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We examine stochastic temperature fluctuations of the cosmic background radiation (CBR) aris-
ing via the Sachs-Wolfe effect from gravitational wave perturbations produced in the early universe.
We consider spatially flat, perturbed FRW models that begin with an inflationary phase, followed
by a mixed phase containing both radiation and dust. The scale factor during the mixed phase
takes the form a(n) = c1n® + c2n + c3, where ¢; are constants. During the mixed phase the universe
smoothly transforms from being radiation to dust dominated. We find analytic expressions for the
graviton mode function during the mixed phase in terms of spheroidal wave functions. This mode
function is used to find an analytic expression for the multipole moments (a?) of the two-point
angular correlation function C(v) for the CBR anisotropy. The analytic expression for the multi-
pole moments is written in terms of two integrals, which are evaluated numerically. The results are
compared to multipoles calculated for models that are completely dust dominated at last scattering.
We find that the multipoles (a?) of the CBR temperature perturbations for [ > 10 are significantly
larger for a universe that contains both radiation and dust at last scattering. We compare our results
with recent, similar numerical work and find good agreement. The spheroidal wave functions may
have applications to other problems of cosmological interest.
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I. INTRODUCTION

This paper considers the effect of primordial grav-
itational waves on the cosmic background radiation
(CBR). We consider spatially flat, perturbed Friedmann-
Robertson-Walker (FRW) universes that begin with an
early inflationary phase. As the universe rapidly ex-
pands, perturbations of the spatial geometry that are
local in origin (e.g., thermal fluctuations) are quickly
redshifted both in amplitude and wavelength. After suffi-
cient inflation these perturbations are no longer visible to
an observer; the only perturbations that remain visible
within a Hubble sphere are quantum-mechanical zero-
point fluctuations. Because these perturbations extend
to arbitrarily high frequencies, they cannot be redshifted
away. Since the only significant perturbations remaining
after inflation are zero-point fluctuations, we assume that
the initial state of the universe was the vacuum state ap-
propriate to de Sitter space, containing only the quantum
fluctuations and no additional excitations. As the uni-
verse continues to expand after inflation, these quantum
fluctuations are redshifted to longer wavelengths and am-
plified; one may think of this in terms of particle (gravi-
ton) production (as we do), nonadiabatic amplification,
or super-radiant scattering. In the present epoch the oc-
cupation numbers of the graviton modes are large. This is
not surprising. It has been shown that one may treat the
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collective effects of primordial gravitational waves as be-
ing due to the presence of a stochastic background of clas-
sical gravitational waves, and since gravitons are bosons,
such an interpretation is only possible if the occupation
numbers are large.

Sachs and Wolfe [1] showed how gravitational wave
perturbations result in CBR temperature anisotropy. As
photons from the CBR propagate, the paths they fol-
low are perturbed by the metric perturbation A;;, which
in this discussion is due entirely to primordial gravita-
tional waves. The energies of the photons are perturbed,
which results in temperature fluctuations from point to
point on the celestial sphere. These temperature fluctua-
tions are usually characterized by the two-point angular
correlation function C(vy) defined on the celestial sphere.
Here v is the angle between two points on the sphere.
Most often the two-point angular correlation function is
expanded in terms of Legendre polynomials, and the ex-
pansion coefficients or multipole moments are calculated.
For a derivation of the angular correlation function for
spatially flat cosmologies see the recent paper by Allen
and Koranda [2]. Henceforth we will assume that the
reader is familiar with this paper, which contains a de-
tailed review of previous work on this problem, a com-
prehensive discussion of the physical motivation, and a
detailed and self-contained “first-principles” calculation.

Early work on this subject [3—6] assumed that the uni-
verse was completely dust dominated at last scattering
when the CBR decoupled, as did recent work by White
[7] which presented a concise derivation of the formula
for the multipole moments due to tensor perturbations.
Also recently, Grishchuk has adapted the terminology
and techniques of quantum optics to the analysis [8].
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Grishchuk stresses the importance of the phase correla-
tions between the modes of the metric perturbations. A
similar analysis by Allen and Koranda [2] using standard
“quantum field theory in curved space” techniques found
equivalent results. We also showed that the now standard
formula given by Abbott and Wise [5] and Starobinsky
[6] for the !th multipole moment is a long-wavelength
approximation to an exact formula. Both the work by
Grishchuk and by Allen and Koranda assumed that the
universe was completely dust dominated at last scatter-
ing.

The first authors to consider the CBR anisotropy
(within the framework of the Sachs-Wolfe effect) for a
universe that was not completely dust dominated at last
scattering were Turner, White, and Lidsey [9]. They used
a “transfer function” to express the solutions of the wave
equation for the gravitational wave amplitude in terms of
the standard long-wavelength formula given by Abbott
and Wise. They found that the standard formula, which
assumes that the universe is completely dust dominated
at last scattering, consistently underestimates the con-
tribution of gravitational waves to the CBR anisotropy.
More recent work by Ng and Speliotopoulos [10] used
numerical methods to integrate the wave equation and
found similar results. Neither of these studies used an-
alytic expressions for the gravitational wave amplitude
(or, equivalently, the graviton mode function).

Other work has been done which does not directly use
the Sachs-Wolfe formula to calculate the anisotropy due
to gravitational waves. Crittenden et al. [11] numerically
evolved the photon distribution function using first-order
perturbation theory of the general relativistic Boltzmann
equation for radiative transfer, and included a Thomson
scattering source term. Dodelson, Knox, and Kolb [12]
have done a similar numerical analysis. Both found that
the standard formula of Abbott and Wise is only accurate
for small ! multipole moments, and consistently under-
estimates the contribution of the gravitational waves to
the CBR anisotropy for higher ! moments. A number
of papers [13-17] have examined whether the different
! dependences of the scalar and tensor contributions to
the multipole moments permit one to distinguish the sig-
nal from the tensor perturbations from that of the scalar
perturbations. More recently Knox and Turner have sug-
gested [18] that a combination of full-sky measurements
of the CBR anisotropy on angular scales of 3° and 0.5°
might enable one to detect the primordial gravitational
or tensor perturbations. For these purposes one must un-
derstand in detail the contribution of gravitational waves
to the multipole moments (a?) for moments with [ as
large as 200.

In this paper we give the first correct analytic expres-
sion for the graviton mode function in a cosmology that
transforms smoothly from being radiation to dust domi-
nated. (We correct a minor error in earlier work by Sahni
[19] and Nariai [20] which claims to find an analytic ex-
pression for the mode function.) We use this analytic
expression and the Sachs-Wolfe formula to find an an-
alytic expression for the multipole moments (a?) of the
angular correlation function C(y). The analytic expres-
sion for the multipole moments is written in terms of two

integrals; we use numerical methods to evaluate these in-
tegrals, and report numerical values for the multipole
moments. We compare our results with those mentioned
above, and find good agreement.

The paper is organized as follows. In Sec. II we re-
produce general expressions for the angular correlation
function derived in [2], and explain how one uses these
formulas to calculate the multipole moments for any spa-
tially flat, inflationary cosmological model. In Sec. III we
introduce our cosmological model, which “begins” with
an infinite de Sitter phase followed by a mixed phase
that contains both radiation and dust. Early in the
mixed phase the universe is radiation dominated; later
it transforms smoothly from being radiation dominated
to dust dominated. In Sec. IV we solve the massless
Klein-Gordon equation (or wave equation) for the gravi-
ton mode function. During the mixed phase the solutions
to the wave equation are expressed in terms of spheroidal
wave functions. The multipole moments are calculated
in Sec. V using the graviton mode function determined
in Sec. IV. An analytic expression for the moments is
given in terms of two integrals, which are then evaluated
numerically. In Appendix A we discuss the spheroidal
wave functions. The differential equation of spheroidal
wave functions is introduced and its solutions examined.
We introduce a useful notation for the spheroidal wave
functions, and give a practical method for evaluating
them. Appendix B describes the numerical techniques
used to evaluate the spheroidal wave functions and the
two multipole moment integrals. Finally in Appendix C
we show that the multipole moments for a general space-
time are formally (ultraviolet) divergent. The divergence
is removed by introducing a physically motivated cutoff
graviton wave number kqax.

Throughout this paper we use units where the speed
of light ¢ = 1. We retain Newton’s gravitational constant
G and Planck’s constant % explicitly.

II. ANGULAR CORRELATION FUNCTION

We consider only the anisotropy of the cosmic back-
ground radiation (CBR) arising via the Sachs-Wolfe ef-
fect [1] from tensor perturbations (gravitational waves).
The anisotropy is characterized by the two-point angular
correlation function C(v), where v is the angle between
two points located on the celestial sphere. The corre-
lation function may be expanded in terms of Legendre
polynomials as

o) = <57T(0>%T(v>> =3 B Pcos).
=0
(2.1)

The expansion coefficients (a?) are referred to as the mul-
tipole moments. The multipole moments are given in
terms of an integral over graviton wave number k:

(afy =41+ 2)(1+ 1) —1) /Ooo dk—k|1,(k)|2. (2.2)



1904

Strictly speaking, the integral above is (ultraviolet) diver-
gent, and should be cut off at some large wave number
kmax rather then extending to infinity. This ultraviolet
divergence and cutoff are discussed in detail in Appendix
C. [Note that Eq. (2.67) of Ref. [2] is formally ultraviolet
divergent and should also be cut off at some kmax.] The
function I;(k) in (2.2) is proportional to the Sachs-Wolfe
integral along null geodesics, and is given by

I Ji(k(no — nus — A))
Il(k)=/0 D FO R TI L),

(2.3)

Here ns is the time of last scattering, and 7y is the
conformal time today. The function j;(2) is a spherical
Bessel function of the first kind [21]. The function F(}, k)
is proportional to the first derivative of the graviton mode
function ¢(n, k), and is defined by

F(\ k) = k‘/z[ ‘37¢(n, k)] (2.4)

n=nLs+A

The graviton mode function obeys the massless Klein-
Gordon or wave equation

é+ 2“5”; ¢+ k2p = (2.5)
where a(n) is the scale factor and
o
=5 (2.6)

The mode function must satisfy the Wronskian normal-

J

a%(n) 8nG
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ization condition
2ihG
n2a?(n)’

[Note that there is a sign error in the first term of Eq.
(3.10) of Ref. [2]. As a result the right-hand side of Eqgs.
(3.11)—(3.15) and (3.19) should have the opposite sign.]
The only physical input required is the choice of an initial
quantum state for the gravitational field, which amounts
to a choice of boundary conditions for the wave equation
(2.5).

These formulas for the angular correlation function are
very general; a detailed and complete derivation is given
in [2]. To calculate the correlation function (or equiva-
lently the multipole moments) for any particular cosmo-
logical model, one need only to solve the wave equation
(2.5) for the graviton mode function, and substitute into
the formulas (2.1)-(2.4).

{d(n,k)é*(n, k) — ¢*(n, k)p(n,k)} = (2.7)

III. COSMOLOGICAL MODEL

The spacetime considered here is a spatially flat, per-
turbed FRW universe. The metric is
ds® = a®(n){~dn® + [6:;; + hi; (n, =*

)ldzdz?}, (3.1)

where §;; is the flat metric of R3, 7 is the conformal time,
and a(n) is the cosmological length scale or scale factor.
The scale factor satisfies the Einstein equations

= —5—~(n) and atn). _

a?(n) a®(n)

where p(7n) is the energy density and P(n) the pressure
of the cosmological fluid. The metric perturbation h;;
is assumed to be small; in the limit as h;; vanishes the
spacetime is an unperturbed FRW universe. We have
chosen a gauge so that the tensor perturbation h;; has
only spatial components.

In the absence of the metric perturbation A;;, the back-
ground spacetime is a spatially flat FRW universe. Since
the spacetime is spatially flat, the density parameter o,
which is the ratio of the present-day energy density po to
the critical energy density required to produce a spatially
flat universe, is equal to unity:

a? 4rG
S =~ e + 3P (o) (3.2
[
87rG’p0 _
Qo = SHZ - (3.3)

To specify the model, we need to give the scale fac-
tor a(n). We do this in such a way that the model is
completely defined by the minimal set of free parame-
ters given in Table I. All our results, including the fi-
nal expression (5.2), can be expressed in terms of this
minimal set of parameters. For clarity, we often define
auxiliary quantities and express results in terms of them;
the auxiliary quantities can be expressed in terms of the
parameters in Table I. In typical inflationary models,

TABLE I. List of free parameters that define the cosmological model.

Parameter Units Range Description
H, Length™! Ho >0 Present-day Hubble expansion rate
Zys Dimensionless Zys >0 Redshift at last scattering of CBR
Zeq Dimensionless Unrestricted Redshift at equal matter-radiation energy density
Zend Dimensionless Zena > Zeq, ZLs Redshift at end of de Sitter inflation
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the free parameters in Table I have values of order Hy
between 50 and 100 kms~! Mpc™?, 100 < Zps < 1500,
2 X 103 < Zeq < 2 x 10%, and 10%° < Z.,,q. For a review
of inflationary cosmology see Ref. [22].

A. Inflationary or de Sitter phase

Our cosmological model passes through two phases.
The first phase is a de Sitter or inflationary phase. Dur-
ing the de Sitter phase the universe expands exponen-
tially [expressed in terms of comouving time t, the scale
factor behaves like a(t) < e, where H is the Hubble
constant]. In terms of conformal time, the scale factor is

-1

a("?) = a("]end) <2 -1 ) for 1 < Tend; (34)
Tlend

where 7jenq is the conformal time at the end of the de

Sitter phase. In terms of the parameters listed in Table

L

a("]end) = (1 + Zend)——l, (35)
1/2
Nena = Hy ! (2+ Zeq)
s 0 (2 + Zeq + Zend)(l + Zend)
vV Ze
~ Hyt X3, (3.6)
Zend

where we have set the scale factor today, a(ne) = 1. Dur-
ing the de Sitter phase the energy density pgs is constant
and given by

3 dz(nend)
87G a*(Nend)

3Hg (1 + Zend)3
_3Ho Ut Zend) 5, 7 4 7.
81G (2 Zog) 2+ Zeat Zend)

3 2 zZ4 z4

end _ “end

8TG ° Zeq  Zeq

pds =

Q

(3.7)

The pressure during the de Sitter phase is negative and
constant, and is given by
Pys = —pas- (3.8)

The de Sitter phase is followed by a mixed phase.

B. Mixed radiation and dust phase

Immediately following the de Sitter phase is a mixed
phase containing both dust and radiation. The scale fac-
tor is

otn) = atmma)[3 (15 ) (G -1) + 2]

for 1 > Nena- (3.9)

The constant ¢ is defined in terms of the free parameters

by

£= 14+ Zeq

= —. 3.10
1+ Zend ( )

The stress-energy tensor is that of a perfect fluid with
energy density
P(1M) = Pdust(n) + praa(n) for 7 > nena, (3.11)

where the energy density for the dust pgust(n) and for the
radiation praq(n) are

peq a’3 (neq)

Pdust('l) = —2_ 03(77) 3 (3'12)
4
_ Peq @ (Teq)
prada(n) = 2 ai(n) (3.13)
Here peq = p(Meq) is the energy density at conformal

time 7)eq, When the dust and radiation energy densities
are equal, and is given by

4
_3HE (1+Ze0)" 2( Ze ) pas = 2Zeq’ po-

Pea= 42G (2+ Zeq)  \Zema
(3.14)
The pressure of the cosmological fluid P(n) is
_ _ p @*(7eq)
P(TI) = Prad("]) = Peq for 7 2 Tend, (315)

a*(n)

where the pressure at dust-radiation equality Peq is

P
Peq :P(neq) = _ég'

By inspection of (3.13), (3.15), and (3.16) one sees that

(3.16)

1
P(n) = Praa(n) = gprad(n)’ (3.17)
which is the relation between the pressure and energy
density one would expect since the dust has zero pressure
and the pressure is due entirely to the radiation present.
The scale factor at 7eq is

a(Neq) = (1 + Zeg) ™. (3.18)

One can express 7)eq in terms of the conformal time at
the end of the de Sitter phase 7,4 and the constant £ as

_Mend o 5T 0 ¢l n g-120V2—1)
Neq = ¢ 2v2(1+¢&) —2-¢] = H, \/Z_eq .

(3.19)

For n < 7eq the energy density (3.11) varies as p(n) ~
a~*(n) and the cosmological model is radiation domi-
nated, and for n > 7., the energy density varies as
p(n) ~ a=3(n) and the model is dust dominated. The
model makes a smooth transition at 7 = 7eq from being
radiation to dust dominated.
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IV. GRAVITON MODE FUNCTION

To calculate the multipole moments for the cosmologi-
cal model described above, one must first solve the wave
equation (2.5) for the graviton mode function. We first
solve for the “natural” positive- and negative-frequency
mode functions during both the de Sitter and the mixed
phases. We then make an appropriate choice of initial
mode function during the de Sitter phase. This choice
of initial mode function completely determines the gravi-
ton mode function for all later times. We express the
mode function at later times using Bogolubov coefficient
notation.

A. de Sitter phase

The solution to the wave equation (2.5) for the de Sit-
ter phase can be expressed in terms of spherical Hankel
functions. The scale factor during the de Sitter phase
is given in (3.4). By making a change of the dependent
variable

X(ﬂ, k) = (77 - znend)-2¢(”77 k) (41)
and a change of the independent variable
z = k(n — 27ena), (4.2)
the wave equation can be expressed in the form
d’x 2dx 2
—= 4+ —-—= 1-—= = 0. 4.
dz? +zdz+( zz)x (4:3)

This is Bessel’s differential equation, and the solutions
are spherical Bessel or Hankel functions [21]. Using
the normalization condition (2.7) one obtains, for the
positive-frequency mode function during the de Sitter
phase,

2
) = —1 _E_ pis —ikNend 4,2 k1/2 a (nend)
d)ds (7’1 k) 1 3 pp € Tlend a2 (77)
xh{® (k(n = 2nena)), (4.4)

where hgz)(z) is a spherical Hankel function of the sec-
ond kind [21], and pp = 1/AG? =~ 5 x 10% g/cm? is
the Planck energy density. The negative-frequency mode
function during the de Sitter phase ¢((1;)(77, k) is just the
complex conjugate of the positive-frequency mode func-
tion (4.4). The positive- and negative-frequency mode
functions form a complete solution to the wave equation
for the de Sitter phase.

B. Mixed radiation and matter phase

The wave equation during the mixed radiation and
dust phase (7 > 7ena) can be cast in the form of the
spheroidal wave function differential equation. By mak-
ing a change of the dependent variable

x(n, k) = a'/*(n)$(n, k), (4.5)
the wave equation (2.5) becomes
L, aln) . ( 2 1ad’(n) 1 ii(n))
+ 25+ (k2 - = -2 )y =0. (46
**am* 1ai(n) ~ 2a(n) (46)
One may define a new independent variable
a(n)
T =,4/1+ , 4.7
a(7eq) 7
so that
de 1 a(n) (4.8)

E'I_ T2z a(7eq) '

Using (4.7) and (4.8) one may write the wave equation
(4.6) in the form

dz?

&x . [nd(n)a(mq) _1 Zma_(’?e_q)] dx

a?(n) T a(n) | dz

2,20 (7eq) g2 a®(7eq) _ mzﬁ(n)az(neq) —
%“”a%) a2(m) 2 HWWﬂ] o
(4.9)

This expression can be simplified using the Einstein equa-
tions (3.2), along with (3.11) and (4.7). One can show
that
a%(n) = 2226 (n)a(neq)s (4.10)
and using this expression one may write the wave equa-
tion (4.9) as
d?x a(neq) dx I: 22(7eq)

PP a(n)

dz? a(n) dz

2
22%(7eq) a("leq):I
—gf—— — ——|x=0. (4.11
@n) ~ al) (@)
Since, from (4.7),
a(neq) _ 1
A ER - (4.12)
and, from (3.9) and (3.10),
i) _ 1 (e)
= , 4.13
a’("?eq) 2"7@::1(12 1+ 6 ( )
the wave equation becomes
d®x 2z dx 2
dz?2 (1-z2?)dz (1-=2?)
1
+4k — m}x = 0. (4.14)
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Here & is defined by

_ 1+¢& k2 2 47?2
“\Te )7 T NHE (11 Zey)?

(2+Zeq) . 4n®
A HE Zeq’
(4.15)

where )¢ is the present-day wavelength of the mode with
wave number k. For the multipole moments of interest,
l € [2,1000], the contributions typically come from wave-
lengths in the range x € [1073,10%]. This form of the
wave equation is the spheroidal wave function differential
equation (A1), which is discussed in detail in Appendix
A.

The solutions to the wave equation (2.5) during the
mixed phase can be expressed in terms of spheroidal wave
functions. By inspection of (4.7) one sees that z > 1, and
so the possible solutions to the wave equation (4.14) may
be expressed as sums of any pair of

ivi(z, k), 7=1,2,3,4, (4.16)

x(z, k) =

where 731 (z, k) is a spheroidal wave function. Our no-
tation for the spheroidal wave functions differs from that
used in Ref. [19]. In particular the indices on 74 (z, k)
have a different meaning than those used in [19]. Our
notation for the spheroidal wave functions and our mo-
tivation for using this notation are discussed in detail
in Appendix A. Using (4.5), (4.16), the normalization
condition (2.7), and the Wronskian relation (A22), one
obtains a positive-frequency mode function during the
mixed phase:

(+) (n, k),
é(n, k) =

1907
) 8 pas @(7ena) (1 +¢
><1]§ndkl/2 42;(::,&). (4.17)

Note that z is a function of the conformal time n and &
depends on the wave number k. The negative-frequency
mode function ¢'m1x(77’ k)=[¢ f:;))((n, )]* is just the com-
plex conjugate of the positive-frequency mode function.
The positive- and negative-frequency mode functions
form a complete solution to the wave equation during the
mixed radiation and matter phase. Note that the choice
of graviton mode function during the de Sitter phase com-
pletely determines the mode function at all later times.
Thus, the choice (4.17) of “positive frequency” during
the mixed phase is unimportant.

C. Graviton mode function expressed using
Bogolubov coefficient notation

The choice of mode function during the de Sitter phase
completely determines the mode function at all later
times. This is because a solution to the wave equation de-
pends only on the values of ¢ and ¢ on a spacelike Cauchy
surface (i.e., a surface of constant ). We choose the
mode function during the de Sitter phase to be the pure
positive-frequency de Sitter solution (4.4). This is the
unique solution corresponding to a de Sitter—invariant
vacuum state with the same (Hadamard) short distance
behavior as one would find in Minkowski space [23]. Hav-
ing made this choice for the mode function during the de
Sitter phase, the mode function for all times is

7 < Nend, de Sitter phase,
(4.18)

a(knend)¢mxx(77’ k) + ,B(knend) m,x(n, )7 7) > 7end, Mmixed phase,

where a and 3 are Bogolubov coefficients.

The Bogolubov coefficients are determined by requiring that the mode function and its first derivative be continuous

at 17 = Nenda- One obtains

o(kNena) = lgj{[ 1£+£32§,(z1,n) -
IB(knend) = %{ [\/1—£I—E

The prime in (4.19) is defined by

"E’;’(m, 0) = [%jﬁﬁ(zﬁ)] , (4.19)
where
1 = Z(("e“d) VITE (4.20)
Tea

42;’(:1:1,5) —4 Zé(zl, n)] (% -

z 1
S| (5~ g ) — Frena e |,

1
m) - knend‘lzé(ml’ K’)

I
Using the Wronskian relation for the spheroidal wave
functions (A22) one can easily verify that

|a(k77end)|2 - m(knend)‘z =1

We stress again that the choice of graviton mode func-
tion during the de Sitter phase completely determines the
mode function at all later times. Thus, the choice of “pos-
itive frequency” during the mixed phase is unimportant.

(4.21)
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Had we chosen a different solution to the wave equa-
tion during the mixed phase to call “positive frequency,”
then the Bogolubov coefficients (4.19) would be different
in such a way so that the mode function (4.18) would be
the same.

V. MULTIPOLE MOMENTS

Having determined the graviton mode function for our
cosmological model, we may calculate the angular corre-
lation function C(v) or, equivalently, the multipole mo-
ments (a?). We simply substitute the graviton mode
function (4.18) into the formulas (2.1)—(2.4).

A. Analytical results

The graviton mode function (4.18) is exact; no approx-
imations (i.e., long wavelength) have been made. One
may directly substitute the mode function into the formu-
las (2.1)—(2.4) to obtain an exact expression for the mul-
tipole moments; because the arguments of the spheroidal
wave functions in (4.18) are functions themselves, how-
ever, the result is complicated and not very illuminating.

1

4
2y _ =
(al)—-37r

2(l+2)!/pﬁ/°° dx
(l—2)!pp 0

P {1721(% K)G}(w) — 73 (21, n)G}(n)} +0(&h).

In typical inflationary models, the amount of expansion
is very large. If one takes the limit Z.,q — oo, then
¢ — 0, as may be seen from (3.10). This allows one to
write a fairly compact expression for the multipole mo-
ments; after substituting the mode function (4.18) into
the formulas (2.1)—(2.4), one may collect together terms
in the expression for the multipole moments {(a?) which
are the same order in £&. Then in the limit as Ze,q — 00
and £ — 0, one may consider only the leading term. The
leading term, which is O(£°), is given below in (5.2). The
neglected terms are O(£!) or greater. For typical infla-
tionary models one has Zeng 2 10%° and Z., =~ 10%, so
that £ < 10718, So the expression (5.2) is quite accurate
for most cosmological models, since the neglected terms
are very small.

The expressions for the multipole moments (a?) are
fairly simple. After substituting the mode function
(4.18) into the formulas (2.1)—(2.4), and making the same
changes of variable as in Sec. IV B, i.e.,

_a_(n_)_ and

rT=4/14+
a(7Neq)

K= (%)kzn;"nd, (5.1)

one obtains for the multipole moments (I > 2)

(5.2)

The integral above is simply an integral over the (rescaled, dimensionless) wave number x, and again, strictly speaking,
is ultraviolet divergent and should be cut off at some large Kmax (see Appendix C). The functions 77} (zy,k) are

the same functions defined in (A20). The functions Gf () are the (reparametrized) Sachs-Wolfe integrals over null
geodesics, given by

Jl+1/2(2"1/2(""0 —z))

iy [°
Gi(xk) = /m dz (zo — 2)5/2(z2 — 1)1/2

where the limits z1s and zo on the integral are given in
terms of redshift by

1+ Z,
IEQ‘:'1/2+Zeq and zps = 1+_";__q

. 5.4
1+ Zis (54)

These formulas, and especially the spheroidal wave func-
tions, may be numerically evaluated using the techniques
discussed in Appendix B. Henceforth we refer to (5.2)
and (5.3) as the “mixed” formulas for the multipole mo-
ments. Furthermore, we refer to multipole moments cal-
culated using (5.2) and (5.3) as the “mixed” multipoles.

B. Numerical results

We have numerically evaluated the “mixed” formulas
(5.2) and (5.3). The second column of Table II shows the
“mixed” multipoles. The third column of Table II shows
the results obtained by evaluating Eq. (6.2) of Allen
and Koranda [2], which we refer to as the “exact-dust”
formula for the multipole moments. The “exact-dust”

{mzm_ 1j2%(m7’€) - jzél(xv ":)}’

(5.3)

formula assumes (1) the universe begins with an initial
de Sitter phase, followed by (2) a pure radiation phase
containing only radiation and no dust, followed by (3) a
pure dust phase containing only dust and no radiation,
during which (4) last scattering takes place. We refer
to this type of universe as a “dust” universe, to distin-
guish it from the model described by (3.9), (3.11), and
(3.15), which we refer to as a “mixed” universe because
it contains both dust and radiation at and after last scat-
tering. The fourth column shows the results obtained by
evaluating Eq. (6.1) of Allen and Koranda, which we
refer to as the “approximate-dust” formula for the mul-
tipole moments. The “approximate-dust” formula is a
long-wavelength approximation to the “exact-dust” for-
mula, and is equivalent to the standard formulas for the
multipole moments given by Abbott and Wise [5] and
Starobinsky [6]. The fifth column shows recent results of
Ng and Speliotopoulos [10], who numerically integrated
the wave equation to obtain the amplitude of the grav-
itational wave (or graviton mode function). They also
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TABLE II. Multipole moments (a?) evaluated using different methods. These have been divided
by the scale of the moments pas/pp. The second column shows multipoles for a mixed cosmology
obtained from the formulas (5.2) and (5.3), which analytically model a universe containing both dust
and radiation, and which is not completely dust dominated at last scattering. The third column
shows results obtained by evaluating Eq. (6.2) of Allen and Koranda [2], which assumes that
the universe was completely dust dominated at last scattering. The fourth column shows results
obtained by evaluating Eq. (6.1) of Allen and Koranda, which is a long-wavelength approximation
to their Eq. (6.2), and equivalent to standard formula of Abbott and Wise [5] and Starobinsky [6].
The fifth column shows results obtained by Ng and Speliotopoulos [10], who numerically integrated
the wave equation to obtain the amplitude of the gravitational waves. They also considered a
universe model which is not completely dust dominated at last scattering. All the results were
obtained with Z.q = 6000 and Z;s = 1100.
l (a?) 22 (a?) 22 (a?) 22 (a?) 22
This work Allen, Koranda Allen, Koranda Ng, Speliotopoulos
Eq. (5.2) Eq. (6.2) of Ref. [2] Eq. (6.1) of Ref. [2] Table 1 of Ref. [10]
2 1.55 1.52 1.52 1.55
3 6.10x107! 6.07x107" 6.07x107!
4 3.46x107" 3.44x107! 3.44x107"
5 2.28x107! 2.27x107! 2.27x107!
6 1.64x107* 1.62x1071 1.62x107"
7 1.24x107* 1.22x107" 1.22x107"
8 9.70x1072 9.61x1072 9.58x1072
9 7.84x1072 7.74x1072 7.71x1072
10 6.46x1072 6.37x1072 6.34x1072
20 1.75x1072 1.69x1072 1.66x1072 1.75x1072
50 2.36x107° 1.99x1073 1.83x107° 2.36x107%
100 1.91x10™* 8.67x107° 6.23x107° 1.90x10~*
150 7.46x107° 4.11x10°° 1.89x10° 7.41x107°
200 4.56x107° 3.68x10°° 9.96x1077 4.49x107°
considered a universe model which contains both radi- Multipole Moments (az?)
ation and dust at last scattering. All of the results in exact analytic solution vs.
Table II were obtained with Zq = 6000 and Zrs = 1100. transfer function approximation
Figures 1, 2, and 3 compare the “mixed” multipole mo- 10F - . v esenenn,
ments to the multipole moments calculated using other oo
techniques. The quantity M; in Figs. 1-3 is defined by
2
am =D L“lﬁl (5.5) 0.1F
6 (az) M, ° Turner, White and Lidsey
l transfer function
(Note that in Ref. [2] the equation defining M; in the approximation
caption of Fig. 2 contains an extraneous factor of 0.01 F . exact analytic solution
pas/pp.) Figure 1 compares multipoles calculated us- 7. — 6000
. . . e
ing the “mixed” or analytic formulas (5.2) and (5.3) to Zlq: 1100
results from Turner, White, and Lidsey (TWL) [9]. TWL °
express the multipole moments in terms of the standard 0.001 1 1 1
2 10 100 300

long-wavelength approximate mode functions [2] using a
“transfer function.” Figure 2 compares multipoles calcu-
lated using the “mixed” or dust and radiation analytic
formulas to multipoles calculated using the Abbott and
Wise [5] and Starobinsky [6] or “approximate-dust” for-
mula. Figure 3 compares the “mixed” multipoles to the
results of Crittenden et al. [11], who do not (directly) use
the Sachs-Wolfe formula to calculate the CBR anisotropy.
Instead they use numerical methods to evolve the pho-
ton distribution function using first-order perturbation
theory of the general relativistic Boltzmann equation for
radiative transfer. All the multipole moments shown
in Figs. 1, 2, and 3 are for cosmological parameters

l

FIG. 1. Multipole moments (a?) normalized to the
quadrupole (a3). The horizontal axis is the index I of the
multipole moment and the vertical axis is M;. See (5.5) for
the definition of M;. The points labeled “exact analytic solu-
tion” show results obtained from (5.2) and (5.3) which ana-
lytically model a universe containing both dust and radiation,
and which is not completely dust dominated at last scatter-
ing. The points labeled “Turner, White and Lidsey transfer
function approximation” show results from Turner, White,
and Lidsey [9] obtained using a transfer function.
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Multipole Moments {(a?)
two-component model vs.
dust dominated model -

dust and radiation

1.0

0.1

M, Abbott and Wise,
Starobinsky,
dust dominated formulas

—_—

0.01 |
Zeq = 6000
Zye = 1100
1 1 1
0.001 = 10 100 300

{

FIG. 2. Multipole moments ({(af) normalized to the
quadrupole (a3). The axes are the same as in Fig. 1. The
points labeled “dust and radiation” show results obtained
from (5.2) and (5.3) which analytically model a universe con-
taining both dust and radiation, and which is not completely
dust dominated at last scattering. The points labeled “Ab-
bott and Wise, Starobinsky, dust dominated formulas” show
results obtained using Eq. (6.1) of Allen and Koranda [2]
[which is a long-wavelength approximation to Eq. (6.2) of
Allen and Koranda [2]], which assumes that the universe is
completely dust dominated at last scattering.

Multipole Moments {a?)
analytic formulas & Sachs-Wolfe formalism vs.
numerical solution using Boltzmann formalism

1'0 B e e e e eaeereseen
Zeq = 6000
Zys = 1100
0.1F .
analytic formulas,
Ml Sachs-Wolfe formalism
0.01F
Crittenden et al.
numerical results,
Boltzmann formalism
0.001 1 —L

1
2 10 100 300

l

FIG. 3. Multipole moments (af) normalized to the
quadrupole (a). The axes are the same as in Fig. 1.
The points labeled “analytic formulas, Sachs-Wolfe formal-
ism” show results obtained from (5.2) and (5.3) which an-
alytically model a universe containing both dust and radi-
ation, and which is not completely dust dominated at last
scattering. The points labeled “Crittenden et al. numerical
results, Boltzmann formalism” show results from Crittenden
et al. [11], who do not use the Sachs-Wolfe formula (directly)
to calculate the CBR anisotropy. Instead they use numer-
ical methods to evolve the photon distribution function us-
ing first-order perturbation theory of the general relativistic
Boltzmann equation for radiative transfer.

Zeq = 6000 and Zys = 1100. (The values of Z.q for the
Turner-White-Lidsey work and for the results of Critten-
den et al. differ from 6000 by about 1%.)

C. Discussion

The Ng-Speliotopoulos multipoles agree quite well with
the “mixed” multipoles obtained here, using spheroidal
wave functions, for a cosmology containing dust and ra-
diation components. This is expected because the two
methods used to calculate the multipole moments should
be essentially equivalent. The graviton mode functions
Ng and Speliotopoulos obtain by numerically integrating
the wave equation (with the correct boundary conditions)
must be equivalent to our analytic expressions (4.18).
The cosmological model Ng and Speliotopoulos consider,
however, is slightly different than our own. They model
the smooth transition during the mixed phase by a sim-
pler scale factor than our own (3.9). This may account
for the small discrepancy between their results and our
own.

The multipoles of Crittenden et al. (Fig. 3) also agree
quite well with the “mixed” multipoles. This is also ex-
pected since the Boltzmann formalism [11,12] and the
Sachs-Wolfe formalism should yield equivalent results.
The discrepancy between the “mixed” multipoles and the
multipoles of Crittenden et al. for 170 <1 S 270 is most
likely due to our idealized treatment of the last scatter-
ing event [24,25]. In our analysis the last scattering is
an instantaneous event occurring at redshift Zy,s = 1100.
The analysis of Crittenden et al. [11] is more physically
realistic. In their analysis the last scattering event is a
dynamic process that takes place over a range of redshift
1000 S Zis < 1200 [25]. This more realistic treatment
of the last scattering event has the effect of “washing
out” the smaller angle anisotropy and thus decreasing
the higher ! multipoles. In future work we modify our
analysis to treat the last scattering in a more physical
way [26].

For I < 30, the “approximate-dust” multipoles agree
fairly well with the “mixed” multipoles (Fig. 2). This
is not surprising. The small [ multipoles (a?) are
most affected by longer-wavelength perturbations. These
longer-wavelength perturbations were redshifted outside
the Hubble sphere early in the inflationary phase, and
only recently reentered the Hubble sphere (the longest-
wavelength perturbations remain outside the Hubble
sphere even today [22]). Because they remained outside
the Hubble sphere until recently, the longer-wavelength
perturbations are insensitive to the details of the evo-
lution of the universe before it became dust dominated.
Thus, the “mixed” universe and “dust” universe mod-
els are essentially equivalent for longer-wavelength per-
turbations. So it is not surprising that the same CBR
anisotropies are produced by the long-wavelength per-
turbations in either model. Thus the “approximate-dust”
and “mixed” multipoles should, and do, agree for small
1. Furthermore, because the “approximate-dust” formula
for the multipole moments is equivalent to the standard
formulas given by Abbott and Wise [5] and Starobinsky
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[6], one can conclude that the standard formulas for the
multipole moments are accurate for small [, whether or
not the universe was completely dust dominated at last
scattering.

For I 2 30, the “approximate-dust” multipoles differ
significantly from the “mixed” multipoles. Again this is
not surprising. The larger | multipoles are more affected
by shorter-wavelength perturbations, which reentered the
Hubble sphere before the universe became dust domi-
nated, and are therefore sensitive to the details of the cos-
mological expansion before dust domination. A “mixed”
universe becomes dust dominated much more slowly than
a “dust” universe, which is dust dominated immediately
after the radiation phase ends at dust-radiation equal-
ity 7jeq. Therefore the shorter-wavelength modes in a
“mixed” universe and a “dust” universe evolve very dif-
ferently after they reenter the Hubble sphere. This dif-
ference is evident in Fig. 2 for the large ! multipole mo-
ments.

The TWL multipole spectrum differs significantly from
the “mixed” multipole spectrum (Fig. 1). In particular
their multipole moments are significantly greater than
the “mixed” multipoles for 3 <1 < 80. Although TWL
consider a “mixed” universe, they use the standard mul-
tipole moment formulas for a “dust” universe. However,
they modify the standard formulas by including a time-
independent transfer function T'(k/keq), which depends
only on the wave number k [see Eqgs. (22), (23) of Ref.
[9]]. TWL give an explicit functional form for the trans-
fer function [Eq. (15) of Ref. [9]], which they obtain by
numerically integrating the wave equation [9]:

T(y) = [1.0 + 1.34y + 2.50y%])'/? wherey = k/keq. (5.6)

Since the transfer function 7' > 1 appears in the ex-
pression for the multipole moments as |T'(k/keq)|? [see
Eqgs. (22), (23) of [9]], one can see that the effect of
the transfer function (5.6) is to increase the multipole
moments. Furthermore, the contribution from shorter-
wavelength (larger k) modes is enhanced more than the
contribution from longer-wavelength (smaller k) modes,
since T'(k/keq) — 1 as k — 0.

Since the TWL multipoles are significantly greater
than the “mixed” multipoles for 3 < I < 80, the trans-
fer function overestimates the contribution to the mul-
tipole moments from longer-wavelength modes. This is
easy to see. As discussed above, the standard formulas
are accurate for small ! multipoles, and give essentially
the same results as the “mixed” formulas for I < 30. The
TWL formulas for the multipole moments are equivalent
to the standard formulas, except for the transfer function.
Thus, if the transfer function was set to unity, the TWL
multipoles would be the same as the standard multipoles,
and hence would be equivalent to the “mixed” multipoles
for | < 30. Since the TWL multipoles are larger than the
“mixed” multipoles for 3 <1 < 80, the transfer function
must enhance the the contribution to the 3 < I < 80
multipole moments too much. Because the small [ mo-
ments are affected most by longer-wavelength perturba-
tions, the transfer function must overestimate the contri-

bution from longer wavelengths or smaller wave number
k.
The TWL multipole spectrum is also significantly dif-
ferent than the “mixed” multipole spectrum for large
l. The large ! multipoles are most affected by shorter-
wavelength modes. The transfer function (5.6) signifi-
cantly enhances the contribution of shorter-wavelength
modes (larger k) to the multipole moments. Because the
TWL transfer function (5.6) is time independent, how-
ever, it cannot alter the time evolution of the shorter-
wavelength modes. By comparing the “dust” universe
graviton mode function [see Eq. (4.28) of [2]]

. \/mjl (k(n + neq))
¢(77a )dust T pp k5/2(7] n neq)

(which is equivalent to the standard formulas for the
gravity-wave amplitude [2], and hence equivalent to the
TWL formulas for the gravity-wave amplitude) to the
“mixed” universe mode function (4.18), one can see that
the time evolution of the shorter-wavelength modes is
very different in a “dust” universe when compared to the
time evolution in a “mixed” universe. In their paper (at
the end of Sec. IID), TWL discuss the accuracy of their
transfer function approximation. They conclude that ne-
glecting the redshift dependence (i.e., time dependence)
of the transfer function and “pulling it out” of the Sachs-
Wolfe integral results in a maximum error of about 20%
if the universe contains significant amounts of radiation
at last scattering. We agree with the 20% bound on the
TWL error, and agree that this is the source of the dis-
crepancy between our results. The results of our analytic
calculation are more accurate because we do not make the
approximation made in the TWL work.

(5.7)

VI. CONCLUSION

This paper examines the tensor perturbations of the
gravitational field in a spatially flat, FRW cosmology con-
taining a mixture of radiation and dust, and shows that
they may be expressed in terms of spheroidal wave func-
tions. Although spheroidal wave functions have appeared
in this context before, previous authors incorrectly de-
termined the characteristic exponent which parametrizes
these functions. After explaining the correct method for
determining the characteristic exponent, we show that
spheroidal wave functions may be efficiently and accu-
rately evaluated using standard numerical techniques.

We considered inflationary cosmological models, and
used the spheroidal wave functions to find the spec-
trum of CBR temperature fluctuations resulting from pri-
mordial tensor (gravitational radiation) perturbations.
These temperature fluctuations are predicted by all infla-
tionary models. Their existence follows from first prin-
ciples: It is a consequence of the uncertainty principle
and the Einstein equation. The temperature fluctuations
have been previously studied by a number of authors (in-
cluding ourselves) using a variety of approximations, and
both analytic and numerical techniques.
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In hindsight, only three approximations remain in this
work. One is that the amplitude of the gravitational per-
turbation h;; is very small. This approximation is indeed
well justified. The second approximation is that the en-
ergy density and pressure of the universe correspond to a
mixture of dust and radiation as given in (3.11)—(3.15).
Going back in time, this approximation is good until ap-
proximately the time of nucleosynthesis, ¢ = 200 sec,
when the number of effectively massless particles in the
universe changed. This should not affect the multipole
moments (a?) which we consider, which have [ < 300.
The final approximation, that the last scattering surface
is very thin, is currently under investigation [26].

It is likely that the spheroidal wave functions, which
describe gravitational wave perturbations in realistic cos-
mological models, will find other useful applications. We
expect that the results and methods of this paper may
prove applicable to a wider variety of calculations than
the CBR temperatures perturbations considered here.
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APPENDIX A

In spatially flat FRW universes, graviton mode func-
tions in a linearized theory of gravity obey a minimally
coupled, massless, scalar wave equation [27] like (2.5). If
the scale factor of the spatially lat FRW universe trans-
forms smoothly from being radiation to dust dominated,
the solutions to the equation are spheroidal wave func-
tions.

1. Differential equation of spheroidal wave functions
and its solutions

There is no generally accepted “standard” form for the
differential equation of spheroidal wave functions. We
write the differential equation as

&2y 2z dp A %
dzz (1-22)E+{(1—z2) +40 - (1—22)2}('0

=0. (A1)

The parameters g, A, and 6 and the variable z can in
general be complex. Here we take z, A, 1, and 0 to be real.
We also consider only # > 0. The differential equation
(A1) has two regular singular points at z = +1 and an
irregular singular point at z = co. We only consider
z > 1. Then the solutions of (A1) are the spheroidal
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wave functions [28,29]

p=59(2,0), 2>1, j=1,2,3,4. (A2)
The parameter p is the order of the spheroidal wave func-
tion, and v is the characteristic exponent. In later sec-
tions we consider in detail the characteristic exponent v
and its relation to the order u and the parameters A and
6. For now we simply note that v is restricted so that

v+ 1/2 # integer. (A3)
For a very thorough and complete discussion of the dif-
ferential equation (A1) and the solutions (A2) see Ref.
[29].

The spheroidal wave functions can be expressed in
terms of more familiar special functions. If § = 0, then
the differential equation (A1) reduces to Legendre’s dif-
ferential equation, suggesting that the spheroidal wave
functions can be expressed in terms of Legendre func-
tions [28,29]. For z > 1, however, it is more useful to
express the spheroidal wave functions as infinite sums of
Bessel functions. For > 0 one can write the spheroidal
functions as

22

. /2 .
§4G) (2,0) = ( 1) TF9) (2,0), n>0, (A4)

22 —

where T4 (2, 6) is the infinite sum

oo

T (2,0) = s£(0) S ak, (0)pT),,(20%/%2),

r=-—o0

j=1,2,3,4. (A5)

The expansion coefficients af ,.(6) and the normalization
factor s¥(#), which are the same for any j, are discussed

below. The functions ¢,(,j ) (2) are proportional to Bessel
or Hankel functions

1/’1(;1) (2) = /35 Jvt1/2(2),
1/’1(;2)(2) = \/;—7§Yv+1/2(z)»
P (z) = \/;L:Hz(;i)uz(z)’
W0 (2) = VEHT (2)-

The spheroidal wave function of the first kind (j = 1)
and the spheroidal wave function of the second kind (j =
2) form a complete solution to the differential equation

1
(A1). Because the Hankel functions Hi(,z)(z) = Ju(2) £
1Y, (z) can be written as linear combinations of Bessel
functions (see Eq. (3.86) in Ref. [21]), the spheroidal
functions of the third (j = 3) and fourth (5 = 4) kind can
be written as linear combinations of spheroidal functions
of the first and second kinds:

(A6)

54®(2,0) = 51 (2,0) +iSEP(2,0),

S8 (2,0) = SN (2, 0) — 1§43 (2, 6). (A7)
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The spheroidal functions of the third and fourth kinds
also form a complete solution to the spheroidal differ-
ential equation. The expansions (A4) of the spheroidal
wave functions in terms of Bessel and Hankel functions
are only useful if the infinite sums (A5) converge.

The convergence of the infinite sums depends on the
expansion coefficients al,.(f). Substituting (A4) and
(A5) into the differential equation (Al) yields a three-
term recurrence relation that the expansion coefficients
must satisfy. The recurrence relation can be written as

‘Ag,r(o)a‘;,r—l(a) + Bﬁ,r(o)a"lj,r (9) + C:f,r (o)a‘lj,r+1(0) = 07

(A8)
where
An (0)_40(v+2r—p)(u+2r—u—1)
w2+ 4r —3)(2v 4+ 4r — 1)
B (0)=A—(v+2r)(v+2r+1)
2 _
w+2r)(v+2r+1)+p 180 (A9)

2v+4r-1)(2v+4r+3) '

¢9(1/+27'-i-u-+-2)(1/—+-2r—!—,u,-+-1)

[l =
Cr0) =4 (2v + 4r + 3)(2v + 47 + 5)

The solution to this recurrence relation, as well as the
convergence of the infinite sums (A5), depends critically
on the parameters u, v, A, and 0, and is discussed below.
Once a solution to the recurrence relation [for which the
infinite sums (A5) converge] is obtained, the normaliza-
tion factor s#(6) is given by

sp(0) = [ > (—1)’a'$,r(9)] : (A10)

r=-—00

This normalization is chosen so that in the limit as z
becomes very large:
lim [550')(2,e)/w)(zel/zz)] =1 (A11)
Z—00

This relation and many more details of the solutions (A4)
are developed in Ref. [29].

2. Eigenvalue A

Although the order p of the spheroidal wave function,
along with the parameters § and )\, appears directly in
the differential equation (A1), the characteristic expo-
nent v does not. In most investigations and applications
of spheroidal wave functions [28-31], however, the param-
eter ) is left unfixed; one assumes a (typically integer)
value for v and considers A to be a function of u, v, and
0 and writes

A = AL(0). (A12)
AE(0) is often referred to as an eigenvalue, especially
when considering spheroidal wave functions as solutions
to the three-dimensional wave equation [32].

For a given choice of the parameters u, v, and 0, the
eigenvalue A4 () is that value of A for which the recur-
rence relation (A8) has a minimal solution. A minimal
solution, roughly speaking, is a set of coefficients al .(6)
that satisfy the recurrence relation and fall off for large
|r| [33]. A dominant solution is a set of coefficients that
satisfy the recurrence relation but do not fall off. If the
solution to the recurrence relation is a dominant solution,
the coefficients a¥,. () do not fall off for large |r|, and
the infinite sums in (A5) may not converge. In general a
three-term recurrence relation will have two independent
solutions, much like a second-order, ordinary differential
equation. However, neither of the two solutions, nor any
linear combination of the two solutions, need be a min-
imal solution [33]. For a given set of parameters u, v,
and 6, a minimal solution to the recurrence relation (A8)
exists only for a single, discrete value of A\. That value
for which the minimal solution exists is the eigenvalue
AL(0). In our problem, we are given A, 6, and pu. One
can find v (modulo an integer) by requiring that the re-
currence relation (A8) have a minimal solution; i.e., v is
determined, modulo an integer, by the requirement that
(A8) have a minimal solution.

The functional relationship between the parameters
i,v,0 and the eigenvalue A\¥(0) is complicated. It has
been shown [28] that the functional relationship can be
expressed as

cos(2mv) = f(A, u?,0), (A13)
where a closed, analytic form for the function f is usually
unattainable. The relation (A13) only determines the
characteristic exponent v (as a function of A, u, and 6)
up to an integer; a second constraint [29] fixes v:

MA@ =0)=v(v+1). (A14)
In Sec. IV B the special case of the differential equation
(A1) with A = 2 is considered. The constraint (A14),
along with the condition (A3) that v not be a half-integer,
fixes v so that

1

—<V<g~for A=2.

- (A15)

For investigations of some of the analytic properties of
f(A,1%,0) see Ref. [29]. A more practical method for
finding the functional relation between the parameters
i, v, 0, and X is discussed in Appendix A 6 below.

3. Case p =1, A =2

The special case of the differential equation (A1) with
© =1and XA = 2 is of cosmological interest, and has been
previously studied by Sahni [19] and Nariai [20], who in-
correctly take the solution to be S;M). In spatially flat
FRW universes containing a mixture of dust and radia-
tion, one may cast the wave equation for graviton mode
functions in the form of the spheroidal wave function dif-
ferential equation, as shown in Sec. IVB. The differen-
tial equation the graviton mode function obeys, (4.14),
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is the special case of the differential equation (A1) with
p =1, A =2, and 6 arbitrary. (0 is arbitrary since in Sec.
IV B it is proportional to the wave number of a graviton
mode function, and we desire expressions for the mode
functions that are valid for an interesting range of wave
numbers.) Even if one takes A in (A1) to be fixed and
does not consider the eigenvalue problem for A, the argu-
ments and conclusion in the previous paragraph are still
valid, especially the constraint (A13); if y, v, A, and 0 do
not satisfy (A13), a minimal solution to the recurrence
relation does not exist and the infinite sums in (A5) do
not converge. If A = 2, 4 = 1, and @ is arbitrary, then the
characteristic exponent v is determined by the constraint
(A13) with A = 2 and p = 1. Tables of eigenvalues A#(6)
for different values of p, v, and 6 have been published
[31], however, and from these one can determine that the
solution to (A13) for p = 1, A = 2, and @ arbitrary is not
v =1: ie,
cos(2m) # f(2,1,0) for arbitrary 6. (A16)
So for arbitrary € the solution to the differential equation
(A1) with 4 = 1 and A = 2 is not the spheroidal wave
function (A2) with 4 =1 and v = 1: i.e.,
¢ # S0 (2,0) for A =2. (A17)
This subtle point is missed in [19,20], where the solution
to the spheroidal wave function differential equation with

p =1, A = 2, and 0 arbitrary is incorrectly given as S; @),

4. More suitable notation

The notation introduced above for the spheroidal wave
functions (A2) is most useful when the order p and the
characteristic exponent v are fixed, and the eigenvalue
Ak(6) is considered as a function of y, v, and 6. Since we
are most interested in the case when p and ) are fixed, it
is more descriptive to denote the characteristic exponent
as v = v4(0). This convention, however, would have

one denote the spheroidal wave functions as Sgéj(.)e) (2,9),

which is cluttered and inconvenient. In Sec. IV B, where
0 is itself a function (of wave number), the notation would
be even more unpleasant.

d d
W[‘lZ;(z,H),sEK(z,H)] = 425(2’0)3232‘;(2’0) - SEK(Z,G)E;“E';(Z,@) =
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For this reason we adopt a new notation for the
spheroidal wave functions. The solution to the differ-
ential equation (A1) with g and A fixed is denoted

iT#(z,0) = sgéi(';)(z,o).

(A18)
The function on the left-hand side above is, of course, the
same function as on the right-hand side, expressed using
a different notation. The lower index on the left-hand
side above is the “eigenvalue” A (A = 2 for the cosmolog-
ical problem) and not the characteristic exponent v. The
upper index p is again the order of the spheroidal wave
function, and again the index j = 1, 2, 3,4 labels the four
solutions. In terms of Bessel functions, the spheroidal
wave function is now written as

2
IXE(z,6) = ( 2 )“/ irk(z,0) (A19)
A< 22 1 A=Y,
where
irf(2,0) = s5(0) > af (0)v0),,(267/%2), (A20)

r=—00

with v = v4/(0), and the 'lbl(,g ) are the same functions given
in (A6). The expansion coefficients a’ (6) are the same as
those in (A5) and obey the same recurrence relation (A8)
with the obvious change in notation. The normalization
factor s4(8) is also the same as in (A5) with the obvious
change in notation. We use this notation in Secs. IV B,
IVC, and V A, and the rest of this appendix.

5. Wronskian and complex conjugates

Two relations for the spheroidal wave functions are
especially useful in Sec. IVB. The first involves the
spheroidal wave functions of the third and fourth kinds,
and is obvious from the relations (A7):

h(2,0) = [*Z4(z,0)]". (A21)
Here an asterisk denotes complex conjugation. The sec-

ond relation is the Wronskian for the spheroidal wave
functions of the third and fourth kinds:

i

This relation, along with related results, is derived in Ref. [29] [see especially Sec. 3.65, Eq. (53)].

6. Practical method for determining v (0) and 7X(z,0)

The constraints (A13) and (A14) determine v () for a given choice of u, A, and 6. In practice, however, it is
difficult to use these constraints since a closed, analytic form for the function f is usually not known. Recall, though,
that the constraint (A13) is equivalent to finding a minimal solution to the recurrence relation (A8). A minimal
solution exists only for the single, discrete value of v/4'(8) that satisfies the constraints (A13) and (A14).

One can use the theory of continued fractions to find the minimal solution to the recurrence relation and determine
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v4(6). Divide (A8) by a,(f) and consider the infinite continued fraction Py (8) defined for r > 1 as

ar = _AT = _A¢
@1 B +C g oL —Ar1 -

ar _A1'+2
Corq —— 21 F2
Bry1+Crpa Braat -

(A23)

P;‘"r(ﬁ) =

where we have again suppressed for clarity the indices 1 and X as well as the argument 6. For a given choice of
parameters u, A, 6, and v the infinite continued fraction can be used to find the ratios a,/a,_; of all the expansion
coeflicients, for r > 1, if the continued fraction converges. There is no loss of generality if one assumes ag = 1 [28,29]
[note that this is compensated for in the normalization s%(6)], and so the continued fraction (if it converges) can be
used to find the expansion coefficients a, for » > 1.

A second infinite continued fraction for » < —1 can also be derived from the recurrence relation. We define the

continued fraction

NEL(O) = -2 =G

=G r<—1. (A24)

a.

a1 B, + A,

r—1
a.

r

Assuming ag = 1, the continued fraction (if it converges)
can be used to find the expansion coefficients a, for r <
—1.

Whether or not the infinite continued fractions con-
verge depends on the existence of minimal solutions to
the recurrence relation. Pincherle’s theorem [33] tells us
that the infinite continued fraction P} (6) converges for
r > 1 if and only if the recurrence relation has a mini-
mal solution for » > 1. Further, if the infinite continued
fraction does converge, it converges to a minimal solu-
tion. Likewise, N} (6) converges to a minimal solution
for » < —1 if and only if the recurrence relation has a
minimal solution for r < —1.

A subtle, but important, point is that P}’ (6) and N} ()
may converge to different minimal solutions. Given a
set of parameters u, A, 6, and v, the continued fraction
(A23) (with ap = 1) may converge and determine a set of
coefficients ay,az,as,... . These coefficients will satisfy
the recurrence relation for » > 1 and will fall off for
large r. Likewise, for the same set of parameters, the
continued fraction (A24) may converge and determine a
set of coefficients a_,,a_3,a_s, ..., which will satisfy the
recurrence relation for 7 < —1 and will fall off for large
|r]. The recurrence relation for r = 0, however, may not
be satisfied. This is because the r = 0 recurrence relation

K,O(o)a’i,—l(o) + Bf\t,o(e)a‘)t,o(o) + Cf\‘,o(e)af{g(‘g) =0
(A25)

is not explicitly solved when calculating either the P{'(6)
or the N{(6). One can see this by examining the con-
tinued fractions (A23) and (A24); the three coefficients
a—1, a0, and a; do not appear together anywhere in (A23)
and (A24) for any 7. So both the set of expansion co-
efficients a;,az,as,... found using P} (6) and the set
a-1,a4-2,a_3,... found using N} (6) are minimal solu-
tions for a certain range of the index r, but not for all
r.

In order for the recurrence relation (A8) to be satisfied
it must be true for all r. To ensure this, one must match

B, + A,

_Cr—l -
Br—l + -A1‘—1

—LYr—2

B o+ ---

the two solutions found using the continued fractions.
This is accomplished by requiring that

AL (O)NS _1(8) + B o(8) + CX o () PL, (6) = Z4(6,v)
=0, (A26)

which is just the requirement that the recurrence relation
be satisfied for » = 0. So finding the minimal solution
to the recurrence relation, and hence the characteristic
exponent 4 (), is equivalent to finding the root of the
function Z} (0, v) defined in (A26). Given a test value for
V4 (6), one calculates the continued fractions P§', (6) and
N{ _,(6), and the rational functions Aio, BS o, and C5 o,
to find Z§{(0,v). If ZY is not zero, one modifies the test
value for v4(0) using whichever root-finding algorithm
one prefers.

In practice, this method for determining v/4(6) is effi-
cient. Figure 4 shows the function Z}(6,v) (of interest
for the cosmological case) for § = 5 and 3 < v < 2.
This plot is typical for  in the range 10~% < § < 10%;

Zi(0,v) vs. v

—2F

—4 L
3
1 2
2

v

FIG. 4. The function Z}(8,v) plotted versus v for 6 = 5.
The value of v at which this function vanishes is the char-
acteristic exponent v3(0) for § = 5. This plot is typical for
values of § in the range 10™* < 6 < 10%. The root is always
located between two singularities.



1916

Characteristic Exponent v3(6)
1.4

12
vi(6) 1.0 /\/\/\/\/\N\/\M
0.8}

0.6 1 L 1 1 1

log10(6)

FIG. 5. The characteristic exponent v3(6) plotted vs
log,o 0. Only for certain discrete values of 6 is v equal to
1. For this reason the function S:(j)(z,G) is not a valid so-
lution to the differential equation (A1) for p = 1,A = 2, and
arbitrary 6.

the root v (6) is always located between two singulari-
ties, and Z} is positive for v = v§(6) — € and negative for
v = v§(0)+€ where 0 < € < 1. This assists implementing
a root-finding algorithm to find the zeros of Z1(6,v) for
arbitrary 0. Figure 5 shows the characteristic exponent
vi(6) for 1073 < 6 < 103.

Once the characteristic exponent 4’ (0) is determined,
one can use the continued fractions (A23) and (A24),
along with a,A o = 1, to calculate the remaining expan-
sion coefficients. Since these coefficients are the minimal
solution, the coefficients fall off for large |r|. One can then
use (A10) to find s5(8). Using (A4) and (A5), along with
an algorithm for computing Bessel and Hankel functions,
one can evaluate the spheroidal wave functions. Further
details of the numerical techniques used may be found in
Appendix B. Figure 6 shows the spheroidal wave func-
tions 1X1(z,0) and 2X}(z,0) as functions of z for two
values of 6.

Spheroidal Wave Functions

1.0
6=01 )
0.0 ST e
y
/ ——=251(z,6)
—1.044 L
1 10 20

6 =10.0

1223(2,0)

———2T(2,0)
1

10 20
z

FIG. 6. The spheroidal wave functions '¥3(z,0) (solid
lines) and 223(z,0) (dashed lines) for § = 0.1 and 6 = 10.
Both functions diverge in the limit as z — 1. Note that the
vertical scales are different for the two plots.

—0.21
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APPENDIX B

This appendix briefly describes the numerical tech-
niques used to obtain the results in Sec. VB. One
may separate the problem of numerically evaluating the
spheroidal wave functions '¥1(z,0) and 2%1(z,6) into
two parts. The first is to determine the characteristic
exponent v3(6) for a given 6. As noted in Appendix A 6
the charactenstlc exponent vi(6) is that value of v for
which the function Z}(6,v) vanishes, where

Z3(0,v) = A 4(0)Nz,_1(0) + B3,0(6) + C3,0(6) P31 (6).

(B1)

To find the root of Z1(#,v) [and hence the characteris-
tic exponent v3(0)] one must evaluate the five functions
on the right-hand side of (B1). From (A9) one can see
that the three functions Aj o, B3 o, and Cj , (here A = 2,
not v) are rational functions of v for any 6, and are easily
evaluated. The continued fractions N3 _,(6) and Py ,(6),
defined by (A23) and (A24), are evaluated using the mod-
ified Lentz’s method (see Sec. 5.2 in Ref. [34]). Both
continued fractions usually converge within ten iterations
when evaluated using this method. The root of Z1(8,v) is
found using a simple bisection method. Although bisec-
tion may not be as efficient as other methods, it has the
advantage that it is guaranteed to work once the root has
been bracketed. This is helpful since we are interested in
finding the root v () of Z}(6,v) for many different 6; for
some 0 the root v}(6) lies very close to a singularity of
Z}(6,v), and in these cases other root-finding methods
may not converge (see Sec. 9.2 in Ref. [34]).

Once the characteristic exponent v}(#) has been cal-
culated, the remaining problem is to calculate the sums
(A20) of expansion coefficients aj ,.(f) times Bessel func-
tions J,,+2,+1/2(201/2z) and Y,,+2,.+1/2(291/2z). The ex-
pansion coeflicients are calculated using the continued
fractions N3 ,.(0) and P;,(0). With a3 o(f) = 1, one has
a%,l(a) = P21,1(0), a%,z(e) = P21,2(0)P21,1(0)a and in general

0) = H P; ().

Likewise, the negative index expansion coefficients are
given by

(B2)

aé,_n(ﬂ) (B3)

=[] ™3_;6).
i=1

The continued fractions N3, (0) and P, ,(0) are calcu-
lated using the modified Lentz’s method as noted above.
The normalization si(0), defined in (A10), is calculated
at the same time as the expansion coefficients.

The Bessel functions are calculated most effi-
ciently using recurrence relations. The functions
J,,+21-+1/2( 01/2 ) and Yv+21‘+1/2(20 /2 Z) with r > 0
and 7 < 0 are handled separately. For r > 0,
Jy+2rt1/2(20Y/%2) and J,,+2,.+1/2 2(201/22) are calcu-
lated for some large r using the routine BESSJY found in
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[34]. Using the recurrence relations for Bessel functions
(see 3.87 and 3.88 in [21]), the J, 4 2,11/2(26"/22) are cal-
culated using downward recursion to r = 0 (this is the
direction in which the recursion is stable for Bessel func-
tions of the first kind [34]). A similar procedure, using
upward recursion, is used for the Bessel functions of the
second kind Y, 42,41 /2(291/ 22). This gives the necessary
Bessel functions for » > 0.

The reflection formulas for Bessel functions are used to
calculate the Bessel functions for » < 0. Since the index

v+2r+1/2=—-2|r| —v—-1/2)

for r <0 and 1/2 < v < 3/2, (B4)

the same procedure outlined above is used for
J2|.,.‘_,,_1/2(201/2Z) and Y2|.,.|__,,~1/2(201/2Z), and then
the reflection formulas (see 6.7.19 of [34])

J_u(y) = cosvnd,(y) — sinvn, (y), (B5)
Y_,(y) = sinvnJy,(y) + cos vnY, (y) (B6)
are used to find J,,+2,+1/2(201/2z) and Yy+2r+1/2(201/2z)
for r < 0. So all the Bessel functions needed are calcu-
lated with only a few time-consuming calls to the routine
BESSJY.

Once the expansion coefficients a3 ,.(9) and the Bessel
functions J,,+2,+1/2(201/22) and Y,+2r+1/2(201/2z) are
tabulated, the sums in (A20) are calculated. Care must
be taken when terminating the sums. Although the ex-
pansion coefficients a3 ,.(0) fall off very quickly as |r| be-
comes large, the products aé,T(H)J,,+2,+1/2(201/2z) and
a3 (0)Y, +2r+1/2(20"/22) may not fall off as fast. We ter-
minate the sums when the products of the expansion co-
efficients and Bessel functions no longer contribute (at
double-precision accuracy) to the sums.

The primary numerical technique used to evaluate the
multipole moments (5.2) is numerical integration. Both
the integral over « in (5.2) and the integral over z in (5.3)
were done using a fifth-order embedded Runge-Kutta-
Fehlberg algorithm with adaptive step size control [34].
Although formally the upper limit of the integral over &
extends to some very large Kmax (see Appendix C), we
only integrated until the remaining contribution became
negligible. The Bessel function with index ! + 1/2 was
evaluated with the routine BESSJY.

APPENDIX C: ULTRAVIOLET DIVERGENCE
OF THE MULTIPOLE MOMENTS IN A
GENERAL CURVED SPACE TIME

In this appendix, we correct an oversight from Allen
and Koranda [2] in which we develop the formalism for
calculating the CBR multipole moments in spatially flat
FRW cosmology. In that paper, we inserted a mode func-
tion expansion of the metric perturbation operator into
the Sachs-Wolfe formula for the fractional temperature
perturbation 67/T. The Sachs-Wolfe formula, however,
is only valid if the CBR photons propagating through

the spacetime are small (or localized) relative to the
length scale of curvature fluctuations on the spacetime.
This requirement restricts the range of momentum to
kgravity wave ~ Kphoton. As we show in this appendix,
this implies that the integrals over graviton wave num-
ber that occur in the formulas for the multipole moments
must be cut off at a maximum frequency. If the integrals
over the wave number are not cut off, the formulas for
the multipole moments are actually ultraviolet divergent.
We use Allen and Koranda [2] as a starting point. From
Eqgs. (2.65) and (2.67) of that reference for the multipole
moments in a spatially flat FRW spacetime, one has

(@) = 4?1 - DI+ 1)1 +2) /oo kdk|I,(k)|?, (C1)

where we have changed the definition of the function I,
slightly, to

Ji(k(An — A))

An
i) = [ oo,

(C2)

with An = nobs — e, and 7i(2) a spherical Bessel func-
tion. Define a new integration variable s = k(An — ).
Changing variables in the integral defining I one has

Ii(k) = /'OkA” dsF(A"7 — s/k, k) 5i(s) )

k s2? (C3)

We now show that in any reasonable spacetime, the func-
tions I;(k) approach nonzero constants as k — oco. This
means that the multipole moments are ultraviolet diver-
gent.

The crucial point here is that as k — oo, all curved
space mode functions take on flat spacetime behavior.
This is because in the high-frequency limit, where the
wavelengths are very short, the waves do not know
that they are propagating in a curved spacetime. On
small enough length scales any spacetime appears to be
flat, and thus at high enough frequency, any normalized
positive-frequency mode function approaches the form of
the corresponding flat spacetime mode. Thus, up to an
unimportant overall phase,

ma(n) vk

The function F defined by F (), k) = vVkd(k,n)|n.+r has
the following behavior at large k: As k — oo,

F(An— s/k,k) g VG
k ﬂa(nobs)

lim ¢(k,n) =

k— o0

(C4)

e~ikmevsgio[1 4 O(1/k)].
(C5)

In calculating this last term, we have dropped terms of
order a/a, since for large enough k, they are smaller than
the terms of order k that we have kept. This follows from
our assumption that the wavelength is much shorter than
the curvature radius of the spacetime. Thus as £k — oo
one finds that (up to an unimportant overall phase which
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might arise from the mode function)

\/’E—G- » kAn eis .
hm Il(k) me knob,A dss_zjl(s)‘ (C6)
|
hG
2 =4
<al ) 0,2 (nobs)

-1+ 1) +2) /oo kdk
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The overall phase in front of this expression may be
dropped when calculating the multipole moments, which
depend only upon |I;(k)|?. Hence the large k behavior of
the integral is given by

kAn eis 2
[ a5 (c7)
0

To see that this quantity diverges at large k is straightforward. We note also that this expression is (at least formally)

the exact flat Minkowski spacetime expression.

Consider the large k limit of I;(k)|?. For general [ this is given by

2i(l_1)

oo eis .
/0 dsS—ZJ,(s)— =

DI+ 1) +2)

(C8)

Because these integrals approach constant nonzero values as the upper limit increases, the integral which defines the
multipole moments is infinite. If we take the upper limit of the k integral to be kax, then as this limit increases, one

finds that the multipole moments diverge:

2 Fmex
(a2)= )(z )1(1+1)(1+2)A kdk

aZ( Tlobs
_ 8hG k,znax
T a2(Mows) | = DI+ 1)(142)

where v = 0.5772... is Euler’s constant [see (6.1.3) of
Ref. [30]]. Note that in this expression, the variable
kmax is dimensionless. This is the exact Minkowski space-
time expression in the Lorentz vacuum state; it contains
quadratic and logarithmic ultraviolet divergence as the
cutoff kpmax — 00. As we have also shown, identical ultra-
violet divergent behavior occurs in a general spacetime.
As a specific example, we show that this behavior oc-
curs in the inflationary cosmological model constructed
by Allen and Koranda in the reference above. We only
need to demonstrate that the large k behavior of F' cor-
responds to our formula above. To see that this is the
case, we first note that as k — oo one has @ — 1 and
B — 0. Thus the mode function approaches ¢},,. One
can see that for large k one has hg )(kz) — —e 7%z /(k2)
and that the various factors of 71, 72, PPlanck, and pas
appearing in the definition of ¢!, combine to give

ma(n) vk

Thus in this specific example, the high-frequency behav-
ior of the mode functions is exactly as assumed above—it
approaches the flat space form for large k.

This divergence is fairly easy to understand and to re-
move. The explanation is obtained by considering the

hm ¢mat(ka77) =1e —zk'nz (Clo)

kAn i 2
/ ds—ji1(s)
0 S

1 1 1
+ 5 In(kmax) + 5(7+ln2+8)+82;

l

+ O(k for kmax > 1, (C9)

max )

n=1

limits of applicability of the Sachs-Wolfe effect. The per-
turbations of the photon path and energy, described by
the Sachs-Wolfe integral, are classical effects valid for
wavelengths AcBr < Agraviton. Only when this inequality
is satisfied may one treat the photon as a point particle
propagating in a classical, curved background geometry.
For gravitons of higher frequency, the effects of quan-
tum gravity invalidate this approximation for the photon-
graviton interaction. However, one can see on physical
grounds that high-frequency graviton zero-point motion
cannot significantly modify the multipole moments, be-
cause in ordinary laboratory experience, the propagation
of electromagnetic microwave radiation is unaffected by
graviton zero-point motion. Hence, we apply a physical
cutoff kmax = 27a(nobs)/AcBr to the mode number ap-
pearing in the Sachs-Wolfe formula. For observed wave-
lengths Acgr ~ 1 cm, we obtain

hG 3272

(ACBR)2 (l + 2)(l + l)l(l — 1) ~ 1078,

(a?) = (C11)

Thus we obtain a reasonable, finite result for the CBR
multipole moments in Minkowski spacetime, and for the
high-frequency contribution to the multipole moments in
a general curved spacetime.
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