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Abstract 

We collect further evidence for the proposed duality between N = 2 heterotic and type II string vacua in a specific model 
suggested by Kachru and Vafa. In the gauge sector the previous analysis is extended; it is further shown that the duality 
also holds for the one-loop gravitational couplings to the vector multiplets. 

1. The recent advances in understanding non- 
perturbative aspects of N = 2 supersymmetric Yang- 
Mills theories [ I] have raised the question whether 
similar techniques are applicable in string theory. 
One of the key elements in the work of Seiberg and 
Witten is the relation between a gauge theory at 
strong coupling and a ‘dual’ theory at weak coupling 
with magnetic monopoles (dyons) as elementary 
excitations. This dual theory can be analyzed in per- 
turbation theory and, as a consequence, the exact 
non-perturbative low energy effective action for all 
values of the coupling constant is determined. 

In order to apply such techniques to string theory, a 
similar strong-weak coupling duality has to be estab- 
lished. For N = 2 string theories it has been conjee- 
tured that such a duality exists between heterotic vacua 
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compactified on the six-dimensional manifold K3 x T* 
and type II vacua compactified on a Calabi-Yau three- 
fold [ 2-51. The coupling constant in string theory is 
a dynamical variable determined by the vacuum ex- 
pectation value of the dilaton S. In N = 2 heterotic 
vacua, S resides in an abelian vector multiplet while in 
type II vacua it is a member of a hypermultiplet [ 61. 
Combining the facts that there are no gauge neutral 
couplings between vector and hypermultiplets [ 71 and 
that S organizes the string perturbation theory implies 
a non-renormalization theorem for both, heterotic and 
type II vacua. For the heterotic vacua the tree level 
couplings of the hypermultiplets are exact whereas the 
tree level couplings of the vector multiplets are cor- 
rected at one-loop and non-perturbatively. In type II 
vacua the situation is reversed and the tree level cou- 
plings of the vector multiplets are exact while the hy- 
permultiplets suffer perturbative and non-perturbative 
corrections. Thus, if a string vacuum has a dual rep- 
resentation as both heterotic and type II the exact ef- 
fective Lagrangian can be obtained by computing the 
couplings of the vector multiplets in the type II the- 
ory and the couplings of the hypermultiplets in the 
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heterotic theory. 
Concrete examples of ‘dual pairs’ of N = 2 string 

vacua have been suggested in Refs. [4,5] and non- 
trivial evidence for the proposed duality was found. 
One of the models considered in Ref. [ 41 is a specific 
compactification of the heterotic string on K3 x T* with 
gauge group V( 1) 3. The corresponding gauge bosons 
are the graviphoton, the vector partner of the dilaton 
and the vector partner of the toroidal modulus T. The 
second toroidal modulus II is locked at U = T. Thus 
the model has two U( 1) vector multiplets (nv = 2) 
while the number of hypermultiplets turns out to be 
nH = 129. Kachru and Vafa observe that there is an 
unique Calabi-Yau threefold X12( I, 1,2,2,6) - the 
degree 12 hypersurface in p ( 1 , 1,2,2,6) - with ny = 

~(I,I) = 2 and nH = 41.2) + 1 = 129 (b(i,i) and 4~2) 
denote the number of ( 1, I) and (I, 2) forms and 
the ‘+l ’ counts the dilaton) . Therefore this Calabi- 
Yau space is a good candidate for the dual type IIA 
string vacuum. The tree level couplings of the two 
vector multiplets are known exactly for the type II 
vacuum [8,9] while for the dual heterotic vacuum 
they have only been studied in perturbation theory 
[ 2,10,11]. Kachru and Vafa have given evidence that 
they agree at weak coupling. In this letter we extend 
their analysis of the gauge sector and further show that 
also for the gravitational coupling to vector multiplets 
the duality between the vacua holds. Our results in 
Section 2 overlap with recent work of K. Narain and 
collaborators. 

2. The couplings of the vector multiplets are en- 
coded in a holomorphic prepotential F [ 71. In the het- 
erotic vacuum Fhet has the weak coupling expansion 

Fhet = ;sT* + h(T) + hnp(e-8v2S,T), (1) 

where iSr* is the tree level contribution, h(T) is 
the dilaton independent one-loop correction and h”P is 
generated non-perturbatively.4 In Refs. [ 10,l I] it was 
shown that h(T) is strongly constrained by its trans- 
formation properties under any exact quantum sym- 
metry and by its singular behaviour at special points in 
the moduli space where additional massless states ap- 
pear. The model at hand has an exact SL( 2, Z) quan- 

4The standard N = 2 non-renormalization theorem states that 

beyond one-loop there are no further perturbative corrections [ 121. 

turn symmetry (T-duality) which acts on the modulus 
T according to 

E W2,Z), (2) 

while the dilaton S is invariant at the tree level. Using 
the formalism developed in Ref. [ lo] it is straightfor- 
ward to determine the transformations law of h under 
this SL( 2, Z) 

h(T) --) 
h(T) E(T) 

(icT+d)4 + (icT+d)4 ’ 

where B is at most a quartic polynomial in T arising 
from the multivaluedness of h(T) . (In the absence of 
logarithmic singularities h would be a modular form of 
weight -4.) The 5th derivative $h (T) does not suffer 
from any ambiguity and is a modular form of weight 
+6. 5 The singularities of h are at T = 1,~; at T = 1 
the gauge group U( 1)3 is enlarged to W(2) x U(l)* 
(with no additional massless hypermultipIets) and, as 
a consequence, L$h develops a logarithmic singularity 

ash N -w ln( T - I) . 6 Hence, modular invariance 
(together with bSU(2) = -4) dictates 

#h= -$ln[j(iT) -j(i)] +finite terms, (4) 

where j( iT) is the modular invariant j-function. 
At T = co the coupling a$h should diverge at most 

like T* which implies that @h(T) is regular every- 
where except at T N 1 where ash N n--*(T - 1)-3. 
This determines $h( T) up to one arbitrary coefficient 
A 

a;h = T %+A$ -(A+l)&- 
E63 1 

, (5) 

where Ed, E6 are the normalized Eisenstein func- 
tions of weight 4,6, respectively. To determine the 
coefficient A we use the results of toroidal compact- 
ifications where, in addition to T, the modulus U is 
also unconstrained. For this case the third deriva- 
tives @h(T, U), $h(T, U) have been determined in 
Refs. [ 10,111. In terms of the coordinates +* z 
T i II, it is possible to compute ai+ h(q5+, c#J-) at 

5 Note that the n-th ordinary derivative a;f, -” of a weight n - 1 
modular form fl_,, is a modular form of weight n + 1. 

6A more extensive discussion of the singularities of h and its 

precise relation to the gauge coupling is given in Refs. [ 13,10,111. 
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4b- = 0 from the knowledge of the third deriva- 
tives @h(T,U), @r(T,u). d&h(4+,0) is singular 
at T = 1 (where the enhanced gauge symmetry is 

SV(2)*> and at T = e ivl6 (where the enhanced gauge 

symmetry is SU( 3) ) ; nevertheless the singularity at 

T = I has to agree with Eq. (5) since at that point 
the additional massless states which contribute to the 

p-function are identical in both theories. Matching 

the coefficients of the singular terms at T = 1 yields 
A = -23/l& 

The analysis of Refs. [ 10,111 also showed that at 

one-loop the dilaton S is no longer invariant under T- 

duality. Instead it transforms according to 

S -+ S - ff@ + 2ic 
dT(h+E) +& hfE 

(icT+d) (icT+d)* 

+ i const. . (6) 

It is however possible to define a modular invariant 

coordinate by 

S ‘“” := S + f [&z(T) + L(T)] , (7) 

where the holomorphic L(T) is modular invariant up 

to a shift by an imaginary constant. The difference 

S”“’ - S has to be finite f or finite T and should not 
grow faster than a polynomial at T --+ CO. Therefore, 

Eq. (4) determines 

I,=--&ln[j(iT) -j(i)] +const.. (8) 

It is important to note that S is a N = 2 special coor- 

dinate but 9”” is not. 

Let us now turn to the type II string compactified on 
the Calabi-Yau threefold X12( 1 , 1,2,2,6). The defin- 
ing polynomial of the mirror manifold (which has 

b( 1,~) = 2) is given by [ 8,9] 

+ a,zpz; , (9) 

where aa and at are the two complex structure defor- 
mations. The uniformizing variables at large complex 
structure are x = at /ug and y = 1 /a: and the manifold 

(9) has a conifold singularity at 

(1-123x)2-4~123x2y=0. (10) 

For generic values of y this is satisfied by two values of 
x, which coalesce for y = 0. This observation, which 

is reminiscent of the work of Seiberg and Witten [ 11, 

led Kachru and Vafa to identify y = 0 with the weak 
coupling limit of the dual heterotic vacuum. 

In order to make this proposal more precise one has 

to find a map between the special coordinates S and T 

in the heterotic vacuum and the ( 1,l) deformations 
of the Calabi-Yau manifold. The special coordinates 

tl and t2 on X12(1,1,2,2,6) are determined by the 
mirror map in terms of x and y [ 8,9] _ The mirror map 
can be inverted, leading at weak coupling to 

.I-=gg+o(q2L Y=q*g(ql)+aq;L 

qj = e2mir, , (11) 

where g( 41) is a power series in 41, normalized to 
g( 0) = 1. The first few coefficients are recorded in [ 81 

or can be computed using the computer program of 

[ 141. One is now led to the following identification of 

the special coordinates in the two vacua: tl = iT, t2 = 

47riS. 7 

Once the coordinates have been identified one has to 
check the identity of the two prepotentials Fhet = F”. 

For the Calabi-Yau manifold the Yukawa couplings 

xjk are computed in Refs. [ 8,9] and when expressed in 

terms of special coordinates they are determined by the 

third derivative of the prepotential Ejk = d,i&jd,, F”. 

Using the formulae of [8,9] it is straightforward to 

compute in the weak coupling limit (y -+ 0) 

d3F” T 

= -$s dT (InLiCiT) -j(i)] - 5 lng(iT)) , 

0 

E4 
d;&F” = 1 , 

*0 

(12) 

while a~&F” and diF’* vanish in this limit. Here we 

have chosen a convenient overall normalization of F”. 

wg is the fundamental period of the Calabi-Yau mani- 
fold and it appears in the transformation of the Yukawa 

couplings to special coordinates [ 151; it plays the role 
of the homogeneous N = 2 coordinate Xc. The two 
equations in (12) are consistent if 

7 Note that F$ (6) implies that S is ambiguous up to a quadratic 
polynomial in T. We acknowledge useful discussions with F? Mayr 

on that point. 



74 V. Kaplunovsky et al. /Physics Letters B 357 (I 995) 71- 75 

( ) 
2 

w&J? =O) = 2 (6n)! 

n=O (3n)!(n!)3 j(iT)_” 

= &(iT) ) (13) 

where the first equation follows from the explicit se- 

ries representation of wc [ 8,9]. We have checked this 

identity perturbatively in 91; an analytic proof has been 

given by 0. Ogievetsky [ 161. Inserting Eq. ( 13) into 

( 12) we arrive at 

$F” = S+ &ln[j(iT) -j(i)] 

- &lng(iT). 

Now we are prepared to compare the two prepoten- 
tials. Equating ( 1) with ( 14) ( Fhet = F”) implies 

@h = & ln[j(iT) -j(i)] - & lng(iT) , (15) 

where g( iT) has been defined in Eq. ( 11). Inserting 

( 15) into (5) now facilitates a non-trivial check of 
the consistency of the proposed duality. We were able 

to verify the consistency of Eqs. (15) and (5) up to 

order 10 in ql. Furthermore, inserting Eqs. ( 15), (8) 

into (7) we find 

9”” = S - & Ing(iT) , 

* e -8?r2S”w = e-8rr2S g( iT> = y . (16) 

Hence, at leading order the Calabi-Yau coordinate y 
precisely corresponds to the invariant dilaton defined 

by Eq. (16) and therefore is modular invariant. 

3. So far we have concentrated on the duality in 

the gauge couplings of the two vacua. It is possible to 
extend the analysis and show the duality also between 

the gravitational couplings of the vector multiplets. In 
N = 2 supergravity a particular combination of higher 
derivative curvature terms (including RR) reside in 
the square of the (chiral) Weyl superfield [ 171. Its 
coupling to the (abelian) vector multiplets is governed 
by a holomorphic function Fl. In type II vacua F:’ 
is only generated at the one-string loop level and in 
Ref. [ 181 a general prescription for its computation 
in terms of topological amplitudes was given. For the 

particular Calabi-Yau threefold X12( 1, 1,2,2,6) F/’ 
has the expansion 

F;’ = -%(52rt + 24t2) 

+ C [2djk In 170(4{9;) + 

jk 
injkln(l -ylq:)] , 

(17) 

where 70(q) = n;“( 1 -9”) = q-‘/24v(q). The first 

few coefficients djk, n,;k have been explicitly computed 
in Ref. [8]. 

If the proposed duality is to hold it should be possi- 
ble to identify the same coupling also in the heterotic 

vacuum. In complete analogy with Eq. ( 1) Fp has a 
weak coupling expansion 

Fp = 24 S + ht (T) + non-perturbative , (18) 

where the factor of 24 is the standard normalization of 

the curvature couplings. As before ht (T) is strongly 
constrained by its modular properties and its singu- 

larities on the moduli space. Near T - 1 the singular 

contribution to ht (T) coincides with the correction for 
a$h since no additional gauge singlets become mass- 

less and we have 

ht = -4-& ln[j(iT) -j(i)] + finite terms. (19) 

On the other hand the modular transformation prop- 
erties of ht (T) are determined from the holomorphic 

or modular anomaly of this coupling [ 19,20,18]. Re- 

peating the analysis for the gravitational couplings of 

the vector multiplets we find that the non-holomorphic 

coupling 

ggrav -2 = Re Fy’(S,T) 

b 
+ s (logy +KG,T)) 

has to be modular invariant. Here bgrav = 2[ no - 
(nv - 1) +22] = 300 is the one-loop coefficient of the 
‘gravitational p-function’ [20] and K is the K&hler 
potential given by 

K=-ln(S+S-Vos)-2ln(T+T), 

VGs =4(T+T)-2(h+h) 

-2(T+T)-‘(arh++h). (21) 
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The requirement of keeping g& modular invariant 

uniquely determines 

Fp = 24 3”” + --& lnlj(i7’) - j(i) I 

- f$ Inv2(iT). (22) 

We compared Eqs. (22) and ( 17) (using an appropri- 
ate normalization) as a power series in q1 and found 

agreement up to fourth order. This is a further check 

of the duality between the two string vacua. 
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