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A new linear system is constructed for Poincaré supergravities in two dimensions . In contrast
to previous results, which were based on the conformal gauge, this linear system involves the
topological world sheet degrees of freedom (the Beltrami and super-Beltrami differentials) . The
associated spectral parameter likewise depends on these and is itself subject to a pair of
differential equations, whose integrability condition yields one of the equations of motion . These
results suggest the existence of an extension of the Geroch group mixing propagating and
topological degrees of freedom on the world sheet. We also develop a chiral tensor formalism for
arbitrary Beltrami differentials, in which the factorization of 2d diffeomorphisms is always
manifest.

1. Introduction

The purpose of this paper is to generalize the linear systems (or Lax pairs) that
were derived already some time ago for the dimensionally reduced field equations
of Einstein Yang-Mills theories [1-3] and their locally supersymmetric extensions
[4] (for a recent review, see ref. [5]) . These reductions correspond to solutions of
the field equations, which depend on two coordinates only and thus possess at
least two commuting Killing vectors. The models obtained in this way closely
resemble flat space integrable non-linear sigma models in two dimensions, and
indeed the associated linear systems constructed so far are almost identical (see
refs . [6,7] for the flat space models). The present work differs from earlier
treatments, which were all based on the (super)conformal gauge, in that it allows
for non-trivial topologies of the two-dimensional world sheets by taking into
account the topological degrees of freedom of the world sheet, i.e . its moduli and
supermoduli. These constitute extra physical (but non-propagating) degrees of
freedom not present in the corresponding flat space integrable sigma models, and
affect the dynamics in a non-trivial fashion. In particular, there is a "back
reaction" of the matter fields on the topological degrees of freedom, in contrast to
conformal field theories, where the moduli determining the background can be
freely chosen . The spectral parameter t entering the linear system is now not only
a function of the "dilaton" field as in refs . [3,4], but also depends on the moduli
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and supermoduli of the world sheet. It is subject to a pair of differential equations,
whose integrability condition yields one of the equations of motion obtained by
dimensional reduction of Einstein's equations.

Despite the possible relevance of these results for the construction of new
solutions of Einstein's equations, such as the wormhole type solutions proposed in
ref. [8], a far more important concern is the search for new symmetries generaliz-
ing the Geroch group [9] and the "hidden symmetries" of dimensionally reduced
supergravities [10,11]. To a large extent, the present investigation is motivated by
refs. [11,12], where the connection between 2d supergravities and infinite dimen-
sional Lie algebras of Kac-Moody type was pioneered, and where it was shown
that the Geroch group in infinitesimal form is nothing but the affine Kac-Moody
algebra A(l) , i .e . the (untwisted) Kac-Moody extension of SL(2, R), with a central
term acting as a scaling operator on the conformal factor . These results suggested
further links between Einstein's theory and generalized Kac-Moody algebras, as
well as the emergence of yet bigger symmetries in the dimensional reduction . The
results presented here indicate that, if such extensions of the Geroch group exist,
they are likely to involve the topological degrees of freedom. Stated in more
physical terms, we are looking for "solution generating symmetries" that not only
relate solutions of the same topological type and with the same conformal
structure of the world sheet (e.g. asymptotically flat solutions of Einstein's equa-
tions), but symmetries that permit changes of the topology and the conformal
structure as well . ' It should be stressed, however, that even for the known classes
of solutions, the global structure of the Geroch group is not fully understood (see
ref. [3] for a discussion) .

The models considered here are most conveniently derived from matter coupled
supergravity theories in three dimensions, i.e . locally supersymmetric non-linear
sigma models as recently formulated in ref. [13] . This procedure has the advantage
that in three dimensions, all finite dimensional symmetries are manifest because
the matter degrees of freedom are uniformly represented by scalars and spinors
rather than tensor fields (as would be the case in dimensions d > 3) . The models
obtained in the reduction to two dimensions resemble conformal field theories in
several respects, but there are also differences . For instance, the equations of
motion of the left and right moving degrees of freedom can no longer be
disentangled, because there exist genuine solitonic solutions mixing left and right
movers such as the gravitational "colliding plane wave" solutions of ref. [14] also
considered in ref. [5] . Furthermore, locally supersymmetric theories exist up to
N = 16 (where N is the number of local supersymmetries), whereas in conformal
supergravity, only N ` 4 is possible . The difference is perhaps more clearly

Note that one must distinguish between the topology of the 2d worldsheet and the topology of the 4d
spacetime corresponding to a particular solution of the field equations .
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understood by a glance at the (super)gravitational fields, which do not carry
propagating degrees of freedom. The bosonic ones originate from the dreibein in
three dimensions, which by a partial gauge fixing of the Lorentz group SO(1, 2)
can be cast into the form

ema
= ( e,., a

	

pA.)

	

eam
=

	

e,"

	

-ea'A,

	

.

	

1.1
0 P

	

0 P-t

For the 3d gravitino, we have an analogous decomposition in terms of flat indices

'Aa = ( wa , 02) *

	

(1 .2)

Dimensional reduction to two dimensions therefore gives rise to a "dilaton" p and
a Kaluza-Klein vector field A,, in addition to the zweibein eua, which is the only
gravitational degree of freedom in conformal field theory ". Similarly, the decom-
position (1.2) gives rise to an extra degree of freedom, namely the "dilatino" 42,
which may be viewed as the superpartner of p. None of these fields possess
propagating degrees of freedom. For the bosonic fields, this can be seen by
substituting (1.1) into the 3d Einstein action and discarding the dependence on the
third (spacelike) coordinate X2, which yields

-
e(3)R(3) _ - âPeR(2) - 1 ep316	A AvA",

	

(1 .3)

with Aw� :=aA� -8, A,, . Evidently, the conformal factor does not decouple even
in the classical theory as the Euler density eR(2) is multiplied by the dilaton field p .
Instead, there is now an equation of motion relating the world sheet curvature to
matter sources. The field p can be identified with a function of the coordinates
(for axisymmetric stationary solutions of Einstein's equations, it is usually taken to
be a cylindrical coordinate, see refs . [2,3]). Nevertheless, it modifies the dynamics
of the matter fields through its appearance in their equations of motion . It also
plays an essential role in establishing one-loop finiteness of the dimensionally
reduced models [17] . The vector field A,, is auxiliary, but offers the possibility of
introducing a cosmological constant through a non-vanishing expectation value
A,,� GC Eu� . In previous work, this cosmological constant has always been assumed
to vanish, and we will also set it equal to zero here . Elimination of the field
strength AW� will then produce only quartic spinor terms, which we do not
consider in this paper, so effectively AW� = 0. However, it must be emphasized that
inclusion of the associated field equation into the linear system, which has so far

` We will use letters m, n, . . . and a, b, . . . =0, 1, 2, respectively, for curved and flat indices in three
dimensions, while the corresponding indices in two dimensions will be denoted by }c, v, . . . and a,
(3, . . . = 0, 1, respectively. The metric has signature (+ - -) .

" We note that a similar dilaton field has been considered recently in the context of 2d conformal field
theory [15] and black hole models [16]. However, there it is put in "by hand" and governed by a
different lagrangian .



302

	

H. Nicolai / 2D Poincaré supergravities

not been accomplished, may provide the crucial missing link in understanding the
hidden symmetries that may exist beyond the Geroch group.

As already mentioned, previous studies are based on the special superconformal
gauge

e,," = A 5',

	

+f" = yae,

	

(1 .4)

which simplifies the equations of motion considerably. This gauge choice is always
possible locally, but it misses important global aspects because the information
about the conformal structure of the world sheet is hidden in the transition
functions between local charts in this gauge. Consequently, a change of conformal
structure must be accompanied by a corresponding change of atlas if (1 .4) is to be
maintained . If one wants to vary the conformal structure without having to change
the atlas, one must make the dependence on the topological degrees of freedom
explicit . In order to do so, one parametrizes the conformal structure over a fixed
atlas in terms of Beltrami and super-Beltrami differentials . In the context of
conformal field theory and string theory, such a formulation was proposed in ref.
[18] and further investigated in refs . [19,20]; it was also used in studies of higher
loop amplitudes in superstring theory [21] . In sect . 2, we will further develop this
formalism, mainly relying on an extending the results of ref. [19], and use it in the
construction of the linear system in sect . 4.

Although our results could be formulated in the euclidean metric relevant to
the study of stationary axisymmetric solution, we will be working with a lorentzian
world sheet in this paper. A technical reason for this is the occurrence of Majorana
Weyl spinors in two dimensions, which are here described as real one-component
(anticommuting) spinors . As is well known, Majorana Weyl spinors in two dimen-
sions exist only for lorentzian signature, but not for euclidean signature . This does
not necessarily preclude a euclidean description, which would require complex
spinors . However, by complexifying the spinors, one doubles the number of
fermionic degrees of freedom. In a theory with an even number of fermions, this
problem can be circumvented by rewriting d real spinors in terms of Zd complex
spinors, but some of the previously manifest symmetries would be lost in general.
Quite apart from these technical points, however, the study of lorentzian world
sheets is of interest in its own right. These differ from the more familiar euclidean
world sheets (Riemann surfaces) in various respects, one of which is the unavoid-
ability of singularities for higher genus surfaces : a globally lorentzian surface which
is smooth everywhere must have Euler characteristic X = 2 - 2g -n = 0 [22]
(where g is the genus and n the number of punctures) . This leaves only the
cylinder (g = 0, n = 2) and the torus (g = 1, n = 0) as everywhere smooth lorentzian
world sheets, so all other world sheets must have singularities . These observations
are also of some physical interest, for instance in two-dimensional quantum
cosmology (see e.g . ref. [23]), where they imply the existence of catastrophic
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"naked" singularities for two-dimensional observers .̀ Another peculiar feature of
genus-one (and possibly higher genus) lorentzian world sheets has been stressed
recently in ref. [25] : the modular group acts ergodically on Teichmüller space (but
can also have periodic orbits for non-generic points!) and thus the quotient of this
space by the modular group gives rise to a very strange moduli space. Unfortu-
nately, owing to the lack of literature dealing with the geometry of "lorentzian
Riemann surfaces" from either a mathematical or a physical point of view, many
elementary questions remain open for the time being. We will proceed nonethe-
less, assuming that the known results about ordinary Riemann surfaces can be
taken over mutatis mutandis.

2. Conformal calculus for lorentzian world sheets

In this section, we consider world sheets which are globally lorentzian two-di-
mensional manifolds, possibly with singular points as we already discussed. The
local charts are parametrized by conformal (i .e . light-cone) coordinates (x +, x- ) '* .
To distinguish flat (Lorentz) from curved (world) indices, we will put dots on the
latter . Inequivalent world sheets of the same topological type are classified by their
conformal structure (i .e . the complex structure for euclidean Riemann surfaces).
As already mentioned in the introduction, there are two ways to describe them.
One can either choose conformal coordinates, i.e . a diagonal ("conformal") gauge
for the zweibein, or otherwise parametrize the conformal structure by Beltrami
differentials . The first option corresponds to the standard description of conformal
field theories [26,27]. However, we here prefer to make use of the second
possibility, which has the advantage that one can keep the atlas and the transition
functions fixed while varying the conformal structure [18,19]. Accordingly, we
parametrize the zweibein as

where ~, + - and A

	

+ are the Beltrami differentials, subject to the condition
,u, + -w . + < 1 (for euclidean signature, they are each other's complex conjugates,
but here they are two independent real fields) . The metric is given by gN v =

A nice realization of the higher genus surfaces is provided by the Mandelstam diagrams of closed
string theory [241 . These are smooth (in fact, flat) surfaces except at the points where two strings join
and the curvature is proportional to a delta function .

" Light-cone components are defined by V± ~_ (V o ± V1 )IV .
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eNae,Rrl«p, where 77 +_= 1, r7++=77_-=0 . With this parametrization, the line
element assumes the form

From its invariance, it is straightforward to determine the transformation proper-
ties of the Beltrami differentials and the prefactor e_ t +e - under general coordi-
nate transformations x+->x'+(x+, x-), x - ->x' (x +, x -). Putting primes on all
terms on the right hand side and requiring the primed and unprimed expressions
to be equal, we obtain

The Beltrami differentials transform as

_ a+x
,- ++x ,+

Ix + =
a-x'

_ +A'+-a-x' +

The inverse formulas read

dsz =2e++e+e -(dx + +lu - + dx )(dx +A+

e++ =e + +(a+x~ + +l-~~- +ô+x~ ),

e- -= e'- - (a_x' -

(2.2)

To make the factorization of two-dimensional diffeomorphisms manifest, we now
switch to an anholonomic basis for the derivatives and the differentials, following
ref. [19] which is based on but differs from earlier work in ref. [18] . For the
derivative operators, we define

In terms of these, left and right moving scalar fields satisfy -9 f= 0 and -2+f = 0,
respectively; they are the real analogues of holomorphic and antiholomorphic
functions. The dual basis differential forms are then

dx++ l.c - + dx -	dx -+ la + - dx +

+

	

h, -

+ u'+-a-x' +) . (2.3)

x, ++ x , "
M-+_ (2 .4)

a+x'
+ +A'. +a+x,-

- +a+x 1 +
-a

x ,+
(2 .5)

b x'--ju-+a+x'-



It is important here that the factor 1 - A

	

is assigned to the differential
forms rather than the derivatives ; for any other assignment, the factorization of 2d
diffeomorphisms does not work [19] . With these definitions, (2.6) and (2.7) trans-
form as follows under general coordinate transformations:

while (2.5) takes the simple form
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+_
x
-+ ~_ -

0-x

Use of (2.8) and (2.9) and a little further algebra show that

-x' =

(2.8)

(2 .9)

'-x- ) -1 .

	

(2 .l0)

Since these relations are valid for arbitrary diffeomorphisms x~' --)'x"'(x), the
factorization of 2d diffeomorphisms if now completely explicit . The volume ele-
ment is

so that, e.g . for a scalar field 0, we have

and their inverses

Ox+n ~?x - =

	

_

	

. ,

	

(2.l1)

fd2x

	

SwvôwO av0 = 2fOx +n-9x-

	

+e0 e.

	

(2.12)

Rather than the zweibein components e + + and e -, which do not transform
properly, we must use the chiral "einbeine"

ê++:=e ++(1 -~, + =~

	

j-. -:= e . - (1 -A + =~.~ . +)

	

(2.l3)

(2 .14)

by means of which flat chiral indices ± can be converted into curved chiral indices
and vice versa. Note that ê++ and ê_- are just the diagonal entries of the

inverse zweibein and that there are no off-diagonal components ê+ - and é + in
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this formalism! Under diffeomorphisms, (2.13) and (2.14) transform in the same
manner as the derivatives -0+ and the differentials -Ox ', respectively ; under the
local Lorentz group SO(1, 1), é+ + and ë_ - scale oppositely. We also define the
Lorentz scalar

Apart from the /j,-dependent modifications required for the proper behavior under
reparametrizations, é is just the (square of the) conformal factor .

As in ordinary complex calculus [26], we can refer all tensors to the basis (2.7);
in analogy with the tensor calculus on ordinary Riemann surfaces, we will then call
them "differentials", or primary fields . A differential T is consequently defined by
requiring

to be invariant under coordinate transformations (here and in the sequel, we use
script letters for differentials defined with respect to the anholonomic basis (2.7)).
Alternatively, we can define 9 by converting the corresponding tensor with flat
indices into one with curved chiral indices by means of (2.13) and (2.14) . The pair
(m, n) is the degree of "conformal weight" of T; as we will see below, m, n can be
integer or half-integer . For instance, é + + and ë - are differentials of degree
(1, 0) and (0, 1), respectively, whereas the Beltrami "differentials" are not proper
tensors as is obvious from (2.9).

In order to define covariant derivatives, we must introduce the appropriate
Christoffel symbols. Let us first determine the coefficients of anholonomy defined
by naßy := e.1'e�"(dW e � y - 0, e,,,) . With the zweibein parameterized as in (2 .1), we
have

* With e++ :=(e++)- 1 and e_- :=(e--)-1 .

é =é + +é -= e + +e

	

+ )
z

.

	

(2 .l5)

T = 9(x+, x- )(-~7x + ) ( -9x
- ) n

	

(2 .16)

[a+e- -a=(~+ e- )~



with

and

+é--+ i) +- +j--= r+

-é+++ G)- +-é+ += r-+
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From (A.6) in the appendix, we then get w-+-=d2-+- and (o + -+=f2 +-+ . After a
little rearrangement, we can express the spin connection in terms of the einbein
fields é+ + and é _ - as

U)-+-= e

where the new Christoffel symbols are defined by [19]

+l-c- +

+l-c =+- la = +-9

Observe that they depend on the zweibein (2.1) only through the Beltrami
differentials . Readers should be warned that these Christoffel symbols do not
coincide with the usual ones that one would compute from I'W�o . Similar remarks
apply to the spin connection components with curved chiral indices ± to be
defined below, which are not the same as the ones computed from ca,,,y. (On the
other hand, all quantities with flat indices are the same as in the usual formalism!)
To make this distinction completely explicit, we put tildes on all chiral tensors that
differ from the usual ones . The chiral einbeine é + + and é - obey a factorized
version of the usual vielbein postulate, viz.

++ Cel +
+-

é+ += r++ +é+ +,

.j . - +'Û - -+j . -f

(2.18)

(2.19)

(2 .20)

(2.21)

-19-é-Î'-++ . ( 2.22)
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Note the absence of components Î'++ - and Î'

	

+ in this formalism; the Christof-
fel symbol thus has only four distinct components instead of the usual eight . For

+= 0, we recover the usual formulas of conformal (complex) tensor
calculus [26] . For completeness, let us also list the commutator of _9 + and -9 ,

This means that for a + -,

	

+0 0 there is "torsion".
We now define covariant derivatives (denotes by straight Roman letters D +_) on

arbitrary (m, n) differentials 9,

Likewise, we can define covariant derivatives on mixed tensors by use of the spin
connection and the Christoffel symbols. (2.20) shows that the conversion of flat
chiral indices into curved ones by means of (2.13) and (2.14) is a covariant
operation . From (2.20) it also follows that the (1, 1) density é (cf. (2.15)) is
covariantly constant, i.e . D+ é = D é = 0. This is the analogue of the covariant
constancy of the metric tensor in the usual tensor formalism . Evaluating the
commutator of two covariant derivatives on an (m, n) differential, we obtain

where the curvature .M is defined by

D+.T :=1? +9 - mT++ +Y - nÎ',-
D

	

-'T- mT + +,q- - nT .

	

-.T.

	

(2.24)

R(2)= -2e-la(eeawn.,R)

-T++++T- + +T+++-T

-T-+ +~ + .

	

(2.23)

[D + , D-] = ( -m + n) M,

	

(2 .25)

T

	

-+ Î'+- -T . . -- T- + +r+- - .

	

(2 .26)

It is (1, 1) differential, and related to the usual scalar curvature by R(2) = 2é+ +ë _ -

where

= - 2e -law [e+1~a�(ee- v) +e_`~ajee+v)] .

	

(2 .27)

As for euclidean world sheets, one can define half-order differentials required
for the description of fermions [29] by multiplying the chiral spinor components



with appropriate half-integer powers of é + + and é - -. The half-order differentials
are inert with respect to local Lorentz transformations, and transform with
half-integer powers of -2 +x' + and _9Y x' under general coordinate transforma-
tions. For Majorana Weyl spinors, the chiral components are real and have only
one (anticommuting) component *. The Lorentz covariant derivative on a spinor X
is given by

(see the appendix for our gamma-matrix conventions; as before, we use straight
letters DW to denote gravitationally and/or Lorentz covariant derivatives). By
means of the formulas (2.13), (2.14) and (2.18) above, we can evaluate the
derivative on the chiral components of X. Setting a = f, we find

where

+ 3/2

	

1

	

+

	

+ 3/2
D+X+= (e+

	

~~+- i

	

(é+ )

	

D+X+

_
D-X+= é_ (e + +

)t/z
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D

	

_ _1
W

	

3
aX = (d,,

	

2a-+y )X

	

(2.28)

- ZÎ'-++)X+=é_-(é+ +)tlzD-X +,

	

(2.29)

(2 .30)

(2.29) are the properly covariantized derivatives for a (z, 0) differential . The
evaluation of the derivatives D + on the negative chirality component X- works in
exactly the same way. The redefinition of Lorentz spinors by square roots of the
chiral zweibein components is the same as in euclidean conformal field theory, but
the dependence on the Beltrami differentials has so far not been exhibited as
previous work has relied on the conformal gauge.

The decomposition of the gravitinos into differentials is slightly more involved .
Making use of the split (1 .2), the dilatino component 412 can be converted into a
pair of 0) and (0, i) differentials as X above. On the other hand, ql,, must first
be decomposed into irreducible components according to q, = 4a + y.0, where
y"~~ = 0 . Then (q+)+= (~+)+, (+P+)_= y+B+ and (qj-)_=

	

(ql-) += y_B_ .
The super-Beltrami differentials are defined as

+ (e-

	

) t ~ z (

	

+)+,

	

-+'=
é-_(é

+_

	

+(2.3l)

They thus have conformal weight (1, - i) and (- i, 1), respectively . That (2.31) is
the correct definition can be seen from the dimensional reduction of Rarita-

For euclidean signature, the chiral spinor components are complex because the local Lorentz group
SO(2) acts on them by a U(1) phase transformation .
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Schwinger equation (see also the following section) . For instance, a little calcula-
tion which is completely analogous to (2.29) shows that

D+(qj_)_=e_ (e+1
1/2
D+ - + 1

where D + on the left hand side is the Lorentz covariant derivative, while D + on
the right hand side is the covariant derivative (2.24) with (m, n) = (1, - z) .

Finally, the supersymmetry transformation parameters turn out to be half-order
differentials of weight (- -f , 0) and (0, - -f ), respectively, and are defined by

3 . Equations of motion and dimensional reduction

(2 .32)

(2 .33)

We will now list the equations of motion in three dimensions and reduce them
to two dimensions . For notational simplicity, we will write down the formulas for
N = 16 supergravity [28] only, the generalization to other N being straightforward
(see ref . [13] for a comprehensive discussion of these models) . Our conventions and
notation are the same as in refs . [28,4], and we therefore summarize them only
briefly . The model is a locally supersymmetric sigma model based on the non-com-
pact coset space Eg(+s)/SO(16). The Es generators are decomposed into the 120
generators X" = -X" of the SO(16) subgroup and 128 remaining generators YA ,
which transform as the irreducible spinor representation of SO(16) . Thus I,
J.... = l, . . . ,16 are SO(16) vector indices and A, B.... = I__ 128 are SO(16)
spinor indices . The matter fermions X'4 transform under the conjugate spinor
representation labeled by dotted indices fl, B,... = 1, . . . , 128 . The bosonic sector
of the N = 16 theory is governed by a non-linear sigma model; thus, the bosonic
fields are described by a matrix 7,-(x) E ES, which is subject to the transformations

7~'(x) -g-17/-(x)h(x),

	

(3 .1)

where g is a rigid Eg transformation, and h(x) a local SO(16) transformation .
From v, one defines the "composite fields" Q" and P�A,

°-lam~- iQm!XIJ + P,n YA . (3 .2)

This definition immediately implies the integrability relations

D,,PA - DnP�A = 0,

	

(3 .3)

a

	

rr-a

	

rr+2 K[I	J]K+i l.IJPAP e =0mQn

	

nQm

	

Qm Qn

	

2 AB m n



with

The scalar field equation reads
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where the SO(16) covariant derivative Dm is defined by means of the connection

Q," defined in (3.2) . Rather than write down the lagrangian (see ref. [28]), we will
give the equations of motion right away, disregarding higher order fermionic terms.
The Rarita-Schwinger equation for the 16 gravitinos Gm(x) is

EmnPDnq
P/= 2Y nYmX AFA,4Pn

where the Lorentz and SO(16) covariant derivative is defined by

O
I ,- f

	

IJ

	

1

	

ab

	

QIJ

	

qIJ
Dmn

	

n*

The 128 matter fermions XA are subject to

-iy'DmX A = 2YnYm IP ATI

	

(3 .6)n m AAA

Dm

	

l5

	

Ôm+ 4WmabY

	

+ i mr,9B X

I

	

q, ifD'(Pm _FA
AX AYnYM n)

1

	

mnp~~~ / ~~ J	IJ

	

B

	

1

	

-	m

	

lJ

	

IJ

	

B
= 2E

	

`VmY'nrABPp + sIXY r XrABPm

Variation of the dreibein leads to Einstein's equation

Ra'- 1 e R=PAP - 1e

	

pgpAPA-i A D

	

A +e i A PDma

	

2 ma

	

m

	

2 mag

	

p q

	

X Ya mX

	

ma X Y

	

pX
fi

(3 .4)

(3 .5)

(3.7)

(3 .8)

+T,g,4(emaXAYPYgY'pPq X AYaYP~mPPA XAYPYagpPm) (3 .9)

This expression is not symmetric under interchange of m and a in first-order
formalism. However, the right hand side can be rendered symmetrical by substitut-
ing the second-order spin connection

Wabc - Wabc( e ) + 4EabcX AXA+ 2t ~bya`#e +Li~l [byc]4'a

Rab(e) - i77abR(e) =PbPA
-iXAy~aDb~XA

+rlab(iX Ay
m
DmX A	2g mnPMPn )

(3 .10)

into the Einstein tensor and shifting the resulting fermionic terms from the left to
the right hand side . After a little calculation, making use of the fermionic field
equations (3.4) and (3 .6), one arrives at the symmetric result
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+ rAA(?7abXA YPY4'ApPq -X `1 Y(a YP1G
b)PPA

_X
AYPY( a +Inp A))

m

	

.I' I

	

,~,I

	

'~~I

	

c

	

I

	

m

	

I

	

c~~~I+ D

	

( lW(a Y b)4'm) -D(a ( 1W b)Y Oc) + 77abD

	

( 1

	

mY Y'c )~

(3.11)

where (a, b) denotes symmetrization with strength one. Contracting with 17ab, we
obtain

R(3) = mnPAPA-2lDm I n 1) ,
m n

	

( MY On

where (3.6) has been used again.
Modulo higher order fermionic terms, these equations are covariant with

respect to the local supersymmetry variations

Sema = ZE IY a gfmI ~

S4'
~~~ I = DmEm

I

n2ßr = 0 .

- 1l MIrI PA
2Y EAA m >

~r'-1 57~'=rA,~EIx
AYA .

	

(3 .13)

To reduce these equations to two dimensions we drop the dependence on the
third spacelike coordinate x2, using the decompositions (1.1) and (1.2) . We then
rewrite all equations in terms of the chiral basis introduced in the foregoing
section, making use of the conformal calculus developed there. For this purpose,
we need the coefficients of anholonomy f2abc in the basis (1 .1),

f2«p2 - -Pe«wepvAwv

(3 .12)

0«22 = -e«~P-ldp,

	

(3 .14)

(Remember that, with our metric, f2«R 2 = -f2«ß2*) The first of these has already



been evaluated in terms of the anholonomic basis (2.7) in (2.18). For the remaining
components, we get

we get
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(because of the non-vanishing torsion in (2.23) the Christoffel symbols do not drop
out in (3.17)) . We can now compute the components of the 3d Riemann tensor in
this reduction. Using

where the 2d curvature R has been defined in (2.26). (The components that have
not been listed simply follow from the well-known symmetry properties of the
Riemann tensor.) As already indicated in the introduction, we will set .sad +-= 0 in

W+-2 = -(02+-= z0+-21 W2+2 -02±2~ (3.15)

with

0+_2 -= -pë++e_

02+2 - e++P-1g+P,

02_2=é--p_1_ß, -p, (3 .16)

where is the Maxwell field strength

of the Kaluza-Klein vector field .salt in the "curly basis"

A,L dx " =.V+9~x++.q/_0x- (3 .18)

Rabcd = Oabe(t"ecd + aao)bcd - ôb()acd + LoaceCJebd - wbceWead , (3 .19)

R+ -+_ =é++é+âp2ë-1~+

R2 _+_= - zë_ ë++ë_-p-2~-(p3Si

R2+_+= _ Zé++é_-ë+ +p-2_+Jp3.W-+),

R2+2-= P_ le + +e_ ID+D=P - lp2e-1~V+ S1
+-),

R2+2+= e+ ++P-1D+0+P, R2-2-° e_ e- p-1D-_2 -P, (3.20)
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the remainder of this paper, because we have not yet found a way to include the
associated equation of motion into the linear system to be constructed in the next
section .

In writing down the dimensionally reduced field equations, we will also use the
"curly basis" for the fields Q" and PA. Hence,

QWQI,' dxw=dl+~Px + +Ql~~x-

	

Pdx~=.~Apx + +~A~x-.(3 .21)

The integrability conditions (3.3) now read

-D

D+4fIj- D 9+j+ 2,fKr, e J]K+
zFÂB~A

O B= 0,

	

(3 .22)

where D + now always denotes the fully covariant derivative with respect to both
(2.24) and local SO(16) .

From (3.15) and (3.16) it is evident that the 3d Lorentz covariant derivatives will
give extra terms beyond the ones exhibited in (2.28). Since we assume ,f2+_2 = 0,
we must, however, only watch out for terms with 0)2+2 . Otherwise, the dimen-
sional reduction of the fermionic field equations is rather straightforward : we
simply rewrite them in terms of flat chiral indices and then convert them by means
of the formulas in the foregoing section . In this way, we can show that (3.6)
becomes

-ZP-1/zD+(p1
/
2XA) = - 1'FA~i~z=~ ++ -Lr,4A +

- tp -1/2D-(p 1/2XA) _ + ztTÂAq12+~A+

	

rafi

	

+~+

From (3.8), we derive the scalar equation of motion

p
_1D-

L p(

raie(-
V'YMBX+XB)

- av/2FÂAX+ z++ 2rA,~xA+~+ )]

+ rÂ81 (V G

	

2+ 8+- 4'2=~+
)~B+ (CgG2- B

j
- `~2+WJ+)

(3 .23)



Apart from the presence of the topological fields, these equations differ from the
equations of motion of the corresponding rigidly supersymmetric flat space sigma
models because of their dependence on the dilaton p and its superpartner q12.

From (3.4), we deduce the following equations:

and
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~D+9I - D- +-=
1
irAAX

1
CD_9+- D+ I+=

	

irAAX+

1
D-(P

O
2+) _

	

i~+P

as well as the "super-Virasoro conditions"

1

	

_
D+(P 2=~ - -

72
i
2
-P +

	

(3 .26)

= D+(Pq'2+) - '-2 +P B+ +PFAfiX+

:= D-(P+12=) + i!-p 0I - PFI,4X`~A= 0,

	

(3 .27)

corresponding to the variation of the traceless gravitino modes ~+. Apart from
contributions involving the topological degrees of freedom, pip2 is thus a free field.

In the gravitational sector, the Einstein equation (3.9) gives rise to several
equations after dimensional reduction. From the 22-component of (3 .11), we get

R22- -iX
A
Y aDaX`4- F

I
AI, (X Aya?' b apb +XAY2Ya

qj
2pâ )

Splitting the 3d Lorentz indices a, b, . . . into a, 6. . . . _ ± and 2, and keeping
track of the terms with m2 + 2, we arrive at

D+D_p=-D+(pi/rl+tJr2+) -D-(P~+ q2=~

(3.25)

(3 .30)

+ Da(d4'2720a) - D2(Z4'2 ï a`Ya ) (3 .28)

Invoking (3.6) and (3.4), we can rewrite this as

R
_ abc~~ ` I ~~, I I I

-
bc~~`

22 - - E wa DbY'c 2E2 w2 Db c

+Da(i~2y2 â) - D2(i 2ya â ) . (3 .29)
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Thus, p would be a free field without the contributions from the super-Beltrami
differentials, consistent with the fact that its superpartners pqI2 would also be free
for vanishing super-Beltrami differentials .

For the curvature scalar, a similar calculation and use of (3.12) together with
(3.30) leads to

- v~-2P -i D+(PiGZ- 6 I ) -

	

-P - 'D-(P 2+B+) .

The variation of the off-diagonal components of the zweibein corresponding to
R ++ and R-- gives the "Virasoro conditions"

+'- D+D+P + p.i A+ +

	

t~pXAD+XA- ZI'â~iP+G+

- t~I'ÂaPX+PXAiGz-+Y4 - 2CrA ,~pX+B+Y+

+ D+[p(02- + + ~8+O2+) ] =0 ,

_ -~= D-D-p + p.~a~A+ 6VpX aD-XA+ 2 1,4p pI+X+

- a
V-2 TÂa PXA z -~-+ 2~

	

4pxV9vA

+ D+ [ -p(iP2++~I++ ~BI +~2- ,) ] =0 .

When written out by means of (2.22), one sees that the terms D +D +p contains a
contribution proportional to a term explicitly exhibited in previous
work based on the conformal gauge (1 .4), see refs . [3,5] . The terms D +_ D +p can
also be expressed in another way by defining the conformal factor as

differential . Modulo fermionic terms from (3.30), we have

(3 .31)

(3 .32)

.t = exp o- I

	

(3 .33)
~+P =P

Due to the p-dependent modification, A transforms as a scalar, i .e . a (0, 0)

D+D+p = -2-!? -~ o- -O+p .

	

(3.34)

As already remarked in ref. [5], this result suggests an interpretation of the fields p
and a as longitudinal target space degrees of freedom.



The above equations illustrate the "back reaction" of matter on the geometry.
In contrast, to conformal field theory, where one has only the analogue of the
(super)Virasoro conditions (3.32) and (3.27), we now get the extra equations (3.31)
and (3.25), where the matter fields act as "sources" for the topological degrees of
freedom. It is not clear whether and how these equations restrict the geometry . In
string theory, the moduli and supermoduli can be freely chosen and are integrated
over only after one has calculated the relevant string amplitudes in the background
provided by them . Here, they seem to partake in the dynamics in a less trivial
fashion. Although (3.31) can be viewed merely as an equation determining the
conformal factor, it could conceivably restrict the (super)moduli space associated
with the inequivalent lorentzian world sheets *. It is also not clear how to treat the
various equations of motion at the singular points of the world sheet, where
M(x) a 5( 2)(x -x o) (xô are the coordinates of the singular point) . Setting U + - _

p, += 0 for simplicity, we see that one way to satisfy (3 .31) is to require PAa
S(x±-xô ). Since P+=a +OA+ . . ., where OA are the basic scalar fields and the
dots stand for non-linear terms, it follows that

'
the scalar fields must have a jump at

the singular point *' .
The variations under local supersymmetry transformations with parameters E + '

and E -r can be arrived at in a similar fashion. For their derivation from (3.13) a
compensating SO(1, 2) rotation with parameter r12+= - "Try + 2 is necessary to
maintain the triangular form of the gauge (1.1) . For the gravitino components, we
deduce

1
SB+= D +E+r,72

1

	

1
SOi+=2iP-t~+PE+r

	

S 2_= _ iP -t~-/JE =r (3 .35)

while for the dreibein components, the result is

SA +
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= D-E+r

1
60~ = 7=D-. E -`,

_ CtE-rqi+ (1 -,tt+ N,

Perhaps the analogy with a 4d black hole resulting from the collapse of a massive star is useful here .
Whether or not this collapse takes place depends critically on the initial mass (and velocity)
distribution of the star. Thus, the matter degrees of freedom affect the topology of the ambient
space-time at least via the initial conditions .` . It is perhaps no coincidence that in closed string field theory a similar discontinuity occurs at the
point where a string splits in two. See e.g . ref. [30] .
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In the matter sector, we find

and

1
ë + +Sê+ + = -2iE +re++

	

_

	

Fc-+sw +-,

e- +

	

1
-_

	

2ic -'e'_+

	

_

	

+ 6A-+,
1 -

	

+
la +

	

I-t

P 5P
= - E +iq, z+ - E-I4'2=

	

(3 .36)

ilÂfjE+r, A

	

gXA- F'I'âfiE-r~A

	

(3 .37)

%/ _1 S%%= (-E +IXA +E -tX,4 'rAAYA .

4 . The linear system

(3 .38)

We now generalize the linear system of ref. [4], employing the conformal

calculus developed in sect . 2 . As explained in ref . [3,5], the construction of the

linear system requires the replacement of the matrix Y(x) by another matrix

depending on a spectra parameter t, viz .

The occurrence of a spectral parameter in a linear systems (Lax pairs) for

non-linear equations is, of course, a well-known phenomenon . However, the linear

system constructed here possesses some rather unusual properties : not only does

the spectral parameter t depend on the dilaton field p as in the purely bosonic

theories (see refs . [3,5]), but it now also depends on the topological degrees of

freedom via the Beltrami and super-Beltrami differentials, see (4.5) below. This

feature is entirely due to the interaction of the (super)gravitational degrees of

freedom with the matter fields, and distinguishes locally supersymmetric integrable

systems from flat space models with or without rigid supersymmetry . Moreover, the

spectral parameter t, in terms of which the emergence of affine Kac-Moody

algebras in these models can be directly understood, now becomes a dynamical

quantity of its own because the equations determining it themselves obey an

integrability constraint that gives rise to one of the equations of motion .



The linear system can be parametrized as follows:

where the hatted quantities ~ and and .~ depend on t in contrast to er and .9,
which do not (see (3 .21)) . They are given by
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-1g, + j~-
2
,~ +X IJ + 0, AyA

t

-	(1+t) 2 (irABx xB+ 81~2+e +')

2

>~(1 + t) 4 qz+

	

2++8 (1 t t )a ~2I-+~+-16i- ~ -,

-
e
iJ+

t
(I

-t)z(
-iFÂfiXAXB+81/JZ'-e~~)

2

+ 16r2 i

	

-0, iPj -8

	

(P

1 + tPA+ 2~i (1I+
t)) rÂ

.~X+~i+- 41 t ta FÂAXAIP+ ,

I +
t
P 1̀ - 2ri (

(
l
+

t)

)
FÂÀXA1Gz=- 4 1

t
t2râAXAl/J,+

(4.2)

(4.3)

where [IJ] denotes antisymmetrization in the indices I, J with strength one. A
somewhat lengthy calculation now establishes that, with the exceptions described
below, all equations of motion given in the preceding section as well as the
integrability condition (3.3) can be obtained by imposing the generalized integrabil-
ity constraint

D- + Î/') + [Î/' -1-P + Î/', Î/' -1_9~ . Î- 1 =0 .

	

(4.4)

Note that the derivatives to the left are covariant, since otherwise we would have
to include a commutator term i/' -1[-2+, _9Y . ]' on the right hand side . In
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addition, one must make use of the following set of differential equations for the
spectral parameter:

_

	

1 -t

	

4t
t

	

+t

	

1+tP~

	

+P - 1-
t2 + z=~

1 +t

	

4t
1 -

t

	

-
t2
qI+1Pz+ (4 .5)

Since these are first-order equations, their solution t = t(x, w) involves one inte-
gration constant w. We stress that the linear system (4.3) gives rise to all fermionic
field equations, whereas the super-Virasoro conditions (3 .27) were missed in ref.
[4] . The only equations of motion that cannot be recovered from (4.3) are (3 .30),
(3 .31), (3.32) and the Maxwell equation for A,,, i.e . precisely the equations
obtained by dimensional reduction of the 3d Einstein equations (3.11) . Remark-
ably, however, eqs. (4.5) are themselves subject to an integrability constraint that
yields one of the missing equations! Namely, for

D-(t-1_+t) - D+(t-1D-t)

4t
=

1 -
tZ p- l [D +D-p + D+(p

	

I+ z+) + D_(p~+
_

i=)]

	

(4.6)

to vanish we must impose (3.30) . To recover the equations of motion (3 .31) and
(3.32), it has been proposed in ref. [3] to incorporate the conformal factor into the
linear system replacing the matrix %' by the pair (.l, i/'); due to the presence of a
central charge in the Kac-Moody algebra [12], the multiplication of two such pairs
involves a non-trivial group two-cocycle . However, this proposal has so far only
been shown to work for the bosonic theories in the special gauge (1 .4). We have so
far not found a way to include the Maxwell equation into the linear system (4.3) .
Nonetheless, these observations strongly suggest that there exists yet another
generalization of (4.3) that also gives rise to the remaining equations of motion and
that includes the spectral parameter as one of the dynamical fields. The depen-
dence of t on the topological degrees of freedom has not been considered in
earlier work where the relevant field configurations were assumed to be asymptoti-
cally flat for the euclidean reduction and topologically trivial for colliding plane
waves. Observe also that the poles at t = -1 and t = + 1 in (4 .3) and (4.5) are
associated with the positive and negative chirality components of the bosonic and
fermionic fields, respectively .
As in ref. [4], we can also reformulate local supersymmetry as a Kac-Moody

type gauge transformation . Namely, defining

i'- -1Si/'= i'--15 +1-+ i/'-'â_ i~-,

	

(4 .7)
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-8(1+t)zE+iq,z'+ZxJJ- 1+trAAE+iX+Ya

=+8 (1
t
t)ZE_I qfz-2Xlr+ i + t l'ÂÀE-IXA fa1-yA~

	

(4 .8)

one can check that

- fl

	

+ ji-i-gy - i-

t- st, -+--la+ -8

	

2E_ 1XJJ .

	

(4.9)
(1-t)

_

This means that modulo the super-Virasoro conditions (3.27), local supersymmetry
transformations can be entirely encoded into the Kac-Moody gauge parameter
(4.8). In order to obtain this result, the spectral parameter must also be varied,

I-t 1+t
t-lst

	

1 + t

	

+t~,
i+- 1 - t E-t

q1i= . (4 .10)

This equation can either be proven by demanding (4.9) to hold, or by checking its
compatibility with (4.5) and the supersymmetry variations listed at the end of the
preceding section.

5. Outlook

As explained in refs . [3,5], the space of stationary axisymmetric or colliding
plane wave solutions can be identified with the infinite dimensional coset space

Arestr = G-/H-,

	

(5 .1)

where G°° is the Kac-Moody group corresponding to the group G (with G =
SL(2, R) for pure gravity and G = E8 for N = 16 supergravity) and depends on the
constant spectral parameter w, and H°° is its "maximal compact subgroup". The
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precise definition of H°° and the coset space Arestr is, however, somewhat subtle
due to the x-dependence of t . E.g . for G = SL(n, R) and H = SO(n), H°° is defined
to be the set of matrices h(x, t) E G, which is invariant under the Cartan type
involution [12,3]

,r- : h(x, t) -h'(x, 1/t) .

	

(5 .2)

From (4 .3), one can verify that the involution -r °° leaves the expressions
invariant, which therefore belong to the Lie algebra of H°°. The groups G`° and H°°
act on i' according to

7l(x, t) -g- '(w)f x, t)h(x, t)

	

(5 .3)

generalizing the action (3.1) of the corresponding finite dimensional groups G and
H on 7l(x). The elements of the coset space Arestr are then defined to be the
equivalence classes of matrices îl(x, t) with respect to the "gauge group" H`°. In
view of the fact that G°° "does not know" about x, it is quite remarkable how the
x-dependence of the elements of Arest,, and thereby of the solutions of the
gravitational field equations, emerges from this definition .

To overcome the restriction to topologically trivial solutions and to incorporate
configurations involving the topological degrees of freedom, a bigger coset space
may be needed . From string theory we know that the configuration space of pure
2d gravity is nothing but the moduli space Ao of the corresponding Riemann
surface (this is a finite dimensional space at each genus, but since we are
interested in solutions for arbitrary genus, a universal moduli space of the type
discussed in ref. [31] would perhaps be more appropriate) . Defining the total
"moduli space of solutions" as

solutions of field equations
gauge transformations

(a~l l
ewva°I aW_

(5 .4)

we see that .A must contain both Ao as well as Arestr . Now, owing to the "back
reaction" of matter on the geometry discussed previously, it seems very unlikely
that A is the direct product of Ao and Arestr . A most intriguing question is
whether A can be represented as a coset space like Are,estr above, but now with
bigger groups G`°°° D G' and H'°°° DH'. It appears likely, however, that this
question cannot be settled before yet another extension of the linear system
involving the Kaluza-Klein vector A,, and its equation of motion has been found.

In ref. [5], the conserved Kac-Moody current was shown to take the form

(5 .5)



The associated conserved charges are given by

as well as y2 = -y 2 = iy
3 . Thus,
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-gx - ),

	

(5 .6)

where the integral is to be performed along a spacelike "hyper-surface" x° = const.
On a topologically non-trivial lorentzian world sheet, this set may decompose into
several disconnected components, and consequently there may be more than one
conserved charge at a given instant. The algebraic structure and the interrelation
between these charges remain to be understood *.

I would like to thank L. Baulieu, R.W. Gebert, D. Korotkin, O. Lechtenfeld, D.
Maison, J. Teschner, and especially R. Dick for numerous and enlightening
discussions in connection with this work .

Appendix A. Some useful formulas

For the dimensional reduction, we use the metric 77 +-= 1, 7122 = - 1 together
with e2+-= e2+_= 1 . Furthermore, we have the following representation of the
gamma matrices in two dimensions :

0

	

0~'
y

	

~2

	

Y 3

	

1

	

01
( v~_2_	0

	

0

	

0

	

0

	

-

The charge conjugation matrix F obeys F-1 y fW= - y+ and F- ' y3 g, = _ Y3 .

We identify the real one-component spinors X+ with the components of the
two-component spinor X, i.e . X = (z+). These are one-dimensional representations
of the local Lorentz group SO(1, 1), scaling as X} e ± .12X ± under the action of
SO(1, 1) (if the Lorentz group were SO(2), the one-component spinors would scale
with opposite complex phase factors e±ial2 instead, hence would be complex) . It is
now straightforward to check that

and

Ey3X = -E+X-- E-X+-	Xy 36 (A .3)

Ey+X = Jc +X+,	i=y-X= -~2-c_X-,

	

(A.4)

' I am grateful to K . Pohlmeyer for a discussion on this point and for alerting me to ref. [32], where this
phenomenon has been studied in a somewhat different context .
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where the components X + and c + are treated as anticommuting (i .e . Grassmann)
variables in order for the required symmetry properties under interchange to hold .

The coefficients of anholonomy are defined by

and the spin connection is given by

in our conventions.

nabc '-_ eainebn(anenc - anent),

Wabc' 2(f2abc -nbca +Ocab) ,
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