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Abstract 

The solutions of Einstein's equations admitting one non-null Killing vector field are best stud- 
ied with the projection formalism of Geroch. When the Killing vector is lightlike, the projection 
onto the orbit space still exists and one expects a covariant theory with degenerate contravariant 
metric to appear, its geometry is presented here. Despite the complications of indecomposable 
representations of the local Euclidean subgroup, one obtains an absolute time and a canonical, 
Galilean and so-called Newtonian, torsionless connection. The quasi-Maxwell field (Kaluza Klein 
one-form) that appears in the dimensional reduction is a non-separable part of this affine con- 
nection, in contrast to the reduction with a non-null Killing vector. One may define the Kaluza 
Klein scalar (dilaton) together with the absolute time coordinate after having imposed one of the 
equations of motion in order to prevent the emergence of torsion. We present a detailed analysis 
of the dimensional reduction using moving frames, we derive the complete equations of motion 
and propose an action whose variation gives rise to all but one of them. Hidden symmetries are 
shown to act on the space of solutions. 

1. Introduction 

In this paper we study the dimensional reduction of  Einstein 's  theory from d + 1 
dimensions to d dimensions with a null Killing vector. In contrast to the usual Kaluza 
Klein reduction o f  Einstein 's  theory, on which an ample literature exists [ 1,2], this 
case has not received much attention until now. It is nonetheless important for several 
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reasons. First of all, the analogs of Ehler's group and more general hidden symmetries 
known to arise in the dimensional reduction with a non-null Killing vector have not 
yet been studied. A knowledge of such hidden symmetries would facilitate the analysis 
of gravitational "wave" solutions in general relativity (of  which the so-called pp-waves 
are special examples [3] ) ;  we note that such exact solutions have recently attracted 
renewed interest in connection with string theory [4]. The same can be said of the 
infinite dimensional symmetries, such as the Geroch group [5], which arise in the di- 
mensional reduction of gravity, supergravities or superstring theories to two dimensions, 
and their possible extensions [6]. In fact, when dealing with such generalizations, the 
question of null-Killing vectors must be addressed [ 7 ]. Finally the use of moving frames 
sheds some new light on the subtleties of Galilean invariant theories with coordinate 
reparametrization invariance which are potentially relevant in the theory of continuous 
media, in the study of nonrelativistic limits and possibly in the study of light cone 
frame dynamics. It is well known that the (Wigner) little group of a null vector is the 
Euclidean group, we shall discuss its gauge realization in curved spacetime. 

The non-null reduction of Einstein's gravity from d + 1 dimensions to d dimensions 
is well known to give rise to gravity coupled to a Maxwell and a scalar fields in d di- 
mensions. The reduced theory is economically described in the moving frame formalism 
by use of an orthonormal frame (vielbein) 

( S-l/(d-2)ema sAm) (1) 
E f t  = 0 S ' 

where e a characterizes the d-dimensional gravitational background, and Am and S 
are the Maxwell and scalar matter fields living on this background. The appropriate 
Weyl rescalings of em ~ and Am are included so as to obtain the canonically normalized 
Einstein Lagrangian in d dimensions and the proper identification of the Maxwell gauge 
transformations. The special triangular form of E a in (1) is arrived at by making partial 
use of local Lorentz invariance. The Killing vector corresponding to this reduction is 
taken to have components s ¢M = (0 ..... O, 1). Labeling the last coordinate, on which the 
dimensional reduction is performed, by v (see below for a comprehensive summary of 
our conventions and notation), we thus have 

O 
- ~MOM = 0. -- (2) 

Ov 

Since the metric is GMN = E~E~vA, it is easy to see that, with the form (I) of the 
vielbein, ~:2 = ~:M~: M = $2 vanishes only for a degenerate metric. Therefore the Killing 
direction is assumed to be non-null but this does not restrict small variations of the 
metric. Consequently the above choice of frame is unsuitable to study the reduction 

with a null Killing vector, for which • -- 0. 
The special nature of the dimensional reduction with a null Killing vector is also 

evident when the metric is written in the following form, valid for arbitrary ~:2 

~:2 , (3) 

whose inverse we parametrize as follows 
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N n /W (4) 

Setting ~2 = 0 here corresponds to freezing one component of  the metric to zero (i.e. 
G,v = 0), we would therefore loose one equation of motion (roughly speaking R "v = O) 
if we were to stick to an action principle. For this reason, we will mostly work with 
the equations of  motion, although a candidate action will be presented in Section 6.2. 
For s r2 = 0, the contravariant metric h "m is degenerate, because then hmn~n = 0. This is 
the reason why in this case we end up with a "generally covariant" Galilean theory in 
d dimensions. As shown in [8-12],  such theories possess a pair of covariantly constant 
tensors (h  ~ ,  Um), where the contravariant metric h ~ is degenerate and Um is its zero 
eigenvector (suitably normalized), h mn is essentially the direct image of G MN on the 
orbit space of the null Killing flow. Strictly speaking the generalized Galilean structure 
we will discover is the kinematic part of the complicated set of assumptions needed 
to formulate pure Newtonian gravity. In our case the d-dimensional geometry will be 
simpler and disentangled from the equations of motion but it will describe gravity plus 
"electromagnetism" as we will see. 

There is a second reason for manipulating the equations of motion rather than some 
action, it is the property of the orbits of the Killing field to be twistless (this is the 
technical term if d = 3), provided another one of the classical equations of motion 
( R , ,  = 0, to be precise) is satisfied. We shall prove that this property, which is more 
generally called "normality" of the null Killing vector field, holds in any dimension. In 
other words we have 

~M = W aMu . (5) 

It is this consequence of the classical equation of motion: Rv, -- 0 that will allow us 
to construct a torsion-free connection in d dimensions. In previous work [13], the 
vanishing of the twist followed from a stronger assumption, namely the existence of a 
"Bargmann" structure or its consequence: the covariant constancy of the (null) Killing 
vector; this restriction is not needed here. We will see that in our approach the absence 
of torsion implies the existence of a coordinate u, that will be interpreted as absolute 
time. The latter is indispensable in the context of Galilean covariant theories; although 
the so-called Newton-Cartan theories of Galilean relativity are in principle compatible 
with a nonvanishing torsion, torsion has never been required until now. Here, we will 
see that non-trivial torsion can be eliminated by transmuting it into the scalar field W 
(dilaton) as a consequence of (5).  Technically the scalar can even be made to appear 
at the same place as in the nonnull case thanks to the existence of a Lorentz boost 
symmetry in d + 1 dimensions. This scalar field emerges in our work as a genuine 
local degree of freedom; but as it is only defined up to a constant, it will appear solely 
through its logarithmic derivatives in the final equations of  motion. When it is replaced 
by a constant, our results are compatible with those of [ 13]. 

The Kaluza Klein one-form, on the other hand, will be shown to disappear inside the 
Galilean connection. Contrary to the non-null case it does not exist on the Killing orbit 
space! In fact there is no canonical abelian connection, and one cannot reinterpret the 
changes of section of this fibration of the (d + 1)-dimensional manifold as Maxwell 
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gauge transformations as in the nonnull case. More precisely there are frame dependent 
quasi-Maxwell fields that will appear in the intermediate steps of our discussion. In 
order to emphasize the difference with the usual situation, we shall call the changes of 
section e-gauge transformations. This surprise is compatible with the well-known fact 
that the Lorentz force exerted by the Maxwell field on a test particle moving in this 
geometry can be reinterpreted as a Galilean gravitational effect. A generalized Coriolis 
force corresponds to the magnetic term and the electric field to the Newtonian one up 
to the e / m  ratio. 

We shall use the following conventions throughout this paper: capital letters M, N,.. 
and A, B .... will denote curved and fiat indices, respectively, in d + 1 dimensions. 
In the reduction to d dimensions, the curved indices are split as M = (m, v), where 
m = 1 ..... d and v is the index for the coordinate v along the Killing orbits, so av is 
always a null vector. Flat (Lorentz) indices A, B .... are split into transverse indices 
a, b . . . . .  1 ..... d - 1 and longitudinal indices ( + , - ) ,  such that + is the flat homolog 
of the index v, and the tangent space metric has the light cone frame form: 

rlab =6ab , r / + _ = l  , (6) 

with all other components vanishing. When dealing with Kaluza Klein matter we shall 
also need to make use of intermediate indices a , /3 in (d + 1) dimensions; they corre- 
spond to another anholonomic frame and decompose as a = (/~, ~o), where/~ = 1 ..... d 
and ~o is the intermediate homolog of v and the flat index +. The intermediate frame 
allows an e-invariant but Lorentz dependent separation of background and matter fields. 

We now summarize the contents of this paper. First we shall show quite generally that 
a null Killing vector is twist-free provided one of Einstein's equations is satisfied. Frames 
and symmetries are introduced in the next section. Symmetries include d-dimensional 
diffeomorphisms, the one parameter e-gauge invariance and local Lorentz invariance 
partially fixed to an ISO(d - 1) local subgroup. On a first perusal, readers may then 
jump to Section 5.3 to find a quick derivation of an affine connection in d dimensions. 
However a deeper understanding will come from returning to Section 4 where we set 
up a d-bein formalism to study the case of pure background geometry on the space of 
Killing orbits and discuss its most general connection. We reformulate these results in 
(d + 1 ) -covariant form after having established the correspondence with earlier work on 
covariant Newtonian theories. The splitting of matter and background gravitational field 
is not independent of our choice of frame, but it permits a manifestly e-gauge invariant 
treatment. The geometry with matter is discussed in Section 5. There we construct in 
particular the fully covariant d-dimensional affine connection; this requires a modified 
version of the usual Weyl rescaling, which is here forced upon us by the symmetry 
and not by a canonical normalization of the action as in the non-null case. Further 
peculiarities of Galilean physics are analyzed, in particular the non-separability of the 
electromagnetic field. Alternative methods permit the rederivation of the connection and 
a systematic study of tensor fields. The equations for the scalar field, the metric and 
the connection are given in Section 6. As far as the hidden duality group is concerned, 
a kind of contraction of Ehlers' SO(2) action still exists as suggested by [2]. We 
shall mention that its action reduces to an e-gauge transformation in the special case of 
pp-waves but it acts less trivially on the van Stockum solutions or their generalizations. 
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Finally we discuss the possibility to find an action principle in d dimensions. We defer 
the introduction of true extra matter fields to our next paper. Let us also note that we 
shall work locally and postpone temporarily topological and global questions. 

2. Properties of a null Killing field 

Let us consider a pseudo-Riemannian manifold admitting a null Killing vector field 
(M: D(M~N) = 0. It is clearly geodesic, i.e. nonaccelerating (~NDlv~M = 0), divergence- 
less (i.e. DM~ M = 0) and already affinely normalized; it is also by definition "shearfree" 
(D~M~N) = 0). We shall now derive a very important general consequence of Einstein's 
equations for classical solutions admitting a null Killing vector. Contracting the Ricci 
tensor RMN with ~M~N, we obtain 

0 = RMN~M~ N = (MGPQ [DM, Dp]~Q (7) 

Using the Killing equation and the property 

(MDN(M = 0 (8) 

(which holds for any null vector), we find 

DM(NDM~ N = 0 = ~MN~ MN , (9) 

where (MN := DM~N -- DN~M. We shall keep that tensor convention of adding one lower 
index for the exterior derivative in this paper. We next observe that, due to the equality 
(NDN~M = 0 and the Killing property, we have (M~Mo = O. 

Let US now consider first the case d = 3. Squaring the expression eMN~(MN~pVQ, 
where VM is an arbitrary vector, it is easy to see that all contractions vanish, and therefore 

eMNPQ~N( PQ ----- 0 , ( 1 0 )  

since VM was arbitrary. We will refer to this property as "normality of the Killing vector" 
(and not use the word "hypersurface-orthogonaiity" for esthetic reasons). It implies the 
result (5) stated in the introduction. By Frobenius' theorem, the null planes orthogonal 
to (and containing) the Killing vector form an integrable system tangent to d-manifolds. 
Owing to (5),  we can define a new coordinate u, which is in some sense the curved 
analog of the fiat minus coordinate, u is an absolute affine time of the gravitational 
solution that replaces in a way the proper time of cosmological matter in a Friedmann 
universe. Note however that the vector field a/au has not been defined yet, it depends 
on the choice of the other coordinates and is in general non-null. The function W is 
an integrating factor; the special case when it is constant corresponds to the so-called 
pp-waves [3], it is also the case considered in [ 13,14]. Let us stress that what follows 
holds irrespective of the assumptions made by these authors. Observe that GMNONu is 
also a null geodesic vector field affinely parametrized and hence W is constant along 
each null geodesic: 

(MOMW -~ 0 (11)  
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Actually, the normality property proved above holds not just in four but in any 
number of dimensions. To see this, we can either repeat the above argument with a set 
of mutually orthogonal vectors V~ i), or otherwise rephrase it with fiat indices. Let us note 
that the proof of normality in dimension greater than four relies on the Minkowskian 
signature of the metric; in four or three dimensions, however, the existence of a single 
time direction is not required. 

We may mention that the above argument can also be turned around (see for example 
[15] ): if the Killing vector obeys (10) and is null, the energy momentum tensor is 
constrained to obey (M~NTMN = 0 by Einstein's equations, regardless of the specific 
kind of matter that is coupled to gravity in d + 1 = 4 dimensions. For completeness 
let us also recall that in 4 dimensions the vacuum solutions of Einstein's equations 
admitting a geodesic non-expanding non-twisting null congruence form the Kundt class 
[16]. They are all algebraically special. As they are shearfree they are precisely our 
solutions admitting a null Killing vector. 

3. Generalities, symmetries and frames 

There will be two groups of symmetries beyond d-dimensional diffeomorphisms: 
the Maxwell type invariance (e-invariance) corresponding to the arbitrary choice of 
sections through the Killing orbits (the transformation rules are given in Eq.(29)) ,  
and the change of transverse vector n m or more generally the local Lorentz subgroup 
ISO(d - 1) x R preserving our partial choice of gauge; we shall speak somewhat 
abusively of Lorentz invariance for the latter invariance. Contrary to the non-null case, 
the orthogonal space to the null Killing vector contains the Killing vector itself; thus 
although it is of codimension one, it does not provide the rest of a basis for the full 
space. So there is no canonical abelian connection, it would depend on the choice of an 
extra vector field via, as we shall see, the choice of moving frame. We shall first list the 
formulas for the frames to be used and then motivate our choices by group theoretical 
arguments. 

General covariance in d dimensions and e-invariance are preserved by the choice 
of what we call an intermediate moving frame. This is a particular choice of Caftan 
anholonomic frame field that is only partly null like the light cone Lorentz frame defined 
above. But it will allow a convenient and e-covariant separation of the gravitational 
background from the Maxwell and scalar matter fields. In the non-null case (1),  this 
frame implements a fully covariant separation of em a from the bona fide matter fields 
(Am, S). Let us insist however on the unusual fact that here this separation of a Maxwell 
field from the gravitational field is Lorentz-noncovariant and hence a temporary artefact 
of our discussion; therefore our designation of both S and Am as matter fields involves 
some abuse of language. 

In fact the main difficulty will be to reconcile e and I S O ( d -  1) invariances and 
to define the appropriate tensor calculus. The idea is to implement successively these 
invariances, firstly in this order beginning in Section 4 and then, with hindsight, in the 
reverse order in Section 5.3. 
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3.1. Frames  

Accordingly, we represent the full moving frame as a product of a background vielbein 
/ ~a  and an intermediate frame HM ~ describing the matter fields, such that 

E A =  4" a H M E~ , ( 12 )  

where the intermediate indices split according to a = (/z, ~0). For the explicit parametri- 
zation of the background frame, we use the tangent space light-cone indices introduced 
above, viz. 

P ~ u a = e ~  , ~ , - = u ~ ,  , 

,~(pamL~'~o- = 0  , ~(p+ = I 

~'u, + = 0  , 

with inverse 

/~__u = n ~ k~+ ~ = 0 , l~a # = ea Iz , 

~ a ~ ' = ~ ' = O _  , L~+ ~'=1 , 

(13) 

(14) 

where egan ~' = ea~ujz = 0 and nUu~, = 1. The covariant and contravariant metrics gu~ 
and h uu in d dimensions defined by 

A B g ~  ~ ~ 1~1~ 1~ v 9~AB a b = = et~ eu Tab , 

hS~ = ~ z u  __ j~AIZ~BVyIAB m eatZebvrl ab (15) 

are therefore degenerate: gu~n ~ = h~'~u~ = 0. The projector onto the ( d -  1 )-dimensional 
transverse subspace is 

H f f  :=  g u p h  Ov =- e : e a  u ~ 61z v = IIiz u + u~,n ~' (16) 

Geometrically the fibration by the orbits of the null Killing field defines a projection 
from the (d + 1)-dimensional manifold onto the d-dimensional space of orbits. The 
usual Geroch construction of tensors [2] breaks down but one can still define the image 
of the contravariant metric by the projection map. As we said, it corresponds to h"" 
and does not depend on a choice of section i.e. on the choice of the coordinate v. Its 
determinant vanishes precisely when ~:2 does. The choice of n m however is arbitrary and 
crucial to define the transverse space to the fibration, the quasi-Maxwell field and the 
covariant metric on the quotient space. 

The "matter" degrees of freedom are contained in the ( d +  1) by ( d +  1) matrix H f f  
with components 

Hm u = 6m u , Hm ~ = SAm , 

H . l ' = 0  , H . ~ = S  (17) 

Consequently, the full vielbein is 
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Em~ = em a , Em-  = Um , Em+ = SAm , 

Eva=Ev-=O, Ev+=S , (18) 

whose inverse we also record for completeness 

E a m = e a  m , E _ m = n  m , E : = 0  , 

E a V = - e a m A m ,  E _ V = - n m A m ,  E ~ = S  -1 (19) 

We note that the background frame is recovered from E A by switching off the matter 
fields, i.e. by putting Am = 0 and S = 1 in these formulas. Then, of  course, (m =- Um and 

n m :-- N m, and there is no need to distinguish intermediate from curved d-dimensional 
indices. We shall nevertheless change frame by contracting tensors with the appropriate 
frame matrix, keeping (usually) the name of the tensor as is done traditionally in the 
Lorentz frame picture. A notable exception to this rule will be E itself. 

Clearly we took the vector E+ along the Killing direction. The vectors E_ and Ea 

complete the tangent vector basis and E_ is to be chosen at will. The full vielbein and 
its inverse are form invariant under the subgroup I S O ( d -  1) × R of the Lorentz group. 
The R factor will be gauge fixed shortly and reduced to a global subgroup. As we have 
mentioned the very definition of matter by the above factorization is not ISO(d - 1) 
invariant. This means that different choices of the n m vector fields will lead to different 
splittings between the matter field Am and the background gravitational field. 

The full (d + 1 )-metric has components 

Gmn = gmn ÷ SAmun ÷ SAnum = gmn ÷ Amen ÷ An~rn , 

G,m, = Sum -- ~m = WOmu , Gvv = 0  , (20) 

where gmn : emaen a. Its inverse is 

G mn =_ h mn , G "w = S - i n  m _ hmnAn = N m , 

G °" = hmnAmAn - 2 S - l n m A m  =_ N v (21) 

3.2. Spacet ime symmetr ies  

Let us first consider the symmetries preserving the choice of "Lorentz" frames in the 
reduction from (d + 1 ) to d dimensions; we discuss them in some detail because of the 
new features that appear in comparison with the usual non-null reduction. 

Let us start with the local Lorentz group SO(d, 1), it is broken down to its subgroup 
ISO(d - 1) × R by the choice of gauge made in Eq.( 18); this is the stability subgroup 
of the fiat + direction or equivalently of the choice E+ m = 0. It is to be contrasted 
with the more familiar non-null reduction, where the residual symmetry is SO(d)  or 
SO(d - 1,1).  However, if we ignore for the time being the R factor this stability 
subgroup is isomorphic to the Poincar6 (Euclidean) group. The mathematical reason 
behind the appearance of the Euclidean group here is related to the fact that the little 
group of a null vector in Minkowskian geometry is the global Euclidean group. As 
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a local exact symmetry however, Euclidean invariance is rather unusual. In ordinary 
general relativity, a local Poincare invariance is hidden which can be made explicit for 
example in total dimension three [ 17] or in four dimensions as the contraction of a de 
Sitter gauge group [ 18]. Our frame bundle has a priori a Lorentz structure group which 
can be reduced to the ISO(d - 1) subgroup in the presence of the Killing vector by 
our choice of adapted frames. We do not have to restrict it by some additional local 
assumption. 

An important point to note is that the (d + 1)-dimensional vector representation 
of SO(d, 1) is i n d e c o m p o s a b l e  but not irreducible under ISO(d - 1) since it admits 
invariant subspaces, but cannot be split. More explicitly, for an arbitrary SO(d, 1) 
covector VA = (V~,V_,V+), we find that V+ is I S O ( d -  1) invariant, but that the 
variation of the components (Va, V_ ) contains terms involving V+ and therefore they 
do not form an invariant subspace under I S O ( d -  1). To obtain a proper action of 
ISO(d - 1 ) on this d-dimensional space, we must quotient out the invariant subspace, 
or equivalently impose the condition V+ = 0, which is ISO(d - 1) invariant and hence 
consistent. Then the group I S O ( d -  1) acts on the d-dimensional space of covectors 
( V~, V_ ) and preserves the degenerate (contravariant) metric 7q ab = 6 ~b, 71 ~ -  = ~ 7 - -  = O. 

Consequently it preserves also h ran, as  well as Um := Era- .  In contrast neither n m nor 
gmn are preserved by the "translation" generators of ISO(d - 1 ). The tensor calculus 
after setting to zero the + component would remain most analogous to the Lorentz 
tensor calculus if we were to use only the contravariant metric. (This would mean in 
particular that the Lie algebra generators should have upper indices and the parameters, 
connections and curvatures lower indices). 

Let us now consider the factor R corresponding to ( + - )  boosts which preserve the + 
direction as well. If  the action of the Lorentz generators is given by 6E A = EMBLB A, it is 
easy to see that E M- and EM +, i.e. (urn,0) and ( S A m ,  S), respectively, scale oppositely. 
This means that we could boost the Kaluza Klein scalar S away by setting S = 1. Instead 
we shall put S = W in view of our previous result (5),  so that Um becomes the gradient 
of u. This choice fixes the R factor of the Lorentz gauge subgroup, after which we are 
left with ISO(d - 1) as the residual tangent space symmetry (times the global scale 
invariance mentioned above). Actually it will turn out that the b o o s t r e s c a l i n g  is not the 
analog of the Weyl rescaling of dimensional reduction with a non-null Killing vector. 
One may remark that the Kaluza Klein scalar in the non-null case is inert under the 
residual local Lorentz group (i.e. SO(d)  or S O ( d -  1, 1) for (1) ) .  In the null case, 
it is the residual local boost symmetry and the normality of the null Killing vector 
established in the foregoing section which enable us to find a Lorentz gauge where 
u,,  = OmU and which will thereby permit the construction of torsion-free I S O ( d -  1) 
connections in the following Sections 4.3 and 5.1. 

It is instructive to work out the action of I S O ( d -  1 ) on all the components of (18) .  
Denoting the ISO(d  - 1) parameters by La b, La + and L _  b - - - L b  +, we have 

8 S = 0  , 6 u m = O  , 

~ema emOLb a + umL_a  , 6 A  m ~ - 1  a--  + = = ~ e m L,a (22) 

In other words we see that Am transforms under the group ISO(d - 1), more precisely, 
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it is contaminated by the d-frame components. 
Equation (22) shows that by a further choice of Lorentz gauge, we can achieve 

Aa = eamAm = 0, so that for this particular choice of Lorentz frame that we call the 
"anti-axial" gauge 

and 

Am = l v - -~N (m 

n m = SN  m (23) 

The local group ISO(d  - 1) is thereby broken to the transverse subgroup SO(d - 1). 
Let us note also that this is a convenient Lorentz gauge for gravitational "waves", 

or rather for Einstein solutions admitting a null Killing vector; the explicit form of the 
metric simplifies to 1 

ds z = gmndx m dx  n - W2NVdu2 + 2W du dv . (24) 

The pp-wave metric corresponds to the case W = 1 [ 16]. 
It is equally instructive to list the ISO(d - 1) transformation rules of  the inverse 

frame: 

Sea  m = - - L a b e b  ra , 8 n  m = --L._beb m , 

8 S  - 1  = 0 , t~Aa = - L - a S  - 1  - LabAb , 6A_  = --L_bAb . (25) 

These formulas show a splitting between what one could call matter, and background 
gravitational fields. But this splitting depends on the frame! The fiat components of the 
quasi-Maxwell gauge field that appear above have a "covariantized" e-transformation 
rule. The new geometry will be discussed shortly but first we would like to reexpress 
the previous dependences on the choice of frame as a dependence on the choice of n m. 

We start from (22): 6Am = - S - l e m a L -  a. In accordance with the invariance of Gm, we 
have 6 g ~  = -2S6A{mun) ,  together with (25): 6n m = --L__beb m. Let us now adopt a 
d dimensional point of  view. The conditions gmpn  p = O, nmum -- 1 (for fixed u m) are 

preserved by the local d-dimensional frame transformations of n m, Am and gmp of the 
form: 

6n m = - hmn An , 

t~Am = - s - l A I n  , ~gmn = UraAn Jr" UnAm , (26) 

if Apn ? = 0 i.e. Am = -gmp6n p. These are the translations of ISO(d - 1) when we set 
An = L__ben b. 

Finally general coordinate transformations in d + 1 dimensions act like 6VM = 

OMeNVN + eNaNVM on a covector VM. In accordance with general Kaluza Klein the- 
ory, one would expect the original diffeomorphism invariance to reduce to diffeomor- 
phism invariance in d dimensions times an ordinary abelian gauge invariance of the 

I I f  we  further use ( d  - 1) t ransverse  but curved coordinates x i as well as u, we derive f rom n m = (n i, 1) 

that giu = - g i j n  J and guu = nlgijn j .  In fact one could choose n i = 0 instead o f  A a = O. 
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vector field Am. Indeed, it is easy to check that the Maxwell-type gauge transforma- 
tions are identified with general coordinate transformations along the v direction, i.e. 
eM(x) -- (0 ... . .  0 , d ( x )  = e ( x ) ) ,  hence the name e-transformations. They read: 

x ' m ( x , v )  = x  m , v ' ( x , v ) = v - e ( x  m) , A ~ ( x ) = A m ( x ) + O , n e ( x )  . (27) 

Given a frame the corresponding one-form 

E + := EM+dx M = S ( d v  + Amdx  m) = H ~ d x  M (28) 

is by construction e-invariant, it lives on the full (fibered) space and is associated to 
a "horizontal-vertical" splitting. Consequently, only the field strengths Amn =- amAn - 

anAm will appear in the equations of motion. It can be checked that both sCm and the 
contravariant metric G 'nn = h mn are e-invariant, whereas G,,m in (20) is obviously not. 
Observe that the difference between Gran and the e-invariant (but degenerate) metric 
gin, (cf. (20))  involves two different vector fields. This is due to the fact that the 
e-gauge field Am here is not  the same as the Killing vector sCm unlike in ordinary 
Kaluza Klein theory. In fact this is just another way of saying that the covariant metric 
does not project onto the orbit space. To summarize, the main difference with non-null 
dimensional reduction is that the quasi-Maxwell field depends on the frame, we shall 
have to combine it with other fields in order to obtain Lorentz invariant objects. 

As far as the intermediate frame is concerned, we note that a priori the decomposition 
(12) is invariant under (local) GL(d  + 1) transformations acting on the lower index 
a, if the upper index a transforms with the contragredient matrix. However, in order to 
preserve Hm u = 8m u, the action of a d-dimensional diffeomorphism x 'n ~ x ~m = x~m(x ") 

on the vector index m must be accompanied by the same transformation acting on the 
intermediate index At. Hence, diffeomorphisms in d dimensions acting o n  Era a are 

coupled to linear (compensating) transformations acting on ~ a ,  and the indices At .... 
will be regarded as world indices of the d-manifold. On the other hand, from (28) it 
can be seen that the index q~ is inert under e-gauge transformations in contrast to v, 
which is not; this is the principal difference between intermediate tensors and tensors 
referred to the curved indices M, N, .... It is the choice of v coordinate (the choice of 
section) which introduces the gauge arbitrariness, it is partly avoided by switching to 
intermediate (or Lorentz) indices. 

With hindsight we could now return to the e-variations of the (frame independent) 
metric components and rederive from them the parametrizations (20) and (21) in terms 
of a gauge field, we have 

G ' .  = G.,.  + # r . a :  + : j . a , :  , 

N Im= N m _ hmnane , 

N t" = N" - 2Nmama + hm"amaa, a , (29) 

and the other variations vanish. Assuming the transformation law (27) we can find 
where to introduce Am terms so as to obtain (20) and (21). 
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3.3. ( d + 1)-connection and curvature 

In (d + 1 )-dimensional space we shall consider the canonical torsionfree and metric 
preserving affine connection. It is gauge equivalent to the Lorentz connection as can be 
seen by going to the vielbein frame. The intermediate moving frame introduced above 
allows us to describe the same connection in yet another linear gauge. The anholonomy 
will contribute to the formulas of E. Cartan giving the torsion and curvature tensors. In 
d dimensions we shall use the corresponding subframes but a different connection to be 
constructed from the (d + 1 )-dimensional one. 

The full vielbein conservation equation for (18) in d + 1 dimensions is 

OME a + tOMABEN B = P Q E A MN a , (30) 

w h e r e  tOMA B and PM a are the unique expressions for the torsion-free connection com- 
puted from (18) and (20) in the usual way. Equation (30) can be rewritten as an 
expression of the Lorentz reductibility of the affine connection and its holonomy: 

OME~ -- Q A PMNEQ = --toMABE f f  . (31) 

The intermediate frame analog of (30) defines the Lorentz invariant F: 

? M H ;  + F ~ / 3 H ~  = PMQNH~ , (32) 

and hence 

F a ~ E y  A :--" cgaEfl a -At- O.)ctaBEt~ B , (33) 

where F is not symmetric in general. This frame has anholonomy, in analogy with the 
vielbein anholonomy: 

~2AN := 23[ME~] A , (34) 

we have 

OM~ :=--2?[MHN~ (35) 

We shall distinguish the matter free case by using the connections tb and/5 instead 
of their generalisations to and P to the case with matter. Namely tb := to(/~) and 
/5 := p ( ~ ) .  The vanishing of the torsion tensor reads for example in intermediate 
coordinates: 

SO 

0 = : - -  - , 

- -  

The curvature tensor is given by: 

RMNAB (tO) = tgMtONA B -- tgNtOMA B ÷ toMAC tONCB -- tONA C tOMCB 

(36) 

(37) 
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or equivalently by 

Q R Q R 
RMNp (P) = 0MPNe Q -- + PMRPNp -- , (38)  

and we have the equality RMN~(w(E)) = RMIVa2(P( E) ). Switching to intermediate 
indices, we get 

HaM H flN RMNAB = --Oot~O.),yAB "q- RaOAB , (39) 

where 

gaflAB :~- C)ottOflAB -- tgfltOaAB -~ tOotAC t-OOCB -- tOflAC tOotCB (40) 

differs from (37) by an extra anholonomy term. The Riemann curvature tensor in 
intermediate frame is given by 

Roo¢ := o ro; - o o r o  + , o , _ - t o ,  r=,  (41) 

A useful expression for the Ricci tensor is 

- F Or- ~ _  F Or- 8 (42) 

4. Background geometry and dimensional reduction 

From (22) we know that ISO(d - 1) invariance is broken by the choice Am = 0. 
Nevertheless we shall first consider the case Am = s = 0, where s = log S = log W is 
defined up to a constant that could be reintroduced easily. For S = 1, we obviously 
have ~:~ = u~, N ~' = n ~'. Our goal in this section is to study the resulting "matter-free" 
geometry in d dimensions that results in this special case, and to demonstrate that the 
null Killing reduction leads to a generalization of the Galilean covariant theories already 
studied in [9-11 ]. As shown there, generally covariant Galilean theories of gravity are 
distinguished from the more familiar relativistic ones in several ways. 

The first two new features are the degeneracy of the (contravariant) metric and the 
existence of a closed one-form in its kernel. This form is required for the definition of 
"absolute time". The closure of this form can actually be shown to follow from its con- 
servation by parallel transport with respect to a torsionless connection which is assumed 
to be compatible with the metric. If there is a single null eigenvector, the closure follows 
after proper normalization as well. But even if one assumes the absence of torsion, the 
affine Levi-Civita connection and the "spin" connection are not uniquely determined by 
requiring the vielbein to be covariantly constant. The arbitrariness is parametrized by 
a choice of two-form and this third new feature can be traced back to the degeneracy 
of the metric in d dimensions as we will explicitly show. Furthermore the connections 
in our moving frame approach seem to depend on the choice of frame. The last new 
feature we may briefly mention at this stage is that one needs to impose a condition 
on the curvature tensor in order to reduce its number of independent components to the 
usual one of the Riemannian situation. However we shall not impose the other restric- 
tions needed to recover Galilei-Newton theory, as they do not follow from dimensional 
reduction. 
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One difference between our treatment and most previous ones is that we shall always 
keep in mind the (d + 1 )-dimensional origin of the theory. Nonetheless we shall begin 
in d dimensions by first presenting an "intrinsic" analysis that makes no reference to 
(d + 1) dimensions, recovering and extending previous results by the use of moving 
frames. We will then sharpen the analysis from a (d + 1)-dimensional point of view 
and show that the ambiguities afflicting the theory in d dimensions can be entirely 
eliminated in this way. In particular, by using a well chosen frame and the existence of 
a non-degenerate metric and its associated Levi-Civita connection in d + 1 dimensions, 
we are led to an associated Galilean connection in d dimensions. We shall postpone 
until the next section the study of its frame dependence. 

Furthermore, unlike the authors of [ 13], who came closest to our purpose by con- 
sidering a one-dimensional extension of the Galilean spacetime they wanted to study, 
we do not assume the covariant constancy of the null vector nor the existence of a 
higher dimensional structure group different from the Lorentz group. In our treatment, 
the normality property of  the Killing vector ~:m = WOmu together with the boost rescal- 
ing of the Kaluza Klein scalar S will ensure the torsion-free condition for the natural 
I S O ( d -  1) d-dimensional connection. (This boost is supposed to have been effected 
before the consideration of the matter free sector, that will occupy us in this section; 
the very definition of the scalar S requires this partial gauge fixing). The possibility to 
restrict the Lorentz structure group to its Euclidean subgroup is locally guaranteed, as 
we said, by the existence of the Killing vector. 

The reader who does not want to see the unavoidability of the Galilean connection to 
be arrived at step by step in the next two sections may now jump to Section 5.3, where 
a shortcut allows us to extract it "from the blue". He (or she) will thus miss the beauty 
of the moving frame method, and the possibility to consider fermions. 

4.1. Galilean geometry in d dimensions: moving frames 

As we noted before there is no need to distinguish curved and intermediate indices 
if the intermediate frame H is just the unit matrix (12); furthermore even for H q= 1, 
the derivative operators Om and a~, = H~MaM have identical action on v-independent 
quantities. In other words the intermediate subframe can be considered as holonomic 
in d dimensions. We will consistently use intermediate indices from now on so as to 
facilitate the comparison with the case treated in the following section where matter will 
be included and to have manifest e-invariance. 

a U We shall consider the d x d submatrix (~pa,~p--)  ~ (e~ , ~) of (13) as a Galilean 
frame with respect to the new holonomic frame in the d-dimensional reduced geometry. 
By this we mean simply that 

l~iza hlzU t~p B = T AB (43) 

for A or B = a , - .  We can introduce I S O ( d -  1)-valued spin connection coefficients 
- - F ~  by requiring the tO~ab and to~ a_. We define the corresponding affineconnection ~ '~ 
covariant constancy of the d-bein, i.e. 

alley a -4- ~ O ; b e v  b d- ~ O ; _ U v  = ~ tr a r ~ e ~  , (44) 
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a~u~ - F ~  u~, . (45) 

These equations are the moving frame extension of the admissibility conditions of a 
Galilean connection. Observe the absence of spin connection terms on the left hand side 
of (45),  it is due to our insistence on ISO(d - 1) as the proper tangent space group 
rather than SO(d)  or S O ( d -  1, 1). It can be rewritten as D ~ ( P ) u , ,  = 0, while the other 
equation expresses the conservation of the degenerate metric h ~'~, i.e. D~, ( F ) h  ~p = 0. We 
already alluded to the fact that the Wigner-In6nti contraction of SO(d) to ISO(d - 1) 
is easily implemented by first arranging the indices of all the metric tensors to be 
in the upper position, and then by replacing the unit metric by the once degenerate 
d × d submatrix of ~7 ae. Then our tensor calculus is almost unchanged. Note that our 
requirements (44) and (45) imply the conservation of the usual antisymmetric tensor 
densities of order d. 

The linear system of equations (44) and (45) can be solved in the usual fashion, 
apart from certain ambiguities which we will now exhibit. Equation (45) implies that 
the torsion Z p ~ p t~p = 2Ftt~v] obeys 

upT~,~ = u,~, =_ a~u~, - a~,ut~ . (46) 

A torsion-free geometry thus obtains if and only if u~,~ = 0. We have already shown that 
this condition can always be satisfied by an appropriate boost rescaling of the Kaluza 
Klein scalar S if the normality property (5) of the Killing vector holds. So our choice of 
zero torsion had two strong implications: it forced us to assume one equation of motion 
so as to obtain (5) and then it was used to fix one boost generator of the residual 
Lorentz gauge subgroup. 

So let us proceed to the solution; multiplying (44) by et" a and symmetrizing in the 
indices (pz,) one finds: 

~ ~r 1 0  _ F~(~gp)a = ~ ~,g~t" go~,_ct'u~) . (47) 

This projection complements (45) and allows a complete computation of/~. From this 
relation we also see that g is not  covariantly constant, unlike h. Instead, we have 

D (  [ ' )  t'g~,, = 2~t'_(~u~) . (48) 

As far as & is concerned the projection is faithful as it does not have any ~m~ 
component. Taking cyclic permutations in the usual way, we get 

~ o "  1 F~ugat" = -~Opg t ~  + O(ugu)p + got'-(uuv ) - gou_(~Up) - go~_(pu~) . (49) 

Contracting with the contravariant metric h at', taking into account (16), (45) and 
renaming indices, we arrive at the fundamental formula 

/'uP =/~u~(n, K, h) := P ~ ( n )  + 2u(uK~,)o.h °'p , (50) 

where 

F ' ~ ( n )  := lhpCr(20(~gu)o,-Oo,  g~z,) +nPO(/~u~,) (51) 
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and 

Ku~ := t3f~,~ 1_ . (52) 

/ ~  (n) is the analog of the usual torsion-free affine connection (Christoffel symbol). We 
/b p the d-dimensional shall check later (see Eqs. (73), (74))  that/~u~(n) is equal to u~, 

part of the (d + 1 )-dimensional Christoffel symbol. 
Owing to the degeneracy of our system, the antisymmetric tensor Ku~ defined by (52) 

can be chosen arbitrarily in (50). This means that the affine connection coefficients are 
not uniquely determined by (44) and (45). This is a typical situation for a degenerate 
inhomogeneous linear system: if it admits one solution, it admits many. The ISO(d - 1 ) 
action on the vector field n u via (26) could be compensated in our/~(n,  K, h) if we 
had (for S = 1) 

6Ku,, = -3[ua~ 1 . (53) 

In the same fashion one can solve (44) for the spin connection coefficients, where 
similar ambiguities are encountered. Contracting (49) with n p and using n"gt~, = 0 we 
find 

go(~,,)_ = ½nPl:pg~,~ + 2nOKp(gU~) , 

where 

(54) 

nP£agu,, := naOpgi,~, + 2(O(~,na)g~)p (55) 

is the Lie derivative. The coefficients of anholonomy read: 

~a~ =l 2ea~'eb"Ofue,,~ , {2 f b  =: 2n~'eb"Of~,e,,~ (56) 

(the other coefficients involve Oil, u,, 1 and vanish in the background if the torsion is set 
equal to zero), we get the familiar formula for the transverse components 

- -  + 

The remaining components of the spin connection in flat indices are given for arbitrary 
K~,~ by 

~O[ab]- = gab  = l ~'~ab- , O-)-a- = 2 K - a  , 

~(bc)- =/2-(bc) , 6~-Oc = g~-tt, c] - Kbc , (58) 

where indices have been converted from flat to curved by means of the d-bein E~,* a,-., 
so Kab ----- ea~'eo~Ku,, and K_,, - n~'ea"Ku,, . These equations are, of course, consistent 
with (52) and (54). 

In summary, the torsion-free parallel transport conditions for the background d-frame 
are solvable provided ut~,~ j = 0, and involve an arbitrary antisymmetric tensor Ku~ or 
equivalently an arbitrary choice of ~[~,~l- or equivalently an arbitrary choice of the 
minus components of the I S O ( d -  1) connection one-form ~t,. 
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4.2. Previous work on Galilean geometry 

We are now ready to establish the connection with previous work on the differential 
geometry of Galilean covariant theories when Am = 0 and S = 1; the general case 
with matter will be treated in the following section. It appears (see [ 12] ) that the 
geometric structure emerged from the work of [8]. In [10] the choice of a "field 
of observers" (our n m) was shown to be related to the determination of a covariant 
metric tensor. These authors carefully discussed Newton's laws and the so-called special 
connections associated to the various (fields of) observers whose worldlines are tangent 
to the n ~' vector fields. In fact these special connections are simply our (51). They 
can be interpreted as incorporating not only potential but also Coriolis (or a subset of 
Lorentz-type) forces. In other words, these forces can be hidden by a suitable change 
of observers. This is a generalized Galilean equivalence principle. 

The special connection /~(n) admits n as a geodesic affinely parametrized vector 
field: 

n g D (  P ( n )  )gn p = 0  . 

It is in fact characterized by this property, and the constraint 

D ( F ( n ) ) I ~ n ; ]  = 0 , 

(59) 

(60) 

where the index has been raised with the degenerate metric h [ 19]. What was not clear 
in previous works was the reason for the identification of the Lorentz force with inertial 
effects, i.e. changes of observers. It will appear here as a consequence of the Lorentz 
invariance of the original theory and the existence of one more null direction. 

The most general connections that preserve the space foliation of spacetime with 
its metric on the leaves are called admissible, they are our (50) with arbitrary K ~ .  
In [ 11 ] these results were combined with other physicists' work, see in particular [9]. 
The "Galilean" structure that emerged can be characterized by a degenerate contravariant 
metric h ~'~, a foliation with normal u~, which is a closed one-form in the kernel of h ~'~ 
and the set of torsion-free affine connections preserving the metric and 1-form uzdx~': 
the admissible connections. 

These data correspond to ours: the contravariant Galilean metric is the same as our 
h ~ ,  and the vector defining the foliation is our E~,-, it is proportional to ~:~,, which 
is indeed in the kernel of h ~ .  As we already pointed out, the absence of torsion and 
the Galilean structure had to be imposed by hand in previous works, whereas no such 
assumption needs to be made if one starts from a higher dimension. Then the existence 
of an absolute time and the absence of torsion follow from the Kaluza Klein reduction 
by requiring one of Einstein's equations of motion. The special connection associated 
to the field n m is nothing but (51 ), and in fact the correspondence goes further. 

In [ 11 ] the ambiguity in the structure preserving affine connections, i.e. the difference 
between two admissible connections is explicitly parametrized by a two-form K~,~ as we 
also showed in (52). But in [9,11], it was noticed that an extra restriction is needed if 
the curvature tensor of the Galilean theory is to have the same number of  independent 
components as the usual relativistic one (since otherwise, the Galilean theory could not 
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correspond to the c -~ c~ limit of a matter free relativistic one). This led to what we 
shall call the "Newton Coriolis" (NC-)condition: 

R~P~(P, h) = k ~ p ( / ~ ,  h) . (61) 

Recall that in the Minkowskian case, this relation follows from the torsion Bianchi 
identity; here it imposes non-trivial restrictions because the contravariant metric is de- 
generate. We may use the identity 

[~,~] - 0  . (62) 

So the condition (61) is sometimes written 

j~ [p o-1 = 0 (63) (~ v) 

As shown in [ I 1 ], the condition (61) is satisfied by "special" connections. So among 
the "admissible" connections P ~ ( n ,  K, h) (see Eq.(50)),  the NC-connections are those 
for which a[~K, pl = 0. This makes sense because changing n ~ to n '~' corresponds to 
changing: 

[ ' ~ P ( n ' )  = P ~ ( n )  -t- 2 u ( ~ K ~ , ) , ~ ( n , n ' ) h  °'p , ( 6 4 )  

where the two-form 

K~,~(n,  n')  = 0[~a,~] (65) 

is obviously closed (A~, was introduced in (26), it satisfies a~,n~' = 0 and we have 
n Ip - n o = -hPUA~). The closed two-form K can be shown to produce a Lorentz-type 
force in the equations of motion for a point particle. It can be reabsorbed by a suitable 
change of frame 6n  if the vector potential is normal to n, namely if K is of the form 
(65). 

However, to recover the true Newtonian limit corresponding to a potential force and 
to ensure the absence of Coriolis-type forces, (61) is n o t  enough .  Rather, one must 
impose besides the automatic volume preservation: 

/~po.,r ~" = 0 (66) 

further conditions on the connections [9,20,21,12], for example a dynamical one: 

RpcrtvU~l = 0 . (67) 

It corresponds to the existence of (d - 1) covariantly constant vector fields tangent to 
the spacelike slices. It implies the Galilean analog of Einstein's equations: 

R ~  = pu~,u~ . (68) 

One may also assume other dynamical, as opposed to kinematical, constraints. Typically 
the Galilean analog of Einstein's equations is supposed to have the form (68) with 
p the mass density. We will see in Section 6 that the equations of motion obtained 
by dimensional reduction from d + 1 dimensions are n o t  of this form if the dilaton 
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field is included. Equation (68) implies in particular that the equal time sections are 
Ricci flat, and hence that for d < 3 one can choose flat "Galilean" coordinates. In this 
case, Einstein's equations can be rewritten as a non-linear modification of Maxwell's 
equations in flat space [ 12]. For d > 3, on the other hand, the vanishing of the Ricci 
tensor no longer implies that the full Riemann tensor is zero, so the space manifold need 
not be flat, and there may be genuine gravitational effects in addition. The problem of 
identifying a gravitational action for Galilean gravity will be discussed in Section 6.2. 

4.3. I S O ( d -  1) connections from d + 1 dimensions 

We shall now reconsider the results of Section 4.1 and explain how the formulas (44) 
and (45) and their solutions (50), (57) and (58) can be re-interpreted from a (d + 1)- 
dimensional point of view. Of course, the flat and curved metrics in (d + 1) dimensions 
are no longer degenerate, and thus the situation is unambiguous. As there is more 
structure at hand we might expect to simply exhibit a particular d-connection. In fact, 
through this procedure, we can determine canonically the two-form Ku, corresponding 
to a choice of nm. 

Let us therefore consider the analog of (44) and (45) in d + 1 dimensions. We keep 
the same notations but the tangent space group is now SO(d, 1) for &. Equation (33) 
becomes 

¢9ot]~fl A "F ~ootABl~fl B m ~ o t ~  a , (69) 

where the superscript (o) indicates that the corresponding quantities are given by the 
standard expressions computed from the background vielbein ~aa; in particular, /~aff 
is the unique torsion-free affine connection in d + 1 dimensions that preserves the 
metric G,,/~. We next substitute the explicit form of (13) and write out the components 
corresponding to A = (a, - ,  +)  explicitly. In this way, we obtain three equations, viz. 

tga ~ fl a -F ~oota b ]~ fl b -~- ~t)aa _ ~ fl - "~- ~)ota + ~ fl + m ~ot t  ~ lx a , (70) 

+ + < - - M  = , (71) 

where, on the right hand side, we took into account that 

(cf. (13)) .  We should keep in mind that, on the left hand side, only the derivatives 84 
with a = /z  contribute because 0o = a~, = 0 by dimensional reduction. 

We would like now to compute the d-dimensional affine connection /~,~. Let us 
compare 

p ,  r _ I~ .~  - ½ d r a ( 2 o ( ~ , d e ) e  - o s d , , ~ )  

to (50) for (a , /3 ,7)  - - ( /x ,v ,p ) .  We have the identity 

- -  (n) 

(73) 

(74) 
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Comparing (44) with (70), we immediately see that they are compatible with 
o 

r A = (75) 

i.e. K ~  = 0 in (50). 
Equation (71), on the other hand, differs from (45) by extra spin connection terms, 

which are not I S O ( d -  1) valued. To relate (45) to the corresponding components of 
(71 ), the trick is to shift the extra terms from the left to the right hand side, in such a 
way that (71) becomes 

3 , ~ # -  = lS,~lEu- - &,~-a[~a A , (76) 

and re-interpret the right hand side as a new affine connection. Since the resulting 
expression is no longer manifestly symmetric in (a ,  fl) when uu~ 4= 0, the emergence 
of d-dimensional torsion is a possible dangerous consequence of this rearrangement. It 
is this choice not to introduce torsion that leads us at this stage to use one of the original 
equations of motion to enforce the condition u~,~ = 0 as anticipated in Section 3.2. In the 
case at hand however, the spin connection components that are not I S O ( d -  1) valued 
(&~-a = &~+A, of which we need only &~,+a) are simply absent when ui,~ = 0. And 
we have 

: (77) 

1 " +  Finally (52) can be rewritten K#~ := ~/2~ = 0, and hence K vanishes in the absence 
of "matter". (72) has no counterpart in d dimensions, and the same remark applies to 
the other components of (70) and (71). 

In summary, starting from the unique (d + 1) connection and an explicit choice 
of frame, we obtained K ~  = 0 and thereby the simplest possible d-dimensional NC- 
connection (75). In the following chapter, we will extend these considerations to the 
case where Kaluza Klein matter is included and again obtain a canonical NC-connection. 

5. Kaluza Klein matter couplings 

We will now switch on the matter fields residing in the intermediate frame H ~ ,  whose 
inverse we denote by H,, M. We will use the intermediate frame and its inverse to convert 
world indices into intermediate ones and vice versa. Their use will considerably simplify 
the computations by comparison to the use of the "Lorentz" frame. By construction (see 
remarks at the end of Section 3), the intermediate frame equations to be written below 
are still manifestly e-gauge invariant and turn out to be compatible with the vanishing of 
torsion in d dimensions. By descending from d + 1 dimensions, a unique d connection 
can be constructed, and it is really part of the (d + 1) connection in disguise. 

We follow a strategy that will permit us to directly compare the connections that 
are obtained in presence of matter with the background connections in (69) and (75), 
and to read off the two-form K ~  from the equations. We recall the equations (33) for 
j~,A, where now the spin connection tOaa B and the affine connection F,,~ differ from 
the corresponding expressions for the pure background by extra terms depending on the 
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Kaluza Klein matter fields S and At,. (The latter field was actually considered in [ 13] 
implicitly). Here we are in a pure Kaluza Klein situation and we shall not make any 
other assumption than the existence of the null Killing vector, admittedly at the cost 
of some complications. In ordinary Kaluza Klein dimensional reduction one witnesses 
the emergence of a scalar field and a vector gauge field in d dimensions. But here, 
although it was known that there are several Galilean approximations to Maxwellian 
electromagnetism [22], one finds a nonlinear version of electromagnetism that will be 
in some sense hidden inside a generalized gravitation theory, in this connection see also 
[12,23]. 

5.1. Differential geometry with intermediate frames 

Let us now apply the results of Section 3 for the various frames and connections, 
more precisely the various component descriptions of  the canonical Riemannian con- 
nection. The covariance of the full vielbein (18) in d + 1 dimensions is expressed by 
equation (30), where WMAB and PMQN are the complete expressions for the (torsion-free) 
connection computed from (18) and (20) in the usual way. We now substitute (12) 
into (30) and move the terms with derivatives on H f f  to the right hand side. The result 
is a gauge transformed version of (33): 

= + a  /TH , (78)  

t-g Mt_g Nt~ Q t-g Y where, of course, P ,~  = , ,~ " ' a  " MN'-Q • It is straightforward to check that 

a ~ H S H  ~ = 0 unless 3/= ~o. The absence of torsion implies 

O,~ := 2rt , ,~ l = 23t,,Ha~H ~ . (79) 

The non-vanishing components of the anholonomy associated with the intermediate 
frame H f f  are found to be 

Ou~ = -SAt`~, , Ou~ = SOuS -1 (80) 

This shows that the a/3 indices of F ~  do not appear symmetrically (although the 
torsion tensor is still zero) when the matter fields are switched on, whereas the purely 
d-dimensional components F p remain symmetrical. Pulling down the index with the /z), 

background metric G~I~, we get 

Ot`~.. = -at`~.(p , Ot`~,p = Ot`s-l ~p (81) 

and 

o t ` . , ~  = o t ` ~ , ~  = 0 . 

These formulas can be combined into a covariant equation: 

O,~/~,y = -~:rA~# , 

provided we define A~ = - S  -~ as one may infer from (19). 

(82) 

(83) 
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Next, we determine the symmetric part of the affine connection. It is natural to define 

20,#3z, := Oaar - O/~r,~ + Or,#~ (84) 

(compare to Eq.(57)) and notice that 

= + o j ,  (85) 

because we have (73), (79) together with its symmetric partner: 

2FM(,~#) = OuG,~# . (86 )  

0 and F are both equal to the usual Lorentz connection when the background frame is 
trivial. In general, 0 and/~, respectively, may be characterized as the terms of F that 
contain derivatives of HM a and G, respectively. In terms of O we obtain: 

(87) 

and, together with (79), 

1 y = + (88) 

These expressions are e-gauge invariant as anticipated. 
We can also solve (33) for the spin connection. The full spin connection is given by 

(.O ABC .~ I ( ~'~ABC -- ~'~BCA -~- J'~CAB ) , (89) 

where 

~'~ ABC "~ ~ ABC "~ O) ABC ( 9 0 )  

and, of course, Oan c = E A ~ E B a O ~ E r  c.  Using (84) we find 

W ABC = & ABC + O ABC • (91) 

We keep the same notation/~ for the d-dimensional connection we are looking for. 
Let us again compare Ft,~, with its indices restricted to d dimensions, to/~u~(n, K) 
which we have seen in (50) to be the most general connection compatible with our 
degenerate geometry. From (88), we find for the corresponding components of the 
(d + 1 )-dimensional connection 

F~,~ = Pt,~ + nOu(z'O~) s + Su(~ 'A~)~h~p (92) 

Next we must define a d-dimensional ISO(d - 1) connection and shift the unwanted 
components of the Lorentz connection to the affine connection as explained in Section 
4.3. Comparing (33) to (44) and (45) we obtain tentatively in the same way as for 
(75) 

~ a _ a 
F I~ v - F lz p , 
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Hence 

r~- = / ~ ;  , (94) 

where we used (77). 
Comparison with the p = - component of (92) shows that the second term on its 

right hand side drops out. Using (74) we find that the d-connection is given by/~(n,  K) 
of Eq.(50) with 

(95) K~v = 1 S A ~  . 

Altogether, we are led to 

.P P = 1~ ~ + u(~SA~,)o,h 'rp = F ( n ,  K, h)  (96) 

Since A~,~ obeys the (Maxwell) Bianchi identity, the two-form K~,~ is closed if S is 
constant. 

We remark that in this case the d-connection components are the same as the ( d +  1 )- 
dimensional ones: 

f'nfn = ['p.P~ = PI~ p = Pmn • (97) 

On the other hand, it appears at this point that the connection /~ does not  satisfy 
the NC property (61) any more if a non-constant scalar field is included; moreover 
(96) will be seen not to be invariant under Lorentz transformations. In the next section 
we will show how to cure both of these problems by taking into account a Weyl-type 
rescaling while preserving e-gauge invariance. 

5.2. Weyl rescaling and  I S O ( d -  1) gauge invariant  connect ion 

From (96) and (26) one can check that P would be invariant under the group 
ISO(d - 1) if it were not for extra terms involving derivatives of s. Recalling the 
variations 8n u,  8g~,~, 8 F ( n )  and 8A~,, we find that all terms cancel except 

8 F  ~, p = 2u~,6K~)~h  ~p 

with 

t~K~,, := ai~v,~] - S a i ~ ( S - l v ~ ] )  = (O[~s)v~] . (98) 

Clearly the variation of our candidate Galilean connection under ISO(d - 1) transfor- 
mations vanishes if and only if S is constant. 

We now have two indications that our new field S has introduced some complications. 
This is to be contrasted with the case S = 1 which was solved with a natural NC- 
connection (in this special case one recovers the result of [ 13] ). From experience with 
ordinary Kaluza Klein theories we know that problems with scalars usually arise if the 
Weyl rescaling has not been properly taken into account. In the case at hand, we notice 
that there is still one part of  the metric that remains at our disposal: the spatial part (u~, 
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and n ~' cannot be rescaled, because this would reintroduce non-zero torsion). So let us 
define 

guy = w g ~  , h ~ = w - l h  'i'~ (99) 

Inspection of (96) now suggests that we should take Sh ~ = h r~'~, i.e. w = W = S. If  we 
introduce a Weyl rescaled parameter h~ := S-1A~, we can mimick the S = 1 situation 
with the new connection (see (50))  

p :=/~(n,  K r 1 ) (100) = ~ A ~ . , h  r , 

that replaces (96). We could also have used the notation/',r for the new connection but 
it is symmetrical and we chose to call it P. 

Indeed provided we use the following Weyl rescaled version of (26) that reads now: 

r/.t,~ r r ! 6 n U = - h  A ~ ,  8 A F , = - A I , ,  8g~,~=u~Ar~+u~a~,  (101) 

(100) is then invariant as one can easily verify. However, the Weyl rescaling of the 
spatial metrics gives rise to extra terms involving derivatives of s. These do not affect 
the transformation properties of the connection since they transform properly as tensors. 
Altogether we obtain for the connection: 

, -rp,~- 26~ua.)s (102) 2Pu~ =- 2Fu~ + gu~n a~s - 

where F ~  are components of the d + i-connection. This new connection preserves 
the Weyl rescaled contravariant metric h q'~ as well as u u, as it should be. We have 
emphasized that the connection follows from (50) but with metric h r. Its p ---- 
component differs from the previous tentative connection/" by two more terms linear 
in as, so as to be Lorentz invariant. /~u~ as given by (102) will be our final Lorentz 
invariant and e-gauge invariant connection, which now satisfies also the NC-property 
(61) automatically, as one can easily check. 

For completeness, let us generalize an identity found for S = 1 in [ 13], albeit stated 
in a somewhat different form there: 

f ' (nm,  l a l ,~ ,h  ' )  =['(N"n,½uimOnlBlU,h') , (103) 

where we defined: N 'M = SN M. We may now interpret it as follows: the Lorentz 
invariance is completely fixed by imposing the "anti-axial" gauge Am ~ Um of (23). 
Then, one may think of the quasi-Maxwell field as containing Goldstone[ields associated 
with the (d - 1 ) translation generators of the ISO(d - 1 ) subgroup of the Lorentz group. 
It will be interesting to see the relevance of this observation for the possible existence 
of hidden symmetries in the theory. Note that N TM is geodesic if N w is constant. 

5.3. Tensor calculus 

The question which has remained open until now is whether there might not be another 
way to identify the putative Maxwell degrees of freedom in a completely covariant 
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fashion. After all, our attempts so far were based on a strategy which started from 
manifestly e-covariant quantities, and then restored I S O ( d -  1 ) invariance step by step. 
Alternatively, let us now start from manifestly ISO(d - 1) invariant quantities and try 
to restore e-covariance as well. The only such quantities depending explicitly on the 
field Am are the components Gmn, G "  = N ~ and G ~ =- N m of the inverse metric (cf. 
(3), (4), (20) and (21)).  We must now construct tensors for this new invariance, the 
e-symmetry. Our first attempt will be to try and rediscover the connection, and as we 
will adopt a d-dimensional point of view we shall use roman indices. 

Let us assume we have found an e-covariant affine torsionless connection C that 
preserves the one-form urn. The new symbol is temporary as we do not know the 
connection a priori and do not use the previous derivation. It seems natural to begin 
with the covariantized analog of the Levi-Civita connection: 

Lmrn = hrs( o (  C)mGns + O(  C)nGms - D(  C)sGmn) • (104) 

We find 

Lm nr = hrs(omGns + cgnGms - asGmn _ 2Cmngts _ 2SCtu thrSAs  

and 

Lmrn = hrS( OmGns + OnGms - OsGmn) - 2Cm~ + 2SCmtnUtN r • 

We may now ask for its e gauge variation (29): 

t~Lmrn = hrs ( tgse( Umtgn S + UnOmS) - OsS( uraOn e + UnOme) ) . 

Again let us first consider the case of a covariantly constant Killing vector (S = 1 ), then 
L is at the same time a tensor and an "e-tensor" and we find: 

Cm --Pm. 1 r - E L m ,  , (105) 

where we used once more the conservation of urn. Now it follows that the simplest choice 
for the connection C would be the d-dimensional part of the Levi-Civita connection 
P, i.e. L = 0. Conversely we have to prove that the latter preserves both h and u. This 
is the case when S = 1. Clearly we cannot hope to fix the K ambiguity discussed in 
Section 4.2, it is a dynamical question to optimise this choice so as to simplify the 
d-dimensional equations of motion. We recover the result of the Remark at the end of 
Section 5.1. We shall restore the arbitrariness of the scalar function S=W shortly by a 
more geometrical argument, so let us proceed to study the quasi-Maxwell degrees of 
freedom. 

Taking into account the Weyl rescaling, we define 

A : = n m A m  lhlmna a _½SN v ,A m. h tmnAn-nm = - S N  m (106) 
- -  2 " "  , . m . . n  = , .= 

These fields are indeed invariant under (101), and furthermore coincide with the com- 
ponents of the Maxwell field Am to lowest order. Under e-gauge transformations, we 
have 

tS,A m = htmnone , 8 ,A  = - , A m O m e  . (107) 
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The only e invariant quantities (field strengths) that can be constructed from .4 and ,Am 
are found to be 

.~--mn := [.)mAn _ Dn Am , .~m :=  hrnnan,A + `4nj~nAm , (108)  

where/ )  - D ( P ) .  Alas, a little algebra reveals that both ~ m  and 3 rm vanish identically! 
In fact, after some thought we should not be too surprised at this result: the vanishing of 
(108) is nothing but a fully (i.e. ISO(d - 1) and e) covariant version of the conditions 
(59) and (60). 

In summary it seems impossible to extract some remnant of the Maxwell degrees of 
freedom (that one would have expected to exist on the basis of ordinary Kaluza Klein 
theory) in a completely covariant fashion. This is in accordance with previous results 
on Galilean covariant theories which we reviewed in Section 4.2, and lends credibility 
to the claim that the so-called Newton (our Newton-Coriolis) condition is not sufficient 
to single out purely gravitational effects coming from Einstein theory. What is new in 
our treatment is that we have traced the "disappearance" of the Maxwell degrees of 
freedom to their apparent incompatibility with the symmetries o f  the theory 2, and that 
with Eq. (108) we have found a completely covariant expression of this fact. Also, the 
inclusion of the Kaluza Klein scalar (dilaton) S is entirely new. The subtle interplay 
between the equations of motion and the kinematic restrictions that must be imposed on 
the gravitational connection to recover a true Galilean situation was discussed in Section 
4.2. Let us stress that despite our title we have actually found a generalized Galilean 
geometrodynamics with its unescapable Coriolis or Maxwell effects. 

In [ 13] a mysterious but simple formula was exhibited for the affine connection for 
the case W = S = 1. Let us show now that one can with hindsight generalize it to 
our situation. In the (local) fibration by the Killing orbits any tangent vector fields 
X ~, Y~ to the orbit space can be lifted, up to some ambiguities, to vector fields X, Y 
that commute with the Killing vector field (.  The covariant derivative upstairs (X.  D)Y 
projects uniquely downstairs when W is constant to (X'  • D~)Y ~. This is the key remark 
that becomes applicable in our more general situation once we have noticed that the 
Weyl rescaling described above amounts to a redefinition 

G MN W-lG~MN GMN = WGMN , = (109) 

Then it is clear that au remains a Killing vector of the rescaled metric and that now 

~ = OMU (110) 

and the connection formula (102) follows. Actually this Weyl rescaling reduces to the 
previous one only after a change of "boost gauge" (the R subgroup of Section 3.2). 

2 To be sure, these degrees of  freedom have not really disappeared, as we have repeatedly emphasized, but 
rather become part of  gravity. This is also suggested by the fact that for d = 3 the gravitational sector is 
apparently not a topological theory, unlike in ordinary Kaluza Klein theory. 
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6. Equations of motion and hidden symmetries 

Having identified the proper covariant objects, we are now ready at last to give 
the complete equations of motion obtained after the dimensional reduction with a null 
Killing vector and to address the question of whether they can be derived from an action. 

6.1. Connection coefficients and equations of motion 

We will now rewrite the full Einstein equations of motion for the null Killing reduc- 
tion. With the technology developed in the previous sections this is most conveniently 
done in a " (d  + 1)-covariant" form and by use of intermediate indices where the equa- 
tions take their simplest form. The Einstein equations in d + 1 dimensions read for 
d ~ l  

Ra# - HaMH#~RMN = 0 ( l l l )  

and must be supplemented by the reduction condition ~MOM --  0. Our conventions 
regarding the Riemann tensor have been given in Section 3.3. The full connection prior 
to the Weyl rescaling has been given in (85), or equivalently in (88). We now write 
out the connection coefficients, taking into account the Weyl rescaling and making the 
decomposition into d-dimensional indices completely explicit. In this way, we get 

(112) 

which is just (102), and 

F/~ = S( - 1 , , p r  ,; _ ½g:~nPaps + u(uA~)anP _ ½A~ ) ~'" ~p6/z~ (113) 

r .~  = r ~  = -½S-lu~h'~%s , (114) 

l b' r~=-~ ( s~  + u t ) a . ,  , r ~ =  +~(8~-u, .n")a, ,s ,  (115) 

F ~  = F ~  = 0  , (116) 

which shows explicitly that only the components of Fa~ with 7 = ~ have an antisym- 
metric part. For the (d + 1 )-dimensional trace of the connection, we obtain 

r ~  -r~£ + r,;-- p~; + ½(d+ 1)a~s. (117) 

From these expressions, we can now obtain the corresponding ones for vanishing scalar 
field s (which we have not given so far) by specializing to s = 0. 

Eqs. (112)- (116)  can now be substituted into (42) to obtain the equations of mo- 
tion after some calculation. The (q, q0-component of (111 ) turns out to be identically 
satisfied: 

R¢~ --- 0 . (118) 
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This is, of course, expected as we already used this equation as an input to rewrite 
the Killing one-form in (5).  The remaining components of R,~#, however, give rise to 
non-trivial equations. Firstly, we get 

(119) 

which is just the scalar field equation (with /3 - D(/3) as we already explained). 
As anticipated, it depends on s only through its derivatives. Furthermore, this equation 
of motion involves the covariant transverse Laplacian, and thus can be regarded as a 
generalization of the transverse Laplace equation obeyed by gravitational plane waves 
[3]. When d = 1 the second term in parentheses in (119) vanishes, but the two- 
dimensional action is topological and (111 ) is replaced by the identity 

R u ,  - I u u R  . (120)  

Finally, dropping a term proportional to the scalar field equation when d > 1, 

(121) 

is Einstein's equation in d dimensions, where/~tz~ - Ru~(P) and where we used the 
previous equation of motion and restricted ourselves to the case d 4: 1. The fact that the 
Ricci tensor comes out to be symmetric is a useful check on our calculations, because 
all antisymmetric contributions arising at intermediate stages of the calculation must 
cancel out. As we have repeatedly pointed out, the Maxwell field must be absorbed into 
the connection to maintain covariance; consequently, only the scalar "matter" field can 
act as a source term in (121). 

Observe also that this equation is more general than (68) but that the dilaton decouples 
if one starts in two dimensions as one might have expected; in that case one obtains 

l t Ru~ -~ ~Sg~z~R , (122) 

/ ~  - 0 , (123) 

and 

SR = h'P~/3pOas (124) 

is unconstrained. 
We also note the following difference with ordinary (non-null) Kaluza Klein theories. 

There the components/~,0, and/~u~ would have yielded the equations of motion for the 
scalar and the Maxwell fields, respectively. Here, the first equation is empty, while the 
second gives the scalar field equation rather than Maxwell's equation. This is possible 
only because of the presence of the covariantly constant vector u~,, which has no analog 
in the non-null case. 
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6.2. An action 

The situation we found ourselves in seems as we noticed ill-adapted to the construction 
of an action for two reasons. The first difficulty arises from the fact that we have already 
used one of the equations of motion, namely Rvv = 0, as an input; it can be surmounted 
by simply eliminating the corresponding component G w of the inverse metric. However, 
this is not a covariant procedure, and we would not expect the resulting action to be 
fully covariant either. A second source of difficulties is the missing component Go~, 
which has been "frozen" to zero. 

Previous attempts to construct an action within the purely Galilean covariant frame- 
work (i.e. in d dimensions) have encountered related difficulties (see [24] for a recent 
discussion), and so far no satisfactory action seems to be known. One particular problem 
which arises in the d-dimensional context is that the covariant metric g~u is not unique, 
it is degenerate and thus has vanishing determinant. However the moving frame being 
conserved up to a unimodular transformation there is an invariant density factor and 
corresponding invariant antisymmetric tensor densities. We have for the d-dimensional 
Weyl rescaled frame density: 

0ulog e t ==- aulog/~/ - v =P#.  , (125) 

see also for example [21 ] for the definition of the density factor without moving frames. 
On the other hand, it was proposed in [ 13] to construct an action in d + 1 dimensions 
by introducing a Lagrange multiplier to enforce the condition ~M~M = 0. This seems 
unjustified in view of the extra constraint of the covariant constancy of the null vector, 
furthermore the Lagrange multiplier remains undefined and one equation is still missing 
after this manipulation. 

We will here follow a somewhat different route, also invoking the ( d +  1 )-dimensional 
ancestor theory, but avoiding the use of Lagrange multipliers. An obvious argument in 
favour of starting from d + 1 dimensions is the existence of the non-degenerate metrics 
there (our G,,# and GMU). Taking into account the Weyl rescaling and the presence of 
the dilaton, the density factor is 

( d + l  ~ . 
E = ~ = P~'(h', n) exp \ - - - - ~ s ]  (126) 

Observe that it is independent of A u as required by gauge invariance, as well as invariant 
under (101). It is equivalent to choose h' and n or g' and u as independent variables. 

The action density we propose is then essentially Einstein's action in d +  1 dimensions, 
written out in terms of intermediate indices, viz. 

£ = EGa~R~ = E(G~Ru~ + 2C/~Ru~ + G¢~R~) , (127) 

where we have given the last term only for the sake of clarity: it actually vanishes 
because G** = 0 (or because R** - 0, see the foregoing section). Substituting the 
expressions for the (d + 1)-dimensional Ricci tensor and using (126), we obtain 

/Z = E' exp ( - ~ s )  h'UV ( / ~  d ( ~ - l ) c g ~ s O v s ) .  (128) 
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To verify that this is indeed the correct action density, we must now show that 
the equations of mo t ion ( l l 9 ) and  (121) follow from (128) by variation of the basic 
fields. For this, two crucial points must be kept in mind. First of all, here we shall 
be using second order formalism, i.e. we regard the connection P~fl as a dependent 
field as explicitly defined by (100). We shall maintain zero torsion and hence the 
condition 8u~, = a~Su. Secondly, in the space of contravariant metrics h I~,  the variations 
must be performed in such a way that h ' ~  remains degenerate with precisely one 
zero eigenvector. They are therefore subject to the constraint 8h~u~ + ht~6u~ = O. 
Contracting with uu, we obtain 

6h I~ uuu~ = 0 . (129) 

Consequently the coefficient of 8h I~" in the variation of the action will only be deter- 
mined up to terms of the form puzu~. 

Variation of the dilaton s yields the following equation 

hl~ ( db~O~s + d( d - 1 )  O~sO~s / ~ )  = 0  . (130) 

Strictly speaking (130) holds only for d 4= 1 as we have dropped a factor ( d -  1 ) /2.  To 
eliminate the Ricci tensor from (130) and to arrive at an equation involving s alone, we 
must first analyze the remaining equations obtained by varying the other fields. Varying 
all fields except s, we get 

d - 1  , ~ - d(d 4 1 )  O~sO~s) CSgrav/~ : J~texp ( - - - ~ s ) S h  # (Rlzu 

+ ~,exp ( ~ s ) ( ~ _ , 6 1 ~ ) h l ~ , ~ ( ~ ,  ~ d(d-1)O~sO~s ) 

where 

01--1 "1 l o t  ~hllzl ,  E 6E = 2~,#,v- +n#Su# . (132) 

Upon partial integration, the third line in (131 ) becomes 

( ~ ) ~ l e x p ( ~ s ) O i z s ( 2 , f ' p ~ # h l ~ ' O - 2 h ' # % 9 ~ ( E l - 1 8 E I ) )  , (133) 

where we made use of 6 P ~  = 8(El-lO#[~ t) = 8u(/~1-16/~1). To further evaluate (133), 
we will now use 

~ ( ~ . l ~ ) p  28Pp~ n = -D~Sh Ig~ , (134) 

which is a consequence of the requirement that the covariant constancy of h I#~ be 
preserved under the variation along the space of degenerate contravariant metrics. Note 
that all variations can be parametrized in terms of only 8s, 8h lu~ and 1~1-18~1. The 
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latter comprises the effect of the variation of all the gravitational fields other than h ~ ,  
according to (132) only 6n u appears, in particular the variation of £ does not depend 
on t~m~,. 

We pause here to point out that shifting Au by t~Ag = u~f  (such variations of Ag 
are physical, contrary to the gauge shifts (101)) changes the Ricci tensor according to 

8Rg~ cx u~u~E) p( hP~ O~ f )  (135) 

and hence does not change the action. Physically this means that its equation of motion 
is left arbitrary by our d-dimensional variational principle. Conversely we could hide 
the arbitrariness of the equation of motion for R ~ that is due to (129), as mentioned 
above, by the appropriate redefinition of the field A~. 

Integrating the last line of (131) by parts once more and collecting terms, we see 
that the terms multiplying t~h tg~ combine precisely into the left hand side of ( 12 I). The 
terms multiplying/~'-It~/~t must then be combined with (130). After a little reshuffling, 
these two equations are just the scalar field equation ( 119)and the trace of ( 121 ). Once 
more the variational principle for the reduced action leads to all equations of motion 
but one. Finally, we see again that the dilaton field decouples for d = 1; this just reflects 
the appearance of conformai symmetries in two dimensions. 

6.3. Hidden symmetries 

The Ehlers SL(2, R ) duality transformations act on germs of solutions of Einstein's 
vacuum equations admitting one non null Killing vector. A d + 1 = 4 covariant pre- 
sentation is given in [2] for the action of the subgroup SO(2). In a footnote Geroch 
remarks that some action remains after a careful limiting procedure is taken where the 
norm of the Killing vector tends to zero. We shall develop this idea carefully in another 
paper but we may mention here the following identity: 

GMN = gMN + 2~(MAN) (136) 

where gMv := 0 and At, := 1. Up to rescalings the Geroch action amounts in the null case 
to the addition to the one-form AM of the potential one-form whose exterior derivative 
is dual to the two-form dW A du. In the case of pp-waves it is easily found to be an 
e-gauge transformation, in the case of say van Stockum solutions it adds a constant 
"electric" field and seems non trivial, in particular it changes the symmetry properties. 

7. Conclusions 

This work suggests to investigate the addition of matter in order to hunt for extra 
hidden symmetries in the case d = 3. The addition of a true Maxwell field is easy, it 
leads to the so-called magnetic limit of electromagnetism [22]. The addition of one 
or two gravitinos should follow using standard techniques. This paper furnishes all 
the required tools to permit the addition of fermionic fields. The massless sector of 
closed string theory seems particularly interesting as already mentioned. The role of the 
antiaxial gauge might deserve some more investigation. 
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We have worked out the SO(2)  action mentioned in [2] contrary to what is stated 
in the rest of  the literature it does act nontriviaily on the space of  solutions admitting a 
null Killing vector. 

As far as physics is concerned, we have been discussing the transverse gravitational 
field seen by particles moving say along geodesics in such backgrounds. Transverse 
meaning here that we consider the motion of  the projection on the Killing orbit space. 
Let us note a nice general result. The scalar product of  the Killing vector and the 
velocity of  such a particle is a constant of  the motion. In the case of  a non null Killing 
vector it can be interpreted as the electric charge. Here we obtain: 

a x  M = w au  
M - ~  d~" ' (137) 

so we find - up to dilatonic effects we shall not discuss here - that (for W = 1) the 
absolute time, u, is an affine parameter for the geodesic motion. The improvement of  
the action principle and the study of  constraints are prerequisites for a quantization of  
that sector. 

Finally it is amusing to speculate that quantum corrections will spoil the classical 
equations of  motion hence introduce torsion, but torsion is known to be coupled to spin. 
Phrased differently the twist of  a null geodesic would be a natural manifestation of  spin. 
We hope to return to some of  these issues later. 
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Note added in proof 

A fiat space example of  Galilean invariance resulting from a null Killing vector can 
be found in Ref. [25] .  
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