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Closed-form expression for the gravitational radiation rate from cosmic strings
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We present a new formula for the rate at which cosmic strings lose energy into gravitational radiation,
valid for all piecewise-linear loops of infinitely thin cosmic string. At any time, such a loop is composed
of N straight segments, each of which has a constant velocity. Any cosmic string loop can be arbitrarily
well approximated by a piecewise-linear loop with N sufficiently large. The formula is a sum of O(N*)
polynomial and log terms, and is exact when the effects of gravitational back reaction are neglected. For
a given loop, the large number of terms makes evaluation “by hand” impractical, but a computer or sym-
bolic manipulator yields accurate results. The formula is more accurate and convenient than previous
methods for finding the gravitational radiation rate, which require numerical evaluation of a four-
dimensional integral for each term in an infinite sum. It also avoids the need to estimate the contribu-
tion from the tail of the infinite sum. The formula has been tested against all previously published radia-
tion rates for different loop configurations. In the cases where discrepancies were found, they were due
to numerical errors in the published work. We have isolated and corrected the errors in these cases. To
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assist future work in this area, a small catalog of results for some simple loop shapes is provided.

PACS number(s): 98.80.Cq, 04.30.Db, 11.27.+d

1. INTRODUCTION

Cosmic strings are one-dimensional topological defects
which appear in some gauge theories of the fundamental
interactions. Strings would appear at phase transitions
where symmetries of the fundamental interactions are
spontaneously broken [1-3]. It is thought that cosmic
strings might have formed as the Universe expanded and
cooled during the past. They are remarkably simple ob-
jects, characterized by a single parameter p, which is
their mass-per-unit length. For strings of cosmological
interest, the expected value of the dimensionless parame-
ter Gu /c? is of order 10~%, where G is Newton’s gravita-
tional constant and c is the speed of light. The strings of
interest for this work are strings without ends—thus,
they are always topologically in the form of circles, or
possibly infinite in length (in a spatially infinite universe).

The dynamics of a network of cosmic strings in an ex-
panding Universe have been thoroughly studied [4-6].
To describe these dynamics, it is useful to divide the
strings, for the purposes of labeling, into two categories:
the long string (length greater than the horizon length)
and the loops (all the rest). Early work on cosmic strings
established that the energy density of the long strings is a
small constant fraction (of order Gu/c?) of the energy-
density of the cosmological fluid. In the literature this is
referred to as ‘“‘scaling” behavior. The long string net-
work maintains scaling behavior by constantly “chopping
off”” loops of cosmic string. This process takes place
whenever long strings meet each other, make contact,
and “intercommute.” Typically, after a loop is chopped
off it begins to oscillate due to its own tension, undergo-
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ing a process of self-intersection (fragmentation) and
eventually creating a family of non-self-intersecting oscil-
lating loops. In the absence of gravitational radiation,
these loops would survive forever, oscillating periodical-
ly, and would eventually come to dominate the energy
density of the Universe [1]. However, these loops gradu-
ally decay away due to the emission of gravitational radi-
ation [3].

The emission of gravitational radiation is thus of fun-
damental importance to the topic of cosmic strings.
Indeed, the resulting stochastic background of gravita-
tional radiation left behind from the families of small
string loops provides the main cosmological constraints
on cosmic strings, through two observable effects [7 and
references therein]. First, because gravitational radiation
contributes to the energy-density, it affects the expansion
rate of the Universe. The amount of gravitational radia-
tion must not be too great or it would interfere with the
highly successful standard model of nucleosynthesis.
Second, the amount of gravitational radiation must not
be too great to interfere with the extremely small timing
residuals observed in the periods of a number of carefully
observed fast pulsars. The work on these cosmological
constraints is reviewed and updated in [7].

During the past 15 years a number of detailed calcula-
tions have been carried out to determine the rate at
which cosmic string loops convert their energy into grav-
itational radiation. The power radiated by a given loop is

P=——E—=7Gp,zc , (1.1)

At
where E is the energy radiated in gravitational waves in a
single oscillation of the loop, At is the period of that os-
cillation, and ¥ is a dimensionless constant that depends
only on the shape of the loop and its velocity at any fixed
instant in time. Thus the problem is to determine the nu-
merical value of ¢ for a given string loop. Because loops
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are relativistic objects which have typical velocities of or-
der c, the simplest approximation formulas such as the
quadrupole approximation are not of much use, although
in some cases they are reasonably accurate [8]. Va-
chaspati and Vilenkin [9] carried out the first detailed
calculation of ¥ for a simple generalization of the circular
loop. While some of the integrations were carried out
analytically, the final integration over directions could
only be done numerically. The next work was a hybrid
analytic-numerical calculation by Burden [10] for a set of
loops which were a variation of the Vachaspati and
Vilenkin family. The first entirely exact analytic calcula-
tions were done by Garfinkle and Vachaspati [11] who
considered a special family of “kinky’ string trajectories.
These are the simplest piecewise linear loops for which
the exact formulas given in this paper may be applied
directly. Additional work by Durrer [8] repeated some of
the earlier calculations of the previous three groups and
also investigated the accuracy of the quadrupole approxi-
mation for determining y. The next work was a pair of
papers by Scherrer, Quashnock, Spergel, and Press [12]
and by Quashnock and Spergel [13], which developed nu-
merical and analytic techniques to study the effects of
gravitational back reaction on the shape and motion of
the cosmic string loops. This is the first work which ex-
amines the way in which the shape of a string loop is
changed as a result of the emission of gravitational radia-
tion. (In our paper these effects are not taken into
account—we assume periodic motion of the loop.) In ad-
dition to verifying some of Burden’s results, they also ob-
tained interesting results concerning the distribution of y
for typical families of non-self-intersecting string loops.
Recent work by Allen and Shellard [14] used fast Fourier
transform (FFT) methods to determine values of ¥ for the
loops produced in their numerical simulation of cosmic
string networks in an expanding Universe.

These investigations are important for the reason men-
tioned previously; the cosmological consequences of cos-
mic strings are largely visible via the direct and indirect
effects of the gravitational waves produced by the string
loops. Thus, “typical” or expected values of ¥ appear in
expressions for observable quantities such as the present-
day energy density expected in gravitational waves.
Much of the research work on gravitational radiation by
cosmic string loops has been motivated by a desire to
determine the “typical” or “expected” values of y. Thus,
Scherrer, Quashnock, Spergel, and Press [12] give a histo-
gram of the expected values of y; the mean is ¥y =61.7
and the median is 55.4.

In much of the literature on this topic, the method
used to determine y is numerical. A loop of cosmic
string radiates at discrete frequencies corresponding to
the different normal modes of motion, so y=32_,7, is
a sum of terms arising from each of these normal modes,
labeled by n =1,2,3,.... The value of each y, is given
by an integral over the two-sphere of a particular func-
tion. This function, in turn, is a product of integral
transforms over the world sheet of the loop. Except in
certain highly symmetric cases, numerical methods must
be used to determine the required four-dimensional in-
tegrals. Because it is only practical to determine ¥, up to
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n of a few hundred or thousand, one must extrapolate the
dependence on n in order to estimate the “tail” terms
arising in the infinite sum over n. This process is error
prone because the sum over # may converge very slowly
(if at all—with back reaction neglected, ¥ may be
infinite). Also, if the integration over the two-sphere is
not done accurately enough, the y, will be inaccurate for
large n. This will cause the sum over n to converge at the
wrong rate. Indeed, we have found that many of the pre-
viously determined values of ¥ given in the literature are
incorrect (typically by a factor of order 2) because this
tail has either not been included, or has been incorrectly
estimated.

In this paper we develop a new method for determining
Y. Our method yields an exact analytic formula for y,
valid for any piecewise linear cosmic string loop with
piecewise linear velocity. (Equivalently, both the left-
and right-moving trajectories are piecewise linear.) This
piecewise linear requirement is really not very restrictive,
since in practice any cosmic string loop can be arbitrarily
closely approximated by a piecewise linear cosmic string.
Thus one can use this formula to determine vy to arbitrary
precision for any cosmic string loop. Remarkably, our for-
mula involves nothing more complicated than logarithm
and arctangent functions. However it is the sum of order
N* terms, where N is the number of piecewise linear seg-
ments, and thus in practice is extremely cumbersome to
evaluate without the assistance of a computer or symbol-
ic manipulator. We stress that although our formula will
probably never be evaluated without the use of a comput-
er, it is not a numerical method, but rather is an exact for-
mula. It is also fairly rapid—with N of 32 a DEC 3000
model 600 AXP Alpha workstation can evaluate ¥ in less
than 2.5 sec. We are making our computer code, which
provides one implementation of this algorithm, publicly
available.!

In order to test our new formula we constructed piece-
wise linear approximations to the smooth cosmic string
loops studied in earlier published calculations of y. In a
number of cases we obtained very close agreement be-
tween the value of y given by our formula and the pub-
lished values. However there were also a number of cases
in which the results did not agree. Section VII contains
further details of these cases. In every case where we had
found disagreement we were able to show that our formu-
la in fact had given the correct result. The disagreement
in each case was due to numerical errors in the original
work. Many of the published values of ¥ are off by about
a factor of 2. For example, Vachaspati and Vilenkin give
the value ¥ =54.0 for the case a=0.5 and ¢=0.57 in Eq.
(2.24) of Ref. [9]. The correct value is y =97.2+2. Note
that the value of ¥ =97.2 is exact (to three significant
figures) for the piecewise loop which we used to approxi-
mate the smooth Vachaspati and Vilenkin loop. The er-
ror bar of £2 in ¥ arises because our piecewise approxi-
mation had only N =64 segments.

Publicly available via anonymous FTP from the directory
pub/pcasper at alphal.csd.uwm.edu.
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We intend to use this exact formula in future work, for
example, to identify the shape of a cosmic string loop
with the smallest value of ¥, and to repeat some of the
work of Scherrer, Quashnock, Spergel, and Press [12]
concerning the distribution of y values of non-self-
intersecting loops.

The remainder of the paper is organized as follows.
Section II describes the periodic motion of a cosmic
string loop oscillating in flat space-time. It establishes
notational conventions and a number of basic results.
Note that in our approximation, the back reaction of
gravity on the string loop is neglected, so that spacetime
remains flat. In this context a given string loop oscillates
periodically and radiates forever. Section III starts with
a standard result [15] for the energy radiated by gravita-
tional waves emitted from a periodic source, and obtains
an integral representation for y in terms of the gravita-
tional interaction of the cosmic string world sheet with it-
self. This was motivated by (and is almost identical to) a
calculation given in Appendix B of [13]. In Sec. IV we
restrict our attention to the special case of piecewise
linear loops, and establish notational conventions for
such loops. The ‘“corners” of the piecewise linear loop
trajectory may be discretely labeled; their positions and
velocities contain all information about the loop. The in-
tegral representation for y is then expressed in terms of
these discrete quantities. In Sec. V the formula for y is
simplified and expressed as a sum of elementary integrals.
These integrals are three-dimensional volume integrals;
the integrand is a Dirac 8 function of a quadratic form in
x, y, and z. These integrals are evaluated in closed form
in Sec. VI. This section contains the main result of the
paper, which is an exact closed-form expression for ¥ in
the piecewise linear case. Section VII contains the results
of our investigation of the existing literature, reporting
both on those cases where we obtained agreement with
published work, and those cases where we found the pub-
lished work to be incorrect. In the latter cases, we have
isolated the error(s) in the published work and report on
how we corrected those errors. Section VIII contains a
short ‘“‘catalog” of values of ¥y for some elementary loop
trajectories. This is followed by a short conclusion.

Note: throughout this paper we use the metric signa-
ture (—,+,+,+), and denote Newton’s constant by G.
From here on we use units with the speed of light ¢ =1.

II. COSMIC STRING MOTION IN FLAT SPACE

The trajectory of a cosmic string describes a two-
dimensional world sheet in space-time. Points on the
world sheet have space-time coordinates x* given by

x“=x“(§°,§l) ,

where £° is a timelike and &' is a spacelike coordinate on
the world sheet. The string is described by the Nambu
action, which is proportional to the area of the world
sheet:

S:..#f[_gu)]mdzg )

Here p is the mass-per-unit length of the string, g'® is the
determinant of the two-dimensional metric on the world

2.1

(2.2)
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sheet induced from the Minkowski metric, and the in-
tegration is over the entire world sheet of the string. If
we define x#  =0dx"/0d£%, where a =0,1, then the in-
duced two-dimensional metric is given by

8 =g X" x" . 2.3)

If we denote time and space derivatives on the world
sheet by an overdot=03/3&° and a prime=3/3¢!, then
the determinant g%’ is

(2) (2.4)

g =Rk x X, = xR, XX,
Note that x'* is spacelike and x* is timelike.
The Lagrangian equations of motion for the string are
rather cumbersome [3]. However, the action (2.2) is in-
variant under the reparametrization (gauge transforma-
tion) £°—E&%£), so the equations can be simplified by a
judicious choice of the parameters £’. One may choose
the parameters so that x* satisfies the gauge conditions

xix’,=0 and %M%, +x"x',=0 . 2.5)

With this choice of gauge, the equation of motion is the
two-dimensional wave equation
Xt—x"t=0. (2.6)

(2.5) still allow a further

reparametrization where £'=£° and £''=£° Together

The gauge conditions

these imply that £ “=F""°. This allows us to set £=r. If
we rename §& =g, then the coordinates of the string
world sheet (2.1) become

xHt=xHt,0) . 2.7

With this choice of parameters, the gauge conditions (2.5)
become

x%/=0 and x%;+x'x/=1, (2.8)
where the index i =1,2,3 is a spatial index. The equation
of motion becomes the two-dimensional wave equation

¥'—x"'=0. 2.9)
The time part of the equation of motion (2.6) is satisfied
automatically.

The general solution to the equation of motion (2.9) is

x(o,t)=1a(t +0o)+b(t —0)] . (2.10)

Here, the function a defines the left-moving and b the
right-moving component of the string. The first gauge
condition applied to x implies that a’?=b’%, where here
the prime means differentiation with respect to the
function’s argument. The second gauge condition implies
that a’2+b'2=2. Together the gauge conditions force the
functions a and b to satisfy

a’?=p?=1. (2.11)

Up to this point, our treatment of cosmic strings includes
both the case of infinite strings and the case of closed
string loops. From here on, to study gravitational radia-
tion, we consider only the case of closed loops. In this
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case, the world sheet of the (assumed non-self-
intersecting) string has the topology of a cylinder RX S,
and will be referred to as a “world tube.” Because the
string forms a closed loop, one finds an additional con-
straint on the otherwise arbitrary functions a and b.

If the cosmic string has the form of a closed loop, it

follows that
x(t,0c+L)=x(t,0) Vo,t, (2.12)

where the constant L is the length of the loop. This im-
plies that

a(t+o0)+b(t —o)=a(t+o+L)

+b(t —0o—L) VYo,t. (2.13)
If we define the null coordinates u and v by
u=t+o, v=t—0o, (2.14)
then (2.13) becomes
a(u +L)—a(u)=b(v)—b(v —L) Vu,v . (2.15)

However, because u and v can be varied independently, it

must be the case that
a(lu +L)—alu)=b(v)—bv —L)=c, (2.16)

where c is a constant vector. If we choose to work in the
center-of-mass frame of the loop, then c=0. This follows
since in the center-of-mass frame we have

0= fOLi(da
=fOL%[a'(t+cr)+b’(t—0)]d0
=1[a(t+L)—b(t —L)—a(t)+b(1)]

[

c. (2.17)

Thus, in the center-of-mass frame, the functions a and b
are periodic with period L:

a(tt+o+L)=alt+o),
b(t —o—L)=b(t —0) .

(2.18)

Because the functions a and b are periodic, each can be
described by a closed loop. These loops will be referred
to, respectively, as the a loop and the b loop. Together,
the a and b loops define the trajectory of the string loop.

Because the functions a and b are periodic in their ar-
guments, the string loop is periodic in time. The period
of the loop is L /2 since

L L
PRNEE RS 0
297

x =1{a(t +0+L)+b(t —0)]

=1lla(t+o)+b(t —0)]

=x(t,0) . (2.19)

For the remainder of this paper we will set the loop
length L =1. The period of the loop is then
At=L /2=1, and the section of the world tube swept out
by the loop in a single oscillation is covered by the coor-
dinates 0 €[0,1] and 1 €[0,+]. The entire world tube is

2499

covered by c €[0,1]and t E(— 0, ).

The reason that one may set L =1 is remarkable: the
power radiated in gravitational radiation from a loop of a
given shape is invariant under a rescaling (magnification
or shrinking) of the loop, provided that the velocity at
each point on the rescaled loop is unchanged [3]. A for-
mal proof of this is given in [14]. Thus, to calculate the
radiated power it is sufficient to consider only those loops
with total length L =1.

The null coordinates u and v defined in (2.14) are more
convenient than the coordinates ¢t and o. The u,v coordi-
nates are called null because the tangent four-vectors
d,x% and 9,x¢ associated with them are null. This fol-
lows because

ou Ou doc Ou ot Oc Ot

and (2.20)
9 _%0 3 83 __2 2
dv OJdv do Ov dt 90 at’

are null vectors in Minkowski space. To be more expli-
cit, since points on the world tube have space-time coor-
dinates [¢,x] given in terms of # and v by

x%u,v)=1[u +v,a(u)+b)], (2.21)
the gauge conditions now imply that

3, x93, x,=—(1)12+(1)a?=0
and (2.22)

3,x%3,x,=—(L)*+(1)?=0 .

Because of the periodicity of the loops, the world tube
may be covered by the coordinates ¥ and v in many
equivalent ways. One convenient covering is to take
u€[0,1] and vE(— o, ®). The region of the world
tube swept out in a single oscillation of the loop is then
covered by u €[0,1] and v €[0,1]. Note however that
this is not the same region of the world-tube as
t€[0,1/2] and 0 €[0,1]. This is shown in Fig. 1 of Ref.
[14].

The energy-momentum tensor T#" for the string loop
may be found by varying the action (2.2) with respect to
the metric. In flat space, with our choice of coordinates
and gauge, it is

TMV(ya)
= 1 it J73% 4 a__ L a
pf du[” dv G w8ty —xwp),  (223)
where G*" is defined by
G*""(u,v)=09,x"d,xV+9,x*3,x" . (2.24)

Note that the volume element for the (u,v) coordinates is
related to that of the coordinates (z,0 ) by the Jacobian of
the coordinate transformation. Thus,

dudv=2dodt . (2.25)

Because of the 8 function which appears in 2.23), the
stress tensor T#¥ vanishes everywhere except on the
world sheet of the string loop.
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III. POWER RADIATED IN GRAVITATIONAL
RADIATION

The power emitted by an oscillating loop in the form of
gravitational radiation may be determined in the weak-
field limit. This is an excellent approximation for cosmo-
logically interesting cosmic strings because the amplitude
of the metric perturbation h,,,, is of order Gu/c*~107°.
Because the gravitational radiation is weak, its back reac-
tion on the loops does not modify a loop’s motion
significantly in a single oscillation. Hence we calculate
the rate of gravitational radiation in the approximation
that the back reaction can be neglected, so that a loop os-
cillates periodically in time.

The standard formulas used to calculate the power lost
to gravitational radiation typically assume that the ener-
gy of the source is gradually dissipated into radiation,
and that the stress-energy tensor of the source vanishes
with time. In our case, the source is a periodically oscil-
lating loop whose stress-energy tensor does not vanish
with time, and therefore the standard formulas require
minor modifications. Since the loops that we study in
this paper have period 1, they radiate only at discrete an-

gular frequencies given by

w,=4mn for n=1,2,3,.... (3.1)

The power radiated per unit solid angle into the nth
mode is given by the standard formula (Eq. 10.4.13 of
[15))

(3.2)

0 o 0, )0, Q) = L (0, D)) .

1 1 .
T,W(wnm=2uf0 du fo dv G, (u,0)explio, {1 +v —Q-[a(u)+b(v)]} /2) .
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In this equation, the Fourier transform of the stress-
energy tensor is defined by

7, (0€))

uv
. 1 T
= lim —

pm o) (3.3)

dt [ dx "' 0T, (1,x),
and an asterisk denotes complex conjugation. The vector
x is an ordinary flat-space three-vector, and Q) is a unit
length three-vector with spatial Cartesian components
given by

Q) =(cos¢ sinf, sin¢g sinf,cosH) . (3.4)

To calculate the total radiated power, one must integrate
over all directions on the unit sphere. This introduces in-
tegrals of the form

Jaa @)= ["snodo [ “dg 1 (6,)

into the equations that follow.

The Fourier transform of the stress-energy tensor (3.3)
is defined as the limit of a infinite-time integral. This
differs slightly from the case of nonperiodic sources. It is
easy to see that 7,,(w2) vanishes unless w takes on one of
the discrete values w,. [This is shown in Ref. [14] follow-
ing Eq. (3.11).] For these values of w,, the T— o limit
of the integral is not hard to calculate: since the source is
periodic, the limit appearing in (3.3) is equal to the in-
tegral over a single period, i.e., the same integral with 27T
set equal to 1. Substituting expression (2.23) for the
stress-energy tensor into the formula for 7,, one finds
that

(3.5)

(3.6)

Note that the limits of integration in (u,v) space cover one complete oscillation period of the world sheet of the string

loop.

The total radiated power is obtained by summing over all the modes:

2 dp,
P——gofdﬂdﬂ

(3.7

The n =0 mode has been included in the sum for later convenience; it makes no contribution because of the factor of
w? appearing in (3.2). This expression for the total power can be put into a more useful form by using the explicit for-
mula (3.6) for the Fourier transform of the stress tensor. This gives

_26pr & i 1 1ot o ) N o
P . > m"fdﬂfodu fodvfodu fodv Yu,v,7,0)explio, (At (u,0,7,0)—Q-Ax(u,v,7,0)]} ,

h=—w®

where we have defined
Y(u,v,4,0)=G,, (u,0)G*"(&,V)

—1GM(u,v)G7 (@,D) . (3.9)
The functions At =(u +v—T—7)/2 and Ax=[a(u)
+b(v)—al(#)—b(v)]/2 in (3.8) describe the temporal
and spatial separation of the two points on the string
world sheet with coordinates (u,v) and (#,7), respective-
ly. To save space, in some of the formulas that follow,
the arguments of Az and Ax are not shown; they should
be implicitly understood. Since each term in the sum

(3.8)

over n equals its complex conjugate, P is explicitly real.
For this reason, since the n =0 term does not contribute,
we have changed the sum over n to a sum from — « to
o at the expense of introducing an overall factor of 1
into the formula. From here on this sum will simply be
denoted by ¥ .

It is possible to carry out both the sum over n and the
integral over solid angle in closed form. To see this, con-
sider the integral

i, (t—Q-r)

Itn=3 0, [dOe (3.10)
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The integral over solid angle [dQe'®* is easily evalu- _ 4
- I(t,r)=——[6,(4m(t + —6,(4m(t — .
ated, and equals 47 sin(|z|)/|z|. Hence one has ilr| (8, (4m(z +rD) =8, (4m(s —[r]))]
i 3.12
I(t,r)=il"1l2e “r'sine, || . (3.11) 3.12)
L Noting further that the periodic 8 function may be ex-

Because of the absolute value signs that appear, some  Pressed in terms of the ordinary Dirac 3 function as

care is required to obtain this last result—one must sepa- d

rately consider both possible signs of w,. The sum over n §(x)= 3 &(x+2mk), (3.13)
may now be explicitly carried out. Using the standard k==

formula 3, %= 278,(0) for the periodic 6 function on  and noting that |r| is always positive, one may combine
the interval [ —,7), one obtains the two 6 functions in (3.12) to give

|

16,0=-r S (80t +k/2+]c)—8(t +k /2= )]
k=—owo

=27 3 elt+k/2)8(t+k/27—]r|?), (3.14)
k=—o
where e(x)=20(x)—11is +1 for x >0 and —1 for x <0. From the definition (3.10) of I (z,r) it is clear that applying the
derivative operator —i9/d¢ brings down an additional factor of w,. Inserting the time derivative of (3.14) into (3.8)
leads to

_ 7 - 1 1 1., p1 ~ 0 2 2
P=4Gu kzwfodu J dv [ da [ dvyu,v,m,0) 5 —e(Ar +k /2)8((A1 +k /2= [Ax]) . (3.15)

In this expression the dependence of Az and Ax on the four variables u, v, #, and ¥ has not been explicitly shown. The
derivative operator 0/3At means first take the derivative of I (¢,r) with respect to the first argument, then substitute in
the functions Az and Ax. Alternatively, it refers to any combination of derivative operators in (3.8) which will bring
down a factor of iw,,.

It is possible to reexpress the sum over k of these four integrals as a single integral, simply by shifting one of the in-
tegration variables to the range — o« to «. For example, if we choose to shift 7, then because the functions a and b are
periodic, it is easy to see that Ax(u,v,%,0—k)=Ax(u,v,%,7) and that ¥(u,v,7,0 —k)=1(u,v,@,7). However, the time
function is not periodic; one has At (u,v,@,0 —k)=At(u,v,@,0)+k /2. Since the period of the loop is 1, the energy ra-
diated in a single oscillation of the loop is thus given by E =P /2:

_ 21! 1 | o _ ~a_— 2 2
E=264 [ 'du [ dv [ ‘dz [ * dvy(u,v,,0)5—e(An8((Ar)~Ax]?) . (3.16)

Note that the choice to shift 7 was arbitrary; we could have chosen to shift any one of the four integration variables. If
we had chosen to shift some other variable, the only changes to (3.16) would be that the integration range for & would
be from O to 1, and the integration range of the new shifted variable would be from — o« to . This expression for the
energy radiated into gravitational radiation during one oscillation of the cosmic-string loop can be evaluated exactly in
the case of piecewise linear string loops.

To make this formula directly useful, one must replace the operation d/dAt¢ by an explicit operation in terms of
derivatives with respect to the variables u, v, #, and U. The desired effect of this operation is to bring down a factor of
iw, when applied to exp(iw, [At (u,v,7,7)—Q-Ax (u,v,@,7)]). Let us denote this operation by

D (u,v,#,0)=U(u,v,@,0)d, +V (u,0,@,0)3, — Ulu,v,%,0)3, — V(u,v,d,0)3, , (3.17)
where the functions U, V, U, and V are determined by the desired effect of D on the exponential:

Dexplio,[At —Q-Ax])=iw,explio,[At —Q-Ax]) . (3.18)
Because D is chosen to be a linear differential operator, (3.18) is equivalent to the four equations

DAt (u,v,%,7)=1 and DAx(u,v,#,7)=0. (3.19)

Substituting in the definitions of At and Ax, this may be written as the 4 X4 matrix equation

1 1 1 1

a'(u) b'(v) a'(@) b'(v) (3.20)

Q@R Q
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The solution to these linear equations yields the following expression for the differential operator D:
D(u,v,@,v)
_, b'(v)-[a'(#) Xb'(7)]0, —a'(u)-[a'(Z)Xb'(T)]d, —a'(u)-[b'(v) Xb'(D)]d, +a'(u)-[b'(v)Xa'(7)]d, e
b'(v)-[a" (@) Xb'(T)]—a'(u)-[a"(7) Xb'(T)]+a'(u)-[b'(v) Xb'(T)]—a'(u)-[b'(v) Xa'(7)]

In terms of the operator D, the energy radiated in gravitational waves during one oscillation of the string loop is given
by

E=26u2 [ 'du ['dv [ 'du [ dvytu,0,7,00D (u,0,7,0)[ e A0S((A~ | Ax])] (3.22)

In this expression the differential operator D acts on all the quantities that stand to its right.

Before continuing we note that half the terms may be easily eliminated from (3.22). Under the operation of inter-
changing the variables (u,v) with (@,9), U@, 0,u,v)=U(u,v,a,0),V(#,v,uv)=V(uvi,v), and
At (@,0,u,v)=—At(u,v,%,7), while Y(7,0,u,v)=19(u,v,#,7) and the arguments of the § function are invariant. Using
these results we interchange the variables (u,v) with (&,7) in the first two terms of E in (3.22). Recalling that we could
have shifted any one of the integration variables in (3.15), as explained following (3.16), one finds that

1 i L, e ~ o~ 2__ 2
Jodu [ v [ da [~ dvytu,v,a,0)(U3,+V3,)[e(A8((AD*—|Ax[)]
—f du [ dvf du [* dvy(u,0,u,0)(03,+78,)[e(—AnB((AN*—[Ax[)] . (3.23)

This equation, along with €(—x)= —e€(x), may now be used in (3.22) to eliminate two of the four terms in the operator
D, yielding

E=4Gu [ 'du [dv [ 'aa [ 7 dv wiu,0,2,0)(U9, +V, e A0B((A— |Ax])] (3.24)

Although (3.24) has only half as many terms as (3.22), it is not the most useful form for our purposes.

The most convenient expression for E is obtained by replacing e(A?) in (3.22) by 20(At). The e(At)=26(At)—1 term
can be replaced by 26(At) because the — 1 term makes no contribution to the integral. To see this, consider the effect of
replacing e(At) by —1 in (3.22). Denoting this by E_,, and again using the transformation properties of U (u,v,#%,7),
V(u,v,,0), (u,v,u,0), and the arguments of the § function under the operation of interchanging the variables (u,v)
with (&,7), one finds that

E(_1)§—2Gy2f du [ 'dv ['du [ dvgu,,7,0)(U, + V3, — U8, — V3, )8((A | Ax]?)
=—26* [ duf duf du [ ” v Y(u,v,7,0)( 09, + V3, — T3, — 73, )8((Ar7—|Ax[*)=0 (3.25)
This proves that E_;,=0 and thus that e(At) in (3.22) can be replaced by 26(At¢).

The integration range 7€ (— w0, ) in the expression for E (3.22) may be replaced by the finite range v €[ —2,2].
This is because the integrand of (3.22) vanishes unless T E[~—2,2]. Physically this is because in the center-of-mass
frame, the string loop remains centered about a fixed coordinate location. Since the & function has its support only on
the light cone, it is impossible for regions of the string located far in the past or future to interact. To see this result
mathematically, first consider the argument of the 6 function. The only contributions to E arise when this argument is
positive, i.e., when

utv—a—020. (3.26)

Since all three integration variables u,v,# lie in the range [0,1], the 6 function vanishes unless the variable ¥ lies in the
range D € (— ,2]. Further restrictions arise from considering the argument of the 8 function. The only contributions
to E arise when this argument vanishes, i.e., when

(u+v—a—0v)=[alu)—al@)+bv)—b®)]* . (3.27)

However since the total length of the a loop is 1, the maximum length of the vector a(u)—a(&) is . Similarly, the
maximum length of the vector b(v)—b(7) is 1. Hence the largest possible value of the right-hand side (RHS) of (3.27) is
1. This shows that the integrand vanishes unless the quantity

utv—a—vE[—1,1]. (3.28)

Again making use of the pos51ble ranges of u, v, and @ this implies that the 8 function vanishes unless 7E€[ —2,3].
Combined with the restrictions arising from the 8 function, this implies that the only contributions to E arise from the
range V€[ —2,2]. Thus we obtain the final form of our result

E=4G;L2f0]du fO‘du foldii ffzda Wu,,7,0)D (u,0,3,0)[0(ADS((A1)?— |Ax])] . (3.29)
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The expression just obtained has an interesting physical
interpretation.

The string loses energy to gravitational waves precisely
because of the gravitational self-interaction of the string
with itself. From this point of view, the integral over
(@,7) in (3.29) is an integral over the sources [the stress
tensor of the string world sheet at x%(#,7)] that create a
metric perturbation at the space-time point x *(u,v). The
metric perturbation at x %(u,v) is obtained by multiplying
the source times a retarded propagator and integrating
over the entire history of the source: the part of the
world sheet that can contribute is covered by the coordi-
nates # €[0,1] and DE[—2,2]. The metric perturba-
tions from the loop at one space-time point propagate
along the light cone from that point to interact with some
other point on the loop at some later time. The product
66 /21 that appears in (3.29) is precisely the retarded
propagator (Eq. 12.133 of [16]). This creates the mecha-
nism for energy loss: the string must do work against the
tidal forces created by the metric perturbations due to the
string itself. The energy lost in a single oscillation is ob-
tained by integrating this work over the region on the
string’s world tube covered by the coordinates u €[0,1]
and v€[0,1]. Thus, the loss of energy due to gravita-
tional radiation may be thought of in terms of a loop
which creates metric perturbations, interacting with a
loop whose motion does work against these perturba-
tions.

We will see in the following sections that (3.29) can be
evaluated exactly in closed analytic form for any piece-
wise linear cosmic string loop. The value of ¥ is then
given immediately by (1.1).

IV. PIECEWISE LINEAR LOOPS

We now restrict our attention to piecewise linear loops.
These are loops for which the functions a(u) and b(v),
which define the loop’s trajectory, are piecewise linear
functions. The functions a(«) and b(v) may be pictured
as a pair of closed loops, which consist of joined straight
segments. The segments on the a and b loops join togeth-
er at kinks where a’(u) and b’(v) are discontinuous. The
a loop has N, linear segments, and the b loop has N,
linear segments. Part of a typical a loop is shown in Fig.
1.

The following conventions, also shown in Fig. 1, are
used to describe piecewise linear loops. The coordinate u
on the a loop is chosen to take the value zero at one of
the kinks, and increases along the loop. The kinks on the
loop are labeled by the index i where
i=0,1,2,...,N,—1. The value of u at the ith kink is
denoted by u;. Without loss of generality we set u,=0.
The segments on the loop are also labeled by the index i;
the ith segment is the one lying between the ith kink and
the (i +1)th kink. The kink at u =u w, is the same as the
first kink at u =u,=0. Since |a’|>=1, the a loop has
length 1. Thus, even though u, and u N, are at the same
position on the loop, u,=0 while u Na=1. The entire

range u €(— o, ) may be covered by allowing the
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FIG. 1. For piecewise linear loops, the @ and b loops consist
of straight segments. The segments are joined together at kinks
where a’'(u) and b’(v) are discontinuous. The kinks on the a
loop are labeled by the index i. The spatial position of kink i is
a;. The value of the coordinate u at the ith kink is u;. The seg-
ments on the a loop are also labeled by the index i; the ith seg-
ment being the one between the ith and the (i + 1)th kink.

coordinate u to continue around the a loop in a periodic
way. This also extends the range of the index to i EZ.
Thus, for example, u_y = —1, uy=0, uy = 1, Uy, =2,
and so on are all located at the same position on the a
loop. Because |a’(u)|=1, the length of the linear seg-
ment between the kinks at ¥; and u; ., (the ith segment)
is

Au,-=u,-+1—u,- . (4.1)
The loop’s position a(u) at u =u; is denoted
a;=aly;) . 4.2)

The constant unit vector tangent to the ith segment
(pointing in the direction of increasing u parameter) is
denoted
a+178;

a,=—— . (4.3)
' Au;
With these definitions, the function a(u) for u € [u;,u; ;]
may be written

a(u)=a;+aj(u —u;) for u€lu;u; 1. (4.4)

Note that for consistency, putting u =u; ,, in (4.4), one
must have

ai+1=ai+a;(Au,~) . (4.5)

Similar notation is used for the function b(v). For
v €[v;,v; 4], the function b(v) may be written

b(v)=b;+bj(v —v;) for vE[v;,v;4,]. (4.6)

Thus the a loop is entirely specified by the quantities a;;
from them one can obtain both Au;=|a, ,;—a;| and a]
given by (4.3). Identical notation is used for the b loop.

The function ¢(u,v,#,V) takes a special form in the
case of piecewise linear loops. In general one has
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Pu,0,7,5)=G*"(u,0)G,,(#,0)— LG, (4,0)G" (@,D)
x,0,%,—0,x"9,x;0,%73,%,], 4.7)

=2[d,x"d,x"3,%,0d,%¥,+3,x"9,x"3,X,0,X,
where, again x “=x%u,v) and X*=x%#,V). For the purpose of evaluating integral (3.29) it is necessary to break up
the integrations over (u,v,%,7) into rectangular four-cells. Each four-cell is denoted by a set of indices (i, j,k,/). The
indices refer to segments on the a and b loops, each of which defines a specific range for one of the coordinates
(u,v,@,0). The index i will always refer to the u coordinate, j to the v coordinate, k to the # coordinate, and / to the T
coordinate. Within each cell, we may write the four-vectors and tangent vectors

x“(u,v)=1[u +v,a;+a;(u —u;)+b; +bi(v —v;)],
for u€u;,u; ] and vE€[v;,v;4,] (4.8)

9,x*=3[1,a;], 3,x*=4[1,b}],
and similarly
xXu,v)=1[a+0,a; +a,(@—u,)+b,+bi(v—v))],
for # €[uy,u; 4] and D€ [v,v; 4] . 4.9)

3,x°=1[1,a;], 3,x*=1[1,b}],

Using (4.8) and (4.9) in (4.7) we find that ¥(u,v,@,7) is a constant, ¢,;,, when (u,v,%,7) are in the intervals defined by
the segments (i, j,k,I). For any set of segments (i, j, k, ), the constant ¢, is given by

Yy = L(—1+a-a} )(—1+b}-b)) +(—1+a) b)) —1+bj-a,)—(—1+a] b)) —1+bj-a})] . (4.10)

Note that ¢, €[ —1,5/4]. Also note that ¥, vanishes when (i —k) mod N, =0 or (j —/) mod N, =0.

It is helpful to keep track of whether the indices in a given equation refer to kinks or segments on the a and b loops.
For instance, u; refers to the value of the parameter u at the ith kink on the a loop. Similarly, a; denotes a vector from
the origin to the kink at ¥ =u; on the a loop. By contrast, a; is a unit vector parallel to a specific segment on the a
loop. The indices on ¥, also refer to specific segments on the a and b loops. The segments define specific ranges for
the coordinates (u,v,%,0). Of course these ranges will change as the indices take on different values.

The formula (3.29) for the energy radiated in gravitational waves during one oscillation of the string loop may now be
rewritten for the case of a piecewise linear loop. The integrals over (#,v,#,7) in (3.29) may be broken up into a sum of
integrals over the individual segments making up the a and b loops. Because ¢, is a constant in each of these in-
tegrals, it may be pulled out of the integration, giving

TE N TNl 2N, i+1 Vi+1 Uk +1 Ui+1
E =4Gp? 2 D> 2 ¢,Jk, f du [ d fuk du fv, dv Dy (u,0,@,0)[0(ADS((AN*—| Ax|?)]
i=0 j=0 k=0 I=-— 7
4.11)

Note that the summation of / is not from — o to o but is only over the finite range corresponding to €[ —2,2] as
shown following Eq. (3.28). Here

Dijkl( U,U,I‘Z,U)Z Uijklau + Vijk,av - ﬁijk,aﬁ - ?ijklav s (4.12)
where the coefficients of the derivative operators are constant on any (i, j,k,/) segment, and are given by

z}kl Quklb [ak Xbl] zjkl ijkla [b;Xb;] ’

(4.13)
Vi = _Qijklai'[ak Xb;], Vijk1= _Qijkla;'[b} Xap],
with (twice) the inverse determinant given by
Qi =2(b)-[a) Xbj]—a}-[a} Xb]]-+a}[b)Xbj]—a}[b)Xa}]) " . 4.14)

Note that Uy, Vi, U,]k,, and V, i are all constant for a given set (i,j,k,/). Again, note that the indices (i, j,k,/) in
equations like (4.12) refer to specific straight segments on the @ and b loops. They do not refer to the components of

some tensor.

V. EVALUATING THE INTEGRALS

The four partial derivative operators in D, (u,v,%,7) in (4.11) may be trivially integrated over u, v, @, or 0. Carrying
out these integrations, E takes the form
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-1 N,—1 N,—1 2N,—1

E= SG,"’ 2 2 2 2 ¢ukl[ jkl(sl+l,},kl Sl]kl)+Vl (Stj+1k1—-S(jk’)
i=0 j=0 k=0 I=—2N,

Uijia (S5 +1,0 =S8 b))~ Vi (Si k141 =S5 )1 5 (5.1

where the superscript on each S denotes the variable which has been integrated out in that term. The quantities S,‘j',‘c},
S,(J',’(),, ,‘ﬁ,’ , and S,‘J?(} appearing in (5.1) may all be expressed in terms of a three-dimensional integral containing a § func-
tion:

S(Ax,Ay,Az,T,s,C(M,N,a,b,c,d),Bl,Bz,B3,B4,BS,BG,B7)
= fodx fAydy fAzdz 0(t+s(x +y —2))0(Bxz +Boyz +B3xy +B4z +Bsx +Bgy +B87) . (5.2)

Notice that the limits of integration have been shifted so that the lower limit is always zero. The function C is defined
by

ifa--c—lzd-b

M N
a—c—1_d-—b
M N
a—c+1_d—b—
M N
a—c+1 _d—
M N
0 otherwise .

=integer ,

2 if 1 integer,

C(M,N,a,b,c,d)= (5.3)

3 if

=integer ,

4 if b

=integer ,

The function S does not depend upon C, since C does not appear on the RHS of (5.2). However C provides a convenient
means to later simplify certain special cases that arise. The quantities S,(J',‘c}, S,(J‘,’c’,, ;(,7:1)» and S;% k, are given in terms of S
by

Sir=S(Av;, Auy, Av;, My, —1,C(Ny, N, Lk, ,1),(1—b)-b)),(1—aj b)), (ap by — 1),
(0N — My ), (Mg — 07N ), (M —ag Ny ), HNGy —M5))
S =S(Auy, Av;, Auy, Mgy, —1,C (N, Ny, k, 1L i, j), (1—aj-a; ), (1—aj b)), (a) -b;— 1),
(ai‘Nijkl" ijkI)’(MijkI—a;c'Nijkl)i(Mijkl—'b;' tjkl)’z(szkI i’zikl)) ’ (5.4)
Si1=S(Av;, Au;, Av;, M, +1,C(Ny, N, j,i, LK), (1—b b)), (1—a; b)), (a;-b; — 1) ,
(M50 = 7N i ), (07 Ny — M), (a7 Ny — M), H(NDig —MZ))
Sigr=S(Auy, Avj, Auy, My, +1,C (N, Ny, i, j K, 1), (1—a;-ay ), (1—aj b)), (aj b, — 1),
(Mijkl "‘ak 'Nijkl ), (3; 'Nijkl "Mijkl )»(b} ‘Nijkl _Mijkl ), ';_‘(ngjkl ukl ),
where we have defined
M =u;+vj—u,—v; and Ny, =a;+b;—a,—b, . (5.5)
Note that the three remaining integrations in .S may be done in any order. The relationships

S ( Ax’ A,V, sz T’s’61732733:ﬁ4’35,36737 ) =S ( A}’, Ax ’ AZ, T)sy32)B])B3)B4sB6’B57B7)

=S(AX, _‘AZ, _'Ay,'T,S, —Bjyﬁz, —Bl’ ——36335! _B4vB7) (5'6)
|
allow one to rewrite the integrations in any order. —3(1—a;j-a;), —4(1—-b}b}),
It should be noted that in the definition (5.2) of S, there . , . L, 5.7
are no terms in the argument of the 8 function that are —3{l=ap-ap), —3(1-bjb)) .
quadratic in x, y, or z. This is because the terms u%, v%, It is easy to see that these coefficients all vanish since
#%, and ©? in At?—|Ax|* appear with respective  |a’|>=|b’|2=1. This is because, as described in Sec. II,

coeflicients the coordinates u and v are null coordinates.
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VI. EVALUATION OF §

The previous section reduced the problem of determin-
ing ¥ in the piecewise linear case to evaluating a set of in-
tegrals defined by the function S in Eq. (5.2). In this sec-
tion we carry out that evaluation in closed form. The 6§
function appearing in (5.2) allows us to reduce the num-
ber of integrations in S from three to two. This 8 func-
tion may be written as 6(f(x,y,z)), where the argument
of the 6 function is

f(x,3,2)=PBxz + Bz +Bsxy + B,z
+Bsx +Bey +B, .

The & function will only have support when f (x,y,z)=0.
Solving f(x,y,2)=0 for x(y,z), y(x,z), and z(x,y), re-
spectively, we find that

(6.1)

x(poo)= — PP TPy *Py 6.2)
» Bz +By +Bs '
_ BixztBsx +Bz +p;
y(x,z)= Bux +Byz +Be R (6.3)
and
xy +Bsx +Bgy +
z(x,y)=—ﬁ3 Y +Bsx +bo 5, (6.4)

Bix +By +B,

The surface z(x,y) consists of a pair of disconnected hy-
perbolic sheets as shown in Fig. 2. The sheets are
separated by the plane B;x +S,y +5,=0, where the
denominator of (6.4) vanishes. If these sheets pass
through the region of integration of (5.2), which is a rec-
tangular box with opposite corners (0,0,0) and
(Ax,Ay,Az), then the 8 function will have support in that
region and S may contribute to E.

The hyperbolic sheets have a simple physical interpre-
tation. For purposes of clarity we discuss the case Sg-,d;
the other three integrals in (5.4) have similar interpreta-
tions. The z coordinate in S parametrizes the world line
followed by the kth kink on the string loop. This kink
moves along a straight, null world line. The x,y integra-
tions are over a (diamond-shaped) planar patch of the
world tube, swept out by a linear segment of the string
loop. Note that these patches are always timelike. The
edges of this planar patch are bounded by the straight,
null world lines of ith and jth kinks. The future and past
light cones of any point on the kth kink’s world line (i.e.,
fixed z) may intersect the planar patch bounded by the ith
and jth kinks. Even if they fail to intersect this patch,
they will intersect the infinite two-plane passing through
the patch, which is parametrized by x and y. The inter-
section will trace out a hyperbola on the plane which may
or may not intersect the actual x,y integration region.
The hyperbola is given (with z fixed) by (6.3). This hyper-
bola corresponds to the intersection of a z =const plane
with the hyperbolic sheets of Fig. 2. Because one branch

J

§S=0=(7+Ax +Ay =0) or (B;AxAy +BsAx +BsAy +,20) or (Az <7 and B4Az +,<0) .
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(Ax,Ay,Az)

(0,0,0)

FIG. 2. The delta function &[ f (x,y,z)] which appears in (5.2)
only has support when f(x,y,z)=0. Solving f(x,y,z)=0 for
z(x,y) we find that the surface z(x,y) consists of a pair of
disconnected hyperbolic sheets. The hyperbolic sheets are
separated by the plane 8,x +f3,y +8,=0, where the denomina-
tor of (6.4) vanishes. The intersection of a z =const plane with
these sheets will be a hyperbola in the x-y plane. The integra-
tion volume for (5.2) is a box with opposite corners (0,0,0) and
(Ax,Ayp,Az).

of this hyperbola lies on the future light cone and the oth-
er lies on the past light cone, we refer to these as the fu-
ture branch and the past branch. The two branches are
disconnected except in the case where the plane passes
through the origin of the light cone. In this case they
touch at a single point—the apex of the light cone. As
the apex moves along the world line of the kink (i.e., z in-
creases) the light cone sweeps out a region on the x-y
plane. This can be seen by taking successive z =const
cross sections of the hyperbolic sheets, where the con-
stant ranges from O to Az. The region swept out in the
x-y plane will be bounded by the hyperbolas y (x,0) and
y(x,Az). Note that if we restrict attention to just the fu-
ture branches or just the past branches, then the y (x,Az)
hyperbola always lies above (and to the right of) the
y(x,0) hyperbola in the x-y plane. Therefore, we refer to
these as the “top” and “bottom” hyperbolas, as shown in
Fig. 3. The hyperbolae shown in Fig. 3 will intersect the
x,y integration region only if the hyperbolic sheets pass
inside the integration box shown in Fig. 2.

There are two useful sets of conditions which can be
checked immediately to see if S vanishes. These test
whether the hyperbolic sheets z (x,y) pass through the in-
tegration box. If the sheets do not pass through the box,
then the 8§ function in (5.2) has no support, and S van-
ishes. One of the conditions applies for s =+1. In this
case, the 6 function in (5.2) restricts the integration to be
over only the hyperbolic sheet swept out by the future
light cone. The other condition applies for s =—1. In
this case, the 6 functicn in (5.2) restricts the integration
to be over only the hyperbolic sheet swept out by the past
light cone. If s =+1, then
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Similarly, if s = —1, then

§=0=(7+Ax<0) or (B,Az+B;20) or (Ax +Ay <7 and B;AxAy +BsAx +BcAy +B,<0) .
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(6.6)

In practice, these conditions are frequently satisfied, so their implementation saves large amounts of computation.
It is straightforward to do the integral over z in (5.2) to eliminate the § function in S. We make use of the standard

formula

b

of
8(f(2))g(z)dz =3, g(z,) I (z,)
f < P / z P

(6.7)

where the sum is taken over all the roots z, of f(z) that lie within the range of z integration. Because

O —Bix +By +Bs ,

o

the integration of (5.2) over z yields

(6.8)

S(Ax,Ap,Az,7,5,C,By, - . - Br)= foAxdx foAyd)’ 0(z(x,y))0(Az —z(x,y))0(7+s[x +y —z(x,y)]) .

The first two 6 functions in this equation arise from (6.7):
the only roots included in the sum over p are those lying
within the range z €[0,Az] of z integration.

The integral (6.9) has a simple physical interpretation
which is directly connected to the physical interpretation
of (5.2) already given following Eq. (6.4). The x and y in-
tegrations are over a planar patch on the string loop’s
world tube, as in (5.2). The first two 6 functions in (6.9)
only have support between the hyperbolic curves y (x,0)
and y(x,Az) (i.e., the bottom and top curves) shown in
Fig. 3. The curve y(x,0) describes the intersection of the
hyperbolic sheet shown in Fig. 2 with the bottom of the
integration box. The curve y(x,Az) describes the inter-
section of the hyperbolic sheet with the top of the in-
tegration box. Thus, the first two @ functions in (6.9) will
only have support if the hyperbolic sheets pass through
the box of integration in (5.2). The third @ function in
(6.9) effectively restricts the integration to be over the fu-
ture branches (s =-+1) or the past branches (s =—1) of
the hyperbolas.

When evaluating (6.9), there are five different funda-
mental types of integrals that can arise depending upon
the relative positions of the two hyperbolic curves y (x,0)
and y (x,Az) and the rectangular region in the x-y plane
bounded by the opposite corners (0,0) and (Ax,Ay). Each

%] &
|
I\ 1

=T () (Ax,Ay)

Past Top

y=T (x)
Future Top

6.9
1B.x +Byy +B4l ©6.9)

r

of the five possibilities are shown (using the future
branches of the hyperbolas) in Fig. 4. Each type of in-
tegral may also occur with the past branches of the hy-
perbolas. The first type occurs when both hyperbolas
(top and bottom) pass through the planar patch. The
second type occurs when the entire planar patch lies be-
tween the two hyperbolas. A third possible type occurs
when neither hyperbola passes through the planar patch
and the planar patch does not lie between the two hyper-
bolas. For this type of integral, (6.9) has no support and
vanishes. The last two types arise when one of the hyper-
bolas (top or bottom) passes through the planar patch but
the other does not.

Remarkably, each of the fundamental integral types
can be done analytically in closed form. To assist in this
process, the x integration in (6.9) must be divided into
consecutive ranges; the type of integral in each range is
different. A systematic method for determining these in-
tegration ranges in x will be given next.

The dividing points (in x) between the successive
ranges are determined by the four points at which the
bottom and top hyperbolas y (x,0) and y (x,Az) intersect
the lines y =0 and y =Ay. We denote the x coordinates
of the four intersection points by ¢, . . .,d,. The type of
integral being done in (6.9) will change at each of the in-

FIG. 3. The integrals (6.9) in the expression
for the radiated power are over the rectangular
region bounded by the corners (0,0) and
(Ax,Ay). Each integral contains three step
functions. In the region of integration, the first
two step functions are both nonzero only in

the shaded regions between the ‘“top” and

Past Bottom
y=B (x)

(0,0)

Future Bottom
y=B (x)

“bottom” hyperbolas. The third step function
is on in the region which includes the “future”
branches if s =1 or the “past” branches if
s =—1. The vertical asymptote of the bottom
(top) hyperbola is shown as a dashed line that
lies at x =¢p (x =¢ 7).
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tersection points which is within the boundaries of the x
integration, i.e., 0 <x <Ax. The boundaries of the x in-
tegration will be labeled ¢, and ¢s. The x coordinates

&y - .., ¢4 are given by
BiAz +pB,
BiAz + [
Az (ByAy +B4)+BeAy +;
B;Ay +B,Az +B;
if C+2 or else ¢,=0,
(6.10)

¢,=x(0,Az)=— if C##1 or else ¢,=0,

é,=x(Ay,Az)=—

BeAy +B,
¢,=x(Ay,0)=——"—— if C#3 or else ¢;=0,
’ Y B;Ay +B;s &
B B
$,=x1(0,0)=—— if C#4 or else $,=0 .

Bs

The values of C are checked because there are four spe-
cial cases. In these special cases the formula given for
one of ¢y, . . ., ¢, is indeterminate because the numerator
and denominator in (6.10) vanish.

The conditions for the four special cases are given in
the definition (5.3) of C. Physically, these special cases
arise when end of the kink’s world line, parametrized by
z, touches one of the four corners of the diamond-shaped
patch of the world sheet defined by the x and y integra-
tions. The intersections of the future and past light cones
of a point on the kink’s world line with the plane defined
by the diamond-shaped patch are usually hyperbolas.
However, when the point on the kink’s world line is also

Ax,A
. (Ax,Ay)
\\
\\T
]
(0,00 type 1 \)’Pe 2
B

/

4

type 3 type 3

/

/
/y

~—T

{

type 4 type 5

FIG. 4. The five different fundamental types of integrals that
arise when evaluating (6.9). The type depends upon the relative
positions of the two hyperbolic curves y(x,0) (labeled B for
“bottom”) and y(x,Az) (labeled T for “top”) and the rectangu-
lar region bounded by the opposite corners (0,0) and (Ax,Ay).
The five possibilities are shown using the future branches of the
hyperbolas (the case for s =-+1). Each type of integral may
also occur with the past branches of the hyperbolas (for
s=—1)
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a corner of the diamond-shaped region, then the plane
passes through the apex of the light cone and the hyper-
bola degenerates into a pair of straight lines. These
straight lines will lie along the two edges of the planar
patch which are joined at the corner where the kink’s
world line touches. For each of the four special cases,
one of the formula for ¢ in (6.10) would become indeter-
minate. Consider, for instance, the case where the end of
the kink’s world line (i.e., z =Az) touches the lower left
corner of the integration region (i.e., x =y =0). At this
point we have x *(u,v)=x*#,0). In this case the future
top curve lies along the left and lower sides of the rec-
tangular integration region. One can verify that in this
case, both the numerator and denominator in the equa-
tion for ¢, vanish. It is ¢, that becomes indeterminate in
this case because ¢, is the x coordinate of the intersection
of the top curve and the line y =0, which does not have a
unique solution in this case. The other three special cases
are similar. In each case a different ¢ would become in-
determinate if the value of C were not checked.

All four special cases are dealt with in the same
manner. The purpose of the ¢’s is to locate the x coordi-
nates where the type of integral being done changes.
However, since intersection curves which lie along the
edges of the integration region never cause the type of in-
tegration being done to change, it is sufficient to simply
set the corresponding ¢; to zero [or to any value outside
the range (¢, é5)].

The support of the x integration in (6.9) may be less
than the range 0 <x < Ax because of the third 6 function.
Thus one does not always have ¢,=0 and ¢s;=Ax. Be-
cause the integrations in (6.9) have support only between
the future branches (s =-+1) or the past branches
(s = —1) of the hyperbolas, it is convenient to define @,
and ¢5 in a more general way. First, we define ¢ to be
the vertical asymptote to the bottom hyperbola when
s =+1 and zero otherwise, and ¢, to be the vertical

asymptote to the top hyperbola when s =—1 and zero
otherwise:
B
35 =0(5)x (y— 0,0)=—8(s) = ,
Bs
(6.11)
dr=0(—s)x(y— o0,Az)
Az +
— (g PR B
Bs

The boundaries of the x integration are then defined to be
$o=max(0,¢5) ,
¢s=min[Ax,d+6(s)Ax] .

(6.12)

This definition of ¢, and ¢5 eliminates regions of integra-
tion which only contain the past branches of the hyperbo-
las when s = +1 and regions which only contain the fu-
ture branches of the hyperbolas when s = —1.

One may now express S as a sum of integrals over the
successive ranges of the x integration. The set of points
{do - ds} partition the x integration into at most five
ranges. Let {xq,x,X,,X3,X4,x5} be the increasing sort-
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ed set of ¢’s,
{xo’xl’xz’x3’x49x5}

=sort({¢g, @1, 02, P3,P4, b5} ) ,

sorted so that x; <x;,,. If we define the mid-point be-
J

(6.13)

4
S(Ax,Ay,Az,7,5,C,By, . ..,B;)= 3, O(X,—¢)0(ds—X,)T(x,,x,4+1,A,82,7,5,B,...,B,) .
n=0
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tween two successive x’s as
X, =(x,+x,,)/2, (6.14)

then we may rewrite the S integral (6.9) as a sum of in-
tegrals over each successive x range:

(6.15)

The two 6 functions ensure that only the ranges of x between ¢, and ¢5 may contribute. The function T is defined to be

—2z(x,9))0(7+s[x +y —z(x,y)])

T (5%, 89, 82,7,5,8,, -, B)= [ “dx [Vdy 0z (x,y))0(Az
X

The reason that we have defined the function T is that the
x integration being done in (6.16) is over a region which
contains only one of the five possible fundamental types
of integrals discussed in the paragraphs preceding equa-
tion (6.10) and shown in Fig. 4.

What remains is to find the analytic form of (6.16) for
each of the five possible types of integrals that can arise.
Recall that the different types of integrals arise, as shown
in Fig. 4, from the different possible relative positions of
the top and bottom hyperbolas compared to the (x,y) re-
gion of integration. If the region of integration is be-
tween the two hyperbolas, then the first two 8 functions
in (6.16) will have support over the entire region, and the
limits of the y integration will run from O to Ay. If both
hyperbolas pass through the region of integration, then
the first two 0 functions in (6.16) restrict the y limits of
integration to run from y(x,0) to y(x,Az). The last two
types of integrals which give nonzero contributions are
when one of the hyperbolas passes through the region of
integration but the other does not. These types of in-
tegrals will have y limits of integration which run from 0
J

T(xz,x,,,Ay,AZ,T,S,Bp .. 7B7)

X

6(—s)y(x,0)

0 for y, <y, or for y, <y,<y; .

f udxfﬂ(s)y(x,Az)+9(—s)Ay y 1 3_5_
X Iﬁ]x +B7)’ +34| Bz

[L (xhxu ’B37B6)—L (xl’xu ,B3’B6+BZAZ)]

fxudx y(x,Az)dy 1 =i

x yx0  |Bix +By +B4 B,

fx,,dx O8(—s)y(x,Az)+6(s)Ay y 1 =£_5_
x 8s)y (x,0) IBix +By +Bs B,

. (6.16)
|B1x +By +B4|

-
to y (x,Az) or from y (x,0) to Ay depending on whether it
is the top or the bottom hyperbola that passes through
the region of integration. For each type of integral, the
third 6 function in (6.16) restricts the integration region
to be between either the future (s =+1) or the past
(s =—1) branches of the hyperbolae. If we make the
definitions

X=(x;+x,)/2,
vy =s y(x,0(—s)Az) ,
y,=s y(X,0(s)Az) ,
6.17)
y=—06(—s)Ay,
Y. =0(s)ay ,

8=€(B1f +Sﬂ2yb +B4) ’

then the integrals in (6.16) can be carried out for each of
the five different cases. One obtains

e (¥4 1 ~8 _
fXI dx fO d_y Ile +BLV +B4| Bz [L (x[)xu,BpB4+Bsz) L(xlaxu!BI’B4)]

for y, <y, <y, or for y, <y, and y, <y,

[Q(x,x,,B1B3,B1B6+B3Bs—ByBs, BaBs—BoSB7)
—L(x;,x,,B5,B5+B,0(s)A2)—L(x;,x,,B1,B4+B,0( —s)Ay)]

for y, <y; <y, <y,

for Y <yb <yt <yu

[L (x,,xu ’B3)BG+B20( —S)Az )+L (xl,xu ,BI,B4+329(S)A)’ )
—Q(xp,x, ,3133»ﬁ136+Bsﬁ4_B2,Bs:B4ﬁs—'Bzﬂ7)]

for y; <y, <y, <y, or for y; <y, <y, and y, =y,

(6.18)
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Here, the functions L and Q are the “linear” and “quadratic” integrals defined by

Co
x+—
€

*2
L(xl,xz,cl,c0)=fx dx Inlc,x +col=
1

Injc,x +col —x

X2

for ¢,70

1

X

(6.19)

(x,—xy)In|cy| for ¢,=0

and

*2
Q(X{,X5,€9,C1,C0)= fx dx In|c,x2+cx +cq
1

L(x,,x,,¢y,¢9) for c,=0
c1+V 2 —4c e, c;—V ¢} —4cye,
L [x{,x,,1, +L ,X5,1, + — 1
13X 2, X1,X; 2, (x,—x)n|c,|
for 0<c¢? —4cyc,
- (6.20)
172 2 172 x,+c, /2¢
4coc,—C 4cyc,—c 4c 277177
xIn [x2+—2 22 Ll—ox +2 |22 1 arctan |x -——L~2-
4c; 4c; 4coc, —cq x,+c, /2,
1 1 )
+L |x;+ 2, , X, t 2, ,0,¢4 for ¢{—4cyc, <0 .

Thus T, and hence S has been evaluated analytically for
all possible cases. Using the results of this section, one
can carry out the summations in (5.1) to arrive at a final
value for y; the power radiated in gravitational waves by
a string loop.

VII. TESTING THE FORMULA FOR ¥
AGAINST PREVIOUS RESULTS

In this section we compare the y values given by our
formulas to previously published values for a large num-
ber of loop trajectories. The formulas obtained in Secs. V
and VI were directly implemented by computer code. In
some cases we find disagreement between our results and
those previously published. There are, in fact, several
cases where conflicting results have been published for
the same loop trajectories. In the cases where a disagree-
ment was found, we have identified the errors made in the
published work which led to the incorrect results. In
these cases our formulas give the correct values of y. We
are confident that they are correct because, in every case,
we have shown our results to be consistent with those
given by other independent methods. The other methods
used to confirm our results were the FFT method of Al-
len and Shellard [14] and/or a corrected implementation
of the numerical method used by the original author(s).

While our formulas handle piecewise linear loops ex-
actly, most of the previous work in this area has con-
sidered smooth cosmic string trajectories (typically pro-
viding analytic expressions for the a and b loops). To
compare the results of our formulas to the published
values of ¥ for these smooth loops, we calculate y for
piecewise linear loop trajectories of approximately the
same shape. If the number of segments used (N, and N, )
is reasonably large, then the piecewise linear loop trajec-
tory and the smooth loop trajectory will be very similar

in shape, and we expect that the values of y for the two
trajectories will be very close. An example of how we
generate specific piecewise linear trajectories is given
later in this section. The rate at which ¥ converges as the
number of linear segments is increased is also discussed.

Prior to this work the only fully analytic closed form
solution for y for any string loop trajectory was given by
Garfinkle and Vachaspati [11]. They considered the
piecewise linear loops defined by a and b loops which
consisted of just two linear segments each; i.e.,
N,=N,=2. This defines a family of loop trajectories
which depend on a single parameter ¢, the angle between
the a and b loops. As a function of ¢,y is given by

=32 2
y(¢)= i’ (1+cosé)In Foosd
+(1—cosg)ln | —2>— (7.1)
1—cos¢ ’

When calculating ¥ with our formulas, we used @ and b
loops with three segments (where the length of the third
segment was much smaller than the other two). This was
necessary in order to prevent a singularity; exactly paral-
lel segments cause the determinant in (4.14) to vanish.
Equation (7.1) is plotted in Fig. 5 (solid line) along with
the y values (dots) given by our code for a number of
loops with different values of ¢. Since these are piecewise
linear loops we expect our results to be highly accurate.
Indeed, the points plotted in Fig. 5 showing our results
had to be enlarged in order to distinguish them from the
plot of (7.1). Thus our method completely confirms the
results of Garfinkle and Vachaspati.

The next set of loop trajectories which we use to test
our formulas is a three-parameter family of trajectories
first examined by Burden [10]. The three parameters are
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L, M, and ¢, where L and M are positive integers and ¢ is
an angle in the range [0,7]. The Burden trajectories are
defined by the a and b loops:

-1

a(u)= L - [cos(2mLu)Z+sin(2mLu)(cos¢X +singy)] ,
(7.2)
M7! o ~
b(v)= Fy [cos(2mMv)Z —sin(27Mv)X] .

The b loop winds M times around a circle in the x-z
plane. The a loop winds L times around a circle whose
plane is at an angle ¢ with respect to the x-z plane. The
Burden string loops are nonintersecting cuspy loops in
the case M =1,L > 1 and ¢ not equal to 0 or 7. Burden
calculated values of y for loops with M =1 and
L =1,2,3,5,15 for several values of ¢. The values of ¥
for loops with M =1 and L =3,5 were also calculated by
Quashnock and Spergel [13]. Using our formula we cal-
culated the values of y for a large number of loops, each
of which is a piecewise linear approximation to a Burden
loop. In addition, we calculated a number of y values us-
ing the FFT method of Allen and Shellard [14]. Our re-
sults for loops with M =1 and L =3,5 are shown in Fig.
6 along with the results of Burden, Quashnock, and Sper-
gel, and the FFT method. We find excellent agreement
among all four sets of results. This also shows that piece-
wise linear loops with fairly small numbers of segments
(N,=16L and N,=16M =16) can provide excellent ap-
proximations to smooth loop trajectories and provides
further evidence that our formulas are correct.

Values of y for the Burden loops with L =M =1 have
been published by Burden [10], Vachaspati and Vilenkin
[9], and Durrer [8]. These results, along with the results
of the FFT method and our new method are shown in
Fig. 7. There is excellent agreement between four of the
sets of results. However, Durrer’s results for these trajec-
tories do not agree well with the others.

To understand why Durrer’s results do not agree with
the others we recalculated y for these trajectories using
the same numerical method used by Burden, Vachaspati

150 \ ’
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FIG. 5. The solid line is a plot of the analytic formula (7.1)
for y(¢) for piecewise linear trajectories in which the a and b
loops are composed of just two segments each. The dots show
values of 7 given by our formulas for a range of angles ¢. The
agreement between the two results is so close that the dots had
to be enlarged in the figure to distinguish them from the solid
plot of (7.1).
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and Vilenkin, and Durrer. This method requires one to
calculate the average power radiated by a string loop us-
ing the formula previously given in (3.7):

= dP,
p=3 [do—>,

n=1

(7.3)

where P, is the average power radiated at frequency
o, =4mn and the integration is over the two-sphere. The
details of the calculation of P, can be found in Refs.
[8-10]. (Note however the following typographical er-
rors in Ref. [8]. The term J, ,(—1Ising) in (A.6) should
be J;(—1IsinfB) and y should be replaced by —y in
(A.12) and (A.13).) Because of the infinite sum appearing
in (7.3), one must stop calculating the P, numerically at
some value of n, and then estimate the contribution to the
sum from larger values of n. Since the sum may be slow-
ly convergent, this “tail” may give a significant contribu-
tion even when the individual P, are very small. For the
L =M =1 Burden loops with ¢0 or 7, the tail can be
estimated with good accuracy because the P, fall off as a
power law n~%/? for large n. Durrer’s results are in-
correct precisely because the contribution of the tail was
not included at all. In Fig. 8 we show Durrer’s original
results and our calculation of the sum of the first 50
terms of (7.3). Note the agreement between these values.
We also show the results of the first 50 terms plus an esti-
mate of the tail of the sum along with the results from
our code. It is clear that when the tail is included,
Durrer’s results then agree with the results found by all
other investigators. Thus, again we find that our method
is in agreement with the results of previous authors.
Before continuing to compare the results of our new
formulas to those in the published literature, we take a
moment to discuss how piecewise linear loop trajectories
are constructed to approximate smooth loop trajectories.
We illustrate the procedure by explaining how the piece-
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FIG. 6. The solid curves show numerical values of ¥ for
piecewise linear loop approximations of M =1, L =3,5 Burden
loops. The piecewise linear a loops were constructed to have
N,=16L segments. The piecewise linear b loops each had
N,=16M =16 segments. The open circles show the published
results of Burden [10], the crosses show the published results of
Quashnock and Spergel [13], and the triangles show the results
of the FFT method of Allen and Shellard [14]. We find excel-
lent agreement among all four sets of results.
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FIG. 7. Numerical values of ¥ for some L =M =1 Burden
loops. The solid line shows the results of our new method. The
open circles show the results of Burden, the crosses show the re-
sults of Vachaspati and Vilenkin, and the triangles show the re-
sults of the FFT method. There is excellent agreement among
these four sets of results. Durrer’s results are shown as open di-
amonds.

wise a and b loops were constructed to approximate the
L =M =1 Burden loops considered above. The piece-
wise linear a loop was constructed by dividing the inter-
val u€[0,1] into 16 equal segments. This defines 16
values of the coordinate u. These values were then per-
turbed by small random amounts so that pairs of seg-
ments on the a loop would not end up exactly parallel.
[This is necessary to prevent the determinant in (4.14)
from vanishing.] The perturbed values of u were then
used in the first equation of (7.2) to yield the coordinates
of the N, =16 kinks which define the a loop. Finally, the
entire a loop was translated in three space so that the
kink with parameter u =0 was positioned at the origin.
The piecewise linear b loops were constructed in a similar
manner. Each b loop was constructed to have N, =16
linear segments. In all cases, our values of ¥ were within
8% of previously calculated results with an average
difference of less than 3.5%. Thus, for the purposes of
calculating ¥, a single wind around a smooth circular
path is approximated extremely well by a set of only 16
linear segments.

We now examine how the y values found for the piece-
wise linear approximation to smooth loop trajectories de-
pends on the number of segments used. To determine

|

a(u)= i (sin(27u )X —cos(27u)(cos¢y +sindZz)] ,

£ sin(6mv)— (1 —a)sin(2mv) |X—

b(v)= 3

1
27

where @ and ¢ are constant parameters, 0<a =1, and
—m7<¢=m. Note that when a=0, these trajectories are
equivalent to the L =M =1 Burden loops studied above.
These loops have also been studied by Durrer [8]. The
results found by Vachaspati and Vilenkin, and Durrer are
shown in Fig. 11 along with the results of the FFT
method and the results of our new method for the case

BRUCE ALLEN AND PAUL CASPER 50

150
100 A s
OO
Y
X Q0 *
%
50 —
g o2’
0 E 3
*
[
0 45 90 135
¢ (degrees)

FIG. 8. The y values reported by Durrer (open diamonds)
compared to the sum of the first 50 terms (small crosses) in (7.3)
for several L =M =1 Burden loops. Including an estimate of
the contribution to y from the infinite tail of the sum results in
significantly larger values of y (large crosses). The solid line
shows the values of ¥ found by our formulas.

this dependence we constructed several piecewise linear
approximations to the L =M =1 Burden loops using the
procedure given above, each with different values of N,
and N,. The results of four such tests are shown in Fig.
9. One can see that the values of ¥ converge quickly as
N, and N, increase. It is only for loops with values of ¢
near 0 and 180 degrees (where y diverges) that a large
number of segments are needed to obtain good accuracy.
The relative errors in four approximations compared to
the most accurate approximation (curve D in Fig. 9) are
given in Fig. 10. The errors decrease rapidly as the num-
ber of segments increases. These errors are small and are
mainly due to the loops which have ¢ close to 0 or 130
degrees. We obtained similar results for the L =3,M =1
and L =5,M =1 Burden loops. Further discussion of
how the accuracy of ¥ in the piecewise linear approxima-
tion of a smooth loop depends on the number of segments
N,,N, is postponed until the end of this section.

We now continue to compare the results of our formu-
las to those in the published literature. The next set of
loop trajectories with which we compare our results is a
two-parameter family of loops first studied by Vachaspati
and Vilenkin [9]. The @ and b loops which define these
trajectories are given by

(7.4)

%cos(67rv)+(1—a)cos(27rv) 9—[a(l—a)]3sin(4mv)2 | ,

r

a=0.5. We find that only the FFT method and our new
method are in good agreement. The y values given by
Vachaspati and Vilenkin, and Durrer appear to be too
small. In fact, their results are lower than the sum of the
first 300 P, found by the FFT method (see Fig. 11). We
take the sum of the first 300 P, to be a lower bound for y
since continuing the sum to larger n or adding an esti-
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mate of the tail (or both) will only increase the value
found for y.

There are two possible explanations for the incorrect
results given by Vachaspati and Vilenkin. The first possi-
bility is that they incorrectly estimated the tail contribu-
tion to the sum in (7.3). Vachaspati and Vilenkin claim
that the sum in (7.3) is rapidly convergent, with P, <n 3
for large n. However, we have found that the sum is ac-
tually much less convergent. For example, the power
spectrum for the trajectory with a=0.5 and ¢=u/2 is
shown in Fig. 12. In this case, P, <n % for n in the
range 100<n <300. By overestimating the convergence
of the sum in (7.3), one seriously underestimates the con-
tribution due to the tail of the sum. The other possible
explanation is that the results reported in [9] are actually
for a different set of loops than those defined by (7.4). We
consider this a possibility not only because the reported
convergence of the sum (7.3) does not agree with our
findings, but also because Vachaspati and Vilenkin in-
clude a drawing (Fig. 4 of Ref. [9]) of the loop’s shape at
two different times during its oscillation. However, these

shapes do not agree with the shapes given by (7.4). We
J
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have confirmed that the loops shown in Fig. 4 of Ref. [9]
are not the same as the loops given by (7.4), however we
have been unable to resolve whether the values of y re-
ported in Ref. [9] correspond to the loops defined by (7.4)
or to those shown in the figure [17].

We have calculated values of ¥ for the loop trajectories
(7.4) using our new formulas for several other values of
the parameter a. When a=0, the loop trajectory is
equivalent to the L =M =1 Burden loops. Thus, for
small a, the loop trajectories (7.4) should be similar to
those given by (7.2). In Fig. 13 we show our results for
a=0.01 (solid line). This is compared to results using the
traditional numerical method (crosses) and the results for
a=0 (dashed line). The results of our new method agree
well with those of the traditional numerical method.

The final string loop trajectories with which we com-
pare our formulas were first given by Garfinkle and Va-
chaspati (Eq. (2.9) of Ref. [11]). The a and b loops for
these trajectories are composed of two smooth circular
arcs joined by a pair of straight segments. The analytic
expressions for the a and b loops are

a(u)=2~7lrg[sin(8(u)+27rqu )X —cos(8(u)+2mqu )(cosd§ +singZ)] ,

b(v)= —I—[Sin(B( v)—2mpv )X —cos(B(v)—2mpv )y ] .
27p

(7.5)

Here, p and q are constants in the range [0,1], ¢ is the angle between the two loops, and 5 and & are defined by

Bw)=(1—p)r[—2v] and 8(u)=(1—gq)

In (7.6), [x] is the greatest integer less than or equal to x.
Our results for trajectories with (p,q)=(0.6,0.4),
(0.4,0.8), and (0.9,0.9) are shown in Fig. 14. The results
of the FFT method for several trajectories with
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FIG. 9. Values of y for piecewise linear approximations to
the L =M =1 Burden loops using different numbers of seg-
ments (N,,N,). The number of segments (N,,N,) used for the
curves A4,B,C,D are, respectively, (6,5) (11,10), (16,15), and
(36,35). The Burden loops are accurately approximated over the
range ¢ €[10,160] degrees when N, =16 and N, > 15. Regions
¢ <10 and ¢> 160 when y begins to diverge require a larger
number of segments before the approximation becomes accu-
rate.

T
?+1r[2u] ] .

(7.6)

10 20 30 40 50
N=Na+ Nb

FIG. 10. Relative errors in y for the (N,,N,)=(6,5), (11,10),
(16,15), and (26,25) piecewise linear loop approximations of the
L =M =1 Burden loops with respect to the (N,,N,)=(36,35)
approximation. The relative error € of each set of loops is cal-
culated by summing |(y§—y5)/(y5+v5)| over the values
¢=5,10,...,175 degrees and then dividing by the number of
terms in the sum. Here, a denotes which set of loops are being
compared [i.e., (N,,N,)=(6,5),(11,10), etc.] and E denotes the
(N,,N,)=(36,35) loops. Most of the error is due to loops with
values of ¢ near O or 180 degrees. Increasing the number of seg-
ments from (N,,N,)=(16,15) to (36,35) causes the average
value of ¥ to change by less than 3%.
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FIG. 11. Values of y are shown for the loop trajectories
given in (7.4) with @=0.5. The results given by our formulas
are shown by the solid line. The results of the FFT method are
shown as triangles. There is good agreement between the FFT
method and our new method. Durrer’s results are shown as
dots while the results of Vachaspati and Vilenkin are shown as
crosses. These last two sets of results are inaccurate because the
rate of convergence of the sum (7.3) was estimated incorrectly.
The open circles show the sum of the first 300 terms of (7.3) as
given by the FFT method. These circles should be taken as
lower bounds on the values of y.

(p,q)=(0.9,0.9) are shown in Fig. 14. Again, we find
good agreement between the two methods. Garfinkle and
Vachaspati do not give specific values but claim that the
trajectories given in (7.6) have y values around 100. This
is consistent with our results. Durrer [8] has also given
values of y for some of these trajectories. For the three
trajectories with parameters (p,q)=1(0.6,0.4), (0.4,0.8),
and (0.9,0.9) and with ¢ = /2, Durrer reports y values of
19, 26, and 42, respectively. However, because of the er-
rors (explained above) in other numerical results present-
ed by Durrer, we do not have confidence in these values
of ¥. Durrer’s results appear to be too low, which would
be consistent with leaving off the contribution from the
tail of the sum in (7.3). The agreement between the FFT
method and our new method again gives us confidence
that our formulas are correct.

We now return to the question of how accurately the y
values from piecewise linear loop trajectories approxi-
mate the y values from smooth loop trajectories. In par-
ticular, we would like to know how the difference be-
tween the y value of a piecewise linear loop with
N =N,+N, total segments (y ) and the y value of the
smooth loop that it approximates (v ) falls off as a func-
tion of N. Unfortunately, we do not know how the
difference A(N)=|y, —yy| depends on N in the general
case. However, numerical estimates may be made for in-
dividual loops with the hope that the results will hold in
general. In addition, there is at least one case which has
been investigated where simple analytic formulas exist for

J
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FIG. 12. The power spectrum for the trajectory (7.4) with
a=0.5 and ¢=7/2 found using the FFT method. The P, are
shown in units of Gu®. The slope of the curve for large n shows
that the sum (7.3) falls off as the power law P, < n = "% for large
n. The logarithm is to base 10.

both v, and y .

A detailed numerical investigation of A(XN) has been
carried out for two Burden loop trajectories (7.2) with
L =M =1. The numerical values of ¥, have been com-
puted over a wide range in N for both loops. The value
of ¢ was arbitrarily chosen to be 39° for the first loop, and
111° for the second loop (see Fig. 15). We find that for
large N, both sets of results are well approximated by
functions of the form 4 +BN !, where 4 and B are con-
stants that depend only upon ¢. For the first set of re-
sults (¢=39°) we find that y,~52.01+181.64N ! for
60 <N =<256. By taking y ,=52.01 we can find a numer-
ical estimate of A(N). A similar analysis has been
done for the second set of loops, where
yn~=64.49+97.13N "1, Figure 16 shows a log-log plot
of A(N) for both sets of loops. By examining the slopes
of the curves in Fig. 16, we find that in both cases, A(N)
falls off like N ~! for large N.

In addition to the numerical investigations of A(N)
given above, there is one case where A(N) has been calcu-
lated analytically. In a recent paper, Allen, Casper, and
Ottewill have found a simple analytic formula for the y
values of string loops in a particular class [18]. String
loops in this class have a loops which lie along a line, and
b loops which lie in the plane orthogonal to that line. In
particular, when the b loop takes the shape of an N,-
sided regular polygon, ¥ N, is given by

2.
N,’

] . (7.7



50 CLOSED-FORM EXPRESSION FOR THE GRAVITATIONAL ...

T
[

/(

ll

150 p
/
)
/
)
Y 100 \\ %(
N K
~ X~
50
0 25 ) 135

¢ (degrees)

FIG. 13. Values of y are compared for the loop trajectories
given in (7.4) with a=0.01. The results of our formulas are
shown by the solid line. The results of the traditional numerical
method are shown as crosses. The two methods are in good
agreement. The values of ¥ when a=0 are shown by the
dashed line.

When the b loop takes the shape of a perfect circle, ¥ is
found to be

y=16 [ ax 1% -39 002454 . (7.8)
0 x
Since an N,-sided polygon becomes a perfect circle in the
limit as N, goes to infinity, the difference between Eqgs.
(7.7) and (7.8) give A(N,,). Figure 7 of Ref. [18] shows a
log-log plot of A(N,). From this plot one finds that, in
this case, A(N,) falls off as N, 2. The reason that the y
values from the piecewise linear loops converge to the
smooth loop limit faster in this case than in the previous
cases is most likely because the a loop in this case is al-
ready piecewise linear. While we do not know how the
errors in ¥ y scale with increasing N in the general case, it
seems reasonable to conjecture that the errors fall off as
N ~! for large N.

As a point of interest, it takes only 14 sec to calculate
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FIG. 14. Values of y given by our formulas for the trajec-
tories (7.5) for three sets of parameters (p,q) and a range of an-
gles ¢. Curves A, B, and C give the results for trajectories with
(p,q)=(0.6,0.4), (0.4,0.8), and (0.9,0.9), respectively. These re-
sults are consistent with the claim by Garfinkle and Vachaspati
that the trajectories (7.5) have y values on the order of 100. The
results of the FFT method with (p,q)=(0.9,0.9) are shown by
the triangles, and should be compared to curve “C.” There is
good agreement between the two methods.
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FIG. 15. The y values from a series of increasingly accurate
piecewise linear loop approximations to two (L =M =1) Bur-
den loops. The total number of linear segments in each approxi-
mation is given by N. Both sets of y values quickly converge to
their asymptotic limits.

v for a loop with N =N, +N, =32 on a Sun-4 worksta-
tion (SS2). The calculation time for y scales roughly as
N*. The speed of this algorithm makes it feasible to cal-
culate y for loops with large numbers of segments N, and
N,. It is also possible to rapidly calculate y for very
large numbers of loops with moderate values of N, and
Nb .

In this section we have shown that in all cases where
previously published numerical methods have given reli-
able results for y, these results are in good agreement
with those given by our exact formulas. The large num-
ber of both piecewise linear and smooth loop trajectories
for which our formulas have confirmed previously pub-
lished results gives us confidence that our method is

0.5

Log A(N)

. =39°

¢=1 IN

1.5 2 2.5
Log N

FIG. 16. The function A(N) for two (L =M =1) Burden
loops. Each point shows the difference between the y value for
a piecewise linear approximation with N segments and the nu-
merical estimate of ¥ in the N = c limit. Both of the solid lines
have a slope of — 1, showing that the errors fall off as N . The
logarithm is to base 10.
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correct. In cases where our method yields results that
disagree with previously published results, we have
shown that our results are correct. We have shown this
by identifying the errors in the previously published work
and by showing that our results are consistent with those
given by other independent methods such as the FFT
method of Allen and Shellard [14] and/or a corrected im-
plementation of the numerical method used by the origi-
nal author(s). Since our results have been correct for
every trajectory tested so far, we have confidence that our
formulas provide a reliable method for calculating the
power radiated in gravitational waves for arbitrary cos-
mic string loops.

VIII. CATALOG OF LOOPS

This section gives a short catalog of piecewise linear
loop trajectories and their y values. This catalog is in-
tended to give a number of simple cases which might
prove useful in testing future analytic or numerical
methods. The a and b loops which define these trajec-
tories are regular polygons formed with small numbers of
segments N, and N,. With each pair of a and b loops we
form a two parameter family of loop trajectories. The
two parameters (¢ and 0) describe the relative orienta-
tion of the a and b loops. There is nothing special about
these loops other than that they are simple piecewise
linear trajectories.

The first set of trajectories we consider are defined by a
and b loops consisting of two and three segments, respec-
tively. The three segment b loop has the shape of an
equilateral triangle. (The simplest case, where the a and
b loops each have just two segments is discussed in the
previous section.) The a loop is taken to lie along the z
axis. One kink on the a loop is positioned at the origin;
the parameter u =0 at this kink. The other kink (at
u =1) is positioned above the first kink and has coordi-
nates (0,0,%). For the b loop we again position one kink
at the origin and set the parameter v =0 at that kink.
The position of the other two kinks depends on the pa-
rameters ¢ and 6. When ¢ =0=0, the b loop lies in the
x —z plane. The kink at v=1 has coordinates
(—+4,0,¥3/6) and the kink at v =% has coordinates
(1,0,v/3/6). When ¢ and 6 are not zero, the position of
the b loop is found as follows. First, the b loop is rotated
by the angle ¢>0 about the z axis (counterclockwise
when viewed from large positive z). After the ¢ rotation,
the b loop is then rotated by the angle 6> 0 about the x
axis (counterclockwise when viewed from large positive
x). Values of y for the trajectories defined by these a and
b loops are given in Table I for several values of the an-

TABLE 1. Values of y for the first set of trajectories for
several values of the angles ¢ and 6.
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TABLE II. Values of y for the second set of trajectories.
AN 18° 36° 54° 72° 90°

18° 100.85 90.65 74.48 64.80 58.92
36° 82.00 76.01 70.97 64.82 59.98
54° 72.61 66.51 63.68 61.54 59.95
72° 67.04 61.24 59.12 58.80 60.02
90° 63.97 58.53 56.80 57.12 59.75

gles ¢ and 0. In generating Table I, we have been careful
to avoid certain values of ¢ and 6 for which the a and b
loops have special relative positions. In particular, if the
a and b loops are exactly coplaner, the operator D be-
comes singular. In this case, accurate values of ¥ may
still be found by examining trajectories where the angles
¢ and O deviate very slightly from their desired values.
However, since the y values given in this section are
meant to be “benchmark” values for future work, we
have not included such cases here. In the following
tables, certain pairs of angles are omitted for similar
reasons.

The second set of trajectories we consider are defined
by a and b loops consisting of three segments each. Both
the a and b loops are equilateral triangles. The position
of the b loop depends on the two parameters ¢ and 0 in
exactly the same way as the b loop in the first set of tra-
jectories. The a loop is placed in the same position the b
loop has for parameter values ¢ =0=0. Values of y for
the trajectories defined by these a and b loops are given in
Table II for several values of the angles ¢ and 6.

The third set of trajectories we consider are defined by
a and b loops consisting of two and five segments, respec-
tively. The two segment a loop is identical to the a loop
used in the first set of trajectories. The b loop is taken to
be a pentagon. One kink on the pentagon is positioned at
the origin and is chosen to have parameter value v =0.
When ¢=6=0, the b loop lies in the x-z plane, and is po-
sitioned so that the kink at v =1 has coordinates
[—+tcos(7/5),0,1sin(7/5)], the kink at v = £ has coordi-
nates

(+[sin(7/10)—cos(7/5)],0,+[cos(7/10) +sin(7/5)]) ,

and so on. When ¢ and 0 are not equal to zero, the b
loop is rotated in exactly the same manner as for the pre-
vious two sets of loop trajectories. Values of y for the
trajectories defined by these a and b loops are given in
Table III for several values of the angles ¢ and 6.

The fourth set of trajectories we consider are defined
by a and b loops consisting of five and three segments, re-

TABLE III. Values of y for the third set of trajectories.

AN 0 18° 36° 54° 72° AN 0° 18° 36° 54° 72°
18° 59.33 59.80 61.21 63.51 66.30 18° 63.52 64.15 66.04 69.28 74.52
36° 53.81 54.56 56.86 60.93 67.45 36° 54.07 54.99 57.78 62.31 67.63
54° 49.35 50.15 52.56 56.40 60.72 54 47.69 48.74 52.02 57.78 66.36
72° 46.70 47.54 50.12 54.47 60.36 72° 44.20 45.30 48.74 54.98 64.04
90° 45.83 46.70 49.37 54.12 62.25 90° 43.10 44.20 47.69 54.08 63.95
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TABLE IV. Values of y for the fourth set of trajectories. TABLE V. Values of y for the fifth set of trajectories.

o\ ¢ 18 36° 4 72° o\ ¢ 18° 36° 54° 72°
18° 84.69 75.43 67.82 62.44 18° 114.46 94.04 80.22 68.84
36° 71.37 71.03 65.71 61.86 36° 93.52 82.49 72.06 65.40
54° 70.11 65.69 62.72 60.42 54° 77.15 72.94 67.22 62.74
72° 64.41 61.37 61.13 61.33 72° 67.11 64.76 64.05 62.98
90° 60.49 58.21 60.49 — 90° 61.24 59.47 61.24 —

spectively. The a loop is a pentagon placed in the same
position as the b loop in the third trajectory set for pa-
rameter values ¢=0=0. The b loop is an equilateral tri-
angle whose position is given in terms of the parameters
¢ and 6 in exactly the same way as the b loops used in the
first and second trajectory sets. Values of y for the tra-
jectories defined by these a and b loops are given in Table
1V for several values of the angles ¢ and 6.

The final set of trajectories we consider are defined by a
and b loops consisting of five segments each. Both loops
are taken to be pentagons. The a loop is identical to the
a-loop used in the fourth set of trajectories. The b loop is
in the same position as the a loop when ¢=60=0. When
¢ and 0 are not zero, the b loop is rotated in the same
manner as in the previous sets of trajectories. Values of ¥
for the trajectories defined by these a and b loops are
given in Table V for several values of the angles ¢ and 6.

The five sets of loop trajectories along with the y
values given in this section are intended as “benchmark
values” for future analytic or numerical work.

IX. CONCLUSION

We have derived a new method for calculating the
power emitted in gravitational radiation by cosmic string
loops. This method yields an exact analytic formula in
the case of piecewise linear cosmic string loops. By in-
creasing the number of segments used, piecewise linear
string loops can approximate any cosmic string loop arbi-
trarily closely. Our formula (derived in Secs. V and VI)
involves nothing more complicated than logarithmic and
arctangent functions. No numerical integrations are re-
quired. Further, since our formula is exact, there is no
need to estimate any contribution to y from the “tail” of
an infinite sum. The error introduced when approximat-
ing smooth loop trajectories by piecewise linear trajec-
tories has been investigated. It is found that this error
typically falls off as N ! for large N, although in at least
some cases it falls of faster, as N ~2. We believe that for
“generic” loops the error scales as N ~!. Using a comput-
er to evaluate the approximately N* terms in our formu-
la, we can determine values of ¥ more accurately and
more efficiently than by previously published methods.

We have tested the results of our formula against all
previously published radiation rates for different loop tra-
jectories. Section VII contains a detailed comparison of
the results given by our new method to those reported by
previous authors. In every case, our formula is found to
give the correct result. In many cases our results are in
good agreement with the published data. However there
are also a number of cases where our results do not agree
with those previously published. There are, in fact, a
number of cases where conflicting results have been pub-
lished for the same trajectories. In the cases where a
disagreement was found we have identified the errors
made in the published work which led to the incorrect re-
sults. In most cases, the errors in the published values of
v are a result of underestimating the contribution of the
tail of the infinite sum in (7.3). The incorrect values of ¥
which have been published are typically 25-50 % below
the correct results. We are confident that our formula
gives the correct results because, in every case, we have
shown our results to be consistent with those given by in-
dependent methods.

We intend to use this exact formula in future work, for
example to repeat some of the work of Scherrer, Quash-
nock, Spergel, and Press [12] concerning the distribution
of y values of non-self-intersecting loops. In addition, we
plan to show how this formula may be modified to yield
similar analytic results for the linear momentum radiated
by cosmic string loops [17].

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant No.
PHY-91-05935 and a NATO Collaborative Research
Grant. The work of P.C. was also supported in part by
Department of Education Grant No. 144-BH22. We
would like to thank C. Burden, R. Durrer, and T. Va-
chaspati for useful correspondence concerning their
work. We are particularly grateful to Adrian Ottewill for
a number of useful conversations concerning this work,
including the tests in (6.5) and (6.6), the definition of the
operator D, and for providing an independent test of the
formulas.

[1] T. W. B. Kibble, J. Phys. A 9, 1387 (1976); T. W. B. Kib-
ble, G. Lazarides, and Q. Shafi, Phys. Rev. D 26, 435
(1982).

[2] Y. B. Zel’dovich, Mon. Not. R. Astron. Soc. 192, 663
(1980).

[3] A. Vilenkin, Phys. Rev. D 24, 2082 (1981); A. Vilenkin,
Phys. Rep. 121, 263 (1985).

[4] A. Albrecht and N. Turok, Phys. Rev. Lett. 54, 1868
(1985); Phys. Rev. D 40, 973 (1989); A. Albrecht, in The
Formation and Evolution of Cosmic Strings, Proceedings of



2518 BRUCE ALLEN AND PAUL CASPER 50

the Symposium, Cambridge, England, 1989, edited by G.
W. Gibbons, S. W. Hawking, and T. Vachaspati (Cam-
bridge University Press, Cambridge, England, 1989).

[S]D. Bennett and F. Bouchet, Phys. Rev. Lett. 60, 257
(1988); 63, 2776 (1989); Astrophys. J. 354, L41 (1990); in
The Formation and Evolution of Cosmic Strings [4]; Phys.
Rev. D 41, 2408 (1990).

[6] B. Allen and E. P. S. Shellard, Phys. Rev. Lett. 64, 119
(1990); E. P. S. Shellard and B. Allen, in The Formation
and Evolution of Cosmic Strings [4].

[7]1 R. R. Caldwell and B. Allen, Phys. Rev. D 45, 3447 (1992).

[8] R. Durrer, Nucl. Phys. B328, 238 (1989).

[9] T. Vachaspati and A. Vilenkin, Phys. Rev. D 31, 1052
(1985).

[10] C. Burden, Phys. Lett. 164B, 277 (1985).
[11] D. Garfinkle and T. Vachaspati, Phys. Rev. D 36, 2229
(1987).

[12] R. J. Scherrer, J. M. Quashnock, D. N. Spergel, and W. H.
Press, Phys. Rev. D 42, 1908 (1990).

[13]1J. M. Quashnock and D. N. Spergel, Phys. Rev. D 42,
2505 (1990).

[14] B. Allen and E. P. S. Shellard, Phys. Rev. D 45, 1898
(1992).

[15] S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972), Eq. 10.4.13.

[16]J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1975), Eq. 12.133.

[17] T. Vachaspati (private communication).

[18] B. Allen, P. Casper, and A. Ottewill, Phys. Rev. D (to be
published).

[19] B. Allen, P. Casper, and A. Ottewill, “Closed Form ex-
pression for the Momentum Radiated from Cosmic String
Loops,” Report No. WISC-MILW-94-TH-15, 1994 (un-
published).



(Ax,Ay,Az)

(0,0,0)

FIG. 2. The delta function 8[ f (x,y,z)] which appears in (5.2)
only has support when f(x,y,z)=0. Solving f(x,y,z)=0 for
z(x,y) we find that the surface z(x,y) consists of a pair of
disconnected hyperbolic sheets. The hyperbolic sheets are
separated by the plane B,x + B,y +B,=0, where the denomina-
tor of (6.4) vanishes. The intersection of a z =const plane with
these sheets will be a hyperbola in the x-y plane. The integra-
tion volume for (5.2) is a box with opposite corners (0,0,0) and
(Ax,Ay,Az).



