orthogonal to S, ~(4(0),  
4(0)) = 1, yU(0) = (b tz - ~2A~)ls = ~ - l ~ , " v V v I 2  on S. It follows that ~(4, 4) = 1, 
~(4, y) = 0, ~(y,  y) = const .  = -½~. + 2 $2. s.  along these curves in/17/. For co ~ N, 

0 < w << 1 the set S~o = {£2 = o9} defines a smooth hypersurface in S near space-like in- 

finity. The conformal geodesics starting from S~o generate a smooth time-like hypersurface 
To) i n / f / n e a r  S. We denote the metric induced by ~ on To) by h,o and the function induced 
by $2 on T,o by ~2,o. Then the boundary data given on 2? are apparently represented by the 

2 ~ conforrnal class of  the metric which is obtained as a limit h = limbo--,0 $2o)h~o. Care must 
be taken here with the limit procedure. A point p on To, is parametrized by the point p' 
where the conformal geodesic through p meets S,o and by the value at p of  the parameter 
cr on this conformal geodesic. We require that the limit is taken along the curve, for which 
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p '  follows the flow generated by the field y on S and for which the value of  the parameter 

r = r (tr) is constant. From (5.10) follows that the parameter r is related to the parameter 

tr by 

d r '  
~ ' 2 ,  O" = - -  . 

1 -- l•t2S, 
0 

This equation determines the way in which we have to let ~r go to infinity in order to achieve 

a limit with constant value r > 0. Along any such curve we consider for a given value of  

o9 the set of  future directed null vectors N of  h~o satisfying the normalization condition 

ho,(~, N) = 12o~ 1. In suitably chosen coordinates these sets define limiting null cones 

which in turn determine the conformal structure on 2". 

8. Existence results 

The reduced conformal field equations will be used now to prove Theorem 1.1. We shall 

adopt the notation used in Theorem 1.1. The unknowns in the reduced field equations will 

be denoted in the following collectively by the "column vector" 

U = (CIZ ab, ["abcd, ~l)acbd, l~racbd). (8.1) 

We assume that (3, h, )~) is a smoothly conformally compactifiable Cauchy data set for 

the Einstein equations (1.1) with positive cosmological constant )~ > 0. As described in 

Section 5.1 we can derive from it the data for the fields comprised by u. We assume that 
these data extend smoothly to S and denote them collectively as u0. We assume furthermore 

on 2" = OS x [0, oo[ a smooth spin weighted field d which is defined with respect to any 

boundary adapted gauge of  the data u0 on S such that the correlation of  the transformation 

laws for the data on S and of  d hold as described in Section 7. Finally we assume that 

the data u0 on S and d on 2" satisfy the comer condition discussed in Section 5.4. When 

we use the reduced field equations there remains the freedom to choose the frame and the 

local coordinates on S. Observing the remarks following (5.8) and (5.9), we note that the 

function x ° = r will be independent of  this choice and depend only on the metric g on S 

and on the conformal structure defined by the solution g of  the conformal field equations 
which we want to construct. This allows to identify the function r with the projection of  

M = S x [0, c~[ onto [0, ~x~[. We will now prove a result which is somewhat more general 
than Theorem 1.1. Observing Lemma 7.1 it is easily seen that the following theorem entails 
Theorem 1.1. 

Theorem 8.1. Suppose we are given data uo on S and d on Z as described above and a 

complex number c with Icl <_ 1. Then there exists fo r  some a > 0 a unique smooth solution 

u o f  the conformalEinstein equations (3.33) on Ma = {p ~ M [ 0  < r ( p )  < or} with 

the properties: (i) on S the data uo are induced by u, (ii) the boundary condition (7.1) is 

satisfied on Z A Ma, (iii) in a local gauge and in conformal Gauss coordinates as described 
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in Section 5.1, the fields I-2 and dab in (3.33) are given by (5.10), (5.23), and r is a parameter 

o f  the conformal geodesics. 

The uniqueness of the solution can be deduced from the uniqueness properties of our 

gauge conditions and from well-known properties of symmetric hyperbolic systems. We 
shall not further comment on it. 

Due to the hyperbolicity of the equations this problem can be localized. Given the restric- 

tion of the data u0 to an open subset V C S on which the local gauge described in Section 
5.1 can be defined, it follows from well-known results on symmetric hyperbolic systems 
(cf. [201) that there exists on a certain neighbourhood U of V in M a unique solution to the 
reduced field equations (5.24)-(5.30), which takes the given values on V. By Lemma 6. ! 

this is in fact a solution to the conformal field equations given in the gauge of Section 5.1 and 
with I2 and dab given by (5.10), (5.23). Suppose we can show the existence of a unique local 

solution in an open neighbourhood U in M of a given point p E OS to the mixed problem for 
the boundary adapted system of reduced field equations, where the initial data are given by 
the restriction of u0 to V t = S M U and the boundary conditions (7.1) hold on V n = Z  N U. 

Again by Lemma 6.1 this solution solves in fact the conformal Einstein equations. The local 

solutions so obtained can be patched together if their initial data are given on intersecting 

domains (cf. [7]). Since S can be covered by a finite number of local solutions we obtain 
as the result of the patching procedure a solution as described in Theorem 8.1. 

This reduces the proof of Theorem 8.1 to the discussion of the local mixed problem. We 
assume that in a neighbourhood V' of the point p ~ OS in S the data are given in a fixed 
boundary adapted gauge such that xU(p)  = 0 and that r --- x °, x 1 , X 2 are coordinates on 
V n. The neighbourhood U of p is thought of as being embedded via the coordinates onto 

an open neighbourhood of the origin in •4. We reformulate now our problem as a mixed 
problem, where the equation is a real equation of the form 

AUOuu = F(a,  Ova, u) on N~ = {x c ~4 [0 < X 3, 0 < X 0 < ~} (8.2) 

for an R u-valued unknown u. Here a denotes an ~N'_valued function of compact support 
in {x E R41x °, x 3 > 0}, A u = AU(a, u) are smooth, symmetric, N × N-matrix-valued 
functions of (u, a) such that A°(a,  u) is positive definite for u ~ R iv and F denotes a 

smooth R u-valued function. The boundary conditions are of the form 

B u = 0  on{x 3 = 0 , 0 < x  0 <t~} (8.3) 

with a constant real 2 x N matrix B of rank 2, and the initial condition is 

u = 0  on{x 3 > 0 ,  x ° = 0 } .  (8.4) 

This formulation is obtained by going through the following steps, where we assume for 
simplicity that ~t = cxD: 

(i) The part of the boundary adapted reduced field equations (5.33) has the form 

(I  + A°)Or¢ + A~Oa ¢ = B(F,  ak) 



182 H. Friedrich /Journal of Geometry and Physics 17 (1995) 125-184 

with A u = A ab c u,//, : 0, 1,2, 3. We replace in this equation A ° by AabCab where 

the smooth map Cab = Cab(C ° ca), defined for fields c o ab satisfying the usual reality 

conditions, is constructed as follows. We choose smooth real functions f01, f lo on 

the real line and complex functions fo0, f l  I on the complex plane, all with compact 

support and such that f01 = fl0, fl l(Z) = - f 0 o ( - z ) ,  fab(Z) : Z for IZl < y' and 
Ifab(Z)l <_ r' with certain constants y > y '  > 0. For fixed indices ab the map Cab is 
assumed to depend only on c O ab such that Cab(C ° ca) = f ab ( C 0 ab ). Then Cab = c o ab 

for [cOabl < y ' ,  ICabl <_ y ,  and the matrix A~bCab is hermitian. We choose the 
constants y, y '  such that I + AabCab :> ½I. Observing that the data for cOab vanish 

on {r = 0}, we see that the new equations are equivalent to the old equations in regions 
where IcOabl < y ' .  

(ii) We choose a function q ~ C~(R ,  R) with q '  < 0, q(s)  = 1 for s < 1, q(s)  = 0 for 

s > 2 and define qc E C ~ ( R  4, R) by qe(x)  = q ( I x l / e )  with some e > 0 such that 

3 I x E ~ 4 t x O ,  x 3 > O } O s u p p q 4 E C V ' x [ O ,  oo[, 1 _< 1 + ½r2s,(xa) < ~ 

for (r, x '~) ~ supp q4~. 
(iii) Wechooseon V'x[0 ,  ~x~[acollectionvofsmoothfieldsanalogoustothoserepresented 

by u which satisfy the boundary condition (7.1) on 2" = 2" N (V' × [0, c¢[), which 
coincide with the data u0 on V', and for which the respective components take on 

2"~ f3 supp q4E the values (5.46), (5.47). 
(iv) In the part of the boundary adapted reduced field equations given by (5.33) we replace 

the term A 3 = Aabc3 ab by Aab(qec3 ab -{- (1 - -  qe)eab) with eab = - - P a b / q  f~ = 

c 3 ab[OS = const .  

(v) After this we replace in all equations u, I2, and dab respectively by u + q2~v, q2Ei2, 

q2Edab and denote the functions qe, q2e v, q2~ I2, q2edab in the equation collectively by 
a. We extend these functions by value zero to {x E ~4 ix o, x 3 > 0} to obtain smooth 
functions of compact support in {x ~ ~41 x°, x3 ~ 0}. 

(vi) Observing the reality conditions which are to be satisfied by the various components of 
the fields comprised by u, we finally write the resulting equations as a real symmetric 
hyperbolic system for an RN-valued unknown which we denote again by u. The R N'- 

valued function appearing in the equations will again be denoted by a. 

We have reformulated the problem in such a way that there exists a neighbourhood of 
the point x u = 0 in {x ~ ~4  i x  0, x 3 < 0} on which the original problem is equivalent to 
the initial boundary value problem defined by (8.2)-(8.4). 

The reformulation shows that our problem is close to a class of problems discussed by 
Guts [9]. In fact, we have achieved almost the same form of the problem as considered in 
that article. There is a slight but important difference. In the article by Guts it is assumed 
that the basic properties of the normal matrix A 3 are determined on {x 3 = 0, x ° > 0} by 
the boundary conditions. In the present case the normal matrix is determined by Eq. (8.2). 
However, we have perfect control on it. By Lemma 5.1 the normal matrix can be deter- 
mined by integrating the system of ordinary differential equations (5.43)-(5.45). After our 
reformulation we find that the normal matrix in Eq. (8.2) is essentially given by 
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l-t-2s, 
A 3 ( a , u ) = f ( x ~ ) A  3 on{x  3 = 0 , x  0 > 0 } ,  f =  l - q E  (8.5) 

1 + l r 2 s , '  

where we denote by A30 the value of  the matrix (5.42) at r = 0. It follows that f is a smooth 

function satisfying 2 < f < 2 on {x 3 = 0, x ° > 0}. If one studies, following the procedure 

in [9], in an iteration procedure the sequence of  linear problems 

AN(a, Uk)Oi~Uk+l = F(a, Ova, uk), k = 1, 2, 3 . . . .  (8.6) 

for an unknown Uk+l, where the iteration is started with the function ul which vanishes 

everywhere, it follows for any k, that the normal matrix of  Eq. (8.6) is given by (8.5). 

Consequently every step in G u t s '  discussion can be applied to the present situation. Since 

for the situation considered here nothing can be gained in the smooth case which would go 

beyond the results obtained by Guts ,  we refrain from repeating the details. Theorems 3 and 

4 in [9] imply the following theorem. 

Theorem 8.2. There exists a numberct> 0 for  which there exists a unique smooth solution 

u of  the problem (8.2)-(8.4). 

We could deduce from [9] a result involving weaker differentiability assumptions. It 

should be noted that the smoothness results near the boundary obtained for the general case 

studied in [9] may then be slightly improved for our particular problem. 

Finally, we want to point out that the extensibility Theorem 4 in [9] is only of restricted 

applicabil i ty in our situation. On the one hand we know from the discussion in Section 4.1 

that even if the solution considered above would exist for arbitrary values of  the coordinate 

r ,  the solution might still be extensible after a coordinate transformation. On the other 

hand it may happen that some of  the fields considered in our representation of  the field 

equations blow up after a finite "time" r because the conformal geodesics form caustics, 

while the underlying space- t ime might still be extensible as a solution to the conformal 

field equations. 
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