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Abstract 

The Ernst equation is formulated on an arbitrary Riemann surface. Analytically, the problem 
reduces to finding solutions of the ordinary Ernst equation which are periodic along the symmetry 
axis. The family of (punctured) Riemann surfaces admitting a non-trivial Ernst field constitutes 
a "partially discretized" subspace of the usual moduli space. The method allows us to construct 
new exact solutions of Einstein's equations in vacuo with non-trivial topology, such that different 
"universes", each of which may have several black holes on its symmetry axis, are connected 
through necks bounded by cosmic strings. We show how the extra topological degrees of freedom 
may lead to an extension of the Geroch group and discuss possible applications to string theory. 

1. Introduction 

General investigations of  axisymmetric stationary solutions of  Einstein's equations in 
vacuo are commonly based on the Ernst equation [ 1,2] 

( PzE~+P~Ez)=2EzE~ ,  (1) ( E 4- E) £z~ 2p 

which constitutes the main part of  Einstein's equations. Here, the complex variable 
z = u + iv parametrizes the two (space-like) coordinates, on which the complex Ernst 
potential £ ( z , ~ ) ,  and hence the metric depend. The real function p ( z , ~ )  (related to 
the 33-component of  the 4-metric) is harmonic, viz. 

Pz~ = 0 (2) 
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and can thus be represented as the imaginary part of some (locally) holomorphic 
function ( ( z ) ,  i.e. 

p(z,Z) = I m ( ( z ) .  

Defining 

x(z, 3) = R e ( ( z  ) 

we can rewrite (1) as follows: 

(E+E) &x+-G+Gp -2(E~+e~), 
P 

or, in complex notation, 

2(~:- ~)) 

(3) 

(4) 

(5) 

At this point, one usually switches from the coordinates (z, 3) to new coordinates (x, p) 
(so-called Weyl canonical coordinates) by means of the conformal reparametrization 
z ---+ ( ( z ) .  The full metric of the Einstein manifold .A,4 corresponding to a given 
solution of (1) can then be represented in the form 

ds 2 = dl 2 + dL 2 , (6) 

where 

dl 2 = f - I  eZk d ( d ~ ,  (7) 

dL 2 = - f ( d t  + A d~b) 2 + f - lp2  d~b 2 ' (8) 

The variables t and ~b are the time and angular coordinates, respectively, so that there 
are two mutually commuting Killing vectors at and aO, one time-like and one space-like. 

The functions f ,  A and k depending on (s c, ~) are determined from 

f = R e ~ ,  A ~ = 2 p ( C - ~ ) ~  k¢=2ip E~(  (g  + g)---------~ ' (g + g)2 " (9) 

Observe that the first order differential equations can be consistently solved because the 
compatibility with the complex conjugate equations is guaranteed by (5).  

Although the change of variables from (z,g) to (x ,p )  is purely local, a simple 
global topology has been assumed in all previous studies of axisymmetric stationary 
solutions of Einstein's equations [2]. Namely, one takes the complex coordinate x + ip 
to parametrize the upper half plane, such that x E N parametrizes the symmetry axis 
and p ) 0 is a radial variable. The class of exact solutions obtained in this way includes 
the well known Schwarzschild and Kerr solutions, which provide the mathematical 
background for black hole physics, as well as a host of other solutions with unphysical 
features. In this paper, we want to exploit the link between (1) and (5) at the global 
level by assuming (z, g) to be local coordinates on an arbitrary Riemann surface rather 
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than (part of) the Riemann sphere. The function sO(z) is then no longer globally single- 
valued. An important element in our construction is the Kaluza-Klein type interpretation 
of the metric (6) as a model of matter-coupled gravity in two dimensions. Then the 
part dl 2 of the metric (6) is interpreted as the metric of a two-dimensional world-sheet 
with local coordinates (z, Z), while the Ernst potential £ is regarded as a complex 
"matter field" living on this world-sheet together with the "dilaton" field p and the 
Liouville degree of freedom contained in k(z,g). On the basis of this interpretation, 
we will construct new exact solutions of Einstein's equations topologically equivalent 
to the product of the time axis (parametrized by t), the circle S 1 (parametrized by ¢)  
and (part of) some Riemann surface E. Even for the trivial solution £ = 1, we obtain 
topologically non-trivial flat manifolds with an arbitrary number of asymptotically flat 
regions. To be sure, such manifolds will have singularities of some kind. As it turns out, 
the singularities of the four-manifold correspond to 8-function curvature singularities on 
the world-sheet. In the 4D interpretation, these can be viewed as ringlike cosmic strings 
with negative tension (i.e. instead of a deficit angle in the neighborhood of the string, 
there is now an excess angle). We believe that the solutions presented here may have 
some physical interest since they provide novel examples of wormhole-type solutions 
for Einstein's equations without matter. 

To define the Ernst potential C on the Riemann surface /: and to exploit the global 
freedom left in the choice of ~(z) ,  we utilize a description of E introduced by Man- 
delstam [3] and further elaborated in Ref. [4] for the computation of multiple string 
scattering in the light-cone gauge. To this aim, we choose a meromorphic abelian dif- 
ferential d~(P) on E (points on E are labeled by P, Q . . . .  ) and define 

P 

so(P) = J d~:, 

Po 

(10) 

where the base point P0 E E must not coincide with any singular point of dsC(P), 
but otherwise can be chosen arbitrarily. The real and imaginary parts of so(P) will be 
designated by x(P)  and p(P) as in (3) and (4), respectively. The differential dsc(P) 
defines a fiat metric on E through 

dso 2 = d~: ® d~. ( 11 ) 

Obviously, ds~ is degenerate at the zeros and singular at the poles of dsc(P). Moreover, 
the function so(P) is in general not globally defined on /~ since the corresponding 
abelian integral generically has non-zero cyclic periods. If we want to define the Ernst 
potential E = ~ (x (P) ,  p ( P ) )  on E by making use of the local equivalence of ( 1 ) and 
(5), we must impose additional conditions on E and the Ernst potential in order to 
render £(x,  p) globally single-valued. We will need two requirements. 

(i) While the cyclic periods of the differential dsc(P) do not vanish in general, we can 
always arrange them to be real by the addition of suitable holomorphic differentials 
(this defines d~: uniquely). Consequently, the function p(P) = Im ~(P)  is globally 
defined on E; it plays the role of a global (light-cone) time in the Mandelstam 
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description of string scattering. The single-valuedness of p is also indispensable 
for single-valuedness of  the corresponding metric in four dimensions. 

(ii) If  the function x ( P )  = Res t (P)  is not globally defined, the Ernst potential must 
be periodic in its first argument with a certain period L, i.e. g ( x , p )  = E ( x + L , p ) .  
In addition we must assume the (real) cyclic periods Cj of the integral ~:(P) to 
be "quantized", i.e. Cj = niL where nj E Z and L C R. Under these conditions g 
extends to a globally single-valued function on the surface/Z. 

In the special case when all cyclic periods of d~:(P) vanish, we can drop the second 
requirement since then dsC(P) = d h ( P )  for some meromorphic function h ( P )  on L. 
Periodicity for £ ( x , p )  is not required in this case, and for any solution £(sc,~) of 
(5) we get a non-trivial and globally defined Ernst potential £ ( h ( z  ), h(z )) on L. The 
topological degrees of freedom can be analyzed by switching off the "matter excitations", 
i.e. by putting g = 1; they are described by the ordinary moduli space of the associated 
(punctured) Riemann surface 2 . If  we now switch on some non-trivial solution of (5) 
with period L, the quantization condition above will lead to a (partial) discretization 
of moduli space since all cyclic periods of the integral ds c are proportional to L with 
integer coefficients. Thus the Riemann surfaces amenable to our construction constitute 
a "partially discretized" subspace of ordinary moduli space. On the world-sheet L, we 
can get additional branch points by choosing g (~ , ~ )  and/or f - l  e2k with extra branch 
points in the ~:-plane. 

The existence of topologically non-trivial solutions has important implications for 
the symmetry structure of the theory. As has been known for a long time, the Ernst 
equation belongs to the class of integrable equations. The first indication of this basic 
property appeared in Ref. [5] where it was shown that the Ernst equation admits an 
infinite-dimensional symmetry group (Geroch group) acting on the space of axisym- 
metric stationary solutions. The integrability of Einstein's equations in this reduction 
was subsequently demonstrated in Ref. [6] and Ref. [7], where the associated zero 
curvature representation (or Lax pair) was found. The application of the methods of 
soliton theory by many authors allowed the construction of multi-soliton solutions [6] 
and a study of the associated Riemann-Hilbert problem [ 8,9]. Furthermore, the related 
B~icklund transformations were found in Ref. [ 10], and a link between the Ernst equa- 
tion and the deformation of hyperelliptic algebraic curves was established in Ref. [ 11 ]. 
The Kerr solution was interpreted in this framework as a special case of the two-soliton 
metric. It should be kept in mind, however, that most of the new solutions generated 
by this method are plagued by unphysical features such as naked singularities and vi- 
olations of causality [12-14] (this statement applies to both stationary axisymmetric 
and colliding plane wave solutions; see e.g. Refs. [ 15,16] for reviews of the latter 3 ). 
The understanding of the underlying group theoretical structure evolved from the early 
discovery of a "hidden" SL(2, ~ )  symmetry in Einstein's equations to detailed studies 

2 The full "moduli space of solutions" corresponding to the gauge equivalence classes of solutions in the 
presence of matter is. of course, infinite-dimensional. 

3 The colliding plane wave solutions can be formally obtained from the axisymmetric stationary ones by a 
Wick-rotation (although their physical interpretation is, of course, entirely different). In terms of the notation 
adopted in Ref. [161, this amounts to the replacement of z,~,~(z) and ~ by by x +, x- ,  p+(x +) and 
p_ (x-),  respectively. 
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of the infinite solution generating symmetries of the axisymmetric reduction [ 17]. It 
advanced considerably with the advent of (Kaluza-Klein) supergravity and the dis- 
covery of hidden symmetries in these theories [ 18], which made it abundantly clear 
that Einstein's theory is just a special example in a more general class of (possibly 
supersymrnetric) G / H  coset space sigma models coupled to gravity. This led to the 
realization that the Geroch group is nothing but (a non-linear realization of) the loop 

group SL(2, R)  with a central extension acting as a scaling operator on the conformal 
factor and that the emergence of affine Kac-Moody algebras in the reduction to two 
dimensions is a general phenomenon [ 19,20,16] ; in fact, even the G / H  coset structure 
of the higher-dimensional theories has an infinite-dimensional counterpart. On the basis 
of earlier conjectures that these affine Kac-Moody algebras admit hyperbolic extensions 
in the reduction to one dimension [21], it was suggested in Ref. [22] that there should 
exist new symmetries associated with the topological world-sheet degrees of freedom. 
Indeed, in this paper we will exhibit a Virasoro-Witt algebra corresponding to the vari- 
ations of the conformal structure of /~  within the discretized moduli space mentioned 
above. The full symmetry algebra is the product of the Kac-Moody algebra associated 
with the Geroch group and this Virasoro-Witt algebra (this algebra has been identified 
previously for topologically trivial world-sheets [23], but there the extra symmetries do 
not generate new solutions beyond those generated by the Geroch group). In addition, 
the Geroch group itself may also change the topology of the world-sheet. This happens 
whenever the function C(sc,~) has a singularity in the ~-plane, where the conformal 
factor f - I  e2k has a branch point; the world-sheet is then a covering of £ with these 
branch points. 

This paper is organized as follows. In Section 2 we explain the construction of 
flat metrics on an arbitrary Riemann surface and the nature of their singularities. In 
Section 3 we apply these results to the construction of topologically non-trivial fiat four- 
dimensional manifolds with cosmic string singularities. Periodic solutions of the Ernst 
equations are treated in'Section 4, where we show how to generate periodic analogs 
of the known static axisymmetric solutions; we give only a sketchy account of the 
non-static case, however, as our results are still incomplete, requiring more sophisticated 
techniques. In Section 5, all these results are combined to derive the new solutions with 
non-trivial topology. Section 6 is devoted to a discussion of the new symmetries and the 
action of the Virasoro-Witt algebra on moduli space. 

2. Flat metrics on Riemann surfaces 

Hereafter we denote by/Z a Riemann surface of genus g with local coordinates (z, 5). 
The metric on L may be chosen in many different ways. This is related to a well known 
and basic property of conformal field theories, including string theory, namely their 
invariance with respect to local variations of the metric. An especially convenient choice 
is based on the Mandelstam picture of string interactions in the light-cone gauge [3,4], 
where the metric is taken to be flat and the unitarity of the theory is manifest. Except 
for genus g = 1, such a metric will unavoidably have t~-function singularities of the 
curvature, yielding the standard Euler characteristic X = 2 - 2g for a surface of genus g 
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(in the string theory interpretation, these singularities correspond to points where strings 
split or join) .  Note that the singularities can always be smoothed out by means o f  a 
conformal transformation of  the metric. By contrast, the models considered here, which 
are obtained from a reduction of  the Einstein equations in higher dimensions, are not 
conformally invariant 4 . Thus, the singular points cannot be eliminated here: this is the 
price we have to pay for topological non-triviality of  the solutions. 

As already explained in the introduction, we pick a meromorphic differential d~:(P) 
and define a flat metric on /~ by ( I I ) .  Away from the zeros and the poles of  dsc(P) 
and in accordance with (10) ,  we can adopt s~(P) = x ( P )  + i p ( P )  as a local coordinate 
on any simply connected region of  £.  Let us now discuss in turn the various situations 
arising from the different choices of  dsc(P). We remark that among these, the case 
where d~: is a differential o f  the second kind (i.e. having higher order poles) is usually 
not considered in the string literature. 

2.1. d~ is a differential of the first kind 

The linear space of  holomorphic differentials (abelian differentials of  the first kind) on 
£ has complex dimension g. According to the Riemann-Roch theorem, any holomorphic 
differential d~: on L possesses 2g - 2 zeros at some points Pl . . . . .  P2g-2; for simplicity, 
we will assume that ds c has only simple zeroes. Away from these points the curvature 
vanishes. In the neighbourhood of  any zero Pj, the metric (11 ) is degenerate, and we 
have 

d s ~ = f l z l 2 d z d ~ ,  C > 0  a s P " ~ P i ,  (12) 

where z ( P )  is a local coordinate in the neighbourhood of  Pj such that z (Pj) = O. The 
Gaussian curvature of  an arbitrary metric q(z, ~) dz d~ has the form 

/C= ( logq)z~ 

2q 

and the Euler characteristic o f /2  is defined by 

' /  X =  ~ qK.dzdZ. (13) 

£ 

Substituting the above form of  the metric near Pj, we find 

q/C = - ½ ( l o g  Izl2)z~ = - 2 ~ 8 ( u ) , ~ ( v ) ,  u - Rez , v - I m z ,  

and therefore the integral (13) receives a contribution ( - 1 )  from each singular point; 
these contributions add up to the expected result X = 2 -  2g. Geometrically, the different 
fiat pieces o f  E are glued together at the "interaction points" Pj [4] .  Singularities are 

4 At least not in the usual sense. However, we would like to draw the reader's attention to the fact that 
in many respects the dimensionally reduced theory resembles Liouville theory, where the conformal factor 
also does not decouple, but conformal invariance can be restored nonetheless at the quantum level. See also 
Ref. [24] for a discussion. 
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absent only for the toms, for which 2 - 2g = 0; there is then only one holomorphic 
differential dz. To be able to interpret these "naked singularities" and the singularities of 
the associated four-manifold in Section 3, we introduce polar coordinates in the vicinity 
of Pj by 

r =  Izl,  0 = argz . 

Defining a new radial coordinate R = ½x/"C'r 2, the metric (12) near Pj is cast into the 
form 

ds 2 = dR 2 + 4R 2 d0 2 . (14) 

2.2. d( is a differential of the second kind 

Next consider a meromorphic differential ds ¢ on/2 with poles of order > 1 only. For 
simplicity, we assume that ds c has only poles of order two located at the points R1 . . . . .  
Rn: 

dz 
d~(P)=Cj~-£+O(1),  asP.,~Rj, j = l  . . . . .  n. 

Introducing a new complex coordinate s r = - z - l  in the neighbourhood of Rj, we get 

ds0 z = t ~ d s  r d ( ;  s r , ~ o o a s  P , ~ R ) .  

Consequently, a small disc around the point Rj represents an asymptotically flat region 
on/2; the number of such regions is equal to n. The number of zeroes of ds ¢ on/2 is now 
equal to 2g - 2 + 2n; the behaviour of the metric at these points was discussed in the 
previous subsection. As a special case, we can have d~: = dh (P ) ,  where h(P) is some 
meromorphic function off/2 (here with simple poles); then both functions x = R e h ( P )  
and p = I m h ( P )  are single-valued on /2. We do not know whether differentials of the 
second kind admit an interpretation in the context of string theory. 

2.3. d( is a differential of the third kind 

Finally, consider abelian differentials of the third kind, having first order poles at the 
points Q1 . . . . .  Qn with purely imaginary residues (this is sufficient for our purposes): 

dsc(P) = ( i a J + o ( 1 ) ) d z  
Z 

For so(P) close to Qj we have 

( (z )  "~-iajlogz as z , ~ 0 ,  

whence 

a j E ~  as P NQj; Z a j = O .  (15) 

J 

x ,,~ otj(argz + 2~rk), p ,,~ a j  log Iz I , 
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where k E Z. Thus the small disc centered at Qj represents a semi-infinite tube such that 
p increases logarithmically tO infinity as one moves along the tube and x parametrizes 
the transverse direction (and is thus only defined modulo 2qraj). 

Relation (15) defines d~ only up to an arbitrary linear combination of holomorphic 
differentials. However, if we impose the additional restriction that all cyclic periods of 
d~ are real (so there are 2g real conditions), it will be uniquely defined. In this case 
p = Im s ¢ is a single-valued function on £. This is precisely the differential used in the 
Mandeistam description of multiple string scattering in the light-cone gauge; the globally 
defined coordinate p plays the role of light-cone time, and the multi-valued coordinate 
x parametrizes the various strings at any given time. Since the number of zeroes of an 
arbitrary meromorphic differential is equal to the number of its poles plus 2 g -  2, d(  has 
altogether 2g - 2 -4- n zeroes on £, which correspond to the string interaction points as 
already explained. The semi-tubes growing out of the surface near Qj are interpreted as 
asymptotic in- or out-states of free strings, depending on whether the residue is positive 
or negative (the residues are identified with the momenta of the in- and outgoing strings, 
so the vanishing of their sum expresses nothing but momentum conservation). 

When discussing solutions of the Ernst equation on 12, we can, of course, also allow 
for linear combinations of differentials of the the second and third kinds. 

3. Simple examples of topologically non-trivial fiat manifolds 

Before discussing the Ernst equation on £, we find it instructive to explain how our 
construction works for g = 1, leading to topologically non-trivial flat manifolds .h4 in 
four dimensions, i.e. with metric 

ds 2 = d~:d~ q- p2 dq~2 _ d t  2 ' (16) 

where the notation is the same as in the previous sections. Since all examples are 
topologically the product of the time axis • and a spatial fiat three-manifold .A40, we 
can effectively ignore the time coordinate in the sequel. Evidently, for the metric (16) 
to be well defined, it is necessary that p ( P )  be globally defined. This shows again that 
all cyclic periods of dsc(P) should be real. Owing to the fact that the period matrix 
associated with £ has positive imaginary part, this condition cannot be satisfied for 
holomorphic dsC(P). Consequently, dsc(P) must have poles of some kind. Its singular 
parts and the requirement of reality determine ds ¢ uniquely. We now discuss the properties 
of .A40 taking into account the possible choices of abelian differentials d(. 

Suppose that dsc(P) has a zero at Q E £. In the vicinity of Q, the world-sheet metric 
can be brought into the form (14), so the associated metric on .A,40 becomes 

ds 2 = dR 2 + 4R 2 d0 2 -k- p2 d~b2, (17) 

where p at R = 0 is given by p (Q) ,  and R and 0 are local polar coordinates in the 
(-plane. If the second term were R z d02, the space would obviously be flat. On the other 
hand, if instead of f12 = 4, the prefactor obeyed/32 < 1, the metric would correspond to 
a cosmic string with deficit angle 27r( 1 - / 3 )  around R = 0 [25]. In the case at hand, 
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there is an excess angle of  2~r instead. Accordingly, we identify this singularity with a 
cosmic string of negative tension at R = 0; since 0 ~< ~b < 2~r, this cosmic string forms 
a ring of radius p ( Q ) .  By construction, there are as many cosmic strings as there are 
zeroes of d~ in the domain of positive p. Encircling such a string once, one ends up in 
another (flat) axisymmetric "universe", while a rotation of 4~r will bring the observer 
back to the universe from where he or she started; this is the physical meaning of the 
excess angle. Analogously, the number of different "universes" that can be reached in 
this fashion increases with the order of the zero (it is easy to see that the excess angle 
is then 47r, 67r . . . .  ), and for each extra zero of ds c, new separate "universes" become 
accessible. 

The properties of the metric (16) near the poles of d~: can be likewise understood on 
the basis of the results of Section 2. For instance, let Po be a second order pole of d~:, and 
z = z ( P )  a local coordinate at Po defined in such a way that d~: ,-~ z - 2 d z  as P ,,~ Po. 
Clearly, s c = z - l  --+ c~ as P --+ P0, implying p ( z )  = Im [z -1 ] and x ( z )  = Re [ z - l ] .  
The small disc around the second order pole of ds c corresponds to an asymptoticaly flat 
region on .A40 (the same conclusion holds for poles of yet higher order). On the other 
hand, if Po is a simple pole of ds c with imaginary residue, a small disc on/2  centered at 
P0 is topologically equivalent to a semi-infinite tube. The domain in M0 corresponding to 
this tube is the product of the domain p > P0 in the (p, ~b)-plane and a circle S 1 in terms 
of the x-coordinate (po is a constant related to diameter of the disc). In other words, the 
global structure of .M0 can be described as follows. I f /~  were just the complex plane 
with coordinates (x, p) we would get the space .A40 = ]R 3 by rotating the half-plane 
p ~> 0 around the symmetry axis p = 0. This procedure may be repeated for arbitrary 
£.  Consider the part /~+ of £ for which p >~ 0; then .M0 is obtained by"rotating" £+ 
around the contour C consisting of all points P E £ such that p ( P )  = 0 (observe that 
C may have several disconnected components). Rigorously speaking, we get a foliation 
.M0 --+ £+ where the fibre corresponding to each point of /~+ is a circle of radius p. 
The flat metric is properly defined on all of .M0 and regular away from the poles and 
zeroes of d (  as we already explained. The total number of cosmic strings, asymptotic 
regions and semi-infinite tubes is constrained by the Riemann-Roch theorem according 
to Section 2. 

Notice that in our construction the subset /~_ C /~ corresponding to p < 0 can be 
ignored, because we admit only non-negative p in order to be able to interpret the metric 
as a genuine metric in four dimensions. Taking into account the reflection symmetry 
p --~ - p  on .M of the metric (16), the section ~b = kTr, k = l, 2 of .A40 may be identified 
with £+ glued to its mirror image along the "symmetry axis" p = 0. So without loss 
of generality we could have assumed from the beginning that the curve /~ admits an 
anti-holomorphic involution r : £ -+/~, r 2 = 1 such that r(Z: +) = / Z -  and could have 
defined C as the set of points invariant with respect to r (locally, the involution ~- maps 
( x , p )  to ( x , - p ) ) .  In this case the section ~b = kTr, k = 0 , 1  of .M0 may be identified 
with the surface/~ itself. 

The above considerations can be extended in an obvious manner to the simpler case 
of three-manifolds with metrics 

ds 2 = dsCd~ + dx 2 , (18) 
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whose third coordinate x3 is unrelated to ( ( P ) ;  from the two-dimensional point of view, 
we are dealing here with a constant dilaton. The essential difference is that we now need 
not require real periods. Topologically, .M0 is then a product £ × • or £ × S 1 . 

In a somewhat different context, fiat Lorentzian three-manifolds having non-singular 
space-like surfaces at any finite value of the time parameter, but initial and final singu- 
larities at t = 0 and t = c~, were constructed in Ref. [26]. 

4. Periodic solutions of the Ernst equation 

Since our construction requires periodic solutions of the Ernst equation, we will in 
this section explicitly demonstrate that a large class of solutions actually exists (the 
periodic analog of the Schwarzschild solution was already constructed in Ref. [27] ). 
While so far we have explicit examples only for the static case (i.e. A = 0  in (8 ) ) ,  we 
give arguments why periodic solutions with rotation, and in particular a periodic analog 
of the Kerr solution, should also exist; however, their explicit construction requires more 
sophisticated tools from the theory of integrable systems. 

4.1. Static case 

As is well known, static metrics with A = 0 correspond to real Ernst potentials. For 
these, the Ernst Eq. (5) can be linearized by the substitution 

o) = log 8 ,  

and is thereby reduced to the Euler-Darboux equation 

1 
O) XX "~- - -  O) p "~- O.) pp = O . (19) 

P 

The metric (6) becomes 

ds 2 = e-O~ [e2k (dx 2 + dp2) + p2 drb 2 ] + e ~, dt 2 ' (20) 

where the conformal factor is determined from the first order equation 

ip 

or, equivalently, 

P kp= -~ p (oo~-o~ 2) , kx = ~¢OxOO o (21) 

We can now construct x-periodic analogs of known static solutions by means of the 
following procedure. 

Let wo(x, p) be some solution of (19). Consider the expression 5 

5 The following construction is inspired by the construction of the Weierstrass p-function. 
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OQ 

w(x,p) = ~ { w 0 ( x + n L ,  p ) + a n } ,  (22) 
n=--O0 

where the coefficients an are constants to be chosen in such a way that series (22) 
becomes convergent. It is important that these coefficients do not depend on (x, p) since 
otherwise the sum could not possibly satisfy the original equation (19). If convergence 
may be achieved, the function (22) describes a solution of (19) with period L. Clearly, 
in order to obtain a truly periodic metric (20) we must also verify the periodicity of 
the function k(x,p) defined by (21). 

The following theorem shows that our method of construction is quite general. 

Theorem 1. Let wo(x, p) be any solution of the Euler-Darboux equation corresponding 
to an asymptotically flat metric (20), i.e. 

wo(x,p) =/3  + O(r_Z) as r --~ c~, (23) 
r 

where r = V ' ~ +  p2; m = -½/3 is the mass. Let 

/3 n 4: 0 , a 0 = 0 .  (24) 
a . =  LInJ' 

Then series (22) is convergent for all (x, p) except the points (x0 +nL, Po), where the 
function wo(x, p) is singular (n E Z),  and defines a periodic function with period L. 

Proof For large n we have 

wo(x+nL, p ) + a n = f l  X/(x+nL)2+p2 L-(n[ + 0  = 0  

by (23), and therefore the series (22) converges if (x + nL, p) does not coincide with 
a singular point of w0(x, p) for any n. [] 

So starting from an arbitrary static asymptotically flat solution we can construct its x- 
periodic analog. Consider for instance the Schwarzschild solution, which is characterized 
by the Ernst potential 

w0 =logE0,  £o(x,p) = k / ( x - M ) 2 + p 2 + ~ / ( x + M ) 2 + p 2 - 2 M  (25) 
~/ (x  - M) z + pz + ~ / (x  + M) 2 + pz + 2M ' 

where M E ~ is an arbitrary positive constant (the mass of the black hole). Here, all 
square roots are taken to be positive; this means that we do not consider (25) inside the 
event horizon, which coincides with the segment p = 0,  x E [ - M ,  M]. The coefficient 
/3 in (23) is therefore equal to - 2M.  Thus the periodic analog of the Schwarzschild 
solution (25) has the following form: 

£(x, P) = go(x, p) 1-I £o(x + nL, p)£o(x - nL, O) exp - ~  . (26) 
n=l  
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-IJ', -M +M +L/2 

Fig. 1. Integration contour used in the proof of (27).  

Obviously, 

E(x  + L ,p )  = E ( x , p ) .  

X 

This is essentially the solution found in Ref. [27]. In the sequel we will assum e ½L > M 
(for L ~< 2M, the interpretation of the solution is not clear as the horizon overlaps with 
itself, and the Ernst potential vanishes on the symmetry axis). Convergence of the infinite 
product (26) is equivalent to convergence of the series (22) and thus guaranteed by 
Theorem 1 (for non-negative values of the square roots in (25)). Consequently, the 
solution (26) is a periodic function on the upper half plane p ~> 0 with "fundamental 
region" .T" defined by p ~> 0 , - ½ L  ~< x ~< ½L. 

It is now not difficult to verify that the function E ( x , p )  defined by (26) is smooth 
everywhere on .T" away from the points x = + M ,  p = 0. and non-zero everywhere 
except on the horizon (i.e. p = 0, Ixl ~ M). The periodicity of the conformal factor, 
i.e. 

k(x  + L, p) = k(x,  p) (27) 

is implied by 

t./2 

kx dx O, 

--L/2 

where the derivative kx is to be evaluated by means of (9). This, in turn is a consequence 
of the vanishing of the following contour integral: 

-~ -~ tO xOJ p dx , (28) 

1 

where the closed contour l is depicted in Fig. 1. This integral vanishes because the 
function to obeys (19) and is smooth everywhere inside of I. The integrals along the 
edges [ ( - ½ L , 0 ) ,  ( -½L,  P)] and [(½L, P), (½L,0)] cancel due to the periodicity of 
w(x ,  p).  Owing to the presence of the factor p in (28) the contribution of the interval 
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[(½L, 0), (-½L, 0)]  reduces to a sum of contributions of two small rectangular paths 
around the points x = - M  and M (cf. Fig. 1), where the derivatives tox and top become 
singular. These contributions cancel by virtue of the symmetry 

to ( -x ,p )  = to(x, p) 

inherited by solution £ from E0. So the integral along the contour [ ( -½L,  p) ,  ( ½L, p) ] 

also vanishes and we get k(-½L, p) = k(1L, p). In conclusion, the metric (20) corre- 
sponding to the periodic Ernst potential (26) is also periodic. 

The asymptotic behavior of the Ernst potential (26) is given by 

g=Cp4MIL(I+o(1))  asp---~oo, (29) 

where C is some constant. To see this. recall that the function to = log S is defined by 

~-~[ 4M 1 to(x,p) = too(x.p) + too(x + nL, p) + too(x-  nL.p) + --~ . 
n = l  

Substituting the explicit expression for to0(x, p) (25) and differentiating with respect 
to p2. we obtain 

o o  
ato (x.p) = ~ 2M[Sl(n)+s2(n)] 

a(P2) . = - ~  [s l (n)  + s2(n) + 2M] [s!(n)  + s2(n) - 2M]sl(n)s2(n) ' 

where sl (n) = ~/(x + nL + M) 2 + p2 and s2(n) = ~/(x + nL - M) 2 + p2. The lead- 
ing term in this series for large p can be estimated by approximating the sum by an 
integral; it is given by 

oo ( ( x + n L ) 2 F P 2 )  3 / 2 M  2M 1 ( L _ p 2  ) - 1 + o ( 1 )  . 
n------(X) 

ThUS. 

2M 
to = ---~- logp2 + O(1) as p ---~ o<3 

and £ = Cp4M/L(1 q-O(1)) for some constant C. Hence, as p ~ oo, the metric (20) 
tends to the Kasner solution 

ds 2 = dp~2/2-a (dx 2 + dp2 ) + C -1 p2-,~ d~b2 _ Cpa dt 2 ' (30) 

where ff is another constant of integration and the Kasner parameter a is related to the 
period L by a = 4ML -1, so that 0 ~< a < 2 with our assumption on the range of M. 

The solution (26) has a compact event horizon coinciding with the segment p = 
0,  - M  ~< x ~< M. Outside the horizon it is everywhere non-singular, including the seg- 
ment of the symmetry axis outside the horizon. Using the standard product representation 
for the F-function, we find 

(_~__)  F ( ( l x ,+  M ) / L ) F ( 1 - ( , x , -  M)/L)  (31) 
£(x ,p=O)  =exp r((Ixl--M)/L)r(l (IxI-  M)/L) 
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for M ~< [xl ~< ½L (-y is theEuler  constant), and E = 0 for p = 0 and Ixl ~< M. As a 
consequence of the reflection and translation symmetry, the free integration constant in 
Eq. (14) may be chosen in such a manner that conical singularities on the part of the 
symmetry axis outside the horizon are avoided (this requirement fixes the constant 
in (30)) .  In the limit L ~ cx~, the solution obviously tends (pointwise) to the ordinary 
Schwarzschild solution. The leading term in the asymptotic expansion then approaches 
the fiat metric, as it should be 6. 

By theorem 1 we can obtain a periodic counterpart of any asymptotically fiat static 
solution of (5).  The method described in this section fails, however, for non-static 
axisymmetric stationary solutions, because the Ernst equation can no longer be linearized 
in this case. Since the extension requires entirely new techniques, we shall sketch a 
possible method based on methods borrowed from soliton theory in the next section. 

4.2. General case 

The Ernst equation (5) may be derived as the compatibility condition of the following 
linear system [6,7,10] (for more recent developments, see Refs. [20,16], and Ref. [ 11 ], 
whose notation and conventions we will follow in this section): 

~ :  = U ~ ,  ~ ¢ = V 7  t , 

0 

0) 
V= 

c4 + V , ~ _ ~  c4 o ' 
(32) 

where /t. E C 
coefficients Cj ( ( ,  ~) are related to the Ernst potential C by 

CI - ~"  C 2 -  ~ C 3 -  ~ C 4 =  ~ C + E '  C + ~ '  C + ~ '  C + £ "  

The identification (33) is a consequence of the asymptotic condition 

is the spectral parameter7 ; ~(A,~:,~) is a two-by-two matrix, whose 

(33) 

(34) 

6 Alternatively, one could regard this solution as describing an infinite chain of black holes spaced at a 
distance L. At first sight, it seems remarkable that this configuration does not require conical singularities on 
the axis between adjacent black holes for stability. Rather, it appears to be stabilized by its symmetry under 
reflections and translations and the presence of infinitely many black holes "on each side". However, this also 
indicates instability under non-periodic perturbations, which makes this interpretation somewhat less attractive. 

7The spectral parameter h. is called w in Refs. [20,16]. Sometimes it is convenient to use the (x ,p)-  

dependent spectral parameter t = ( l / p ) ( A -  x + # ( a  - x) 2 + p2 (first introduced in Ref. [6] ) mapping S 
to the complex plane. 
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Considered as a function of the complex spectral parameter ,~ with fixed (s c, ~), the 
linear system (32) lives on the two-sheeted Riemann surface S of genus zero defined 
by the equation 

= ( a -  ¢ ) ( a -  ; 

is thus a function of the three variables (P, x, p) ,  where P E S (actually, we should 
distinguish points on the spectral curve S from points on the world-sheet/~, but we will 
nevertheless use letters P, Q . . . .  if there is no danger of confusion). By o-, we denote 
the involution on S interchanging the two sheets. 

The existence of the linear system (32) permits us to construct solutions of ( I )  
by means of the inverse scattering method [6-14,17,20]. So far, most efforts in this 
direction have been concerned with the investigation of asymptotically fiat solutions of 
(5).  Although our results are still incomplete, we now present some evidence that every 
asymptotically fiat solution of (5) should have a natural periodic counterpart. 

To illustrate these arguments, let us attempt to construct the periodic analog of the 
Kerr solution. For this purpose, recall the standard construction of 2n-soliton solutions 
of (5) (there are no solutions with an odd number of solitons). The associated function 
~ n ( P )  has the following form: 

~ n ( P ) -  A T \TP-~--~--~) Qn(a)  - 1 ' (35) 

where 

n--2 

Qn(A) = qtA k , P . - I  (A)  = A k - I  -t- ~-~pk Ak 

k=l k=-I 

are two polynomials with (x,p)-dependent coefficients Pk, qk; C ( ~ , ~ )  is a diagonal 
matrix providing normalization of the first column according to (34): Cll = (qn - 1 ) - l ;  
(722 = ( 1 - g/n) -1. For arbitrary coefficient functions Pk and qk, the function g'n will not 
satisfy the linear system (32) because its logarithmic derivatives ~ , ~ - i  and ~ ¢ ~ - 1  

will have not only the poles at ,t = s c and ,~ = ~ required by (32), but also at the zeroes 
,~1 . . . . .  A2n of det g'n. To eliminate these additional poles suppose that the points ,tl, 
. . . .  A2n are independent of (sc,~), and that the eigenvectors of ~n at these points are 
also (s c, ~)-independent, i.e. 

( 1 ) = 0 ,  k = l  2n, . . . . .  (36) ~P'n ( Ak ) dk 

where dk are some constants. From (36) we can deduce 4n linear equations for the 2n 
functions Po . . . . .  Pn-2, qo . . . . .  qn. To ensure their solvability it is enough to require 
that 

'~2k-I = ~2k- I  , '~2k ---- 22k ,  d2k-1 -~ - - d 2 / - I  , d2k -- - - J2k  (37) 

o r  

A2k-t = ~.2k, d2k-l = --d2k (38) 
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for k =  1 . . . . .  n. 
The related Ernst potential is then easily identified as 

£ _ q n  + I  

qn - 1 ' 

where q,, by Kramer's rule, is the ratio of two 2n × 2n determinants. This expression is 
more conveniently dealt with in terms of the potential 

1 - £  1 
F - -  

1 + £  q,  

We will not write down the corresponding expressions for arbitrary n; they can be found 
in Ref. [28]. 

F o r n = l  and A l , 2 E ~ , d l , 2 E i ~ w e g e t  

-- c] +c2  F_  I _ cl c_.________2 X + ~ Y , (39) 
2 

where 

- 1  +dj 
c J =  l + d j  - - ,  j =  1,2,  

are new arbitrary constants satisfying Icj] = 1, and 

x_-- ' - - + - 

Y=-- At - A - - - - 2  

are prolate ellipsoidal coordinates. This is nothing but the well known Kerr-NUT so- 
lution; to get the Kerr solution itself, we only have to put c2 = -c-~ = c. To recover 
the multi-Kerr solution with arbitrary parameters, we have to choose c2j-1 = - e 2 j ,  

]C2j--I[ = 1 ¢ 2 j [  = 1 for all j = 1 . . . . .  g. 
Now let us turn to possible periodic generalizations. Intuitively, one would expect a 

periodic analog of the Kerr solution to represent an infinite superposition of identical 
Kerr black holes lined up on the symmetry axis at equal distances. Analytically, for an 
arbitrary solution of (5) obeying the periodicity condition (46), the associated linear 
system matrices U and V from (32) must satisfy the relations 

U ( A + L , x + L , p )  = U ( A , x , p ) ,  V ( A + L , x + L , p ) = V ( A , x , p ) .  

Then for a solution q' of (32) we have 

~ ( A  + L , x  + L , p )  = q t ( A , x , p ) R ( A ) ,  (40) 

where R(A) is some (x,p)-independent matrix. We emphasize that the world-sheet 
coordinate x and the spectral parameter A must be shifted simultaneously by the same 
amount in order to maintain the A-dependence prescribed by the linear system (32). 
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Note also that, for topologically non-trivial world-sheets L, ~ is not single-valued on/Z 
in general even for R(3.) = 1. 

From (40) we infer that the (x, p)-independent parameters in ~' must be invariant 
under the transformation A --~ 3. + L (in the general multi-soliton case, these parameters 
include the positions of the points 3.j and the constants cj). To construct a periodic 
analog of the Kerr solution we thus have to start from an infinite-soliton solution where 
the zeroes of det ~ are located at the points 3.1 + nL (with the same parameter cl ) 
and 3.2 + nL (with the same paramter c2 = --all ). Just as for the periodic Schwarzschild 
solution, we can avoid "horizon overlap" by imposing the condition L > 2M, where 

2M - 13.~ - 3.21. 
A rigorous way to construct such a solution would be to consider a sequence of 

Ernst potentials En(x,p), n = 1,2 . . . . .  where £n is the 4n + 2-soliton solution of 
(5) corresponding to the zeroes of det ~ at 3.1 + nL with the "dressing parameters" 
c (Ic[ = 1) and 3.2 + nL with the "dressing parameters" -5 .  If  we could prove the 
pointwise convergence of the sequence En, the limit solution £ = lim,--.~ En could be 
regarded as a periodic analog of Kerr solution. We have at this time no rigorous proof 
of convergence, but can offer the following arguments in favor of our hypothesis. First 
of all, the sequence is certainly convergent when c2 = - c l  = 1, in which case the 
"dressing procedure" would reproduce the periodic analog of the Schwarzschild solution 
derived in the foregoing section. Secondly, for large p, the solution should describe the 
gravitational field of an infinitely extended rotating cylinder on the symmetry axis, a 
solution which is known to exist [28] (the periodic Schwarzschild solution likewise 
approaches the field of an infinite static cylinder). Moreover, the contribution from 
angular momentum to the asymptotic form of the Ernst potential at p ~ to  is down 
by one order in comparison with the contribution of mass (i.e. of order O(p -2) rather 
than O(p  - l )  ), so they would not affect the convergence of the series. Indeed, these 
arguments suggest that the solution with rotation again approaches the Kasner solution 
(30) with the same Kasner parameter. However, even assuming convergence of the 
sequence 5'n, it is not clear at the moment whether the "dressing procedure" will not 
generate unphysical singularities outside the event horizon [3.1 + nL, 3.2 + nL] unlike 
in the  static case, where such additional singularities could be shown to be absent. 

Analogously, in order to construct periodic analogs of the algebro-geometrical so- 
lutions of (5),  which contain the multi-soliton solutions as a degenerate partial case 
[ 11,14] ), one would have to start from a hyperelliptic algebraic curve of infinite genus 
with a periodic configuration of immovable branch cuts. 

The general conjecture is that every asymptotically fiat solution of the Ernst equation 
with mass M has a natural periodic analog which is asymptotically Kasner with Kasner 
parameter 4M/L. The spectral data of the fully periodic solution are obtained by shifting 
the spectral data of the initial solution by nL for n E Z. In the limit L ~ to  the 
periodic solution tends (pointwise) to its asymptotically fiat counterpart. Assuming our 
conjecture to be true, the same correspondence should hold between the symmetry groups 
pertaining to asymptotically fiat and periodic solutions, respectively, i.e. there should 
exist a "periodic Geroch group", also possessing a central extension. The corresponding 
Lie algebras should, of course, be the same (i.e. coincide with the affine Kac-Moody 
algebra All)).  
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Note that the periodicity co.nstraint (40) for ~ implies the periodicity of all related 
quantities depending either on only 3  ̀ or on only (sc,~) (we can arrange R = I by a 
suitable transformation 9t ~ ~C(3`)) .  For instance, with F(3`) = I in (34), we get 
9r(3` = oo,~: + L) = ~'(3` = oo,sC), which implies periodicity of Ernst potential, i.e. 
g(x  + L,p) = g(x ,p ) .  Besides, it is easy to check that 

1 M(3`) = _ ~t(3` 'r)o' l~(3`) 
E + S  

(called "monodromy matrix" in Ref. [20] ) is always (~:, ~)-independent. Hence, M(3,) 
is periodic with period L for !/" subject to (40) with R(a) = I. 

As an example, we calculate the monodromy matrix for the periodic Schwarzschild 
solution. The monodromy matrix associated with the ordinary Schwarzschild solution 
(25) has the form 

(3` -  M)(3`+ M) 
To = 3`2 0"3, (41) 

where we put AI = - M ,  3`2 = M and 0"3 is the usual Pauli matrix. Now, for any static 
solution (i.e. £ = ~),  the related solution of the linear system (32) may be represented 
as 

- 0 ( P )  O(P ~) ' 

where ~,(P) is a solution of 

( log0)e  = ½(logg)e (1 + 

= ½(logC)~ ( 1 +  3` - ~' (log¢)~ 

The related monodromy matrix is 

T= O(P)O(P~) 
2g 0"3. 

If gl and g2 are two different solutions of (5) with associated functions ~q (P )  
and 02(P), and monodromy matrices Tz(3`) and T2(A), respectively, then £ig2 is 
a solution of (5) corresponding to 0 ( P )  = ~01(P)O2(P) with monodromy matrix 
T(3`) = Tl(3`)T2(3`). From this simple observation, we can derive the monodromy 
matrix corresponding to the solution (26) as an infinite product 1-I~_~ T0(A + nL). 
Using the explicit form (41) of the matrix To, we obtain 

sin[Tr(3` - M)/L] sin[Tr(a + M)/L] 
T(A) = sin 2 [Tr3`/L] 0"3. 

In the different parametrization adopted in Ref. [20], we would obtain T(3`) = 
d i ag ( r (A) , r - l (3 ` ) )  instead, where r(3`) = sin[Tr(3` - M)/L] sin -I  [~'(A + M)/L].  
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We observe the following difference between periodic and asymptotically flat solutions: 
in the asymptotically fiat case, the dependence of the monodromy matrix on ,~ can be 
inferred from the knowledge of the Ernst potential on the symmetry axis [20]. Compar- 
ison of the monodromy matrix for the periodic Schwarzschild solution with the related 
Ernst potential on the symmetry axis (cf. (31)) shows that this is no longer true for 
periodic solutions. 

5. The Ernst equation on £ 

We will now combine the results arrived at in the foregoing sections. That is, we 
will replace the fiat metric (16) by the full metric (6),  and at the same time assume 
the underlying world-sheet to be a non-trivial Riemann surface, thereby introducing a 
non-trivial gravitational field on the manifold .A,I. The non-flat metric on the background 
provided by (16) thus has the usual form of the metric on a stationary axisymmetric 
Einstein manifold, viz. 

ds 2 = f - z  e2k d (d~  + f - l  (ImsC)2 dq~2 _ f (d t  + A d~) 2 , (42) 

where the functions f ,  k and A depending only on (s c, ~) may be expressed in terms 
of the complex-valued Ernst potential according to (9). The Einstein equations for the 
metric (42) reduce to the Ernst equation (5),  together with (2) and (9),  as already 
mentioned in the introduction. 

Let us denote the poles of d~: on £ with non-zero residues by Q1 . . . . .  Qn. The reality 
of all cyclic periods of dsc(P) implies that the related residues are imaginary; as in 
Subsection 2.3 we denote them by --io:j (tej E R) .  With (aj ,  bj) ,  j = 1 . . . . .  g the usual 
basis of homology cycles on £, the cyclic periods of d(  are given by 

a j = / d , ,  B j = f d , ,  j = l  . . . . .  g,  

aj bj 

2~-~ j - -~ 'd~ ,  j = l  . . . . .  n,  (43) 

cj 

where Cj are small contours enclosing the points Qj. According to our assumption, all 
these periods are real; therefore the function p ( P )  = I m p ( P )  is single-valued on •, 
and x ( P )  = ResC(P) has cyclic periods coinciding with (43). 

Suppose now that ~(x,p) is some solution of the Ernst equation. For £(x,p) to be 
single-valued on/Z, the following periodicity conditions must be satisfied: 

~ ( x + A j , p ) = £ ( x + B j , p )  =E(x,p) ,  j = l  . . . . .  g,  

£(x+2rra j ,p )=g(x ,p ) ,  j = l  . . . . .  n. 

Since it is impossible to construct a continuous non-constant function on R having two 
real periods L1 and L2 such that the ratio Li/L2 is irrational, we must require that all 
cyclic periods A j, Bj and 2~raj satisfy 
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27rc~j = k j L ,  j = l . . . . .  n ,  (44) 

Aj  = m j L ,  Bj  = n j L ,  j = l . . . . .  g ,  (45) 

for some L E R and certain integers k j , m j , n j .  If  £ ( x , p )  is periodic with period L, 

E ( x  + L , p )  = C ( x , p ) ,  (46) 

the function C ( x ( P ) ,  p ( P ) )  is single-valued on all of L;. The periodicity of the full 
metric (42) is ensured if the same periodicity constraints are obeyed by the functions k 
and A, i.e. 

k ( x  + L , p )  = k ( x , p )  , A ( x  + L , p )  = A ( x , p )  . (47) 

At least for the static case, these relations were established in the previous section. Now 
we recognize that it is precisely the periodicity constraints (44) and (45) which lead 
to the discretization of moduli space. 

Physically we can distinguish two essentially different situations: 
(i) For kj = mj = nj = 0, all cyclic periods o fds  c vanish, and dsc(P) = d h ( P )  for some 

meromorphic function h ( P )  on / : ;  there are then no restrictions on the surface £.  
The condition (46) becomes empty, and ,f(h,  Tt) solves (5) without further ado. 
In particular, we can choose C(x, p) to be asymptotically fiat (corresponding to 
the Schwarzschild solution, say); then the metric (42) will also be asymptotically 
flat near the poles of d ( ( P )  = d h ( P )  (which are of second order at least), where 
x, p ~ oo. The number of black holes on the symmetry axis p = 0 coincides with 
the number of poles of h (P ) .  

(ii) If  not all kj ,  mj ,  nj in (44), (45) vanish, the differential d~: may in principle have 
poles of  arbitrary order. For definiteness, let us restrict attention to the L-periodic 
Schwarzschild solution derived above. The symmetry axis p = 0 now consists of 
several disconnected components. These may be either homeomorphic to S l or 
non-compact. The first possibility corresponds to the cross sections of £ at "time" 
p = 0. The second, on the other hand, is realized in the vicinity of any higher order 
pole of  d(, when the pole is approached in such a way that p = 0 but x ~ oo. In 
the latter case, we end up with an infinite number of black holes in this region, 
which would have been asymptotically flat for ,f = 1. If  one wants to avoid the 
occurrence of infinitely many black holes, one must consequently assume that d~ 
has only simple poles (which is precisely the situation studied in string theory 
[4] ). The neighbourhoods of the simple poles of ds c represent semi-infinite tubes, 
where p ~ 4-oo (the sign coincides with the sign of the associated residue as 
we explained in Subsection 2.3). At the "tip" of any such tube, the metric (42) 
behaves like the Kasner solution. The number of black holes on each separate 
symmetry axis p = 0 is equal to the cyclic period of d~: along this contour. 

In both cases, the metric (42) near any zero of d~: describes a cosmic string just as 
for E = 1; the excess angles are given by 27rk, where k is the order of the zero, and the 
various functions appearing in (42) are to be evaluated at this zero. 

An artist's view of the section ~b = const., t = const., p ~> 0 of a typical manifold of 
the second type is given in Fig. 2. Analogous pictures for ds c = dh would look precisely 
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J p=~ 

" P=Pl 

" p--0 

Fig. 2. Example of a static solution with two symmetry axes (p = 0) and three asymptotic regions (p = oo) 
for non-vanishing cyclic periods of ds ~. The genus of L depends on how the surface is extended to negative 
p; for a reflection symmetric surface, it would be three. The solid points represent cosmic swings of radii 
P = Pl,/92 ..... and the solid segments on the contours p = 0 correspond to the horizons of the respective 
black holes. 

like the usual diagrams representing a Riemann surface as a covering of  the complex 
plane; the only difference is that here we get a covering of  the upper half-plane only. 
The number of  sheets coincides with the number of  black holes and is equal to the 
number of  poles of  h ( P ) .  

6. Act ion  o f  the V i r a s o r o - W i t t  generators  on the "partial ly discretized" modul i  
space  

We now wish to address the question of  extra symmetries for the new solutions that 
we have constructed in this paper. Contrary to the axisymmetric solutions studied in the 
literature so far, our solutions depend on extra topological degrees of  freedom, namely 
the moduli of  the (punctured) Riemann surface £ .  We will show that there is an analog 
of  the solution generating symmetries acting on these topological degrees of  freedom. 
Together with the original solution generating symmetries not affecting the topology of  
the world-sheet, they form a group which contains and extends the Geroch group. 

To display the new symmetries, we recall that (as shown for instance in Ref. [29] ) 
it is possible to define an action of  a Virasoro-Witt algebra on the moduli space of  
algebraic curves of  genus g. For all but finitely many generators, this action simply 
corresponds to a reparametrization of  the coordinates, and hence has no physical signifi- 
cance. The remaining generators, on the other hand, correspond to genuine deformations 
of  the conformal structure, and thus act non-trivially on the moduli space, yielding new 
solutions that cannot be "reached" by the Geroch group. We note that some action of  
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a Virasoro-Witt algebra on the solutions of the Ernst equation (or, more precisely, on 
the spectral parameter plane) was already exhibited in Ref. [23] (cf. also Ref. [16] ). 
However, this action does not give anything new beyond the action of the Geroch group 
itself. Rather, its action merely "stirs" the singularities of !/' in the ,,l-plane. In contrast, 
the non-trivial action of the Virasoro-Witt generators in our case is due to the presence 
of topological degrees of freedom on the world-sheet (we will ignore the torus (g = 1 ) 
as it presents no qualitatively new features). 

Consider an arbitrary curve Z: of genus g and choose some fixed point P0 on it with 
related local parameter r in a local neighborhood of P0 (so that r(P0) = 0). On the 
boundary 3D of a small disc D of radius R around P0, we define the vector fields 

tk = _7.k _a , k c Z .  
a.r 

Evidently, they generate a Virasoro-Witt algebra V/r. The space of these vector fields 
can be represented as a direct sum 

v = v_ e vo e V+ . 

Here, V_ is defined to consist of all vector fields admitting a holomorphic extension 
into the disc, i.e. the interior of the boundary aD; similarly, V+ consists of all vector 
fields possessing a holomorphic extension to the complement/:  \ D of the disc, i.e. the 
exterior of aD. The remaining vector fields, which can be extended holomorphically 
neither into D nor into its complement, span the subspace V0. Now it is known [29] 
that always 

dimc V0 = 3g - 3, 

and, if P0 is not a Weierstrass point on £, a basis in V0 is given by 

t~,k = - I  . . . . .  - 3 g -  3. (48) 

We are now ready to define the action of an arbitrary vector field v E V0 on the 
moduli space by the following procedure [30,29]. Cut the curve £ along aD; this gives 
two disconnected parts D and its complement/:: \ D, whose boundary points we label 
by P+ and P_, respectively. We then shift the boundary points relative to one another 
after the replacement of P+ by exp(flv)P+ (i.e. shifting P+ by the S t diffeomorphism 
generated by the vector field v), and then glue the pieces back together. In general, the 
conformal structure of the new curve Z:Z will be different. According to Ref. [31 ], the 
variation of the b-period matrix B of 13 with respect to this transformation is described 
by the formula 

a Bran / 
aft I/3=o = dUn dUm v ,  

aD 

where dUn (for n = 1 . . . . .  g) is a normalized basis of holomorphic differentials on /: 
(the expression dUn dUm v is a one-form). 
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NOW we see that this variation is zero for v E V_ and v E V+ because the integration 
contour OD can be deformed to a point if u admits a holomorphic extension into D, or 
"pulled off the back of /2" ,  if there is a holomorphic extension to the complement of 
D. Since the matrix of b-periods completely determines the conformal structure of /2,  
a deformation of the conformal structure requires v E V0. Since furthermore dirncl,~ = 
3g - 3 precisely coincides with dimension of the moduli space of/2,  we conclude that 
all generators of V0 vary the conformal structure (observe that ~ = V e v_ e v+ is not 
a subalgebra of V, in contrast to V_ and V+). 

For the sake of clarity, let us first consider case where d~:(P) = dh (P )  for some 
meromorphic function h ( P )  on /i.. We have to vary the set (/2, h ( P ) ) ,  i.e. the moduli 
of  the Riemann surfaces of a given genus g with n punctures R1 . . . . .  Rn. In order to 
also vary the punctures, we must add n further generators from V+ to V0, which must 
be such that the matrix sj (Ri)  is non-degenerate (although the value of the determinant 
of this matrix depends on the choice of local coordinates at the points Rj, the vanishing 
or non-vanishing of it is a coordinate-independent property) where the new generators 
are designated by sj ( j  = 1 . . . . .  n) ,  and the related subspace of V+ by Vn C V+. As a 
result, we can vary the set (/2, Rj)  by an arbitrary generator from 

Vo e V~ = V e V_ e ( v+ e v~ ) . 

Of course, this linear subpace of V of dimension 3g - 3 + n is not a subalgebra, in 
contrast to V_ and V+. Generically, we can choose sj = tj, j = - 3 g - 4  . . . . .  - 3 g - 3 - n ;  
then V+ e vn is also a subalgebra and I,~ ~ V, is a "two-sided" coset space. 

Next consider the more complicated situation, where dsC(P) is a differential of the 
third kind on/2 subject to the discretization conditions (44), (45), and we have to vary 
the set of data (/2, dsC). Denote the poles of ds ¢ by Q1 . . . . .  Qn and keep the related 
residues (discretized according to (44))  fixed. In analogy to the previous case, we have 
to add n generators sj  E V+ to V0 in order to vary the points Q j,  such that the matrix 
s j ( a i )  is non-degenerate. Now, however, to preserve condition (45), we have to keep 
the periods A j, Bj j = 1 . . . . .  n fixed, since it is impossible to vary the integers mj and nj 
by an infinitesimal transformation. Assuming mj and Bj fixed, consider the orthogonal 
decomposition 

Vo e v,, = ~ 'e  ~ ' ,  

where the generators from r¢ do not vary Aj and Bj. Obviously, since A j, Bj E R, we 
have dimc ~'± = g and 

d imc~ '=  3 g -  3 + n -  g = 2 g + n -  3. 

So the linear subspace 

P'= v e  v_ e (v+ ev~) e ~  '± 

of the full Virasoro-Witt algebra corresponds to variations of the topological degrees of 
freedom of the world-sheet 12 in the second case. 

The resulting symmetry algebra involving both propagating and topological degrees 
of freedom is the product of V0 • Vn and the Geroch algebra (i.e. A} 1)) if ( ( P )  is 
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a meromorphic function on £, and the product of the periodic analog of the Geroch 
algebra and the linear subspace ~' otherwise. 

7. Concluding remarks 

There are several open questions that we have barely touched on and which merit 
further investigation. Amongst other things, it is necessary to clarify the structure of the 
space of periodic solutions of the Ernst equation and to investigate the global properties 
of the Geroch group acting on periodic solutions. This would permit the verification 
of our conjecture that there is a one-to-one correspondence between the asymptotically 
fiat solutions of the Ernst equation and its asymptotically-Kasner periodic solutions, and 
perhaps to answer the question of whether there arise new and unphysical singularities in 
such solutions. Secondly, it would be desirable to understand in more detail the structure 
of the "discretized" moduli space and the action of the Virasoro-Witt generators on it. 

Our use of string-inspired technology also suggests possible applications of our results 
in the context of string theory. A "stringy" interpretation of the metric (6) was already 
proposed in Ref. [16], where it was pointed out that the conformal factor (Liouville 
degree of freedom) o- - k - ½ log(£ + ,~) and the "dilaton" field p together appear in 
the equations of motion in such a way that they can be interpreted as longitudinal target 
space degrees of freedom. All degrees of freedom can be combined into a Lorentzian 
"target space" metric 

dCd£ 
ds 2 = dpdo" + p - -  (49) 

(£ + ~ ) 2  ' 

such that the equations of motion (1) and (2) can be rederived from (49) by varying 
with respect to g and or; the first order equation in (9) for the conformal factor and its 
complex conjugate are obtained as the "Virasoro conditions". Accordingly, the "matter" 
degrees of freedom residing in g (alias the transverse polarization states of the graviton) 
are reinterpreted as transverse target space degrees of freedom. 

Of course, (49) does not correspond to a conformally invariant theory because of its 
explicit dependence on the conformal factor or. However, in Liouville theory as well, the 
conformal factor does not decouple, but conforrnal invariance is nevertheless restored at 
the quantum level as the Liouville degree of freedom "adjusts" its contribution to the 
conformal anomaly in the required manner (see e.g. ReL [32] for reviews). Although 
the viability of this interpretation of (49) remains to be tested, we feel encouraged by 
the result that the sigma model based on (49) is one-loop finite even though the target 
space is not Ricci-flat [24] (see also ReL [33]) .  

A similar proposal to apply the Ernst equation to the description of four-dimensional 
string backgrounds was recently made in Ref. [34], where the target space is taken to 
be an axisymmetric stationary four-manifold. The string zero-modes propagating on this 
background are an antisymmetric tensor Ba~ and a dilaton (not to be confused with 
p above), whose interactions are governed (after dualization of Ba,)  by an SL(2,R)  
sigma model. In the axisymmetric reduction, the Geroch group is replaced by the affine 
Kac-Moody extension of 0 ( 2 , 2 )  ~ SL(2 ,~ )  x SL(2,1~) in the usual way; it can 
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be interpreted as a group acting on the space o f  string backgrounds  [34 ] .  The  results 

obta ined  here suggest  that the exis tence o f  even b igger  symmet ry  groups on the space 

o f  str ing backgrounds  which  also act on the modul i  o f  the wor ld-sheet  and poss ibly  mix  

them with  the propaga t ing  degrees  o f  f reedom. 
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