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Abstract 

We constrnct an octonionic instanton solution to the seven-dimensional Yang-Mills theory based on the exceptional gauge 
group G2 which is the automorphism group of the division algebra of octonions. This octonionic instanton has an extension to 
a solitonic solution of the low energy effective theory of the heterotic string that preserves two of the sixteen supersymmetries 
and hence corresponds to N = 1 space-time supersymmetry in (2 + 1) dimensions transverse to the seven dimensions where 
the Yang-Mills instanton is defined. 

Recently there has been a resurgence of interest in 
solitonic solutions of various string theories, in par- 
ticular, of the heterotic string [ 1,2]. It is hoped that 
solitonic solutions will shed some light on the non- 
perturbative dynamics of string theories. Furthermore, 
they are essential in verifying the validity of general- 
ized duality conjectures in string theories [ 31. In this 
letter our aim is to show that that there exists a solu- 
tion to the self-duality equations in seven-dimensional 
Yang-Mills theory with the gauge group G2. The ex- 
ceptional group G2 is the automorphism group of the 
division algebra of octonions 0 [4] and our solution 
depends in an intricate manner on the existence of 
this algebra. Hence the term “octonionic instanton”. 
Eight-dimensional octonionic instantons based on the 
gauge group S@(7) were constructed in [5,6]. To 
our knowledge the solution we give below is the only 
known Yang-Mills instanton solution in odd dimen- 
sions. It is not difficult to convince oneself that seven 
is the unique odd dimension where such a solution can 

exist. In the second part of this paper we extend the 
seven-dimensional Yang-Mills instanton to a solitonic 
solution of the low energy effective theory of the het- 
erotic string (to order a’) in parallel with the work of 
of [ 71 where the eight-dimensional octonionic instan- 
ton was extended to a soliton solution of the heterotic 
string. 

The exceptional group GZ can be characterized 
as the maximal common subgroup of the seven- 
dimensional rotation group SO(7) and its covering 

group Spin( 7) [ 41. 

G2 = SO(7) n&+2(7) (1) 

For the purposes of this paper we shall regard G2 as 
a subgroup of Spin(7) taken in its eight-dimensional 
spinor representation which decomposes as 

8=7+1 (2) 
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under its G2 subgroup. The Spin(7) generators are 
given by 

rm” = I+zIN (3) 

where the y matrices in seven dimensions are defined 
as usual by 

{r-v-“) = 26”” (4) 

with m, n, . . . = 1,2,. . . ,7. 1 The generators Gm” = 
-Grimm of G2 (considered as a subgroup of Spin(7)) 
are defined through the constraints 

CmpGnp = 0 (5) 

where Cnlnp are the structure constants of the octonion 
algebra [ 4,8]. Since the number of independent con- 
straints is seven, there are altogether 14 generators of 
Gp . In terms of the matrices Tmn the G2 generators can 
be written as [ 81 

G mn = $*n + $mp,rpq 

where the completely antisymmetric 

defined as 

pnpq .- .- i pPwCrsr 

These tensors are subject to the identities 

p”PC qr = __4pv 
fiP 

C,,,CqrsP = 6 $&;s’ 

C mnrs C,,,, = 8 S; - 2C”“‘,, 

(6) 

Cm"Pq is 

(7) 

(8) 

which can be derived by use of the properties of the 
structure constants Cmnp and the corresponding iden- 

tities in eight dimensions [ 8,9]. The G2 commutation 
relations can be determined from the corresponding 
commutation relations of Spin(7) (cf. Eq. (11) of 
[6]) by specializing to its G2 subgroup. Using the 
above identities we find after some calculation 

[Gm”, Cp4] = 2,@nGmlq _ 264[“(9P 

+ 1 
( 

CPqrb@r _ C”‘dPGqb- 
> 

(9) 

As a check on these relations, readers may verify that 
the right hand side vanishes upon contraction with 

L Throughout this paper the antisyrtunetrization [m,n, . . . ] of 
indices will be of weight one. 

either C,,, or C,,,. The constraint (5) implies the 
identity 

G,,,,, = &,,pqGpq (10) 

For later use let us also record the normalization of 
these generators 

Tr G,,&J’q = -9P,,,,p4 (11) 

where Pmn Pq := f ( @ms + $Cmnpq) is the projector on 

the G2 subalgebra of Spin( 7) (with Sit = S[iqi ) . 
Consider now the Yang-Mills gauge theory in seven 

dimensions with the gauge group G2. In analogy with 
[6] we proceed from the following ansatz for the 
Yang-Mills gauge field A,(y) : 

A,(Y) = Gnpnfn(y) (12) 

where fn(y) = &f(y) and f(y) is a scalar function 
of the coordinates y” to be determined by the self- 
duality condition. The field strength 

F,, = &A, - &A, + [A,, &I (13) 

corresponding to this ansatz takes the form 

F~(Y) = 2fpdG1p - 2fqGmfnl 

-Gmn(.fq.fq) - iCmnpqfrGrq.fp (14) 

where fpq z a,k?,f (y). We define the dual field 
strength F:,,, using the G2 invariant tensor Cmnpq: 

&SY) = KwzpqFpq(Y) (15) 

where A is a constant to be determined. We get 

i&s = A 
( 
KtmstfpsGp - 3Gz~tf&qsft 

-2(fqfq)% + 4fqGazfrtl) (16) 

To solve the self-duality condition 

F,, = & (17) 

we put f(y) = - $log+( y) . One finds that h = 4 and 

4(Y) =p2+r2 (18) 

withr 2 - m =y y m. Hence the gauge field for this instan- 

ton is simply 

&=-C,,y, 
p2 + r2 

(19) 
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where p is an arbitrary scale parameter. 
Let us now show that the above instanton solution 

can be extended to a solitonic solution of the heterotic 
string. Consider the purely bosonic sector of the ten- 
dimensional low energy effective theory of the het- 
erotic string (to order a?). 

S=& .I d~ox~e-2~m 

x R+4(V+)2 - $H2 - &‘Tr(F2) 
> 

(20) 

where the XM (M = 0,l , . . . ,9) denote the coordi- 
nates of ten-dimensional spacetime. We are interested 
in solutions that preserve at least ‘one supersymme- 
try. This requires that in ten dimensions there exist at 
least one Majorana-Weyl spinor E such that the su- 
persymmetry variations of the fermionic fields vanish 
for such solutions [ 11 

r%(X) = (I%+& - iHMNpTMNP)6 = 0 

&&f(X) = (a&f + $.n_&V.+ = 0 (21) 

where x, A and Q&M are the gaugino, dilatino and the 
gravitino fields, respectively. The generalized connec- 
tion Q- is defined as 

Q_A,B = o&n - H,AB (22) 

where o is the spin connection and H is the anti- 
symmetric tensor field strength. We denote the ten- 
dimensional world indices as M, N, . . . = 0, 1, . . . ,9 
and the corresponding tangent space indices as 
A,B ,... = O,l,. . . ,9. Since we are interested in 
solutions that extend the octonionic instanton we 
decompose the indices as 

M= (a,~), N=(,&v),... 

A=(a,m), B=(b,n) ,... (23) 

rw,p ,... =0,1,2, #u,v ,... =3,4 ,.#., 9 

a,b,... =0,1,2, m,n ,... =3,4 )..., 9 

Note that the indices m, n, . . . that were running from 
1 to 7 now run from 3 to 9 so as to agree with the 
standard convention of denoting the timelike coordi- 
nate as Xa. The coordinates ym of the instanton solu- 
tion will be identified with Xm . For the purposes of 

this paper we shall restrict ourselves to solutions that 
are Poincare invariant in (2 + 1) dimensions. First 
we choose E to be a Gz singlet of the Majorana-Weyl 
spinor of SO(9,l) . There are two such singlets since 
under the G2 x SO(2,l) subgroup of SO(9,l) the 
Majorana-Weyl spinor decomposes as 16 = (1,2) + 
(7,2). Let us denote these singlets as vi (i = 1,2). 
Thus taking E to be a G2 singlet v and the non- 
vanishing components of FMN to be those given by 
the seven-dimensional octonionic jnstanton the super- 
symmetry variation Sx vanishes. This follows from 
the fact that 

Gmq=O (24) 

and the self-duality of Fm_ The vanishing of the su- 
persymmetry variation 6h of the dilatino requires that 
the non-vanishing components Hinltp(y) of the anti- 
symmetric tensor field strength be related to the dila- 
ton 4 as follows: 

H mnP = -$m”pq~q+(Y) (25) 

With this choice of H,, the gravitino variation S$M 
also vanishes if we take the metric gpILv in the seven- 
dimensional subspace to be of the form 

g~y=e~(y)S/Ly (p,v=3,...,9) (26) 

with a dilaton field 4(y) that is a function of yp . To 
solve for this function and thus the dilaton field we 
need to further impose the Bianchi identity: 

dH=a’ trRAR-$TrFAF 
( > (27) 

where Tr refers to the trace in the fundamental repre- 
sentation of ES or SO(32) in the corresponding het- 
erotic string theory. (For Es the fundamental represen- 
tation coincides with the adjoint representation.) To 
order d we can neglect the first term [ 1 ] and we have 

dH=-$p’TrFAF=-a’TrgFAF (28) 

where Trs refers to the trace in the spinor representa- 
tion of Spin(7) that contains Gz. Using 

Tr E[n,nFpql = $,&,,I (29) 

with 

(3p2 -I- r2) 
*m,,(Y) :=2(p2++2)3cnmpqYQ (30) 
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we find 

,-6(Y) = ,-$0 + 4& (2p2 + r2> 

(p2 + r2p 
(31) 

where 40 is the value of the dilaton in the limit r --+ 
cc. 

The total ADM mass per unit (d - 1) -volume of a 
(d - 1)-brane is given by [ 10,2] 

ii& = s ~UWy~oo (32) 

where @MN is the total energy-momentum pseudoten- 
sor of the combined gravity-matter system. The met- 
ric g,, ( y ) corresponding to our solution is asymptot- 
ically flat with a l/r2 falloff as I + cc. This leads 
to a divergent ADM mass per unit two-brane volume 
just like the soliton of Ref. [7] corresponding to the 
eight-dimensional octonionic instanton. The authors 
of [ 71 argue that this divergent energy is an infrared 
phenomenon and does not preclude the existence of 
a well-behaved low-energy effective action governing 
the string dynamics on scales large relative to its core 
size. Their arguments are equally applicable to the 
soliton solution involving the seven-dimensional oc- 
tonionic instanton we presented above. However, the 
correct physical interpretation of these solutions and 
its implications for superstring theory remain to be 
understood fully. 

One of us (M.G) would like to thank the II. Institut 
ftir Theoretische Physik and DESY for their hospitality 
where part of this work was done. 

References 

[II 

[21 

[31 

[41 

[51 
[61 
[71 

Bl 
r91 

[lOI 

See the review by C.G. Callan Jr., J.A. Harvey and 
A. Strominger, Supersymmetric String Solitons, in: String 
Theory and Quantum Gravity ‘91, eds. J. Harvey, R. Iengo, 
K.S. Narain, S. Randjbar-Daemi and H. Verlinde (World 
Scientific) and references therein. 
For a very recent review see M.J. Duff, R.R. Khuri and J.X. 
Liu, String Solitous, hep-th /9412184. 
For a review see A. Sen, Strong-Weak Coupling Duality 
in Four Dimensional String Theory, TIFR/THi94-03(hep- 
th/9402002), and references therein. 
M. Gtinaydin and E Gurney, I. Math. Phys. 14 (1973) 1651- 
67. 
D.B. Fairlie and J. Nuyts, J. Phys. A 17 (1984) 431. 
S. Fubini and H. Nicolai, PhysLett. B 155 (1985) 369. 
J.A. Harvey and A. Strominger, Phys. Rev. Lett. 66 ( 1991) 
549. 
B. de Wit and H. Nicolai, Nucl. Phys. B 231 (1984) 506. 
R. Dundarer, F. GiIrsey and C. Tze, Nucl. Phys. B 266 
(1986) 440. 
A. Dabholkar, G. Gibbons, J.A. Harvey and E Ruiz Ruiz, 
Nucl. Phys. B 340 (1990) 33. 


