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Abstract. Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa 
couplings are discussed within the framework of toric geometry. It allows to es- 
tablish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had 
been unavailable in previous constructions. Mirror maps and Yukawa couplings are 
explicitly given for several examples with two and three moduli. 

1. Introduction 

Mirror symmetry [1] started from the trival observation [2, 3] that the relative sign 
of the two U(1)-charges of (2,2) super-conformal field theoriesqs simply a matter 
of convention. Geometrically, however, if one interprets certain symmetric (2,2) 
superconformal theories as string compactifications on Calabi-Yau spaces, the im- 
plications are far from trivial and imply identical string propagation on topo- 
logically distinct manifolds for which the cohomology groups H p,q and H q'3-p, 
p, q = 1, . . . ,  3 are interchanged. 

Within the classes of Calabi-Yau spaces that have been investigated by physi- 
cists, namely complete intersections in projective spaces [4], toroidal orbifolds [5] 
and hyper-surfaces or complete intersections in products of weighted projective 
spaces [6], one does indeed find approximate mirror symmetry, at least on the 
level of  Hodge numbers, which get interchanged by the mirror transformation: 
h p,q ~ h q'3-p. Most of the known candidates for mirror pairs of Calabi-Yau mani- 
folds are hypersurfaces or complete intersections in products of weighted projective 
spaces and are related to string vacua described by N - - 2  superconformal limits 
of  Landau-Ginzburg models [7, 3, 6]. For subclasses of these manifolds one can 
find discrete symmetries such that the desingularized quotient with respect to them 
yields a mirror configuration; see ref. [8] and for a somewhat more general con- 
struction, ref. [9]. Likewise the corresponding superconformal field theory exhibits 
in subclasses symmetries [10], which can be used to construct the mirror SCFT by 
orbifoldization. The Landau-Ginzburg models in the sense of ref. [7] have been 
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classified in [6]. It turns out that the spectra in this class do not exhibit perfect 
mirror symmetry, even after including quotients [11]. A gauged generalization of 
Landau-Ginzburg models was proposed in [12]. The associated Calabi-Yau spaces 
are realized as hypersurfaces or complete intersections in more general toric varieties 
or Grassmannians. 

A particularly appealing construction of Calabi-Yau manifolds, within the frame- 
work of toric geometry, was given by Batyrev in [13]. It gives hypersurfaces in 
Gorenstein toric varieties and unlike previous constructions it is manifestly mirror 
symmetric. This is the approach we will take in this paper. We will show that 
mirror partners, which are missing in the conventional Landau-Ginzburg approach 
[6], even when including the quotients [11, 9, 8], can be constructed systematically 
as hypersurfaces in these generalized Gorenstein toric varieties. 

A much less trivial implication of mirror symmetry than the existence of Calabi- 
Yau spaces with flipped Hodge numbers, is the isomorphism between the cohomo- 
logy ring of the (2, 1)-forms with its dependence on the complex structure moduli 
and the quantum corrected cohomology ring of the (1, 1)-forms with its dependence 
on the complexified K/ihler structure parameters. The most convincing evidence for 
this part of the mirror conjecture is the successful prediction of the numbers of 
certain rational curves for the quintic in [14] and other manifolds with h ~,1 = 1 in 
[15-19], which test mirror symmetry, at least locally in moduli space in the vicinity 
of the point of maximal unipotent monodromy. 

Further evidence for mirror symmetry at one loop in string expansion was pro- 
vided by the successful prediction [20] of the number of elliptic curves for the 
manifolds discussed in [16, 17]. 

From a mathematical point of view mirror symmetry is so far not well under- 
stood. Some of the problems have been summarized in [21]. The question of mirror 
symmetry for rigid manifolds (h 2,1 = 0), which is again obvious from the confonnal 
field theory point of view, has been discussed in [22]. 

Aside from the mathematicians' interest in the subject, mirror symmetry has 
tumed out to be an indispensable tool for e,g. the computation of Yukawa-couplings 
for strings on Calabi-Yau spaces. This is a problem of prime physical interest, so 
let us briefly review some aspects. We will restrict ourselves to strings on Calabi- 
Yau spaces corresponding to symmetric (2, 2) conformal field theories, since they 
are on the one hand, due to their higher symmetry, easier to treat than e.g. the more 
general (2, 0) compactifications, and on the other hand general enough to allow for 
potentially phenomenologically interesting models. 

The Yukawa couplings between mass-less matter fields, in the following char- 
acterized by their E6 representation, fall into four classes, symbolically written as 

(273), (~-ff3), (27.2-ft. 1) and (13). Here 27 and 2-7 refer to the charged matter 
fields which accompany, via the (right-moving) extended world-sheet superconfor- 
real symmetry, the complex structure and Kghler structure moduli, respectively. The 
singlets are neutral matter fields related to End(~'-x). Unlike the singlets, the charged 
matter fields can be naturally identified as physical states in two topological field 
theories, which can be associated to certain (2, 2) superconformal theories by twist- 
ing, as described in [23]. Here we will be concerned only with the couplings in 
these topological subsectors. 

The (273) Yukawas depend solely on the complex structure moduli and do not 
receive contributions from sigma model and string loops; in particular, the tree Level 
results are not corrected by world-sheet instanton corrections [24]. In contrast to 
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this, the (2-ff3)'s are functions of the parameters of the possible deformations of the 
K~ihler class only and do receive non-perturbative corrections [25]. This makes their 
direct computation, which involves a world-sheet instanton sum, virtually impossi- 
ble, except for the case of 2~n orbifolds [26]. These difficulties can be circumvented 
by taking advantage of mirror symmetry. This was first demonstrated for the quintic 
threefold in [14] and subsequently applied to other models with one K/ihler mod- 

ulus in refs. [15-19]. The idea is the following: in order to compute the (~-ff3) 
Yukawa couplings on the CY manifold X, one computes the (273) couplings on 
its mirror X* and then returns to X via the mirror map which relates the elements 
b]'I(X) E Hi(X,  J -*X)  ~ H}' I (X)  to the bZ'l(X *) E H I ( X  *, ~-X*)  ~ H2'X(x * ) and 

their corresponding deformation parameters t[ and ti( i = 1 . . . .  h l,l ( X *) --hZ, l(x)) .  
In the Landau-Ginzburg models one can straightforwardly compute ratios of 

(273 ) Yukawa couplings by reducing all operators of charge three, via the equations 
of motion, to one of them. This fixes the Yukawa couplings however only up to a 
moduli dependent normalization. Information about the Yukawa couplings can also 
be obtained from the fact that the moduli space of the N = 2 theory has a natural 
flat connection [27-29]. The route we will follow, which was first used in [14], is 
especially adequate for models with an interpretation as Calabi-Yau spaces. 

In this procedure, the Picard-Fuchs equations, i.e. the differential equations sati- 
sfied by the periods of the holomorphic three form as a function of the complex 
structure moduli, play a prominent role. They allow for the computation of the 
(273 ) Yukawa couplings and furthermore, the mirror map can be constructed from 
their solutions. This has been abstracted from the results of [14] in [15] and further 
applied in refs. [18, 19]. In this paper we develop a way of getting the Picard-Fuchs 
equations for a class of models with more than one modulus. This construction uses 
some results from toric geometry, which are especially helpful to give a general 
prescription for the mirror map. 

The mirror map also defines the so-called special coordinates on the K/ihler 

structure moduli space. In these coordinates the (~-ff3) Yukawa couplings on X 
are simply the third derivatives with respect to the moduli of a prepotential from 
which the K~ihler potential can also be derived. Whereas the left-moving N = 2 
superconformal symmetry of (2,2) compactifications is necessary for having N = 
1 space-time supersymmetry, it is the additional right-moving symmetry which is 
responsible for the special structure [30]. 

The paper is organized as follows. In Sect. 2 we describe those aspects of torie 
geometry which are relevant for us and give some illustrative examples of mirror 
pairs. We also state the rules for computing topological couplings using toric data. 
In Sect. 3 we discuss the Picard-Fuchs equations for hypersurfaces in weighted 
projective space and show how to set them up. Section 4 contains applications to 
two and three moduli models. We compute the Yukawa couplings and discuss the 
structure of the solutions of the Picard-Fuchs equations. In Sect. 5 we show how to 
find the appropriate variables to describe the large complex structure limit and the 
mirror map. In the last section we interpret our results for the Yukawa couplings as 
the instanton corrected topological coupling. We conclude with some observations 
and comments. 
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2. Toric Geometry: Mirror Pairs and Topological Couplings 

In this section we will describe the aspects of the geometry of hypersurface (com- 
plete intersection) Calabi-Yau spaces, which we need later to facilitate the derivation 
of the Picard-Fuchs equation, and to define the mirror map on the level of Yukawa 
couplings. These types of Calabi-Yau spaces arise naturally from the Landau- 
Ginzburg approach to two dimensional N = 2 superconformal theories [3, 12]. The 
hypersurfaces with ADE invariants are related to tensor products of minimal N = 2 
superconformal field theories. 

Some important geometrical properties of these manifolds are however easier 
accessible in the framework of toric geometry [31, 8, 13]. We therefore want to give 
in the first part of this section a description of Calabi-Yau hypersurfaces in terms 
of their toric data. We summarize the construction of mirror pairs of Calabi-Yau 
manifolds given in [13] and describe the map between the divisors related to (1,1)- 
forms and the monomials corresponding to the variation of the complex structure 
and hence to the (2,1)-forms. In the second part of this section we give the toric 
data for manifolds with few K~ihler moduli which we will further discuss in later 
sections. In Sect. (2.3) we use the toric description to construct the mirrors which 
were missing in [6, 11]. In Sect. (2.4) we summarize results for the topological triple 
couplings o f  complete intersection manifolds using toric geometry. As they are the 

large radius limit of the (~-~3) Yukawa couplings, we will need this information for 
the mirror map. 

2.1. The Families o f  Calabi-Yau Threefolds. Consider a (complete intersection) 
Calabi-Yau variety X in a weighted projective space IW(nT)= lW(Wl . . . .  ,Wn+l) 
defined as the zero locus of transversal quasihomogeneous polynomials Wi(i = 
1,... ,m) of degree deg(Wi) = di satisfying ~iml di = y~,+l wj; j = l  

x = X~, , . . . ,am ( ~ )  = { [ z l , . . . , z , + l ]  

C I W ( ~ ) [ W i ( z l , . . . , z n + l )  = 0 (i  = 1 . . . .  , m ) } .  (2.1) 

Due to the action zi ~ 2Wizi, 2 c C*, whose orbits define points of lpn(v~), the 
weighted projective space has singular strata gCt~ = lPn(ff)N {zi = 0Vi c {1, . . . ,  
n + 1}\S} if the subset {wi}ics of the weights has a non-trivial common factor 
Ns. We consider only well-formed hypersurfaces where X is called well-formed if 
lPn(ff) is well-formed, i.e. if  the weights of any set of n projective coordinates are 
relative prime and if  X contains no codimension m + 1 singular strata of lW(ff). 
In fact, every projective space is isomorphic to a well formed projective space and 
furthermore, one can show, using the explicit criteria for transversality given in [32], 

m x---,n+ 1 that transversality together with ~i=1 di = 2_.~j=l wj already implies well-fonnedness 
for Xal, - - �9 ,am. 

Hence the possible singular sets on X are either points or curves. For singular 
points these singularities are locally of type ~3/ZN s while the normal bundle of a 
singular curve has locally a ~2/7l.~ s singularity. Both types of singularities and their 
resolution can be described by methods of toric geometry. The objects which we 
will be concerned with are families of Calabi-Yau manifolds describable in toric 
geometry, as explicated below. 

To describe the toric variety lPz, let us consider an n-dimensional convex integral 
polyhedron A C IR n containing the origin vo = (0, . . . ,  0). An integral polyhedron is 
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a polyhedron whose vertices are integral, and is called reflexive if its dual defined 
by 

A* = x l , . . . , x , ) l F _ , x i y i  > -1  for all (Yl,. . . ,Y,) E A (2.2) 
i=1 

is again an integral polyhedron. Note if A is reflexive, then A* is also reflexive since 
(A*)* = A. We associate to A a complete rational fan Y~.(A) as follows: For every 
/-dimensional face Ol C A we define a n-dimensional cone a(Ol) by a(Ot) := 
{ 2 ( p ' - p ) 1 2 E l R + , p E  A ,p 'E  Ol}. y~(A) is then given as the collection of 
(n -/)-dimensional dual cones a*(01)(l = 0,. . .  ,n) for all faces of A. The toric 
variety IPA is the toric variety associated to the fan Y](A), i.e. IPa := FG(A) (see 
[33] for detailed constructions). 

Denote by vi(i = 0 ....  , s) the integral points in A and consider an affine space 
112 s+l with coordinates (ao . . . .  ,a~). We will consider the zero locus Zy of the 
Laurent polynomial 

S 

f a(a,X) = ~ a i X  vi, f A(a,X) E I~[XI:I:I,...,Xn :t:11 (2.3) 
i=0 

in the algebraic torus (C*) n c IPA, and its closure Zf  in IPA. Here we have used 
the convention Xv := X~I...X~". 

f := f~  and ZU are called A-regular if for all l =  1 . . . .  ,n the for and 

Xi ~ fol ,  Vi = 1,..., n do not vanish simultaneously in (IE*)n. This is equivalent to 

the transversality condition for the quasi-homogeneous polynomials W,-. When we 
vary the parameters ai under the condition of A-regularity, we will have a family 
of Calabi-Yau varieties. 

The ambient space IPz and so Z f  are in general singular. A-regularity ensures 
that the only singularities of Z f  are the ones inherited from the ambient space. Z f  
can be resolved to a Calabi-Yau manifold ZU iff IP A has only Gorenstein singular- 
ities, which is the case iff A is reflexive [13]. 

The families of the Calabi-Yau manifolds Zf  will be denoted by ~-(A). The 
above definitions proceeds in an exactly symmetric way for the dual polyhedron A* 
with its integral points V[(i = 0,...,s*). 

In ref. [13] Batyrev observed for the case of hypersurfaces that a pair of re- 
flexive polyhedra (A,A*) naturally gives us a pair of mirror Calabi-Yau families 
(o~(A),o~(A*)) as the following identities (n > 4) on the Hodge numbers ((n - 1) 
is the dimension of the Calabi-Yau space) hold 

hl,l(2f,Z) n-2,1 ^ = h ( Z s , ~ . )  

= I(A*) - (n + 1) - 

hl'l(2 f,z* ) = h"-2'I (̂Z T,A ) 
= I ( A ) -  (n + 1 ) -  

/ ' ( o * )  + Z t ' ( o * ) I ' ( 0 ) ,  
eodimO * = 1 codimO * =2 

Here l (0)  and F(O) are the number of integral points on a face O of A and in 
its interior, respectively (and similarly for O* and A*). An l-dimensional face O 
can be represented by specifying its vertices vii,..., vik. Then the dual face defined 
by O* = {x E A*l(x, vq) . . . . .  (x, vik) = -1}  is a (n - l - 1)-dimensional face of 
A*. By construction (O*)* = O, and we thus have a natural duality pairing between 

l ' (O)+ ~ l'(O)l'(O*). (2.4) 
codimO=l eodimO=2 
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/-dimensional faces of A and (n - l - 1)-dimensional faces of A*. The last sum in 
each of the two equations in (2.4) is over pairs of dual faces. Their contribution 
cannot be associated with a monomial in the Laurent polynomial. In the language 
of Landau-Ginzburg theories, if appropriate, they correspond to contributions from 

twisted sectors. We will denote by /~2,1 and/~l,l the expressions (2.4) without the 
last terms. 

Three dimensional Calabi-Yau hypersurfaces in Ip4(~7) were classified in [6]. A 
sufficient criterion for the possibility to associate to such a space a reflexive polyhe- 
dron is that lPn(~) is Gorenstein, which is the case if lcm[wb...,wn+l] divides the 
degree d [34]. In this case we can define a simplieial, reflexive polyhedron A(uT) 
in terms of the weights, s.t. IPA(~) -- 1P(uT). This associated n-dimensional integral 
convex polyhedron is the convex hull of the integral vectors/~ of the exponents of 
all quasihomogeneous monomials z ~ of degree d, shifted by ( -  1,. . . ,  - 1): 

{ n+, } 
A(~)  : =  (xb . . . ,Xn+ l )  E I R n + l l E w i x  i = O,x i ~ - 1  . (2.5) 

i=1 

Note that this implies that the origin is the only point in the interior of A. 
If  the quasihomogeneous polynomial W is Fermat, i.e. if  it consists of mono- 

mials zai/wi(i = 1,...,5),lpa(uT) is clearly Gorenstein, and (A,A*) are thus simpli- 
cial. If furthermore at least one weight is one (say w5 =1)  we may choose el -- 
(1 ,0 ,0 ,0 , - -W1) ,  e2 = (0, 1,0,0,--W2), e3 = (0,0, 1,0,--W3) and e4 = (0,0,0, 1,--W4) 
as generators for A, the lattice induced from the 7/n+l cubic lattice on the hyper- 

iNn+ 1 ~-~n+l 0}. For this type of models we then plane H = {(xl,...,Xn+l) C Z.~i=l WiXi = 
always obtain as vertices of A(uT), 

) vl = - 1 , - 1 , - 1 , - 1  , F 2 = 

v3 = - -1 , -1 ,  --1 , - 1  , v4=  

v5 = ( - 1 , - 1 , - 1 , - 1 )  

and for the vertices of the dual simplex A*0V) one finds 

v~'=(1,O,O,O), v~ = (O, l, O, O), v~ = (O, O, l, O), 

F~ = (--W1,--W2,--W3,--W4). 

(-1,-1,-1, (d  - 1)) , 
(2.6) 

V 4 * = ( 0 , 0 , 0 ,  l )  

(2.7) 

We can now describe the monomial-divisor mirror map [35] for these models. Some 
evidence for the existence of such a map was given by the computations in [36]. 
The subject was further developed in [8, 13]. 

The toric variety lPa*(w) can be identified with 

n'a.(w~ --- n ~ ( ~ v )  

= [Uo, UI, U2, U3, U4, U 5 ] c ] P 5 [ [ I U I W i =  , (2.8) 
i=1 

where the variables X/ in Eq. (2.3) are related to the Ui by 

1 [ U1U2 U3 U4 Us] (2.9) 
l ' X l ' X 2 ' X 3 ' X 4 ' l - [ 4  y w i  = 1' Uo' go '  Uo' Uo' -Uo 0 " 

11i=1~i 
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Let us consider the etale mapping ~b : 1p4(~) --+ H~(~)  given by 

r d/w 1 d/w 2 d/w 3 d/w 4 d/w 5 ", 
[Z1,Z2,Z3,Z4,Z5] ~ [ZlZ2Z3Z4Zs,Z 1 ,Z 2 ,Z 3 ,Z 4 ,Z 5 J .  (2.10) 

In toric geometry, this etale mapping replaces the orbifold construction for the 
mirror manifolds described in [10]. Furthermore, the integral points in A*(~) are 
mapped to monomials of the homogeneous coordinates of Ip4(~7) by 

# = ( # 1 , ~ 2 , # 3 , # 4 )  w-+ (o*(Xl~Uo)  =. lI4=lZl/id/wi 
�9 ( 2 . 1 1 )  

5 Z 

Since in toric geometry the integral points of A*(#) inside dim 1 and dim2 faces de- 
scribe the exceptional divisors which are introduced in the process of  the resolution 
of the toric variety IPA(#), and the point (0,0,0,0) correspond to the canonical divi- 
sor induced from the ambient space the map (2.11) is called the monomial-divisor 
map. 

2.2. Models with f ew  Moduli. We are interested in studying systems with few 
K~ihler moduli. For Fermat hypersurfaces in Ip4(~) we find five two moduli sys- 
tems 1. In Table 1 we display these models, their Hodge numbers, the points on faces 
of  dimensions one and two of A* and the face O* these points lie on, specified by 
its vertices. Points lying on a one-dimensional edge correspond to exceptional divi- 
sors over singular curves whereas the points lying in the interior of two-dimensional 
faces correspond to exceptional divisors over singular points (cf. Sect. 2.3 below). 
There is also always one point in the interior, v~ = (0, 0, 0, 0), corresponding to the 

canonical divisor of  IP4(~) restricted to X. We also give the exceptional divisor E 
and the G-invariant monomial Y related to it via the monomial-divisor mirror map. 
Here G is the group which, by orbifoldization, leads to the mirror configuration. Its 

generators g(k) (g~k), ~(k) ~ with g}k) C Z, act by " ' "  , f i n + l ) ,  

( g : Z i H e x p  27cigi zi (2.12) 

on the homogeneous coordinates of XaO~:). Note that this action has always to be 
understood modulo the equivalence relation zi ~ 2Wizi. For Fermat hypersurfaces G 

consists of  all g(k) with ~ = 1  glk)wi/d = 1. The generators of G are also displayed 
in the table. Here we have suppressed g(0) = (1, 1, 1, 1, 1), which is present in all 
cases and which acts trivially in IP4(~). The first four models of the table have a 
singular 71,2 curve C and the exceptional divisor is a ruled surface which is locally 
C • IP 1. The last example has a 7Z3 singular point blown up to a IP 2. 

The Hodge nmnbers are in accordance with the formulas for the invariants of 
twisted Landau-Ginzburg models [3] or the counting of chiral primary fields in 
the A-series N = 2 superconfonnal minimal tensor product models 2. Contributions 

1 In addition, five non-Fermat examples can be found in [6]. 
2 The first model in Table 1 corresponds to a tensor product of five minimal N = 2 super- 
conformal A-models at levels (2, 2, 2, 6, 6). If one replaces the two level 6 A-models by level 6 
D-models, the spectrum and the couplings of the chiral states does not change. Geometrically 
the latter model corresponds to a complete intersection of p1 + ~-],i5= 1 z 4 and P2 + z4z 2 + zsz~ in 
IP 4 x 1P 1 . It would be interesting to see how these two geometrical constructions are related. 
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Table 1.. Hypersurfaces in ]p4(}~) with h 1'1 = 2. 

)28(2,2,2,1,1) X12(6,2,2, 1, 1) X12(4, 3,2,2, 1) X14(7, 2,2,2, 1) )218(9,6,1,1,1) 

h 1'1 2(0) 2(0) 2(0) 2(0) 2(0) 
h 2'1 86(3) 128(2) 74(4) 122(15) 272(0) 
v~ ( - 1 , - 1 , - 1 , 0 )  ( - 3 , - 1 , - 1 , 0 )  ( - 2 , - 1 , - 1 , - 1 )  ( - 3 , - 1 , - 1 , - 1 )  (-3, -2,0,0) 
O* (1,2,3) (1,2,3) (1,3,4) (2,3,4) (1,2) 
E C X ]p1 C X ]p1 C X ~1  C X ]p1 ]p2 
y 4 4 6 6 2 6 z1z7 6 6 6 

Z 4 Z 5 Z 4 Z 5 Z 2 Z 5 Z 3 Z~ 1X 5 
G (0,0,0,7,1) (0,0,0,11,1 ) (0,0,0,5,2) (0,0,0,6,2) (0,0,0,17,1 ) 

(0,0,3,0,2) (0,0,5,0,2) (0,0,5,0,2) (0,0,6,0,2) (0,0,17,0,1) 
(0,3,0,0,2) (0,5,0,0,2) 

Table2.. Hypersurfaces in IP4(~) with h 1,1 = 3 

X12(6,3,1, 1,1) X12(3,3,3,2, 1) X15(5,3,3,3,1) )(18(9,3,3,2,1) X24(12,8,2,1, 1) 

h 1,1 3(1) 3(0) 3(0) 3(0) 3(0) 
h 2'1 165(0) 69(6) 75(12) 99(4) 243(0) 
v~ (-2, -1,0,0) ( - 1 , - 1 , - 1 , 0 )  ( - 1 , - 1 , - 1 , - 1 )  (-3, -1 , -1 ,0 )  (-3, -2,0,0) 
v~ twisted sector ( - 2 , - 2 , - 2 , - 1 )  ( - 3 , - 2 , - 2 , - 2 )  ( - 6 , - 2 , - 2 , - 1 )  ( - 6 , - 4 , - 1 , 0 )  
O* (1,2) (1,2,3) (2,3,4) (1,2,3) (1,2,3), (1,2) 
E ~2, IP2 C x (IPI A~ 1 ) C • (IPI AlP l ) C x (Ip1 A]P 1 ) C x I P I , ~  2 
y 4 4 4 4 4 2 8 2 5 _10 -6 -6  -3-12 6 6 6 12 12 

Z 3 Z 4 Z 5 , -  Z425,Z425 Z1Z5,ZI~ 5 ~4~6,~4~5 Z3Z4Zs,Z 4 Z 5 
G (0,0,0,11,1) (0,0,0,5,2) (0,0,0,4,3) (0,0,5,0,3) (0,0,0,23,1) 

(0,0,11,0,1 ) (0,0,3,0,3) (0,0,4,0,3) (0,5,0,0,3) (0,0,11,0,2) 
(0,3,0,0,3) 

which come from the last terms in (2.4) correspond to twisted vacua in the CFT or 
Landau-Ginzburg approach. Their contribution to hl'l,h 2'1 is indicated in parenthe- 
ses; e.g. in the X14 (7, 2, 2, 2, 1) model we have F(O(2 ,3 ,4 ) )  �9 F(O*(1,5)) = 1 �9 15 
states from the twisted sector. Similarly, for the five three moduli systems the data 
are collected in Table 2. 

The first model in Table 2 has two singular 713 points which are each blown up 
to a IP 2. The second through the fourth models have singular 2~3 curves for which 
the exceptional divisor is a ruled surface which is locally the product of  the curve 
C and a Hirzebruch-Jung Sph&enbaum. The last model has a singular 772 curve 
with an exceptional 7l 4 point which is blown up to a Hirzebruch surface ~2"  

Finally we list a class of  models whose K/ihler moduli stem from non-singular 
ambient spaces, the product of  ordinary projective spaces. The simplest model in 
this class is the bi-cubic in IP 2 x IP 2 whose defining equation is 

(z~ + z 3 + z3)wawzw3 + zlzzz3(w31 + w2 3 + w3 3) = 0 ,  (2.13) 

where Zl,Zz,Z3 and wbw2,w3 are homogeneous coordinates for each •2, respec- 
tively. We write the family of  this type as XOI3) (1, 1,111, 1, 1). In Table 3 we list 
all Calabi-Yau hypersurfaces of  this type, together with their Hodge numbers. 

The polyhedra associated to these models are the direct product of  the polyhedra 
which describes each projective space, e.g., for the bi-cubic model it is given by 
A ( 1 , 1 , 1 )  • A ( 1 , 1 , 1 )  E IR 4. 

We will see in Sect. 5 that these kinds of  non-singular Calabi-Yau manifolds 
will provide good examples for which one can compare the instanton expansions 
with calculations in algebraic geometry [37]. 
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Table3.. Hypersurfaces in products of projective spaces 
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X(313)(1,1,1 [1,1,I ) X(412)(1,1,1,1 h,1) x(31~12)(1,1,111,1 h,1) x(2121212)(i,i I 1,111,1 [1,1 ) 

h 1,1 2 2 3 4 
h 2'1 83 86 75 68 

Related few moduli models can be obtained by passing to products of weighted 
projective spaces, such as e.g. )((413)(2, 1, 1[1, 1, 1) with h 2,1 = 75 and h ~,1 = 3. For 
details about complete intersections in products of ordinary projective spaces we 
refer to ref. [4]. 

2.3. Reflexive Polyhedra for Calabi-Yau Hypersurfaces in non-Gorenstein ]P4(~l~). 
Let us now consider examples of Calabi-Yau hypersurfaces in IP4(~) for which 
the ambient space is non-Gorenstein. We will show that A(~) defined in (2.5) is 
reflexive also for these spaces. We claim an isomorphism between ~(~7) and ZT~r 
indicated by the fact that the Newton polyhedra of the constraints are isomorphic and 

^ 

the Hodge numbers coincide. Passing to Zfd,r ) we obtain a mirror configuration. 
The relation between X(~7) and Zf,a(~v) is that the latter is a partial resolution, 
namely of the non-Gorenstein singularities, of the former. 

The manifold which we treat as an example, appears in the classification of 
ref. [6]. Its mirror manifold can however not be constructed using the methods of 
[9] nor as an abelian orbifold w.r.t, symmetries of the polynomials of the models 
in [6]. We consider the following hypersurface in ll?4(ff): 

+ + + + z3z, +z5z 2 = 0 E ]p4(3,9, 17,22,24). (2.14) 

One can choose the generators of A as el = (-8,0,0,0,1), e2 = ( -17 ,0 ,3 ,0 ,0) ,  
e3 = ( -13 ,0 ,  1, 1,0) and e4 = ( -3 ,  1,0,0,0). In this basis the 10 vertices of A(~), 
which has 33 integral points, are 

~1 = ( - - 1 , - - 1 , 2 , - - i ) ,  

v4 ---- (--1,0,--1,7) ,  

V 7 = ( - -1 ,  1 , - I ,  1), 

v9 = ( 1 , 0 , - 1 , 2 ) ,  

v2 = ( - 1 , - 1 , 2 , 0 ) ,  

v5 = ( - 1 , 0 , 0 , 3 ) ,  

v8 = (0, 1 , - 1 , - 1 ) ,  

rio = ( 2 , 0 , - 1 , - 1 ) .  

v3 = ( - 1 , 0 , - 1 , - 1 ) ,  

Y6 = ( - -1 ,  1 , - 1 , - 1 ) ,  

v~ = ( - 9 , - 1 8 , - 1 4 , - 3 ) ,  

v~ = ( - 5 , - 1 0 , - 8 , - 2 ) ,  

v~ = ( - 2 ,  -6 ,  - 4 ,  - 1), 

* = ( o , o , l , O ) ,  Vl0 

v~ = ( - 8 , - 1 7 , - 1 3 , - 3 ) ,  

v~ = ( -3 ,  -6 ,  -5 ,  0), 

v~ = (0, -3 ,  -2 ,  0), 

vT1 = (0, 3, 1, 0), 

v~ = ( - 5 , - 1 1 , - 8 , - 2 ) ,  

v~ = ( - 2 , - 7 , - 5 , - 1 ) ,  

v; = (0 ,o ,o ,  1), 

* = ( 1 , o , o , 0 ) .  V12 

In Table 4 we list the numbers I(O) of lattice points inside the faces of dimension 
0 . . . . .  4. 

For dimO = 1 and 2 we also indicate on which edges the points lie and spe- 
cify the corresponding two-dimensional dual faces of A*. Applying now Eq. (2.4) 
we obta in  hl ' l ( z fA)  = h2'I(ZfA. ) = 35 and  h2'I(zfA)~-- hl'l(zf~l. ) = 38. As IPa* is 
Gorenstein while P(r~) is not, we see a difference in the structure of the singularities, 

The dual polyhedron A*(vP) with 44 integral points has the following 12 vertices: 
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Table 4.. Toric data for hypersurface 
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in ]p4(3,9,17,22,24) 

A(rV) a*(~7) 
dimO l(0) 0 dimO* l(O*) O* 
4 1 4 1 

0 10 3 4 

1 1 (8,10,12) 2 0 (6,7) 
2 (9,10,11) 0 (3,10) 
7 (10,11,12) 0 (3,4) 
0 (5,8,11,12) 3 (1,2) 
0 (1,2,5,6,8) 3 (2,8) 
0 (1,5,11) 1 (2,10) 
0 (1,5,9,10) 3 (8,10) 
0 (1,10,11) 1 (9,10) 

7 (10,11) 1 2 (3,4,9,10) 
1 (9,12) 0 (1,3,6) 
0 (5,8) 2 (1,2,8) 
0 (5,11) 2 (1,2,10) 
0 (4,12) 1 (2,4,5) 
0 (2,6) 1 (2,5,8) 
0 (1,5) 2 (2,8,10) 
0 (1,11) 2 (2,9,10) 
0 (8,10) 2 (6,7,8) 
0 (1,10) 2 (8,9,10) 

3 4 0 12 

i.e. not all exceptional divisors which correspond to curve and point singularities 
on Xa(~) in IP(~) are represented by points on faces of  dimension one and two in 

^ 

A*. The mirror o f  the manifold (2.14) is the hypersurface ZfA . in IP~.. 
We have looked at a large number (several thousand) of  models which appear 

in the lists o f  refs. [6, 11] including especially those for which no mirrors could be 
found, even after considering all abelian orbifolds 3, and verified that they always 
lead to reflexive polyhedra and that thus the corresponding IPA* is Gorenstein. This 
in particular entails that one can explicitly construct all mirrors for these manifolds 
as hypersurfaces in IPA*. A general combinatorial proof  that quasi-smoothness and 
vanishing first Chern class of  Xa(~) are equivalent to reflexivity of  A(ff), will 
be published elsewhere. It has however been shown in ref. [38] that a reflexive 
polyhedron in three dimensions can be associated to every K3 hypersurface in Ip3(~). 

2.4. Topological Triple Couplings. We now want to give a recipe of  how to 
compute topological triple couplings or intersection numbers of  divisor classes on 
the CY three-fold X,  which is the global minimal desingularization 7z : ) (  ~ X of  
X =Xab...,am(w) defined in (2.1). Proofs can be found in [33, 39] and [32]. A 
related application to orbifolds of  toil is discussed in [40]. I f  ~r is a singular 
stratum of  lPn(~), we denote by M C { 1, . . . ,  m} the subset which consists of  the 
indices of  those defining polynomials Wj which do not vanish identically on 9ffs. 
The singular sets 5es on X can be described as X{~}j~M({W~}mS ) (the relation be- 

tween w[,d} and wi, dj is explained below). Their dimension is I S I -  I M I -  1 and, 

3 We thank M. Kreuzer for providing a list of these manifolds. 
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as mentioned before, only points and curves occur. 5~s is a weighted projective 
space (Ira I = 0), a hypersurface (Iml = 1) or a complete intersection (Ira I > 1) in 
a weighted projective space. 

For singular points we distinguish between isolated points and exceptional points; 
the latter are singular points on singular curves or the points of intersection of 
singular curves where the order of the isotropy group I of the exceptional points is 
higher than that of the curves. 

For the singular sets we get, through the process of blowing up, exceptional 
divisors which are K/ihler. We use the following notation: Di and Ej denote the 
exceptional divisors on )2 coming from the resolution of the singular curves and 
points, respectively. J is the divisor on 2( associated to the generating element of 
Pic(X), cf. [41]. 

Each irreducible exceptional divisor provides, by Poincar6 duality, a harmonic 
(1,1) form, which we will denote by hj, hE and hD. h1'1(2) is # exceptional divisors 
+ 1. The topological triple couplings are then given as e.g. Ei �9 Dj �9 J - f2 hei A 
hDj A h j .  

In toric geometry the topological data of singular points are represented by a 
three-dimensional lattice and a simplicial cone defined by three lattice vectors from 
which, however, the lattice points within the cone cannot all be reached as linear 
combinations with positive integer coefficients. For Abelian singularities of type 
~3/ZN s the local desingularization process consists of adding further generators 
such that this becomes possible. This corresponds to a subdivision of the cone into 
a fan. The endpoints of the vectors generating the fan all lie on a plane, called 
the trace Art of the fan. This is a consequence of the fact that the isotropy group 
of singular points is a subgroup of SU(3), necessary for having a trivial canonical 
bundle on X. The exceptional divisors are thus in 1-1 correspondence with lattice 
points in Art, whose location is given by 

nl 2Tci xr" 

f ~ . ~  ~ n, ( n l , n 2 , n 3 )  (e ,~s "~  ----- I z . . . , e i -~  " E 71,3, 
~;=1 lvS 

e s 
2rti n3 

e Us 

I, ~ n ;  = Ns,  n~ >_= 0 . 
i=1 

Here elements o f /  describe the action of the isotropy group on the coordinates of 
the normal bundle of the singular point and YI, g2, e3 span an equilateral triangle 
from its center. 

For an isolated singular point there are only points in the interior of the tri- 
angle, whereas for an exceptional singular point there are also points on its edges, 
corresponding to the exceptional divisors that arise from resolving the curves on 
which the point lies. 4 If an exceptional point is the intersection of two or three 
curves, there will be points on two or three sides of the triangle. For points on 
curves with ANs-l-type t~2/7]Ns singularity, there are Ns - 1 points on a side of 
the triangle. The possible 5 triangulations of Ayr with its points in the interior, 
on the edges and its three vertices, correspond to the different desingularisations 

4 Not all exceptional divisors have a toric description, only/~1,1 of them do. The remaining ones 
cannot be treated by the methods outlined here. 
5 Not all triangulations lead to a projective algebraic desingularization, see [32] for local criteria. 
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on which some intersection numbers will depend. The number of triangles into 
which the trace is subdivided is equal to Ns, the order of the isotropy group. 

Let us now discuss the various possible intersections in tum. 

(a) :  
m 

j 3__  1-[J =ldj ,3 
"0 (n - m = 3 for threefolds), 

11i=1 i 

where no is the least colrnnon multiple of the orders Ns of the isotropy groups of 
all singular points, e.g. for a manifold given by a single constraint of Fermat type, 
this is the least common multiple of the common factors of all possible pairs of 
weights. 

(B): The action of the isotropy group on the fibers of the normal bundle to curves 
with an ANs-1 singularity is generated by 9 = diag(~,~Us-l), where ~ = e 2~i/Ns. 

Resolving these singular curves adds Ns - 1 exceptional divisors O i which are IP 1 
bundles over the curves C. For the intersection numbers one finds [32] 

(a): 

(b): 

Di �9 Dj �9 Dk = 0 f o r i + j # k ~ = i ,  

1 

D~_~ �9 Dj  : $ ( . ( j  - Ns  + 1) ;# ;~)  - 2Zc, 

D~. �9 Dj-1 = $ (a(Ns  - j ) ; # ; d  3) - 1)~c, 

D 2 . D j = 0  for [ i - j [  > 1. 

Here •c is the Euler number of the singular curve X{~}jeM({w~}ics),  embed- 

ded in a well-fomled weighted projective space, i.e. w[ = wi/mi and d~ = d j/m, 
where m = lcm({cj} jcs) ,mi  = lcm({ej}jcs\{ i})  and ci = gcd({wj}jes\{i}) .  Since 
gcd(wi, ci) = Ns, there exist, for all n E Z, two integers ai(n) and bi(n), such that 
Nsn = ai(n)wi + bi(n)ci with 0 < ai(n) < ci/Ns. We then define 

a(n) = 
Nan - E i c s . ( n ) i w ,  

m 

The function ~(n; w'; d ' )  is defined to be 

where 
1 d n 1 - I ( 1 - x  d') 

,(~; ~; d) - k dx~ ~-xw~--3 [~=o' 

with ~b(0; ~; el) = 1 and qS(n; ~; d) = 0 for n < 0. 

(c): 
D/3 = { 4Xc for C without exceptional points 

4Zc - ~=1( /~  - 1) for C with exceptional points.  
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As for the second contribution for curves with exceptional points, we recall that 
each exceptional divisor Di over C corresponds to a point Pij on the side of  the 
triangle belonging to the jth exceptional point over C. Now r is the total number 
of  exceptional points over C and l} are the number of  links between the point Pij 

and other points o f  the jth triangle which do not lie on the same side. 

(d): 
j 2  . D = 0 .  

(e): 

(f):  

2( . _  ) 
Y .  D)  - Xs  $ ( a ( n o ) ; w ' ; d ' ) -  1Zc  . 

{1( ) 
Di �9 Dj  �9 J = ~ss ~ ( ~ 1 7 6  1ZC for l i - j [  = 1 .  

0 otherwise 

(C) For the intersection of  the divisors resulting from the resolution of  singular 
points, one obtains [33] 

(a): 
E/3 = 12 - ~i,  

where ~i is the number of  triangles which have the point vi corresponding to Ei as 
a vertex. 

(b): E 2 . E j # O  iff the points vi, vj belong to a common 2-simplex. I f  u and u' are 
the two unique additional points such that (vi, vj, u) and (vi, vj, u') are 2-simplices, 
then we have the relation 

(E 2 �9 Ej)vi + (El �9 E2)vj + u + u' = 0 

from where we can determine the intersection numbers. 

(c): Ei �9 E j �9 Et  = l ( i # j # k # i ) i f  ( vi, vj, vk ) is a two-simplex; these couplings 
vanish otherwise. 

(d): 
j 2  " E i = J  . E ~ = J  " E l .  Ej = 0 .  

(D): What is left are (a) the intersections between Ei and Dj and the intersection of  
divisors over different but intersecting curves. These cases are again easily described 
in terms of  the toric diagram and do in fact follow from (C(b)),  where the points 
vi, vj may now also lie on the sides of  the triangle, in which case they represent 
exceptional divisors over the curve. And (b) E �9 D �9 J = 0. 

Let us finally discuss some examples: Consider the two-moduli model X8(2, 2, 2, 
1,1). The singular set consists o f  one singular AI curve C =X4(1 ,1 ,  1) which is 
already well-formed, i.e. a(n)  = n. Its isotropy group is a 712, and gc = - 4 .  Also, 
no = 2 and one easily computes ~(2; 1, 1, 1 ; 4 ) =  6. We can then collect all triple 
intersections, using an obvious notation, in the form K ~ = 8J  3 - 8 J D  2 - 16D 3. 

For the hypersurface X24(12,8,2,1,1)  the singular sets are an A1 curve C = 
212(6, 4, 1 ) " ~  2 6 ( 3  , 2, 1 ) with an exceptional Z4 point P = ) ( 6 ( 3  , 2) "~ )(1 (1, 1 ). Here 
no = 4 and applying (A) gives j 3 =  8. The points in Art are v = (1,0,0) ,  u = 
(0 ,1 ,0 ) ,  . '  = (0 ,0 ,1 ) ,  = ( � 8 9  1 1 g, g), VD = (0, 1, �89 i.e. three corners, one internal 
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point and one point on the edge, the latter corresponds to the exceptional divisor 
D of  the resolution o f  the A1 singular curve, x ( C ) =  0 and by (B(c)) we have 
D 3 = 0. Furthermore, if(4) = 2 and ~(2; 3, 2, 1;6) = 2. The unique triangulation o f  
ATr consists o f  four triangles with common point v~. Applying (B(b)), (C(a, b))  
and (D) we finally obtain K ~ = 8J 3 - 2 D 2 j  - 2D2E + 8E 3. 

Let us summarize the intersection numbers for the two and three moduli models. 
For the models with two moduli we find 

X8(2,2,2, 1, 1): K ~ = 8J  3 - 8JD 2 - 16D 3 , 

X12(6, 2, 2, 1, 1): K ~ = 4 J  3 - 4JD 2 - 8D 3 , 

212(4,3,2,2,  1): K ~ = 2 J  3 - 6JD 2 - 24D 3 , 

X14(7,2,2,2, 1): K ~ = 2 J  3 - 14JD 2 - l12D 3 , 

X18(9,6, 1, 1, 1): K ~ = 9J  3 + 9 E  3 . 

The topological coupling for the models with three moduli are 

)(12(6,3, 1, 1, 1): 

212(3,3,3,2,1):  

2"15(5,3,3,3,1): 

218(9, 3,3,2, 1): 

224(12, 8, 2, 1, 1): 

(2.15) 

K ~  l SJ 3 + 9 E ~ + 9 E 2 3 ,  

K ~ = 6J  3 - 8J(D~ + D22) + 4JD,D2 + 4D2D1 - 16(D~ + D~), 

K ~ = 3J  3 - 10J(D 2 + D 2) + 5JD1D2 + 5D2D1 - 40(D~ + D23), 

K ~ = 3J  3 - 4J(D~ + D  2) + 2JD,D2 + 2D2D, - 8(D~ + D23), 

K ~ = 8J  3 - 2 D 2 j  - 2D2E + 8E 3 . (2.16) 

The intersection numbers for hypersurfaces in products of  ordinary projective 
spaces can be readily calculated following [4]. One finds 

(2.17) 

2(313)(1,1,111,1,1): 

X(214)(1,111, 1, 1, 1): 

2(21213~(1, lll ,  111, 1, 1): 
2(2121212)(1 , l l l ,  lll ,  l l l ,  1): 

K ~ = 3J2J2 + 3J1J 2 , 

x ~ = + 4Jj , 

K ~ = 2JiJ  + 2J2J  + 3Jl&J3, 

K 0 = 2  ~ JiJjJk.  
i:4=j:t=k ~i 

3. Picard-Fuchs Differential Equations for Hypersurfaces 

Consider the unique holomorphic three form f2(~) o f  a Calabi-Yau three-fold X as a 
function o f  the complex structure moduli ~i,  i --- 1, . . . ,  h 23. Its derivatives w.r.t, the 
moduli are elements of  H 3 ( X ) ,  which is finite dimensional. This means that there 
must be linear combinations o f  derivatives of  the holomorphic three form which are 
exact. Upon integration over an element o f  H3(X) this leads to linear differential 
equations for the periods of  f2, the Picard-Fuchs (PF) equations. Candelas, De la 
Ossa, Green and Parkes showed in [14] how the solutions o f  the PF equation, 
together with their monodromy properties, allow for the computation o f  the (273) 
Yukawa couplings, the K~ihler potential for the complex structure moduli space and 
also for an explicit construction o f  the mirror map. 

The discussion in [14] was limited to models with one complex structure modu- 
lus only. Here we want to discuss the PF equations for the case of  several moduli. 
We start with a review of  a method to set up the Picard-Fuchs equations due to 
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Dwork, Griffiths and Katz. In the second part of this section we show how one 
may use the toric data of a Calabi-Yau hypersurface to construct the PF equations. 

3.1. Dwork-Griffiths-Katz Reduction Method. As shown in ref. [42, 15], the pe- 
riods Hi(O) of the holomorphic three form f2(0 ) can be written as 

Here 

/_/~(~,) = f . . .  f f co 71 rmri W I ( 0 ) " "  Win(O)' i = t , . . . ,2 (h  2'1 + 1). (3.1) 

n+l 
o9 = ~f](-1)iwizidzl A. . .  A dzi A. . .  A dzn+l ; (3.2) 

i=1 

Fi is an element of  H3(X,Z) and Y.i a small curve around Wj = 0 in the n- 

dimensional embedding space. The observation that Q@i ( wP, f (z)  ) . . .wPm co is exact 

if f ( z )  is homogeneous with degree such that the whole expression has degree zero, 

leads to the partial integration rule, valid under the integral ~?i = ~ i  : 

fc?iWj 1 Wjagf ~ Pk IV] fa~Wk 
�9 .. = -- - -  W~ ::-~V p" " (3.3) W m Wm pm p j - 1  W p' .  W pm kmjpj--1 Wk 

In practice one chooses a basis {Qk(Z)} for the G-invariant elements of 
the local ring 2 .  For hypersurfaces 02 = ~[Zl . . . .  , z,+l]/(c~iW). One then takes 
derivatives of the period w.r.t, the moduli until one produces an integrand of  

the form 9(z) such that 9(z) is not one of the Qi(z). One then expresses 
~-,~n+l 9(z) = l-.,i=l fi(z,~)OiW(z,O) and uses (3.3). For complete intersections ~ = 

(ll;[zb . . . ,  z,+~])m/(~_,i(OiW1, ..., c3iWm) + ~ j  Wj(C[Zl . . . .  , Z,+l]) m) and for the ba- 
sis elements of the ring one can choose vector monomials, i.e. m-component vectors 
whose only non-vanishing component is a monomial [43]. 

The generalization to complete intersections in products of projective spaces is 
straightforward [4]: one simply replaces the measure co by Fir cot, with o9~ given 
by Eq. (3.2) for each factor in the direct product of projective spaces. 

Note that the PF differential equations contain only those complex structure 
moduli for which there exists a monomial perturbation in the defining polynomials 

]~2,1 
(there are of  them). This wilt also be true for the method described in the 
following subsections. 

Above method of deriving the PF differential equations has been used in [15] 
[17] [16] for one modulus hypersurfaces and in [18] [19] for one modulus complete 
intersections. It applies in the form given above only to complete intersections in 
products of projective spaces and not for manifolds embedded in more general toric 
varieties. Applied to models with several moduli it becomes rather complicated. 
However, one can extract the general structure of the PF differential equations by 
inspecting the structure of the local ring 2 .  

To see this let us restrict our arguments to the case in which the mirror mani- 
fold X* of a Calabi-Yau three fold X can be obtained by the orbifoldisation by a 
finite abelian group G [10], and consider the period integrals on the mirror man- 
ifold X*. In this case the local ring NG for the mirror X* consists of the G- 
invariant elements of ~ = IE[za,.--,zs]/(OiW). We fix a basis of the ring Y2 ~ as 
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{~Oo; qh,..., q~2,1; (p~2,1+1 . . . .  , q)2gzl+l; q~2~2,1+2} where the elements are grouped ac- 
cording to their degrees (0;d, 2d; 3d). The elements with degree d correspond to 
the perturbations which are parametrized by the complex structure moduli ~i in the 

untwisted sector. (It will turn out that a choice for the monomials q)i(i = 1 . . . .  ,/~2,1 ) 
which is determined by the toric data of A* by the monomial-divisor map (2.11) 
is a natural basis to study the mirror map.) Then the period matrix (F/j) defined 

by F/Ji = k! frl ~pjWk+I co (k = ~ degree (~oj)) satisfies the first order system, called 

Gauss-Manin system 

c'~r M(k)(O)l-I (k = 1 , . . . ,  ]~2,1 ) .  (3.4) 

Here M(k)(O) are (2/~ 2'1 + 2) x (2/~ 2'1 + 2) matrices parametrized by Oi. This system 
is defined completely by the local ring Na. Our PF differential equations are a 
minimal set of (higher order) differential equations which is equivalent to the Gauss- 
Manin system. 

Now let us note that the local ring Nc can be expressed as 

~G ~_ r ~0~2.,]/J. (3.5) 

Here the ideal J is generated by algebraic relations of the form P(~0b..., 
9~zl) =- 0(mod OiW), i.e. 

5 
P ( ( P l , . . . ,  ~o~2,1 ) • EQi(z1 , . . . ,  z5)~im , (3 .6)  

i=1 

where P and Qi are polynomials in the ~Pi and zi respectively whose coefficients are 
polynomials of the moduli parameters. The relations (3.6) can be readily translated 
into PF differential operators for the periods F/i(~) ~ 1-i~ by replacing monomi- 
als ~p~, . . . ,  (0~ r by differential operators ~ ,  . . . ,  O~r and reducing successively the 
terms of type Qi~iW by using (3.3). Multiplication by ~Pi at the level of the ring 
(3.5) just translates to derivatives with respect to the complex structure moduli at 
the level of the PF differential equations. Therefore the requirement that the relations 
(3.6) from which the PF differential equations are derived generate J constitutes a 
necessary and sufficient condition that the PF differential equations are equivalent 
to the Gauss-Manin system. 

By simple analysis one now sees how many PF differential equations and of 
which order one obtains. For one modulus cases the ring will be of the form 
{1, (p, (o a, (1) 3 } and the truncation at degree 4d is done by an algebraic relation ~0 4 = 

~ Qi~i W leading to a fourth order PF differential equation. For two moduli cases 
there will always be one relation of degree 2d which truncates the three possible 
products (p;q~j at level 2d to two dimensions. This relation multiplied by Ol, (o2 gives 
two, necessarily independent, relations at degree 3d. Hence there must be always 
one further relation of degree 3d. Also, for Fermat hypersurfaces, the relations at 
degree 3d always generate five independent relations at degree 4d so that the ring 
is trivial at this degree. The full information about the period is therefore contained 
in one second and one third order differential operator. 

For higher dimensional moduli spaces the order of the full set of differential 
equations depends on the details of the ring (3.5). For example, in the case of the 
X24(12, 8, 2, 1, 1) model the three relations of the type (3.6), generating the ideal at 
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degree 2d, generate in fact the whole ideal. Applying (3.3) yields immediately the 
three second order differential operators, given in Appendix A. 

For the model X12(3, 3, 3, 2, 1) the three relations at degree 2d only yield 
seven independent relations at degree 3d. Hence the system has to be supplemented 
by two relations at degree 3d in order to generate J .  The system of Picard-Fuchs 
equations will therefore contain three second and two third order equations, compare 
Appendix A. 

For our purpose of constructing the mirror map, we need to find the point where 
the monodromy of solutions for the PF differential equations becomes maximally 
unipotent [44] and the local solutions around this point as well as the concrete 
form of the PF differential equations. We will find that the toric data encoded in 
A* provides us all necessary information for this purpose. 

3.2. Generalized Hypergeometric Equations and PF Differential Equations. We 
will now describe an equivalent but often more efficient way to obtain the PF 
differential equations satisfied by the period integral on the mirror manifold X* of 
X. We will mainly discuss, again, the case where the mirror X* can be obtained 
by orbifoldisation by a finite abelian group G[10]. We will briefly comment on the 
general case at the end. The following arguments for toric varieties are largely due 
to Batyrev [13]. 

As summarized in Sect. 2, in toric geometry the mirror manifold X* is described 
by the toric data encoded in the reflexive polyhedron A*. In this language the period 
integrals are written as 

1 n dX) (3.7) 
Hi(a) = f ~ j ~ = l  

with ?i E H~((c*)n\zf) .  The Laurent polynomial f is given by 

S V* 
f ( a , X )  = , ( 3 . 8 )  

i=0 

where v*'s (i = 0 , . . .  ,s*) are integral points in A* which do not lie in the interior 
of codimension one faces of d*. 

Now let us introduce the generalized hypergeometric system of Gel'fand, Kapra- 
nov and Zelevinsky [45] which is defined for each configuration of a given set of 
integral points A = {Vo,..., v e} in IR n. We consider the embedding of these points 
in the plane with distance one from the origin o f R  n+l by vi = (1,vi) and denote 

= {f0," ' ,Vp}.  We assume that the integral vectors fro," ' ,  fp span 7Z n+l. Since 
we have p + 1 integral points in IR n§ there are linear dependences described by 
the lattice 

L = lo, . . . , lp) e 7zp+l l~ l~  = 0 . (3.9) 
i=0 

Obviously ~ li = 0. Considering the affine complex space ~p+l with coordinates 
(ao,. . . ,  ap), we define the homogeneous differential operator 

~-~iai/]( ~ ~ li- i < ( ~ ) -li 
~l  = l-I l]-[o , (3.10) li>O 

for each element l of L. In addition, we define differential operators 
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n 0 

.LVj = ~ v i , j a i  --:-- - flj (3.11) 
i=0 r 

with /3 c ]R n+l and fi,j representing jth component of the vector gi E IR "+l. One 
can show [45] that the operators (3.10) and (3.11) define a consistent system of 
differential equations 

~ t c P ( a )  = 0 ( l  c L) ,  ~ j e P ( a )  = 0 ( j  =- O , . . . , n ) ,  (3.12) 

which is called A-hypergeometric system with exponent/3. 
In [13] Batyrev remarked that for a reflexive polyhedron A*; the period integral 

(3.7) satisfies the A-hypergeometric system with exponent fl = ( -1 ,0  . . . .  ,0) and 
A being the set of the integral points in A* which do not lie in the interior of 
faces of codimension one. Following Batyrev, we will refer to this system as A*- 
hypergeometrie system. 

In general, the A*-hypergeometric system does not suffice to derive the Picard- 
Fuehs differential equations. It turns out that in general we need to extend the system 
by supplementing further differential operators. This depends heavily on the toric 
data of A*. However the system (3.12) is quite useful because (i) for some mo- 
dels, the A*-hypergeometric system provides the Picard-Fuchs differential equations 
directly and (ii) even if this is not the case, this system gives finite dimensional 
solution space in which the solution space of the Picard-Fuchs differential equations 
is a subspace. On the other hand we should be very careful when applying the 
general results for the A-hypergeometric system in [45] to our A*-hypergeometric 
system because the latter is not generic in that it is (semi-non) resonant (see [45] 
for details) and the monodromy group is no longer irreducible. This is reflected in 
the simple example below by the fact that the fifth order operator we start with 
factorizes, leaving a fourth order operator which is precisely the PF differential 
operator for that case. 

In order to obtain an idea of the A*-hypergeometric system, let us study the case 
of the quintic hypersurface in IP 4. In this case, the integral points of the reflexive 
polyhedron A* are given by (2.7) and the corresponding vertices ~7 T = (1, v*) E IR 5 
become 

v 0-* = (1,0,0,0,0), v 1-* = (1, 1,0,0,0), v 2-* = (1,0, 1,0,0), 

F~ = (1,0,0,1,0), ~ = (1,0,0,0,1), ,7~ = ( 1 , - 1 , - 1 , - 1 , - 1 ) .  (3.13) 

As an integral base of the lattice L, which is one dimensional in this case, we can 
choose /(1) = ( -5 ,  1, 1, 1, 1, 1), i.e. L = ~l(1). The system (3.12) then becomes 

_ ai-~a ~ + 1 Hi(a) = 0 ,  (3.14) 

ai - a s  H i ( a ) = O  ( i =  1 , . . . ,4 ) ,  (3.15) 

together with 

/ c~ ~3 0 c3 ~ - H i ( a ) =  O , (3.16) 
~3al Oa2 Oa3 0a4 Oa5 

for ~ l  with l = l ~1). If we translate the period integral (3.7) to the more familiar 
expression 
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r 
Hi(a) P P  (3.17) 

J J  llAr-Z 5 a2 Z5 -[- a3 z5 q- a4z 5 Jr- a5zg ~- aozlz2Z3z4z 5 

utilizing the correspondence described by the monomial-divisor map (2.11), we 
see that (3.16) originates from the trivial relation in the integrand z~ . . . z55-  
(zlz2z3z4zs) 5--  O. The two equations (constraints) (3.14) and (3.15) can be un- 
derstood as the infinitesimal form of 

Hi(25 ao,.. . ,  25a5) = 2-SHi(ao,. . . ,  as),  

Hi(ao,. . . ,)~ai . . . .  ,2]-5a5) = Hi(ao,. . . ,as) (i = 1 , . . . ,4 ) ,  (3.18) 

with 2,-~i C C*, which are verified by a change of integration variables. The PF 
differential equation can be extracted from the A*-hypergeometric system by making 
the Ansatz 

H i ( . ) =  L [ I  i (ala2a3a4a5~ ao \ a~ } , (3.19) 

which solves (3.14) and (3.15). Then Eq. (3.17) becomes 

Ox { & -  5x(50x +4)(50x + 3)(50x + 2)(50x + l)}17i(x)=O, (3.20) 

ala2a3a4a5 Ox = Xd~ Since the factored operator Ox has only con- where x = a~ 5 and 

stants as solutions, we can remove this factor by introducing a constant. However, 
the asymptotic behavior of the period [Ii(a), for a0 --+ cyz with the other ai's fixed, 
tells us that this constant must be zero (cf. Sect. 4). We then obtain the generalized 
hypergeometric equation of fourth order in [14]. 

As this simplest example shows, the differential operators ~ l ( l  E L) represent 
the algebraic relations among the G-invariant monomials ~P0,'", qgs* which are the 
image of the integral points v~ under the monomial-divisor map (2.11). We will 
see that if these monomials generate the G-invariant polynomial ring ~[zb . - .  ,zs] a 
then the independent algebraic relations at lowest non-trivial degree result in the 
Picard-Fuchs differential equations, after factorization similar to the example above. 

3.3. Extension o f  the A*-Hypergeometric System.Consider G-invariant monomials 
q~0,"" ", ~Ps* which correspond to the integral points in A*(~7) not lying in the interior 
of codimension one faces. Then the orbifoldization of the zero locus of the quasi- 
homogeneous polynomial 

S* 
W(z, a) = ~aiqoi(z) (3.21) 

i=0 

describes Calabi-Yau hypersurface X* = X/G. The period integral (3.7) in the toric 
language is then translated to the form (3.3) as 

11i(a) = f f ;Ta (3.22) 
7Fi k ) ' 

with Fi E Hn(X, 77). As elucidated on the example of the quintic hypersurface, the 
differential operator ~ l ( I  c L) stems from the algebraic relations satisfied by q~i's. 
On the other hand the operators Lf, i(i = 0 . . . . .  n) represent the constraints which 
reduce the apparent redundancy in the description of the complex structure defor- 
mation of X* (3.21) that arise from introducing parameters ai for all i c {0,.. . ,  s*). 
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Apart from the problem of solving these constraints by defining suitable variables, 
which will be discussed later, the main idea of the A*-hypergeometric system lies 
in the fact that we can find algebraic relations among the G-invariant monomials 
~00,.-., ~ps* which result in the PF differential equations. 

In order to verify this for the models specified in the tables of Sect. 2, we 
classify them into three types. Type I: there are no integral points inside codi- 
mension one faces of A*(ff) and the G-invariant uaonomials ~P0,..., (P~* generate 
the ring C[Zl . . . . .  Zn+l] c. Type II: there are m > 0 integral points in the inte- 
rior of codimension one faces of A*(ff); if we include the corresponding mono- 
mials ~Os*+l,..., ~s*+m then q~0,..., ~s*+m are G-invariant and generate the ring 
ff~[zb... ,Zn+l] c. Type III: there are m > 0 integral points inside codimension 
one faces of A*0~) but we also need to consider m r > 0 G-invariant monomi- 
als Vl , . . . ,Zm'  of degree greater than d together with the degree d G-invariant 
monomials ~Pb...,(Ps*+m to generate the ring IE[Zl, . . . ,zn+l] ~. According to this 
classification, the models of type I are 

X 8 ( 2 , 2 , 2 , 1 , 1 ) ,  X~313~)(1,1,111,1,1), 5((214)(1,111,1,1,1) 

X(212t3)(1, 1/1, 1 ll, 1, 1), X(2t212t2)(1, 111, 1 I1, 111, 1) ; (3.23) 

for type II we have 

X12(6,2,2,1,1), X14(7,2,2,2,1), X18(9,6,1,1,1), 

X12(6,3, 1, 1, 1), X24(12, 8,2, 1, 1) (3.24) 

and finally for type III 

Xlz(4,3,2,2,1), X~2(3, 3, 3, 2,1), X15(5,3,3,3,1), X18(9,3,3,2,1). (3.25) 

For the models of each type we can now find the algebraic relations which result 
in the PF differential equations otherwise obtained through the reduction method 
reviewed above. More precisely, for models of type I, there are elements l E L 
for which the operators NI produce the PF differential operators after solving the 
constraints and some factorization as we have observed in the example. For models 
of type II and III, in general, not all of the PF differential operators follow from NI 
with some 1 E L. We miss the algebraic relations which involve ~Ps*+l . . . .  , ~0s*+m 
and Zl, . . . ,  %, .  We develop below a formal procedure for handling the models of 
type II and then demonstrate the recipe applicable to the most general case, type 
III, by treating an example. 

To formulate the recipe for the models of type II, let us recall [13] that the 
integral points in the interior of codimension one faces of A*(r~) are related to the 
automorphism group Ga. of ~'~.(~) by the formula 

dimGa. = n + ~ I ' ( 0 " ) .  (3.26) 
codimO*=l 

The first term takes into account the n-dimensional torus action which exists canoni- 
cally for toric varieties while the second term indicates additional symmetries, which 
can be written in infinitesimal form as 

m k 
z i' = zi + Y']ekb} )(z) (i  = 1, . . . ,5 ) ,  (3.27) 

k=l 
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where m ---- dimG~. - n. In order to take advantage of these additional symmetries 
we extend the quasi-homogeneous potential (3.21) to 

s*+m 
W(z,a) = ~ ai~oi(z). (3.28) 

i=0 

We can then utilize the symmetries (3.27) to derive the relations 

~o ~ k)(z)_~_ i (3.29) f f W(z,a)  2 ekb~ = O, 
7 Fi i = l k = l  " 

using fr; 09' = fri 09 for the automorphism (3.27). Since blk)(z) has the same de- 

gree as zi, the term in the integrand can be written as a linear combination of 
the degree dG-invariant monomials. All degree dG-invariants can be obtained by 
differentiating Hi(a) (cf. Eq. (3.22)) with W(z,a)  given by (3.28). Therefore we 
obtain independent differential operators of the form 

~-' c'(k)a .-~o (3.30) 
i,j=O j 

for each Ek(k = 1 , . . . ,  m). In this way we arrive at the linear system which extends 
the A*-hypergeometric system to 

~lq~(a) = O(l E L'), ~ jq) (a)  = O(j = 0 , . . . ,n ) ,  

:~Ae~(a) = 0(k = 1 , . . . ,m) ,  (3.31) 

where L I is now the lattice of relations between all integral points ~ ,  . . . ,  ~Tff.+m in 

/i*(~7) (cf. Eq. (3.9)). 
As a simple but non-trivial example, let us consider the model )(14(7, 2, 2, 2, 1) 

with defining polynomial 

W = al Z2 -[- ~2z72 Av el3 Z7 -[- a4 Z7 q- a5z~ 4 q- ao~Po -}- a6cP6 q -  g7~97 -~- a8~08 , (3.32) 

where q~o = zlz2z3z4zs, 996 = ZlZ 7, r = z2z3z4z 8 and q~8 = z~z2z24zg. The latter two 
correspond to integral points inside faces of A*(ff) of codimension one. This leads 
to two additional symmetries (3.27) which are easily recognized as 

! 
zl = Zl + elz2z3z4z5 + e2z 7, z[ = zi (i = 2 , . . . , 5 ) .  (3.33) 

From Eq. (3.29) we then get the extended system with two additional linear oper- 
ators 

a a 
= 2a,  +a0  

= 2a, Tg/  6 + a0 - Z + (3.34) 

The algebraic relations ~0 2 - 2 14 0 and ~Oo~p~ 7 7 7 Z1Z 5 = --Z2Z3Z4(P6 = 0 then lead to PF 
differential equations of second order and, after factorizing a trivial first order opera- 
tor, of third order, respectively. To get the third order equation we use the relations 
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(3.34) to express ~a~ in terms of derivatives with respect to ao, a5 and a6 and set 

a7 = a8 =- 0. 
Let us now show how the models of  type III are treated. In this most general 

case we will have to go beyond linear systems such as (3.31). For illustrative 
purposes we will treat the model X12(4, 3, 2, 2, 1) as an example. We start with the 
perturbed potential 

W ~-- a l z  ~ q- a2~: 4 d- a3 Z6 Ai- a4 Z6 -[- a5z~ 2 -}- aoq)o -I- a6q~6 , (3.35) 

where the G-invariant monomials q~o = zlz2z3z4z5 and q)6 : Z2Z6  correspond to the 
origin and an integral point on a one-dimensional face of A*, respectively. A* 
for this model has no integral points in the interior of  faces of  codimension one. 
However the operators ~ l  in the A*(~)-hypergeometric system miss the algebraic 
relations among the generators of  II;[Zl,... ,zs] G, because it turns out that we need 

__ 4 4 4 3 3 9 ,r2,r2,-,2.T8 to incorporate the degree 24 invariants, z l -  z 1 2 3 Z a Z 5 , ~ 2  : z 2 z 3 z 4 z 5 , ' c 3  = ~1~3,,4,,5 
and r4 = z2Z3ZaZ5-3-3-3-3 into the generators of  the invariants tl?[zb �9 �9 �9 ,zs] G. Though the 
algebraic relations which produce the PF differential operators are not unique, we 
may choose to consider the relations (92 _ z2z5412 = 0 and ~0~rl _ z1Z3Za(p 6 3 6 6  = 0. The 
former relation directly gives us a differential equation 

In contrast to this, we need to define 

lI;(a) = 2 f  f rr@3du, (3.37) 
~ri W 

in order to express the latter algebraic relation as 

( t 3 )  2 6~ 6~ ~ t~ / / i ( a ) = 0 .  (3.38) 
~ a  0 /-/~(a) -- ~al t~a3 Oa4 c3a6 

On the other hand, since up to total derivatives with respect to the coordinates zi 
we have the relation a3zl = 12aoala2(p 2 - 2 4 a o a 2 a 6 q ) o ( P 6  - 1 2 a l a 2 q ) 0 z 5 1 2  w e  obtain 

fl2ala:z ( c~ ) 2 24ala2a6 0 c~ 12ala2 0 ~3 }Hi (a ) (3 .39 )  
H~(a) = I, a~ ~ a3o Oao c~a6 a 3 c3ao t?a5 " 

I f  we now combine (3.38) and (3.39), we find a fourth order differential operator 
which annihilates Hi(a). We again find the fourth order operator to factorize, leading 
finally to a third order differential operator. 

We want to close this subsection with a comment. The discussion presented here 
was restricted to Fermat hypersurfaces for which the mirror X* can be obtained from 

X as an orbifold, i.e. X* = X/G. With the exception of the analysis of  the type III 
models however, all the information that was used in the derivation of the extended 
hypergeometric system and of the PF differential equations, is directly contained 
in A*. We can thus base our discussion also on the expression (3.7) rather than 
(3.22). The generalization for hypersurfaces in products of projective spaces and to 
complete intersections is also straightforward. 
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3.4. Application to Hypersurfaces with Two and Three Moduli. tn this subsection 
we will show how the general discussion above applies to the models with few 
moduli that we have listed in Sect. 2. 

Let us first go to a new gauge and define 

Hi(a ) = LJTIi(a ) . (3.40)  
ao 

The linear operators (3.11) then read 

s, -, 0 (3.41) 
~ j  : Evi,  jai cqai " 

i=O 

One then notices easily that the constraints ~ j H i ( a )  = 0 are solved if ~ri depends 
ls* on the variables ai through the combination a 1 := a~ ~ .. �9 as, for arbitrary l 6 L. We 

therefore introduce variables 

xk (-l)l~k)a t(k) Igk)-Igk) l(k) = : = ( - 1 )  % . . . as ;  (3.42) 

with {l(k)} an integral basis of the lattice L (cf. (3.9)); i.e. 

L = ZI(1) ~ . . .  | 7ll(d), (3.43) 

where d =/~2'l(X*). The integral basis is however not unique, but we will find 
in Sect. 4 that the variables xk, which are good coordinates of moduli space to 
describe the large complex structure limit of  X* and, through the mirror map, the 
large radius limit of X, are defined in terms of the basis of the Mori cone. Since, for 
the moment, we do not need the detailed definition of the Mori cone, we postpone 
its definition to Sect. 5 where we show how it is obtained from the toric data. 
In Appendix A we list this basis for L, together with the resultant PF differential 
equations, for each model. We notice that the appropriate basis does not always 
consists of  the shortest possible vectors. 

For any l (k) E L, we can then rewrite (3.10) acting on H(x) as 

II 
2(. k) > 0 iOo (oj -;) -,H (i-It k)f- 

)} 
1(k) < 0 J 
j , 0  

a.-2~ and is related to Oxk by where Oj is j % 

(3.44) 

Depending on I (k), this operator will factorize, leading thus to an operator of lower 
order. For some of our models, this leads directly to a complete set of PF equations. 
For these cases the basis {/(k)} consists of the shortest possible vectors in L. In 

d 
Oj : E l~k)Oxk �9 (3.45) 

k=l 
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Appendix A we have indicated the differential operators which cannot be obtained 
directly for some vector l (k) E L. 

The completeness of the PF differential equations follows from the application 
of the arguments presented in Sect. 3.1. Since the variable xk in our PF differential 
equations are coordinates on the complex structure moduli space in the vicinity of 
the large complex structure, each PF differential equation can be brought to the 
form 

{Pa(O)+~-~fab(X)qab(O)} H ( x ) = O ' b  (3.46) 

where Pa, qab and fab are polynomials with property fab(O) = 0 and p~ is homo- 
geneous. The homogeneity of pa(O) follows from the characterization of the large 
complex structure by the requirement that the indices of the PF differential equations 
should be maximally degenerate and the gauge choice which gives a power series 
solution that starts with a constant. The relation of the PF differential equations to 
the elements of the local ring ~ a  described in Sect. 3.1 also holds in the large 
complex structure limit. Therefore the criterion we should verify is that the ring 

r 0~2,, ]/(pa(O)) (3.47) 

is isomorphic to the local ring ~o .  We can verify this for all models listed in 
Appendix A. 

4. Logarithmic Solutions, Mirror Map and Yukawa Couplings 

In the previous section we have derived the Picard-Fuchs differential equations 
starting from the A*-hypergeometric system. Now we can argue the general form of 
the solutions using results for the generalized hypergeometric system. After finding 
the point of maximally unipotent monodromy, we define the mirror map. Once 
we have the Picard-Fuchs differential equations, we can determine the Yukawa 
couplings on the complex moduli space of X*. We will see that these Yukawa 
couplings are expressed in concise form using the discriminant of the surface. 

4.1. Solutions of the Picard-Fuchs Differential Equations and Mirror Map. When 
deriving the (Picard-Fuchs) differential equations, we have defined the expansion 
variables as 

xk := (-1)10~)a/(k)'" (k = 
_,-21 

1 , . . . , h '  ) (4.1) 

with an integral basis {/(k)} of the lattice L (3.9) for A*. We find, by solving the 
recursion relations for the coefficients c(n, p), a power series solution around xk = 0 
with the general form 

w(x; p) = ~c(n, p)x "+p 

:= ~ > r (a  - ~kl(0~)(n~) + p~)) 1 - I i>0r (~J l%~ + 1)xT,+~, ...xpp+pp , 
,,,...~pcz=oI-ii>or(~fli (nk + pk) + 1) r ( 1  - EkI~k)pk) 

(4.2) 

= ]~2,1 
where p and the pj(j = 1 , . . . ,p )  are the indices, i.e. the solutions of 
the indicial equations of the differential equations, c(n,p) is normalized so that 
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c(0,p) = 1. This is in fact of the form of the general solution for the hypergeo- 
metric system given in [45] and thus applies for an arbitrary choice for the integral 
basis {l(k)} of the lattice L. 

Note that the power series solution can also be easily obtained by explicitly 
performing the Cauchy integral (3.7) in the limit a0 --+ ~ and choosing the cycle 
y = {(Xl ,X2,X3,X4) E (r . . . . .  IXal = ~}. 

For the mirror map we need to find the local solutions of the PF equations 
with maximally unipotent monodromy [46]. This means that when expanding in the 
appropriate variables xk, the solutions of the indicial equation will be maximally 
degenerate (in fact all zero) and there is a unique power series solution of the form 
(4.2) with all other solutions near xk = 0 containing logarithms. 

We find that if we define the expansion variables xk = (--1)l~k)a zck~ (k = 1,. . . ,  

/~2,1) with l ~k) being the basis for the Mori cone in L, we can take the large radius 
limit at xk = 0, i.e. by what was said before, at this point the monodromy becomes 

maximally unipotent with/~2,1 solutions linear in logarithms: 

wk(x) = wo(x)logxk + ~i(x,O) (k = 1,...,/~2'1). (4.3) 

Here Wo(X) = w(x, 0) is the unique power series solution and #i(x, 0) are also power 
series. We will normalize these solutions such that they do not contain a constant 
term (see also [37]). 

Let us now turn to the explicit form of the logarithmic solutions. Using standard 
arguments for their construction, they are obtained by taking derivatives with respect 
to the indices which are then set to zero. To get the solutions containing higher 
powers of logarithms, one has to choose certain linear combinations of derivatives 
with respect to the Pk. This point is best illustrated by working out an example, for 
which we choose the model Xs(2, 2, 2, 1, 1 ). 

a l a z a 3 a 6  ~ a4a5 It is easy to verify that the indicial equation at xl = _4 ,.x 2 = ~ 0 
u 0 a 2 

has six (=  dimH3(X*)) solutions which are alLzero. (This is e.g. not the case if 
one expands around xbx2 ~ oo.) To find the logarithmic solutions at xbx2 ~ 0 it 
suffices to note the relations 

'3~ h~pl~n2+P2 ~lW(X;p)  = ~ c(O, nz)pZ(--2n2 + P l  - - x - / / 2 ) - x  I "~2 , 

n 2 > 0  

~@2W(X; p ) = - -  ~ C ~ u l , V / p 2 - ~  1 .x 2 
n 1 _>-0 

(4.4) 

where the coefficients are 

( n l , n 2 ; p )  = 

F(4(na + Pl) + 1)F(pl + 1)3F(p2 + 1)2F(pl - 2p2 + 1) 

F(nt + Pl + 1)3F(n2 + P2 + 1)2F(nl - 2n2 A- Pl - 2p2 + 1)F(4pl + 1)" 
(4.5) 

Due to the factor F(nl - 2n2 + Pl - 2p2 + 1) in the denominator, we have that (i) 
c(nbn2)lp=o = 0(nl < 2n2) and (ii) (2~pl + 63p2)C(nl,nz)lp=O = 0(hi ~ 2n2). Us- 

of this and [~i, ~-~o~] = 0 allows us to find all five logarithmic solutions for age 

this example: 
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+ (46  

The logarithmic solutions for the other models can be found in Appendix A. 
The mirror map, which relates the complex structure moduli space on X* to the 

Kghler structure moduli space on X, is described by the variables tk(x), which are 
defined as 

tk(x) - c?Pkw(x; 0) _ logxk + O ( x ) .  (4.7) 
w(x; o) 

In fact, in addition to the power series solution, we can also give the general 
expression for the logarithmic solutions that enter the mirror map. They are 

wk(x)  = wo(x)lOgXk 
nCZP>ok j i>0 j J 

(4.8) 
where Wo(Z) is the power series solution 

wo(x) = E 
nEzP 0 

with 

4.2. Yukawa Couplings. Those Yukawa couplings which are functions of the com- 
plex structure moduli, are defined through the holomorphic three form O(x) as (cf. 
e.g. [47]) 

Kxixjxk(X) = f f2(x) A ctxiC?xj~?xkf2(x) . (4.9) 

19(x) can be expanded in a basis of H3(X*, 7Z) as 

p+l 
(2(x) = ~ (za(x)~a - (~b(X)flb), (4.10) 

a=l 

where p = h 2,1 and aa, fib are a symplectic basis of H3(X *, Z). z a and fib are the 
period integrals with respect to the cycles dual to ~ and fib. Then the Yukawa 
couplings can be expressed through these periods as 

Kx, xjxk = ~(ZaOx, OxjOxk Na -- N~Ox,#xjOxkZa) �9 (4.1 1) 

We now define 

a 

:= ~ ( z a ~ k f f ,  - (r (4.12) 
a 

In this notation, W (k) with ~ k i  = 3 describes the various types of the Yukawa 
couplings and W (k) = 0 for ~ ki = O, 1, 2. 

Now let us write the Picard-Fuchs differential operators in the form 
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9 l  = Y ] f l k ) ~ ,  (4.13) 
k 

then we immediately obtain the relation 

(k) w(k) Y~fl " = 0.  (4.14) 
k 

Further relations are obtained from operators ?xi~l. If the PF differential equations 
are complete in the sense of Sect. 3.1, they are sufficient for deriving linear relations 
among the Yukawa couplings and their derivatives, which can be integrated to give 
the Yukawa couplings up to an overall nomaalization. In the derivation, we need to 
use the following relations which are easily derived: 

W (4'0'0'0) = 20xl W (3'~176176 

W(3,1,O,O) 34 W(2,1,o,o) 1~ W(3,o,o,o} 
= ~ xl + ~ x2 , 

W(2,2,0, 0) : 0Xl W (1,2,0,0) ~_ ~x2 W (2'1'0'0) , 

10 W(2,0,1,0) 1 W <2'1'1'~ = 0x~ W 0'1'1'~ + 2 X2 -~ 2 ~x3 W(2'l'~176 ' 

W (1'1'1'1) = l t ~  w(~ + Ox2W (1'~ + 0x3W(1'1'~ + 0x4 W0'1'I'~ (4.15) 
2~vxl ,, 

By symmetry the above relations exhaust all possibilities. 
We have determined the Yukawa couplings for our models. They are displayed 

in Appendix A. We should remark that they are all of the form 

vr - p ( x  ) 

q(x) dis~ (X*) 

where p(x) and q(x) are polynomials and disl(X*) is a component of the discrimi- 
nant of the hypersurface, the set of codimension one in moduli space where the 

manifold becomes singular, i.e. where fA* = X~ ~ f a . . . . . .  X4 T~TX, fA* = 0. 

Other components of the discriminant surface can be read from poles of the indi- 
vidual Yukawa couplings. 

Note that for the models considered here the Laurent polynomials remain trans- 
verse if we turn off the terms corresponding to the divisors via the monomial divisor 
map, i.e. the corresponding points in moduli space are regular. 

5. Piecewise-Linear Functions and Asymptotic Form of the Mirror Map 

The mirror map is a local isonaetry between two different kinds of moduli spaces; 
the complex structure moduli space of X* and the (complexified) K/ihler moduli 
space of X. We will be concerned with the real structure of the latter moduli space 
in this section. It has the structure of a cone, the so-called K~ihler cone. How 
this cone structure appears in the definition of the mirror map (4.7) can be seen 
explicitly in our two and three moduli models. We should also remark that we are 
only discussing the toric part of the K/ihler cone. 

5.1. K6hler Cone. Let us consider a K~ihler form K on a Calabi-Yau manifold X. 
The Kfihler cone is defined by the requirements 
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f K  A K  A K  > O, f K  A K  > O, f K  > 0 ,  (5.1) 
x s c 

with S and C homologically nontrivial hypersurfaces and curves in X, respectively. 
For toric varieties, Oda and Park [48] have shown how to determine the K~ihler cone 
of IPA based on the toric data encoded in the polyhedron A. We will only sketch 
their construction and illustrate it on the simplest example, the torus X = X3 (1, 1, 1 ). 

We start with the n-dimensional polyhedron A and consider its dual A*. We 
extend A* to the polyhedron z]* E IR "+1 by considering a convex hull of the origin 
and the set (1,A*). Then a simplicial decomposition of A* induces a correspond- 
ing simplicial decomposition/7 of / i* .  We denote the subset of the k-dimensional 
simplices as Fl(k). We consider piecewise linear functions, PL(/-/), on the union 

IIn+l/7(k). A piecewise linear function u is defined by assigning real values 1/71 = ,-,k=0 
Hi to each integral point v~ E A*(i = 0, . . .  ,s*) which is not inside a codimension 
one face of A* (we denote the set of such integral points as ~ with s* = I-=1 
and its one dimensional extension by ~ = {(1,v*)lv* E ~}). If the vertices of a 
simplex a E /7 (n  + 1) lying on (1,A*) are given by ~ , . . . , ~ , ,  then an arbitrary 
point y e a -  can be written as v = c i  v. + . . . , + c i  v..(ci + . . .+c i , ,  < 1,ci~ > O) 

0 tO n l .  0 ~ ~ -  

and the piecewise linear function u takes the value 

h i ( l ) )  ~ -  Ciobl io  "J- " " " "~- Cin Uin . (5.2) 

Equivalently, the piecewise linear function u can be described by a collection of 
vectors zG assigned to each simplex a E II(n + 1) with the property 

u(v) = (zo, v) for all v E a ,  (5.3) 

where (., *) is the dual pairing. 
A strictly convex piecewise linear function u E CPL(//)  is a piecewise linear 

function with the property 

u(v) = (zo, v) when v E a ,  

u(v) > (z~, v) when v ~ or. (5.4) 

It is clear that if u is a strictly convex piecewise linear function then so is 2u(2 E 
IR+). Thus the set of the piecewise linear functions has the structure of a cone. In 
order to describe the cone structure, we consider a vector space W[ whose basis 
vectors are indexed by the set 

W 1' = 21Re~,  (5.5) 
lea 

with the basis e{. According to the construction of Oda and Park, the convex 
piecewise linear functions CPL(/7) constitute a cone in  the quotient space 

V' = W [ / { 2  (x, ~)eglx E lR"+l}, (5.6) 
r 

where ~ = (1,~). In our context this cone can be identified with the K~ihler 
cone of IPA (cf. also [49, 13, 33]). In the case of the torus 3(3 (1, 1, 1), we 
have 7~ = (1 ,0 ,0 ) ,~  = (1 ,1 ,0 ) ,~  2 = (1,0,1) and ~7~ = ( 1 , - 1 , - 1 )  as the one di- 
mensional extension of the integral points of A*. Simplieial decompositions of 
A* and 3* are evident, and we have /7(3) = (0"1 ,0"2 ,0"3)  with al = (0 ,~ ,~ ,g~) ,  
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a2 = (0, ~ ,  ~ ,  ~ ) ,  a3 = (0, ~o, ~ ,  ~7~). Therefore a piecewise linear function u is de- 
scribed by either (Uo, UbU2, U3) o r  (Zal,Za2,za3) which are related through 

z~j = (uo, 2uo - u2 - u3,u2 - uo), z~ 2 = (uo, ul - Uo, 2uo - ul - u3), 

z~ 3 = (Uo, ul - Uo, u2 - uo). (5.7) 

The condition of the strict convexity (5.4) on u becomes the inequality 

~/1 -~- U2 -t- U 3 - -  3Uo > 0.  (5.8) 

This inequality produces a cone whose generic element Ku is 

3 1 
Ku = - ~ u i e v ' [  =-- -~((ul + u2 + u3) - 3u0)ev~ , (5.9) 

i=0 

where the second equivalence is modulo the relations in (5.6) which are 

e v ; + e v ~ + e v ~ + e v ~ = 0 ,  e v ~ - e v ~ = 0 ,  e v ~ - e v ~ = 0 .  (5.10) 

The inequality (5.8) shows that K,, is a generic element of a cone, a half line in 
this case. The identification of the base e~ with a divisor of IP~, which is justified 
for a general toric variety, results in the Kghler cone of this model. 

Models with several moduli are treated similarly. For example, in the case of 
)(8(2, 2, 2, 1, 1) we obtain two independent inequalities 

--4Uo q - u  1 ~- u2 --~U 3 ~ - u  6 > 0 ,  

u4 +us  - 2u6 > 0 (5.11) 

from the condition (5.4). As a general element of the divisor of IP~, we have 

1 1 
Ku ~ g( -8u0  + 2ul + 2u2 q- 2u3 + u4 + us)eva + ~(g4  q- u5 - 2u6)evg �9 (5.12) 

This example already demonstrates the general situation. If we write the inequa- 
lities in the form (u, l (k)) > 0, then the l (k) form a particular integral basis for the 
lattice of  relations L of the points ~. This basis generates a cone in the lattice of  
relations, called Mori cone; it is dual to the K~ihler cone. The l (k) are exactly the 
basis of L by which we have defined the variables xk (see Eq. (4.1)) to observe the 
maximally unipotent monodromy at xk = 0. In terms of the l (k) ,K,  can be written 

as K~ ~ l{u,2/O)+/(2))e~a + l ( u ,  1(2))er We thus see that the inequalities (5.11) 

give rise to a cone, the K/ihler cone, in the quotient space V'. From the general 
theory of toric geometry it follows that we may identify the basis ev a and e,,a with 
the divisor J associated to the generating element of Pic(X) and the exceptional 
divisor D on J( coming from the resolution of the 7Z2 singular curve, respectively. 

The situation is now again easily described for the general case. If we express 
each point corresponding to a divisor as a linear relation of the vertices of el* in 

~(i) .,-* r~ the form y~ Ij vj = v for the i tn divisor, such that ~(0 = ~n~kl (k)  with {l(k)} being 
the basis of the Mori cone and the 1"Ilk positive integers, then we have 

K u = ~ c i ( u ' [ ( i ' ) e v ~  . ( 5 . 1 3 ,  
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where the ci are rational numbers. 

We should note that the identification of the basis e~T(i = 1, ...,/~14(X)) with 

the divisors is justified only up to an as yet unspecified constant, whose determina- 
tion will be the subject of the next subsection. 

Let us finally give a simple example for a non-singular case, the bi-cubic 
X(3,3)(1, 1, 1]1, 1, 1). Starting from the polyhedron A(1, 1, 1) x A(1, 1, 1), we obtain 
the following independent inequalities 

b/1 ~-//2 -~- b/3 - -  3Uo > 0, IA4 + u5 + u6 - 3Uo > 0,  (5.14) 

and for the divisor of IPA 

Ku ~ - ( U l  -~- bt2 -it- b/3 - -  3uo)e~ - (u4 + u5 + U6 - -  3uo)e~2 . (5.15) 

In Appendix A we list the expressions of the generic divisor K. for all models 
we are considering. 

5.2. Mirror Map and Instanton Corrections. In Sect. 4.2. we have determined 
the Yukawa couplings on the manifold X* up to a constant as a function of the 
complex structure moduli utilizing the PF differential equations. The results for the 
models that we will consider in some detail have been collected in Appendix A. 
We will now use these results to determine the quantum Yukawa couplings on X 
as a function of  its Kghler moduli. This will be achieved by close study of the 
mirror map tk(x) (4.7). 

As we have seen, the variable tk is associated with Mori's basis for the lattice of 
relations L. We now need to find the variable tk which corresponds to elements hi E 
H I,1(X, 7Z), such as to reproduce the intersection numbers (2.15), (2.16) summarized 
in Sect. 2. In terms of the ti, we have an expansion of the K/ihler form 

~(i,1) 
K(X)  = ~ tihi. (5.16) 

i = 1  

After identifying the integral basis we will be able to read off the degrees of the 
rational curves with respect to the divisors J,D,E introduced in the Sect. 2. We 
take the relation between the two sets of parameters to be linear: 

]~1,1 

ti(x) = ~mij?j(x) .  (5.17) 
j = l  

Those Yukawa couplings on X which are functions of the K/ihler moduli, are 
described by those on X* which are functions of the complex structure moduli 
through the mirror map [14, 46]. To obtain them one first changes coordinates from 
the xi to the ?i coordinates and goes to a physical gauge by dividing by wo(x(?)) 2 
[14, 46]. Here w(x) is the power series solution of the Picard-Fuchs differential 
equations normalized by setting Wo(X) = 1 + O(x). The transformation properties of 
the Yukawa couplings under a change of coordinates follows from Eq. (4.9) and 
the fact that f (2 A 0if2 = f (2 A ~i~j~~ = O. We then obtain the following expression 
for the Yukawa couplings on X as a function of the Kghler moduli ti: 

1 ~ &/&m ~x,,  Xx,xmxo(x(t3). (5.18) 
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Introducing variables qi = e i}, we expect the instanton corrected Yukawa couplings 
in the form of a series, which generalizes the successful ansatz made in [14] for 
predicting the numbers of rational curves on the quintic in ]p4 to the multi moduli 
case. It was justified in ref. [50] in the framework of topological sigma models [51] 
and reads 6 

efcK(X) 
Krr/Tk = xfhi A hj A hk + Efhifhjfhkc c c c J ---e -f-~-cx(x) 

~ N ( { n l }  )n in jnk~ nl 
= K~ + 2.., ]'--'~-SV~nt l lq l  , (5.19) 

n i  - -  l l lq l  I 

where we have defined r / i  = f ch i ,  which is an integer since h i C HI'I(J~,~). The 
sum in the first line is over all instantons C o f  the a-model based on X and the 
denominators take care of multiple covers of them. N({ni} )  is also an integer which 
is the instanton number with degrees {rli}. By considering specific examples below, 
however, we will see that it is not necessarily a positive integer. For more than 
one K/ihler modulus the n i do not have to be positive, especially for the manifolds 
obtained from singular varieties by resolution. The integral f c K ( X )  however does 
have to be positive for K(x)  to lie within the K/ihler cone. These requirements on 
the series expansion of (5.18) result in several constraints on the mij in (5.17) and 
the integration constant for the Yukawa couplings Kxix xk on X*. J 

In our calculations, the constraints from the topological triple coupling (the 
leading term of (5.19)) allow several possible values for the mij. The additional 
constraints which stem from the form due to the multiple covering turns out to be 
satisfied by ahnost all solutions which satisfy the first constraint. In order to fix the 
parameters mij we need to take a closer look at the mirror map (4.7) in the large 
radius limit. 

In the previous subsection we have described the K/ihler cone by using its 
isomorphism with the class of strictly convex piecewise linear functions. These 
functions were defined by their values ui on the integral points of d*(v~) not lying 
inside codimension-one faces. The condition of strict convexity resulted in inequal- 
ities (u, I (k)) > 0, with the l (k) a basis of the Mori cone. In terms of the l (k), a 
general element of the Kfihler class of IPA can be written in the form (5.13). 

On the other hand, from the definition of the xk through the basis of the Mori 
cone, we have in the large radius limit Xk --+ O, 

tk ~ logxk ~ ~-](log ai)ll k) . (5.20) 
i 

The similarity of the condition for the large radius limit -tk >0  to the inequality 
for the K~ihler cone (u, l (k)) > 0 then suggests to identify ui with log ai as an 
asymptotic form of the mirror map. If we impose this asymptotic relation ui = 
logai when xk ~ 0, we can translate the expression (5.13) for the K~ihler class 
to ~-~i ~ j  cinijtjev; = ~-~i ~ j , k  cinijmjk?kev*. For each model we can find an integer 
solution mij with the property 

/~1,1 

Ku -- ~ ~ cinijmjktkev~ = ~s162 ?ki . 
i j , k = l  i 

(5.21) 

6 Recall that for (2,2) string models there are no further corrections from curves of finite genus. 
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Here c~s are giving the normalization factor to the integral basis. In this way, we 
fix the solution mij which reproduces the topological triple couplings together with 
the normalization of the basis ev T under the Ansatz of the asymptotic form of the 

mirror map. This suggests that we associate ?ievT with the element hi @ HI'I(x,  ~)  
and get the Kiihler cone as the part of moduli space in which the ~/ may lie such 
that (5. I) is satisfied. 

The asymptotic form of the mirror map was also considered by Batyrev [49] 
in his definition of the quantum cohomology ring, (these asymptotic relations also 
appeared in ref.[35]). Our analysis described above is consistent with these refer- 
ences. 

We will apply this recipe in the next section to some examples. 

6. Predictions and Discussions 

In this section we will present the instanton expansions and calculate the topological 
invariants N ( { n i } )  for various two and three moduli cases. If at a given degree 
{hi} the manifold has only isolated, nonsingular instantons, N simply counts their 
number. However for non-isolated, singular instantons the situation becomes less 
clear and further detailed studies are needed. 

Let us turn to our examples and fix the mirror map by applying the formalism 
described in the previous section. For the singular hypersurface X8(2, 2, 2, 1, 1 ) Ku is 
given in Eq. (5.12) and we have l (1) -- ( -4 ,1 ,1 ,1 ,0 ,0 ,1 )  and l(2) = 
(0,0,0,0, 1, 1 , - 2 )  for the generators of Mori's cone. Using Eqs. (5.12) and (5.21) 

(4;1~ --c2 ) We now colrl- we get for the variables mij in the Ansatz (5.17) m = 2~2 ' 

pare the intersection numbers given in Sect. 2.4 as K ~ = 8J 3 - 8JD 2 - 16D 3 with 
the O(q ~ terms in the expansion of the Yukawa couplings (5.18), 

4 2 
K71~ii" ~ = 8 + O(q) = ~-~m11(2m11 + 3m21) + O(q) , 

4 
KtlFl~2 = 0 + O(q) = -~mll(2mllml2 + 2m12m21 + mllm22) + O(q) , 

4 
Is = --8 + O(q) = -~m12(2mltm12 + m12m21 + 2mllm22) + O(q) , 

4 2 
K7272i" 2 = - 1 6  + O(cl) = ~-Smlz(2m12 + 3m22) + O(q) ; (6.1) 

here we have taken an integration constant 8/c 3 into account; it arises when inte- 
grating the first order differential equations satisfied by the Yukawa couplings. 

One constraint on the mij is that they have to be integers since the expo- 
nents of the' qi are the degrees of the rational curves with respect to the ~various 
hi C HI'I(X,2g). As the only solution which leads to integer m we can identify m = 

( ;  --2cC ) with c~Z"  With this ansatz we ~ KT171fl = - 1 6 - 3 2 +  

The second term gives rise to a fractional topological invariant N ( 0 , - 2 c )  = 
32/(2c) 3 if  Icl > 1. The two choices of the sign just correspond to an overall sign 
of  the two K~ihler moduli. Our sign convention will always be such that nj >_-- 0. 
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Requiring integral topological invariants we therefore conclude that m = (10 1 2 )  

and s = , - 1  . Thus we may associate J and D to -~eu~ and -ev~, respectively. 

If we combine this with the general description for the K~ihler cone given before, 
we can determine the K~ihler cone a(K) as 

or(K) = {?lhj + t2hD[tl + 72 > 0,72 < 0}.  (6.2) 

It describes possible directions for the large radius limit where the instanton 
corrections are suppressed. The topological invariants N({ni})  can now be read 
off the expansion of Kr~k(ql ,qz ). From the relation between the basis t/ and 

ii in terms of the integer matrix m we find that the degrees are of the form 
(nj, nD) = (p, p -  2q), with p,q  = 0, 1,2,.. .  We have listed the topological invari- 
ants up to order p + q < 10 and find non-zero nmnbers only at degrees (nj, nD) 
within the wedge rtj >= [nDI,nj+nD even, and in addition at (0, -2 ) .  Whereas 
rtj = fc  hj ~ O, rl D = fc  hD also takes negative integer values. We observe the sym- 
1Tletry N(nj ,  n D ) = N ( n j , - r i D )  for nj > 0, and have thus listed only the former. 
All topological invariants are non-negative integers for this model. 

The other models can be discussed similarly. In Appendix A we give the K~ihler 
cones and in Appendix B the topological invariants N({ni})  at low degrees. 

The model X12(6,2,2, 1, 1) is very similar to the model discussed above. It also 
has a singular 772 curve. Here the degrees are of the form (nj, nD)= ( p , p -  3q) 
and we have listed them again up to order p + q = 1 0. 

There are two more models with the singular set being a 2~2 curve, namely 
X12(4, 3, 2, 2, 1) and )(14(7, 2, 2, 2, 1 ). We get from the Yukawa couplings the topo- 
logical invariants with degrees (nj, n D ) = ( p , 3 p - 2 q )  and (nj, n D ) = ( p , 7 p -  
2q), p, q = 0, 1, 2 . . . .  , respectively. In contrast to the first two models some of the 
invariants now are negative integers. 

Let us note some observations which relate these four models to the one-moduli 
complete intersections discussed in [18] and [19]. If for fixed nj > 0 we com- 
pute EnD N(nj ,  nD), we find for the four models discussed above the same num- 
bers as for the one modulus models X(412)(1 , 1, 1, 1, 1, 1),X(612)(1 , 1, 1, 1, 1,3),X(614 ) 
(1, 1, 1,2,2,3) and X8(4, 1, 1, 1, 1), respectively [16, 19, 18]. 

In contrast to these three models, X18(9, 6, 1, 1, 1) has a 713 point singularity. The 
topological invariants appear in the instanton expansion of the Yukawa couplings 
at degrees (nj, n E ) =  ( p , p -  3q) with p,q = 0,1,2,. . . .  We have listed them for 
p + q < 6. We find non-zero values for all degrees within the cone generated by 
(1, 1) and (0, - 1 ) .  We again find that some of the topological invariants are 
negative. 

As examples for hypersurfaces in lp4(ff) with three moduli we have picked 
from Table 2 three models, representing the three different types of singulari- 
ties which occur. The hypersurface )(24(12,8,2, 1, 1) has a singular 772 curve with 
an exceptional 7Z 4 point. The exceptional divisors correspond to the ruled sur- 
face C • IP 1 and the Hirzebruch surface ~-]~2" Here the degrees of rational curves 
are (nj, nz~,ne ) = (n,2m - p ,n  - 2 ) .  We have displayed the topological invariants 
for (n + m + p)  < 6. Again, some of the invariants are negative. For the case 
X12(3, 3, 3,2, 1 ) we have a singular 77 3 curve. The two exceptional divisors are the 
irreducible components in C x (p1/x pX). Nonvanishing contributions to the instan- 
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ton sum occur at degrees (ne, nD~,nD2)= ( n , m -  2 p , 2 n -  2m + p). As before the 
topological invariants take both signs and are tabulated for (n + m + p) < 6 in 
Appendix B. In the model X12(6, 3, 1, 1, 1) we have a two-fold degenerate ~3 fixed 
point, which results in two exceptional divisors E1 and E2, each isomorphic to 1172. 
The interesting point is that they correspond in the Landau-Ginzburg description 
to one invariant and one twisted state. The Picard-Fuchs equations derived as in 
Sect. 3 contain only two parameters x, y. A consistent instanton sum emerges, if we 
interpret the corresponding parameters [1 and/2 after the mirror map, as associated 
to J and the symmetric combination E1 + E2. In doing so, the mij have to be 
adjusted s.t. they fit the intersections K ~ = 18J 2 + 18(E1 + E2)3, which results in 

1 13 . m=(0 ) 
For the model )((3t3)(1 , 1,111, 1, 1 ) the topological invariants are all non-negative 

and positive for nj~, nj 2 > O, and satisfy N(nj1, nj 2) = N(nj  2, njI ), as expected. We 
have listed them for nj~ + nj 2 <__ 10. Some of these numbers can in fact be com- 
pared with results in [37] where the same model was studied on a one-dimensional 
submanifold of the K~ihler structure moduli space which corresponds to requiring 
symmetry under exchange of the two IP 2 factors which leaves only one parameter in 
(2.13). This corresponds to hj = hj~ + hj 2 and the numbers N(n j )  given in [37] are 
related to the numbers listed in the appendix by N(n j )  = ~"~nj 1 +nJ2=n J N(njl,  nj 2). 

Especially the number of rational curves of degrees (1, 0) and (0, 1) agrees with 
the explicit calculation in [37]. We also want to point out the periodicity of the 
topological invariants at degrees (0,n). 

The following obselwation about the numbers N(0,n) for the model X(313~ 
(1, 1,111, 1, 1) has been related to us by Victor Batyrev. He points out that there are 
no rational curves on this manifold for n > 3. Yet we do find non-zero instanton 
numbers. The mathematical explanation of this fact is connected with covers of 
degenerated rational curves. 

We have furthermore listed the first few topological invariants for the models 
)((214)(1 , 1[1, 1, 1, 1) and X(21213)(1, 1[1,111, 1, 1). One observes an equality of the in- 
variants N(k,O)(k >_- 0) for X(214)(1, 1[1, 1, 1, 1) with those N(k ,k )  for the model 
)(8(2,2,2,1,1). 

Let us conclude with some remarks. We have extended the analysis that was 
initiated in [14] to models with more than one modulus. It turned out that one en- 
counters several new features as compared to the one-modulus models. For instance, 
the fact that some of the topological invariants N({ni})  tuna out to be negative in- 
tegers was a priori unexpected since the experience with the one-modulus model 
showed that they are simply the number of rational curves at a given degree. This 
simple interpretation does however have to be extended in the case where one has 
non-isolated or singular curves and our results show that the topological invariants 
are then no longer necessarily positive. 

To push the analysis further to models with many moduli seems to be a difficult 
task. Even though straightforward in principle, it becomes exceedingly tedious to 
set up the Picard-Fuchs equations and especially to obtain the Yukawa couplings. 

We have restricted ourselves in this paper to a computation of the Yukawa 
couplings in the large radius limit. The couplings that were computed are however 
not normalized appropriately to yield the physical couplings. To achieve this, one 
needs to know the Kghler potential. It can be obtained from the knowledge of all 
the periods, i.e. all the solutions of the Picard-Fuchs equations, as was first done 
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explicitly for a one-modttlus model in [14]. It is however largely determined by the 
Yukawa couplings, since they are third derivatives with respect to the moduli o f  the 
prepotential from which the Kiihler potential can be derived. This leaves only terms 
polynomial o f  order two in the moduli undetermined. The only relevant term is 
however the quadratic one which is known to be proportional to the Euler number 
o f  the Calabi-Yau manifold. 

Let us finally point out again the relevance of  mirror symmetry in the analysis 
presented here. Even though it is still a mystery from the mathematical point o f  
view, we have given further compelling evidence by giving an explicit construction 
o f  the mirrors o f  all Calabi-Yau manifolds which are hypersurfaces in weighted 
projective space. The successful framework which is general enough to discuss 
mirror symmetry for these spaces is that of  toric geometry. 
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Appendix A. Picard-Fuchs Differential Equations, Discriminant Surface and 
Yukawa Couplings 

In this appendix we give the basis l (k) for Mori 's  cone in the lattice L of  linear 

relations (3.9) and the Picard-Fuchs differential operators Nk, acting on ~r. Dif- 
ferential operators, which are not directly obtained by factorizing Eq. (3.44) for 
some I (k) are marked with a star. For convenience we abbreviate the variables 

.~(n k )a I(~ ), k ~2,1 x ~ = ( - - 1 / v  = l , . . . h  , a s x ,  y e t c .  
We also give the logarithmic solutions around the point of  maximal unipotent 

monodromy, as lineal" combinations of  derivatives of  the power series solution w0 
with respect to the indices Pk, evaluated at pk = 0. 

Next we provide the discriminant and the Yukawa couplings. To simplify the 
formulas for the discriminant hypersurface disl(X*) and the Yukawa couplings we 
use rescaled variables Y,35 etc. Furthermore, to save space, we list K = disl(X*)K 

and write, for example, ~(2,1) = dism(X*)Kee~. Also, the PF equations determine the 
Yukawa couplings in each model only up to a common overall constant, which we 
have suppressed below. 

We finally give the matrix m (Eq. (5.17)) and the Kiihler cone; the inequalities 
are to be understood to hold for the real parts o f  the moduli parameters. 
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A.i .  Hypersurfaces in ~4(~).  

X8(2,2,2, 1, 1). 

X12(6,2,2, 1, 1). 

Wo; 

S. Hosono, A. Klemm, S. Theisen, S.-T. Yau 

l (1) = ( - 4 ,  1, 1, 1,0,0, 1), /(2) _-- (0,0,0,0, 1, 1 , - 2 ) ,  

@1 = O~x(Ox - 2 0 y )  - 4x (40x  + 3)(40x + 2)(40x + 1),  

~2 = {~y2 _ y ( 2 0 y  -- Ox + 1)(2Oy -- Ox) , 

2 ~ 3 302 ,,~ 
Wo; ~plWO'Op2 wO; OplWO' Pl ~p2WO; ( ~ P t - ~ 2  Pl ~p2)WO' 

=28x,  ) 3 = 4 y ,  

diSl(X*) = (1 - 37) 2 - 3?237 , 

/~(3.o) = 1 /~(2,1) _ 2(1 -3?) /~0.2) _ 4(2)7-  1) 
3?3, 3?237 , 3737(1 - 37)' 

R(o,3) = 8(1 - 3? + )5 - 337y) 
y2(1  _ y )2  ' 

1 
K~ = {u,21 (a} + l(2))ev~ + -~(u,l(a~)evg, 

m = ( ~  1 2 ) ,  

o(x)  = {~jhj + ~h~lTa + ~ > 0 , ~  < 0}. 

1 (1) = ( -6 ,3 ,  1, 1,0,0, 1), i(2) = (0,0,0,0, 1, 1, - 2 ) ,  

~1 = O2(Ox - 2 0 y )  - 8x(60x + 5)(6Ox + 3)(6Ox + 1),  

2 ~ 2  = O y  -- y (2Oy  - Ox + 1)(20y - Ox) ,  

2 3 3 02 

(A.1) 

(A.2) 

( A . 3 )  

( A . 4 )  

( A . 5 )  

37=2633x, ) 5 = 4 y ,  

disl(X*) = (1 - 3?)2 _ 3?2)5 , 

(A.6) 

f~(3,0) 1 /~(2,1) _ 1 - - _ x  /~(1,2) _ 2 x -  1 /~(0,3) 

= 4--~' 23?235 , 3?~-(] - - ) ) '  = 

1 u 21 (1) 1 K. = ]~  ( , + l(2))eva + ~ (u, l(2))ev.~ , 

(A.7) 

2(1 - 3 ? +  )5 - 3)?33) 
y2(1 _ y)2 ' 

(A.8) 
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m = ( 1 0  1 2 ) ,  (1 .9)  

a ( g )  = {'[jhj + tDhDl tJ  -]- "{D > O,'{D < 0 } .  (A.10) 

X12(4, 3,2,2, 1). 

l 0) = ( - 6 , 2 , 0 ,  1, 1 , - 1 , 3 )  /(2) = (0,0, 1,0,0, 1 , - 2 ) ,  (A.11) 

~ = 0 2 ( 3 0 x  - 2 0 y )  - 36x(60x + 5)(6Ox + 1) 

X ( O y  - -  0 x -'}- 2y(1 + 60x  - 2 O y ) ) ,  

~ 2  = ( O y  - O x ) O y  - y(30x - 2 0 y  - 1)(3Ox - 2 O y ) .  

Here N ~  is obtained by extending the hypergeometric system as described in Sect. 3, 

W0,; C~plWO, Op2WO; 021Wo,(20plOP2 @O22)WO; 

303 302 0 9 02 -t- ~ P2) W0 (031 + 2 p~ e~ + ~00~ o~ 

x = 23332, y = 22335, 

disl(X*) = 1 + 2)? - 6235 - 9222 + 622332 -22353 , 

/~(3,o) _ 1 + 3 2 - 2 3 5  /~(2,11 = 3 ( 1 + 2 2 - 2 2 3 7 )  
23 , 22235 ' 

/~(1,2) = 9(2 + 42 - 35 - 5235 + 3235 2) 

42(3 - 33)352 
/~(o,31 = 27(4 + 82 - 335 - 12235 + 352 + 82332 _ 4~353) 

8(3 - 35)2353 , (1 .12)  

x. =  2/u,21(l  + 3I 2 /ev; + �89 t 2 /ev , (A.13) 

m =  ( :  3 2 )  , (1 .14)  

a ( g )  = {~jhj+~DhDI[j+37D > 0,?D < 0} .  (A.15) 

)(14 (7, 2, 2, 2, 1). 

l (1) = ( - 7 , 0 ,  1, 1, 1 , - 3 , 7 ) ,  /(2) = (0, 1,0,0,0, 1 , - 2 ) ,  

91" =Ox2(7Ox - 2 0 y )  - 7x (y (280x  - 4 0 y  + 18) + Oy --  3 0  x --  2 ) ,  

x ( y ( 2 8 0 x  - 4 0 y  + 10) + O y  - -  30x  - 1 ) (y (280x  - 4 0 y  + 2) + O y  --  3 0 x ) ,  

~@2 =(Oy  - 3 0 x ) O y  - y ( 7 0 x  - 2 0 y  - 1)(7Ox - 2 O y ) .  (1 .16)  

Here ~1" is obtained by extending the hypergeometric system as described in Sect. 3, 

W0; OplWO, 0p2W0; 02 2 2 . p, Wo, (Op2 + xOp, Op2)Wo, 
(~0p,2 3 + ~102pl 0p2 + 0~,~2 + 03~) wo, 
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) ? = x ,  )7 = 7 y ,  

dis~(X*) = 1 + 27)? - 63)?37 + 56)?37 2 - 112)737 3 - (7 - 437)4)?237 3 , 

/~(3,o) = 2 + 63)? - 155)737 + 152)737 2 - 48)?37 3 
)?3 

7(1 + 27s - 66)?37 + 64)?)72 - 32)?373) 2 #2,1) 
= )? Y '  

49(3 + 812 - 2)5 - 243)?37 + 301)?)32 - 200)?373 + 80)?374)372(437 /~(1,2) 
7 ) ,  )? 

R(o,3) = 343(9 + 243 .g -  11 37 - 864)?37 + 4372 + 13 05)?372 - 1092)?)73 + 560)?)74 - 192)?.95 ) 

S. Hosono, A. Klemm, S. Theisen, S.-T. Yau 

(A.17) 

r -- 7)2 

Ku = -i~ ( u , 1  2l  0) + 7/(2))e~ + 2 u, l(2))ev~ , (A.18)  

m = ( ~  _72)  , (A.19) 

a(K)  = {~jhj  + 7DhDltJ + 7 t D  > 0, tD < 0 } .  (A.20) 

X18 (9, 6, 1, 1, 1). 

l ( 1 ) = ( _ 6 , 3 , 2 , 0 , 0 , 0 , 1 ) ,  l ( 2 ) = ( 0 , 0 , 0 , 1 , 1 , 1 , - 3 ) ,  

~ 1  = O x ( O x  -- 3 O y )  -- lZx (60x  + 5)(6Ox + 1 ) ,  

~2 = 0 3 - y (Ox  - 3 0 y  - 2)(Ox - 3 0 y  - 1)(Ox - 3 0 y ) ,  (A.21) 

2 . (30p I + 3021 + 0p1022)W0 ' 02 . r02 ~- gOplOP2)Wo, Op 2 WO; OplWO' OPzWO'~ P2 wO' ~" Pl 

)? = 2433X, 37 = 3ay, (A.22) 
d i s l (X*)  = (1 - )?)3 _ )?337, 

3(1 - x ) , / ~ ( 1 , 2 )  _ 9(1 - )?)2 
/~(3,0) = 1___.~,/~(2,1 ) __ ?2-'fi X37"-~ ' 

~(o,3) = 27(1 - 337 + 3)?) 

y2(1 + Y) ' 

1 (u, 310 ) 1 l(2))ev; (A .2 3 )  K~ = ~ + l(2))ev~ + -~ (u, , 

m =  (10 1 3 )  , ( 1 . 2 4 )  

~r(K) = { t j h j  + tehel t j  + t'E > 0, te < 0 } .  ( 1 . 25 )  

XI2 (6, 3, 1, 1, 1). 

/(1) = ( - 4 , 2 ,  1 ,0 ,0 ,0 ,  1), /(2) = (0 ,0 ,0 ,  1, 1, 1 , - 3 ) ,  (A.26) 

~1 = Ox(Ox - 3 O y )  - 4x(40x  + 3)(4Ox + 1 ) ,  

~2  3 = Oy + y ( 3 O y  - Ox + 2) (3Oy  - Ox + 1)(3Oy - Ox) ,  
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2 Wo'~ ~plWO, Op2WO; (021 -37 2eplOP2)Wo, O22Wo" ~ (3031 + 3~,0p2 -JUOPlOP2)Wo. 

Note that this is a model with h 2,1 = 3, but only two moduli can be represented as 
monomial deformations, 

2 = 26x,  )3 = y ,  (A.27) 

disl(X*) = 1 - 307 + 307 2 --  23 - -  27s 

18 6 ( 1 - 2 )  RO,2)_ 2(1 - 2 )  2 R(o,3)= 18(1-32+3072 ) 
/~(3,0) = 07""3-' /~(2,1) __ 072)3 ' 07)32 ' )32(1 + 27)3) ' 

Ku = 1(u,21(1) + l(2))e~; + l (u, I(2))evg , (A.28) 

m =  ( ~  1 3 )  , (1.29,  

~r(K) = {[jhj  + "[EhF~ITj + [e > 0,[E < 0}.  (A.30) 

X12(3  , 3, 3,  2,  1).  

l (1) = ( - 4 ,  1, 1, 1 ,0 , -1 ,0 ,2 ) ,  l (2 /=  (0,0,0,0,0,  1, 1, - 2 ) ,  

l(3) = ( 0 , 0 ,  0 , 0 ,  1 , 0 , - - 2 ,  1 ) ,  (A.31) 

N2 = (Ox - Oy)(2Oz - Oy) - y(2Oy - 20x - Oz + 1)(2Oy - 20x - 0 ~ ) ,  

~3 = Oz(20x  - 2 0 y  + Oz) - z (20z  - Oy + 1)(2Oz - Oy) .  

The remaining second order and the two third order differential operators are 
rather complicated, so we have not included them here. The leading terms are 
limx,y~--,o ~ = 50xO~ + 2 0  2 + 202 - 2OxOy - 5OyO~ and limx,y~--+0 ~4" = 

0 2 ( 2 0 y  - 2 0 x  - 0~), limx,y~--,o ~ = O2(2Oz - Oy), 

2 = 2 8 x ,  ) 3 = 2 y ,  Z = z ,  (1.32) 

disl(X*) = 1 + 2 - 62)3 - 422)3 + 12072)32 + 4073)32 - 8 0 7 3 3 3 3  , 

-- 18072)32~- 16073)32ff + 36073)33i- 27073)34i 2 ' 

The expressions for the Yukawa couplings, even in the variables 2,)3,Z, are by far 
too lengthy to be reproduced here. 

K u = l ( u ,  31(1) q- 4l (2) + 2/(3))evg + a{u, l (2) + 2I(3))ev~ + 1 (u,2/(2) + l(3))ev~, 

(A.33) (,02) 
m =  0 1 - 2  , (A.34) 

0 - 2  1 

o'(K) = { t j h j  + "[DlhD1 -1- 7D2hD2lrj + 27D2 > 0, i'D, - 27D 2 > 0, t'D 2 --  2tD, > 0},  
(A.35) 

X24(12, 8,2, 1, 1). 

l ( 1 )= (_6 ,3 , 2 , 0 , 0 , 0 , 1 , 0 ) ,  1 ( 2 ) = ( 0 , 0 , 0 , 0 , 1 , 1 , 0 , - 2 ) ,  

l (3) = (0,0, 0, 1 ,0 ,0 , -2 ,  1),  (A.36) 
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91 = Ox(Ox - 2 0 ~ )  - 1 2 x ( 6 0 x  + 5 ) ( 6 0 x  + 1 ) ,  

2 92 = Oy - y (20y  - Oz + 1 ) ( 2 0 y  - Oz),  

-@3 = Oz(Oz - - 2 0 y ) - - z ( 2 0 z  -- Ox 4- I ) ( 2 O z  - Ox),  

Opl WO, Op2Wo, Op3WO" ~ (821 4- 8p, 8p3 )WO, 8pl 8p2WO, (823 4- 8p2 Op3 )W 0 ; 

(03 4- 382 63 3 2 3 2 ) Pl "4 Pl P2 4- $8p1803 4- 48PlSp3 4- ~SP18P28P3 WO ' 

s = 2433x, 35 = 22y, 27 = 22z ,  ( A . 3 7 )  

d i s l ( X * )  = (1 - 2 )  4 - 2s - s + s _ 35), 

/~(3,0,0) _ 1 - s /~(2,1,0) = 1 - 2 s  + s _ s 

y3 , 4s , 

/~(2,o3) _ (1 - 2 )  2 

s 

(1 - Y)(1 - 2Y + ~2 _ 2s  ~ ( 1 , 1 , i )  = (1 - Y)(1 - 2~  + 22 - y227) R(1,=,o) 
16s - 1 ) 4s ' 

~(1,o,2) _ (1 _ s  ~(o,2:)  = 2 ( 2 2 -  1)27(1 - 2 s 1 6 3  2 - 2 2 2 s  

s , 1635(1 _2274-272 35_~2) ' 

R(o,3,o) = ( I  - 2s - s  - 27 - 3527) - s + 3527 - 272 _ 335272)) 

64(35 - 1)352(1 - 227+27 2 - 3 5 : )  

/~(o,1,2) = (2s  - 1 )((  1 - s  - 27 + 3527) - s _ 3527 _ 272 _ )7272)) 

435~(1 - 2 g + z 7  2 -35z7 2) 

~.(o,o,3) = (2s  - 1 ) (2(1 - s + Z(35 - 1 )(1 - 2s  + 2s  2 ))  

272(1 _227+272 _35272) 

=  4(u,4l"  + I<2 + + 1(u,2:2  + :>lena + I % e : ,  
( A . 3 8 )  

m = 0 2 , ( 1 . 3 9 )  
- 2  

a ( K ) =  {~jhj+tDhD+t~h~l~d+~E > 0,?D < 0, t D - -  2{e > 0 } .  ( A . 4 0 )  

A.2. Hypersurfaces in Products o f  Projective Spaces 

X(313)(111]111). 

l(1) = ( - 3 ,  1, 1, 1 , 0 , 0 , 0 )  /(2) = ( - 3 , 0 ,  0, 0, 1, 1, 1 ) .  ( A . 4 1 )  

B y  fac to r i z ing  9 1  + 9 2  = (Ox + O y ) 9 *  one  obta ins :  

9 1  = 03x -- ( 3 0 x  + 3 0 y ) ( 3 0 x  + 3 0 y  -- 1)(30x + 3 0 y  -- 2)x, 

9 *  2 = (02 - OxOy + 0 2 ) -  3 ( 3 0 x  + 30y  - 1 ) ( 3 0 x  + 3 0 y  - 2 ) (x  + y ) ,  

2 142 Wo; (~plWO, Op2WO ; (022 Dr_ Opl~P2)WO,(021 _~_ ~plOP2)WO; (~210P2 -~- OplOP2 ) 0 
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)? = 33X, )5 = 33y ,  (A.42) 

disl(X*) = 1 - (1 - )?)3 + (1 - )3) 3 + 3~)3()? + )3 + 7 ) ,  

~(3,0) _ - 2 - x -  y /~(2,1) = )?(2)?+)3-- 1 ) - - ( 1  - - 9 3 )  2 

27)?2 ' 81)725 

For symmetry reasons /~(o,3),/~0.2) are given by the above expressions but with Y 
and )3 exchanged, 

Ku = - ( u ,  l ( ' ) ) e ~  - (u, l(2))e~2 , (A.43) 

mij = 6 i j ,  (A.44) 

~ ( K )  = {Zj1hj  1 + 7J2hJ2[tj,,?j 2 > 0}.  (A.45) 

)((214)(1111111). 

l O) = ( - 2 ,  1, 1 ,0 ,0 ,0 ,0)  /(2) = ( - 4 , 0 , 0 ,  1, 1, 1, 1) .  (A.46) 

By factorizing OyNlZ _ 4@2 - (Ox + 2Oy)N2* one obtains: 

~1  = 0 2  - ( 4 0 y  + 2 O x ) ( 4 0 y  + 2 0 x  - 1 ) x ,  

2 _ 2 0 3  _ 2(4Oy + 2 0 x  - 1) ~2" = OxOy 

x (02yX - 4(4Oy + Ox - 2)(4Oy + 2 0 x  - 3 ) y ) ,  

2 . 103 \ wo; ~p~wo, c3p2Wo; ap2Wo, ~p~?p2wo, (~2~Op~ + -~ p2)Wo, 

)? = 22x, 33 = 28y ,  (A.47) 

d i s ~ ( Y * )  = ( 1  - )?)4 + (I  ~ )3)2 _ 2)?)3(6 + )?) - 1,  

/~(3,o) = 37--62--)?  2 -  1 /~(23) = 2 ) ? - - 3 7 + 2 2 - - 3  

4.~ 2 ' 8)?)7 ' 

RO,2) = (1 +)?)(2)?+37--)?  2 -- 1) R(o,3) = 3)?--3)3--3)? 2 _)?)3+)?3 _ 1 

16)7372 ' 32373 ' 

Ku = - ( u ,  lO ))ev~ - (u, /(2))ev~ , (A.48) 

mij = (~ij , (A.49) 

i f ( K )  = {'i~JlhJl Al- tj2hjzltJl,?e2 > 0}.  (A.50) 

X(21213)(11] 1 1111 1). 

By 
3Oz)~3" one obtains: 

l (1) = ( - 2 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ) ,  l(2) = ( - 2 , 0 , 0 , 1 , 1 , 0 , 0 , 0 ) ,  

/(3) = ( - 3 , 0 , 0 , 0 , 0 ,  1, 1, 1) .  (A.51) 

factorizing 16(Oy~1 + Ox~2)  - 27~3 - 12Oz(~1 + ~2)  -- (2Ox + 2Oy + 
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~1 = 02x - x ( 2 0 x  + 2 0 y  + 3Oz + 1)(2Ox + 2 0 y  + 3 0 z ) ,  

2 _ y ( 2 0 x  + 2 0 y  + 30z  + 1)(2Ox + 2 0 y  + 3 0 z ) ,  ~2 = Oy 

~3 = 3.0z(30z - 20x  - 2 0 y )  + 8 0 x O y  - (30z  + 20x  + 2 0 y  - 1) ,  

x ( 3 3 z ( 3 0 ,  + 20x  + 2 0 y  + 1) - 4 x ( 3 0 ,  - 4 0 y )  - 4y(3Oz  - 4 O x ) ) ,  

Wo : 0pl Wo, 0p2 Wo, 003 Wo; (3 0pl 0p3 + 03 )wo, (0pl 0p3 - 0p2 0p3 )Wo, P3 
4 

(0p20P3 + ~0pl 0p 2)W0, 

(0p1023 + 0p20~3 + 30plOP20P3)Wo, 
:? = 22x, 37 = 22y, Z = 33z,  (A.52) 

d is l (X*)  = 1 - 69?+ 15:? 2 - 20:? 3 + 15x -4 - 6:? 5 +:?6 _ 637 + 18:737 - 12:7237 

-- 12~337 + 18:?437 -- 6:?537 + 15352 - 12:7332 - 6:?2332 

- 12y337 2 + 15:?437 2 _ 20373 - 12:7373 - 12:72373 _ 20:?3373 

+ 15374 + 18:?)74 + 15:72374 _ 6375 _ 6:?375 + 376 _ 4 i +  24:72i 

- 32:73Z + 12:?4e - 144:737f + 96:7237Z + 48:73 37Z + 24y2e 
+ 96:7372~ - 120:72372i - 32fi3~ + 48:7373Z + 12)74~ + 6~ 2 + 18:?~ 2 

+ 42:72Z 2 _ 2:73f 2 + 1837~ 2 - 36:?ye 2 - 30:?2yf  2 + 42y2~  2 

_ 30:7372f 2 - 2373f 2 - 4Z 3 _ 12:?e 3 - 1237~ 3 + z -4 . 

The expressions for the Yukawa  couplings, even in the variables :?, 37, Z, are too 
lengthy to be reproduced here. 

Ku = - ( u ,  l(1)}ev~ - (u, l(2))ev~ - (u, l(3))ev~ , ( A . 5 3 )  

mij = 6 i j  , (A.54) 

a(K)  = {tjlhJl +'{J2hJ2 + ?J3hJ31tjl,'fjz,Tj3 > 0 } .  (A.55) 

/0) = ( _ 2 ,  1, 1, 0, 0, 0, 0, 0, 0), /(2) = ( - 2 , 0 , 0 ,  1, 1, 0, 0,0, 0 ) ,  

/(3) = ( - 2 ,  0, 0, 0, 0, 1, 1, 0, 0), /(4) = ( - 2 ,  0,0, 0, 0, 0, 0, 1, 1 ) .  (A.56) 

By  factorizing (~1 - @2)(03 - 0 4 )  + (@3 - N4)(O1 - 0 2 )  = (O1 + 02  + 03 + 
O 4 ) ~ *  we define 79* and similarly, by  exchanging in the above equation the 

indices 2 ~ 3, ~ * ,  s.t. the system reads 

~ i  = 092 -- Xi(201 + 2 0 2  + 203  + 2 0 4  + 1) 

X (20~ + 2 0 2  + 2 0 3  + 2 0 4 ) ,  for i = 1 , 2 , 3 , 4 ,  

~ ~'-~ (1~)1 - -  0 2 ) ( 0 3  - -  0 4 )  + 2(201 + 2 0 2  + 2 0 3  + 2 0 4  -- 1) 

)< (XI(~) 4 -- 0 3 )  + X2(O3 -- 0 4 )  + X3(O2 -- O1)  + X4(O1 -- 0 2 ) ) ,  

~ = (I}91 -- 0 3 ) ( 0 2  -- 0 4 )  + 2(201 + 2 0 3  + 2 0 2  + 2 0 4  -- 1) 

)< (X1(O4 -- ~ ) 2 ) + X 2 ( O 2  -- 0 4 ) +  X3(t~)3 -- I~)1)+ X4(I~)l -- O 3 ) ) '  
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Wo; 

~ Pl WO' ~ P2 wO' ~ P3 WO' ~ P4 WO ; 

(~Pl ~P2 -- ~P3 0P4 )W0' (~Pl ~P3 -- OP2 ~P4 )W0' (0Pl 0e4 - 002 0P3 )W0' 

(0pl0P2 "~-~p2~P3 -~- ~pl ~P4 )Wo '~ 

(~Pt ~P2 ~P3 ~- OPl ~P2 ~P4 -~- ~Pl ~P3 ~P4 "~ OP2 ~P3 ~P4 ) W0 ' 
K u = --(u, l(1))Sv~ -- (u,/(2))evz - (u, l(3))8v~ - (u, l(4))ev~, (A.57) 

mij : 6ij , (A.58) 

a(K)  = {tJl he1 + tj2hJz + [J3hJ3 + [J4hJ4 ItJ, , tJz, t J3, t J4 > 0} .  (A.59) 

Appendix B. Topolocical Invariants N({ni}) 

Here we append the tables for the first few topological invariants N({n i } )  for the 
discussed cases. In the first column of  the tables we list the degree. The first entry 
is always the degree with respect to h j ,  the others with respect to hD or he. In the 
second column we list the non-zero invariants within the indicated range of  degrees. 

B. 1. Hypersurfaces in lp4(ff) 

X8(2,2,2, 1, 1). From the relation between the basis ti and [i in terms of  the matrix m 
listed in Appendix A, we find that the degrees are of  the form (n, m) = (p ,  p - 2q) 
with p, q = 0, 1, 2, . . . .  We find non-zero invariants only for integers (n, m) within the 
wedge n > Iml,n + m  even, and in addition at ( n , m ) =  ( 0 , - 2 ) .  We also observe 
the symmetry N(n,  m) = N ( n , - m )  for n > 0 and only list the former. 

Below we list the topological invariants for p + q < 10. 

(0,-2) 4 

(6,0) 212132862927264 
(6,2) 95728361673920 
(6,4) 7117563990784 
(6,6) 24945542832 

(1,1) 640 

(2,0) 72224 (7,1) 64241083351008256 
(2,2) 10032 (7,3) 15566217930449920 
(3,1) 7539200 (7,5) 673634867584000 
(3,3) 288384 (7,7) 1357991852672 

(4,0) 2346819520 (8,4) 2320662847106724608 
(4,2) 757561520 (8,6) 63044114100112216 
(4,4) 10979984 (8,8) 78313183960464 

(5,1) 520834042880 (9,7) 5847130694264207232 
(5,3) 74132328704 (9,9) 4721475965186688 
(5,5) 495269504 (10,10) 294890295345814704 

X12(6,2,2, 1, 1). From the relation between the basis ti and ?i in terms of  the 
matrix m we find, as in the previous model, that the degrees are of  the form 
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(n, m) = (p,  p - 2q) with p, q = 0, 1, 2 , . . .  and non-zero topological invariants at the 
same points as indicated there. Also, for n > 0 the symmetry N(n, m) = N(n, -m)  
is again present. We list the non-zero topological invariants again for p + q < 10 
and n > 0. 

(0,-2) 2 6,0) 11889148171148384976 
6,2) 5143228729806654496 
6,4) 331025557765003648 
6,6) 805628041231176 

(1,1) 2496 

(2,0) 1941264 (7,1) 
(2,2) 223752 (7,3) 

(3,1) 1327392512 (7,5) 
(3,3) 38637504 (7,7) 
(4,0) 2859010142112 (8,4) 
(4,2) 861202986072 (8,6) 
(4,4) 9100224984 (8,8) 

(5,1) 4247105405354496 (9,7) 
(5,3) 540194037151104 (9,9) 
(5,5) 2557481027520 (10,10) 

24234353788301851080192 
5458385566105678112256 

199399229066445715968 
274856132550917568 

5277289545342729071440512 
118539665598574460315052 

99463554195314072664 

69737063786422755330975040 
37661114774628567806400 

14781417466703131474388040 

)(12(4,3,2,2,1). The degrees are of the form ( n , m ) =  ( p , 3 p - 2 q )  with p,q = 
0, 1,2 .. . . .  Here we find non-zero topological invariants only for integers (n,m) 
within the cone generated by (1, +3)  and, as in the previous two cases at 
(n,m) = (0 , -2 ) .  Again, there is the symmetry N(n,m)= N(n,-m) for n > 0. We 
give the topological invariants for p + q < 8. 

(0 , -2)  6 

(1,1) 7524 
(1,3) 252 

(2,0) 16761816 
(2,2) 5549652 
(2,4) 30780 
(2,6) -9252 

(3,1) 56089743576 
(3,3) 10810105020 
(3,5) 45622680 
(3,7) -4042560 
(3,9) 848628 

(4,0) 427990123181952 
(4,2) 230227010969940 
(4,4) 31014597012048 
(4,6) 107939555010 
(4,8) -6771588480 

(4,10) 691458930 
(4,12) -114265008 

5,5) 110242870186236480 
5,7) 348378053579208 

(5,9) -16730951255208 
(5,11) 1299988453932 
(5,13) -138387180672 
(5,15) 18958064400 

(6,1o) 
(6,12) 
(6,14) 
(6,16) 
(6,18) 

(7,15) 
(7,17) 
(7,19) 
(7,2l) 

(8,20) 
(8,22) 
(8,24) 

(9,25) 
(9,27) 

(10,30) 

--53592759845826120 
3355331493727332 
-288990002251968 

30631007909100 
-3589587111852 

-778844028150225792 
70367764763518200 
-7266706161056640 

744530011302420 

-18212970597635246400 
1813077653699325510 

-165076694998001856 

-470012260531104088320 
38512679141944848024 

-9353163584375938364400 
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X14(7,2,2,2,1).  The degrees are of  the form ( n , m ) = ( p , 7 p - 2 q )  with p,q = 
0, 1,2, . . . .  Here we find non-zero topological invariants only for integers (n,m) 
within the cone generated by (1, + 7 )  and, as in the previous two cases at 
(n,m) = ( 0 , - 2 ) .  Again, there is the symmetry N(n,m) = N ( n , - m )  for n > 0. We 
give the topological invariants for p + q < 10. 

(0,-2) 28 

(4,16) -652580600 
(4,18) 109228644 
(4,20) -15811488 
(4,22) 1841868 
(4,24) -154280 
(4,26) 8008 
(4,28) -192 

(5,25) -2613976470 
5,27) 315166313 
5,29) -29721888 

(1,1) 14427 (5,31) 2006914 
(1,3) 378 (5,33) -85064 
(1,5) -56 (5,35) 1695 
(1,7) 3 
(2,0) 68588248 (6,34) -6314199584 
(2,2) 29683962 (6,36) 496850760 
(2,4) 500724 (6,38) -28067200 
(2,6) -69804 (6,40) 1004360 
(2,8) 9828 (6,42) -17064 

(2,10) -1512 (7,43) -8479946160 
(2,12) 140 (7,45) 411525674 
(2,14) - 6  (7,47) -12736640 

(7,49) 188454 
(3,7) -258721916 
(3,9) 27877878 (8,52) -6238001000 

(3,11) -5083092 (8,54) 170052708 
(3,13) 837900 (8,56) -2228160 
(3,15) -122472 
(3,17) 13426 (9,61) -2360463560 
(3,19) -896 (9,63) 27748899 
(3,21) 27 (10,70) -360012150 

X18(9,6, 1, 1, 1). From the relation between the basis ti and ti in terms of  the ma- 
trix m we now find (n ,m)= ( p , p -  3q) with p,q = 0,1 ,2 , . . . .  We find non-zero 
topological invariants on all of  these points. Below are our results for p + q __< 6. 

(1,1) 540 (0,-6) - 6  
(2,2) 540 (1,-5) 2700 
: : (2,-4) -574560 

(3,-3) 74810520 
(6.6) 540 (4,-2) -49933059660 

(0,-3) 3 (0,-9) 27 
(1,-2) -1080 (1,-8) -17280 
(2,-1) 143370 (2,-7) 5051970 
(3,0) 204071184 (3,-6) -913383000 
(4,1) 21772947555 
(5,2) 1076518252152 

(0,-12) -192 
(1,-11) 154440 
(2,-10) -57879900 

(0,-15) 1695 
(1,-14) -1640520 

(0,-18) -17064 
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X12(6, 3, 1, 1, 1). From the relation between the basis ti and ti in terms of  the ma- 
trix m we now find ( n , m ) =  (p ,  p -  3q) with p , q  = 0, 1,2,. . . .  We find non-zero 
topological invariants on all of  these points. Below are our results for p + q < 6. 

(1,1) 216 
(2,2) 324 
(3,3) 216 
(4,4) 324 
(5,5) 216 
(6,6) 324 

(0,-3) 6 
(1,-2) -432 
(2,-1) 10260 

(3,0) 1233312 
(4,1) 26837190 
(5,2) 368683056 

(0,-6) -12 
(1,-5) 1080 
(2,-4) -41688 
(3,-3) 810864 
(4,-2) -61138584 

(0,-12) -384 
(1,-11) 61776 
(2,-10) -4411260 

(0,-9) 54 
(1,-8) -6912 (0,-15) 3390 
(2,-7) 378756 (1,-14) -656208 
(3,-6) -11514096 

(0,-18) -34128 

X12(3 ,3 ,3 ,2 ,  1). The degrees are (n ,m  - 2p ,2n  - 2m + p ) , n , m ,  p = 0, 1,2,.. . .  For 
n + m + p < 6, the non-zero invariants are 

(1,0,2) -28 (1,-1,1) -296 
(2,0,4) -129 (2,-1,3) 276 

(0,1,1) 2 (3,0,6) -1620 (3-1,5) 4544 
(1,-2,0) 2 (4,0,8) -29216 (2,1,2) 276 
(1,-2,1) 2 (5,0,10) -651920 (3,1,4) 4544 
(1,-2,0) -28 (4,1,6) 100134 

(1,0,-1) -296 (1,2,-2) -28 (2,3,-2) 276 
(2,0,1) 32272 (1, 1,0) -296 (3,2,2) -7720 

(2,2,0) 4646 

X24 (12, 8, 2, 1, 1 ). The non-zero topological invariants, whose degree is of  the general 
form (n ,2m - p , n  - 2p )  where n,m,  p = 0, 1,2,. . . .  In the range n + m + p __< 6 we 
find them to be 

(1 , -1 , -1 )  48O 
(0 , -3 , -10)  -10 (2 , -2 , -2 )  480 (2,- 1,0) 282888 

(0, -2, -8 )  -8  (3, -3, -3 )  480 (4,-2,0) 8606976768 
(0 , -1 , -6 )  - 6  
(0 , -1 , -2 )  - 2  (1,0,1) 480 (2,1,0) 282888 

(0,0,-4) - 4  (3 , -2 , -1 )  17058560 
(0,0,-8) -32 : : (3,-1,1) 17058560 
(0,1,-6) - 6  (6,0,6) 480 (3,0,-1) 51516800 
(0,1,-2) - 2  (3,1,1) 17058560 

(1 , -2 , -7 )  3360 (1,0, -3 )  1440 (4,- 1,2) 477516780 
(1 , -1 , -5 )  2400 (1,1,-5) 2400 (4,1,2) 477516780 

(1,1,-1) 480 (5,-1,3) 8606976768 
(2,2,--2) 480 

(2 , -1 , -4 )  -452160 
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B.2. Hypersurfaces in products o f  ordinary projective spaces 

)((313)(1 , 1, 1[1, 1, 1). Due to the symmetry under exchange o f &  and J2, we list 
only the curves of  bi-degree (n jl ,  n& ) with nj  I < nj  2. The table is for nj  I + nj  2 < 
10. 

(0,1) 189 
(0,2) 189 
(0,3) 162 
(0,4) 189 
(0,5) 189 
(0,6) 162 
(0,7) 189 
(0,8) 189 
(0,9) 162 

(0,10) 189 

(t,1) 8262 
(2,2) 13108392 
(3,3) 55962304650 
(4,4) 366981860765484 
(5,5) 3057363233014221000 

(1,2) 142884 
(2,4) 12289326723 
(3,6) 2978764837454880 
(1,3) 1492290 
(2,5) 2673274744818 

(1,4) 11375073 
(2,8) 256360002145128 

(1,5) 69962130 
(1,6) 368240958 

(1,7) 1718160174 

(1,8) 7278346935 
(1,9) 28465369704 

(1,2) 142884 
(2,4) 12289326723 
(3,6) 2978764837454880 
(2,3) 516953097 
(4,6) 1182543546601766871 

(2,5) 206210244204 

(2,7) 28368086706594 

(3,4) 3154647509010 

(3,5) 114200061474474 

(3,7) 60186196491885072 

(4,5) 25255131122299086 

X(214)(1,1[1,1,1,1). We list the non-zero topological invariants at degrees 
(nj~, n j  2) with n j l ,n j  2 > 0 and n A + n j  2 < 10. 

(1,0) 64 
(0,1) 640 
(0,2) 10032 
(0,3) 288384 
(0,4) 10979984 
(0,5) 495269504 
(0,6) 24945542832 
(0,7) 1357991852672 
(0,8) 78313183960464 
(0,9) 4721475965186688 

(0,10) 294890295345814704 

(1,1) 6912 
(2,2) 8271360 
(3,3) 26556152064 
(4,4) 130700405114112 
(5,5) 816759204484794624 

(3,2) 31344000 
(6,4) 2485623412554752 

(5,2) 31344000 

(7,2) 742784 

(1,3) 75933184 
(2,6) 15714262788770816 

(2,3) 2445747712 
(4,6) 33831527906249235456 

(4,3) 130867460608 

(5,3) 329212616704 

(7,3) 329212616704 
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(2,1) 14400 
(4,2) 48098560 
(6,3) 445404149568 

(3,1) 6912 
(6,2) 8271360 
(4,1) 640 
(8,2) 10032 

(1,2) 742784 
(2,4) 532817161216 
(3,6) 1084895026038311424 

(1,4) 7518494784 
(2,8) 325754044147209418752 

(3,4) 12305418469184 

(5,4) 746592735013952 

(1,5) 728114777344 

(2,5) 97089446866176 

( 3 , 5 )  4074651399444224 

(4,5) 78142574531195136 

(1,6) 69368161314176 

(1,7) 6526028959787520 

(2,7) 2336268973133447168 
(3,7) 247572316458452288000 

(1,8) 607840242136069376 
(1,9) 56154770246801057024 

)((21213)(1, 1]1, 1[1, 1, 1). W e  have  the obvious  symmet r y  N ( n j l , n j z , n J 3 )  = 

N ( n j 2 ,  n j l ,  n r 3 ) and we will list the non-zero  invariants only for  n j  1 < n j  2 and for  
n j l  q- n j  2 + 1"l j3 <-~ 6. 

(0,0,1) 168 
(0,0,2) 168 
(0,0,3) 144 (0,3,1) 168 
(0,0,4) 168 
(0,0,5) 168 (0,3,2) 94248 
(0,0,6) 144 

(0,1,0) 54 (1,1,1) 22968 
(2,2,2) 212527800 

(0,1,1) 1080 
(0,2,2) 55080 (1,1,2) 801720 
(0,3,3) 5686200 

(1,1,3) 14272344 
(0,1,2) 9504 
(0,2,4) 12531888 (1,2,0) 54 
(0,1,3) 55080 (1,2, 1) 84240 
(0,1,4) 258876 (1,2,2) 9589752 
(0,1,5) 1045440 (1,2,3) 422121240 
(0,2,1) 1080 
(0,4,2) 55080 (1,3, 1 ) 84240 
(0,2,3) 1045440 (1,3,2) 37017000 

(1,4,1) 22968 
(2,2, 1) 823968 
(2,3,0) 54 
(2, 3, 1 ) 2286360 
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