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We discussthe canonicaltreatmentand quantizationof mattercoupledsupergravityin three
dimensions,with special emphasison N = 2 supergravity.We then analyze the quantum
constraintalgebra;certainoperatorordering ambiguitiesare found to be absentdue to local
supersymmetry.We show that the supersyinmetryconstraintscan be partially solved by a
functional analogof the method of characteristics.We alsoconsiderextensionsof Wilson loop
integralsof the typepreviouslyfoundin ordinarygravity, but nowwith connectionsinvolving the
bosonicand fermionic matter fields in addition to the gravitationalconnection.In a separate
sectionof this paper,the canonicaltreatmentand quantizationof non-linearcosetspacesigma
modelsare discussedin a self-containedway.

1. Introduction

The searchfor solutionsof the Wheeler—DeWittequation[1] is one of the key
issuesof presentday researchin quantumgravity (for a recentreview and many
further references,see e.g. ref. [21). Unfortunately, progresshas been severely
hamperedby technicalproblems,mostnotably the fact that the Wheeler—DeWitt
equationis a non-polynomialfunctionaldifferential equationthat is evendifficult
to define properly.Theequationcanbesubstantiallysimplified by retainingonly a
finite numberof degreesof freedomand thereby convertingit into an ordinary
partial differential equation(which is still not easyto solve); this is the so-called
“mini-superspaceapproximation”, seee.g. ref. [2] for further explanations.An-
other, and perhapsmorepromising attemptto cometo grips with the Wheeler—
DeWitt equation,which doesnot involve anymutilation of the physicaldegreesof
freedom,is basedon Ashtekar’snew variables(see ref. [31for a recentsummary
and many references).The main advantageof this approach,which so far works
only in three and four spacetimedimensions, is that the canonical constraints
becomepolynomial, which in turn facilitatesthe searchfor solutions.Indeed,it is
thenpossibleto constructformal solutions to all the constraintsof purequantum
gravity in four dimensions[4,51.At a kinematical level, one can also incorporate
matter in such a way that the constraints remain polynomial; however, little

0550-3213/94/$07.00© 1994 — ElsevierScienceB.V. All rights reserved
SSDI0550-3213(93)E0382-A



610 H-f. Matschull, H. Nicolai / Canonicalquantumsupergrauity

progresshasbeenmadeso far in extendingthe resultsof ref. [51to mattercoupled
theories,but for specialcasesgeneralizationsof the Wilson loop variablesmay be

constructed [61.Furthermore, it is not easy to see what has become of the
singularitiesof perturbativequantumgravity in this approach.As a consequence,it
is far from clear how the requirementof quantummechanicalconsistencycould
possiblyaffect matter couplingsin this approach,whereasexperiencewith string
theory [7] and2d gravity [8] would makeus expectsuchconsistencyrequirements
to impose stringent constraintson the allowed theories. In our opinion, the
inclusion of matter couplings and their proper treatment beyond the purely
kinematicalaspectsremainsa major openproblem.The presentwork constitutes
an attemptto addressthisproblemin the contextof three-dimensionalsupergrav-
ity.

This paper, then, deals with the canonical quantizationof matter coupled
supergravitiesin threedimensions.It is basedon and considerablyextendsour
previousresults [9,101,wheremostly classicalaspectswere studied.In sect. 2, we

review pure (topological) supergravities,which exist for any number of local
supersymmetries;this sectionwill also serve to set up our notationsandconven-
tions (see also ref. [101).The canonicaltreatmentof non-linearsigmamodelsis
discussedin sect.3, wherewe show that thereexistsa choiceof canonicalvariables
which rendersthe constraintspolynomial. Sincethe resultsdescribedtheremight
also be of interestin othercontexts,andbecausethe literatureon this topic seems
to be scarce(see ref. [9] for the canonicalformulation of N = 16 supergravityand
ref. [11] for a discussionof flat spacesigmamodels),we haveaspiredto makethis

sectionself-containedas far as possible.Sect. 4 is devotedto a detailedstudy of
the N= 2 theory, which representsthe simplestnon-trivial exampleof a locally

supersymmetrictheory with matter couplings in three dimensions. Since the
generalizationof theseresults to N> 2 is to a large extent straightforward,we
haverelegatedthe discussionof the higherN theoriesto an appendix,wherewe
explain the redefinitionof thegravitationalconnectionrequiredfor the decoupling
of the phasespacevariables.A central part of this paper is sect. 5, where we
quantizethe N = 2 theoryandanalyzeits quantumconstraintalgebra.In particu-
lar, we will find that at leastsomeof the operatororderingambiguitiespresentin
the bosonic theoriesdisappeardue to local supersymmetry.Unfortunately, apart
from the trivial solution ‘I’ = 1, we haveso far not beenableto find solutionsto all
of the constraints.Nonetheless,we can report some partial progress in this
directionby demonstratingthat at leastonehalf of the supersymmetryconstraints
canbesolvedby a functionalanalogof the methodof characteristics;this requires
the exponentiationof an infinitesimal local supersymmetrytransformationto a
finite transformation.Furthermore,we discussa classof partial solutionsbasedon
Wilson loop integralsovera connectionconstructedoutof the gravitationalfields
and the matterfields, which can be regardedas a “supercovariant”extensionof
the Wilson loop functionalsconsideredin ref. [4].
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As is well known, supergravitytheoriesare generallycharacterizedby rather

complicatedlagrangianswith non-polynomialscalar self-interactionsand quartic
fermionic terms.Readersmight thereforewonderwhy oneshouldchooseto study
them rather than modelswith simpler matter couplingssuch as scalaror Dirac
fields without self-interactions.One of the main reasonswhy we prefer these
modelsover simpler onesis the geometricalstructure that is alwayspresentin the
matter sectorsof supergravitytheoriesand that is at the origin of their “hidden
symmetries” [12]. We believe that these symmetries may eventually play an

importantrole in improving our understandingof the matter coupledWheeler—
DeWitt equationfor the following reason.Associatedwith the hiddensymmetries,
there are non-trivial observables(or conservedcharges)in the senseof Dirac,

which act on the spaceof solutionsof the quantumconstraints.Thesesymmetries
may therefore be interpreted as “solution generating symmetries” for the
Wheeler—DeWittequation.An intriguing aspectis the emergenceof infinite-di-
mensionalsymmetriesactingon the spaceof classicalsolutionsof thegravitational
field equationsin the reductionto two dimensions[13] (for morerecentdevelop-
ments, seeref. [14]). If the theoriescould be quantizedin a way compatiblewith
thesesymmetries,the Wheeler—DeWittequationwould becomeintegrablein this
reduction.

The fact that pure gravity in threedimensionsis much easierto quantizethan
theoriesof gravity in higherdimensionshasbeenfully appreciatedonly relatively
recently,although classicalaspects(absenceof gravitationalexcitations,i.e. gravi-

tons, in empty space,conicalsingularitiesat the locationsof matterpoint sources,
etc.)havebeenunderstoodfor a longtime [15]. SinceEinstein’s action is superfi-
cially non-renormalizablein three dimensions,the theory was for a long time
thought to make no more sense as a quantum theory than gravity in four
dimensions.The discoverythat the quantumtheory can be solved exactly came
thusas quite a surprise[16] (see also ref. [17] for further studiesof the quantum
theory).An important ingredientin that work was the reformulationof Einstein’s

theoryas a Chern—Simonsgaugetheory. Here,we will, however,not makeuseof
this formulation,but ratheradopt an alternativeandequivalentversion basedon
ref. [181,which is a direct extensionof Ashtekar’sformalism to threedimensions,

and which providesan alternativeroute to solving the quantum theory ‘~. Both
formulations in an essential way exploit the fact that pure gravity in three
dimensionsis a topological theory, whosephysical phasespaceis related to the
moduli spaceof flat SL(2, l~)connectionsand hencefinite-dimensional for each
genus.This result obviously relies on the use of the gravitational (or spin)

connectionas the primary canonicalvariableandwould bemuch more difficult to

* We notethat thereis no reality constrainton Ashtekar’svariablesin threedimensionsunlike in four

dimensions[19]. However,this feature,which maybeviewed asanothervirtue of threedimensions,is
lost whengravity is coupledto fermionic matter, aswe will explain in sect.4 andthe appendix.
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obtain in the usual metric formulation of quantum gravity. Similar statements
apply to pure supergravityin threedimensions,which has beendiscussedexten-
sively in ref. [10], where a solution to the quantum constraintsof pure N= 1
supergravityhasbeenpresented,andin ref. [20], wherea Chern—Simonsformula-
tion has beenused.A commonfeatureof the topological theoriesis the existence

of a completeset of observablesin the senseof Dirac, basedon Wilson loopswith
or without dreibeinand gravitino insertions.By meansof theseobservables,the

solutionsto the quantumconstraintscanbe obtainedby applying the observables
to a suitable “vacuum functional”.

There are severalreasonsfor studying locally supersymmetrictheoriesrather
than non-supersymmetricones.Local supersymmetryleadsto a constraintwhich

can be thought of as the squareroot of the Wheeler—DeWittconstraint,and is
relatedto it in the sameway as theDirac equationis relatedto theKlein—Gordon
equation (as was first observed in ref. [21]). However, due to the technical
complexities,the earlypaperson canonicalsupergravity[22] makeno attempt at
exploitingthis idea,but contentthemselveswith settingup the canonicalformalism
and discussingthe classicalconstraint algebra in terms of Poisson (or Dirac)
brackets.The first investigationof the quantumtheory appearsto be ref. [23],
where the metric formulation is utilized. More recently, therehavebeen several
treatmentsof canonicalquantumsupergravityin the mini-superspaceapproxima-
tion [24]. A well-known feature of supersymmetrictheories is the absenceof
certainshort distancesingularities.From theanalogywith the so-callednon-renor-
malization theoremsof perturbativesupersymmetricquantum field theories[25]
and explicit calculations in perturbativequantum supergravity[26] one would
expectlocal supersymmetryto mitigate(if not eliminate)the singularitiesoccurring
in the canonicalconstraintoperatorsas well, and therebyeliminate some of the

operator orderingambiguitiesthat afflict the canonical treatmentof non-super-
symmetric theories~. In sect. 5, we will show that this is indeedthe casefor the
constraint generatorsof supergravity.In particular, one of the supersymmetry
generatorsis a first order functional differential operatorand manifestlyfree of
orderingambiguitiesandshort distancesingularities,while the other is a second
order operator,and the absenceof orderingambiguities is due to a non-trivial
cancellation.Theseresults provide a first glimpse as to what a non-perturbative
non-renormalizationtheoremin canonicalquantumsupergravitymight look like.
However,it mustbe stressedthat thequestionof non-perturbativedivergencesand

operatorsingularitiescannotbe resolveduntil a scalarproduct in the spaceof
physicalstateshasbeenfound.

* For instance,the solutionsof refs. [4,5] are basedon the prescriptiont!~atall functionaldifferential

operatorsshouldbe movedto the right. If onechoosestheoppositeoperatororderingprescription,
oneobtainsvery different, andpresumablyinequivalentsolutions[27] (sincethe solutionsof ref. [27]
requirea non-vanishingconstantin contrastto ref. [5]).
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While writing this paper,we receivedthree preprintsdealing with canonical
quantum N = 1 supergravityin four dimensions.Ref. [36] discussesa supersym-
metric extensionof the solution foundin ref. [27] (with non-vanishingcosmological
constant)and makesuse of the Ashtekar formulation. Ref. [37] is basedon the
metric formulation and proposesa solution very similar to the Hartle—Hawking
wave functional; see,however,ref. [38] for a criticism of this ansatz.

2. Puregravity andsupergravityin threedimensions

The geometricalbackgroundfor both pure andmattercoupled supergravityis
characterizedby a general three-dimensionalspacetimemanifold, which is
parametrizedby local coordinatesx~,y’~ We use Greekletters p., x.’,... = 0,
1, 2 for curvedindices in threedimensionsandLatin letters a, b,... for tangent
space indices transforming under the local Lorentz group SO(1,2) SL(2, EF~).

With e~the usualdreibein, the spacetimemetric is given by g~= e~ep”nab;it
has signature(— + +). The Levi-Civita tensor with flat indices is defined by

= = + 1; it is related to the Levi-Civita tensor density by e’””~=

ee~ebe’~’CeObC.Instead of the usual (first order) spin connection W,
2bc, it is

advantageousto usethe dual connection

= — l~abc~ (2.1)

in terms of which the Lorentz (i.e. SO(1, 2)) covariant derivative acting on a
three-componentvector va reads

D;Ya = ~ — ~abc~~” (2.2)

The useof A,~ratherthan W~bc simplifies the canonicaltreatmentconsiderably;
in fact, as a canonicalvariable,this field is the direct analogof Ashtekar’svariable

in threedimensions.The field strengthof the connectionAg” is related to the
Riemanntensorby

F~pa= —

3~,A;*a— CabcApA,, = — ~abc’~p~v (2.3)

so that Einstein’sactionbecomes

S = +Jd~xeR = ~fd2x “~e~,.”Fppa. (2.4)

To introducefermions, we makeuse of the real y-matrices ~ = j~
2~y~=

and Y2 = 03, which satisfy

YaYb flab
1 — ~abcY (2.5)
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The matricesya generatethe group SL(2, ]~)(the coveringgroup of the Lorentz
group SO(1,2)); becausethis group is real, a reality constraint is not necessary
unlike in four dimensions~. The Lorentz covariantderivativeon a spinor e reads

DIkE = (aIk + ~YaAj~)~ (2.6)

In addition to the dreibein e~ and the connectionfield A~,we need N

gravitino fields ç1i~,where I, J,... = 1,. . . , N. The Rarita—Schwingeraction in
threedimensionsreads

S= ~fd~x Pifi~’D~i/i~’,D~~/i~’:= + ~Ap~’5/atIJp’. (2.7)

The sumof (2.7) and(2.4) is invariantunder the local supersymmetrytransforma-
tions

~ea=,faiI’,.~, 6E~/JIk’=DIkE’. (2.8)

It may seemcurious that the combinedaction is supersymmetricfor arbitraryN,

but this can be understoodby noting that the topological bosonic andfermionic
degreesof freedom need not balancein a supersymmetrictheory unlike the
propagatingdegreesof freedom.The fact that the abovetheoriesare topological is

straightforwardto verify. Namely, varying (2.4) with respectto the dreibeinwe
immediatelydeducethat the field strengthFIkpa mustvanish ** (notethat, in three
dimensions, the Rarita—Schwingeraction is independentof the dreibein and
thereforedoesnot contributeto this variation).Hence, the connection is pure
gauge,at leastlocally. However, A,~may still be non-trivial in that theremay not

exista globallydefinedfunction g(x) E SL(2, ER) suchthat A,1 ~ = g’ 3,1g.
Similar conclusionshold for the gravitino fields ç1í~’.The Rarita—Schwingerequa-
tion = 0 implies that i/,,~,too, is locally pure gauge:we can alwaysfind a
locally defined spinor 4)’ such that q~~’= D,14)

1 (of course,this is only true if
F~(A)= 0). Again, an obstructiononly arisesif the spinor 4.’ cannotbe defined
globally.

As is customary,for the canonicaltreatment“~‘ we will assumethe spacetime
manifold to be the productof a spatial two-dimensionalhypersurfaceandthe real

* Our conventionsregardingspinorsare as follows: Dirac conjugationis definedby ,~= x~iyo.The

chargeconjugationmatrixis C = ~0 andobeystheusualpropertiesCT = — C and(Cy*)T = +ci~,*
Majorana spinors satisfy ~ XTC. Later on, we will make useof the Fierz identity ,~çoAçti=
— ~Aço~fr— ~Ay .~y~cl’for anticommutingspinors ~, ~, A and ~i. The underlyingcompleteness
relationcan also be expresseddirectly in termsof y-matrices~ = — + 2&&,,~.

** Thevariationwith respecttheconnection tells us that thecovariantderivativeof the dreibein
is equalto a fermionic bilinear (torsion);this equationcanbesolvedfor the connectionin termsof
thedreibein andthe fermions(“secondorderformalism” [26]).

“h Standardreferenceson the canonical formulation of gravity are refs. 126—31]. For a general
discussionof constrainedhamiltoniansystems,seerefs. [29,32].
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line, parametrizedby the time coordinate t [161.Derivativeswith respectto t are

denotedby a dot. Localcoordinateson the spacelikehypersurfacewill be denoted
by x’, y’,..., or simply just by boldfacelettersx, y,..., sothat the three-dimen-
sionalcoordinatesdecomposeasx~= (t, x’), etc. Thereis a correspondingsplit of
the three-dimensionalcurved indices p., v,... into a time index t and spatial
indices i, ~ so that p. = (t, i), etc. The Levi-Civita tensor densitysplits as

= e~’,where et~= is the tensordensityon the spacelikemanifold.
Finally, we explain the canonicaldecompositionof the dreibeinandthe metric.

With e = det e,
1.a, wedefinethe lapseandshift variablesby [30]

n:=egtt, n’:=g’Z/g
t’ (2.9)

The dreibeinis thusparametrizedby the Lagrangemultipliers n and n’, and the

remainingsix componentse~0,not all of whicharephysical phasespacedegreesof
freedom since three of them can be eliminated in principle by local Lorentz
rotations.The metric on the spatial hypersurface,its inverseanddeterminantare
thengiven by

h~~=g
1~,h’~=g’~’—e

1nn’n~, h = —en. (2.10)

The following polynomialfunctionsof the dreibeincomponentsef will turn outto
be useful:

h” = hh’1 = glkg)lg~j eeta = — ~EabcElJe.be. (2.11)

Furthermore,it is convenientto employa “curved” basisfor the y-matrices,which
is given by y, = efy

0 and eyt = .~-e~’y~y~observethat these, too, are polynomial
functions of the dreibeincomponents.Given two three-vectorsX~and yIk, we
have

eX~Y,1=nX,Y,1—n
1h’~X

1Y~,

eX,1yvyILY~.= nX~Y,,— n’h”X~~ + neu1X~eyt~.

— ~3(X~y~Y ~

ey’
1X,1 =eytX~+n~eu1eyty,X~.. (2.12)

The index n here standsfor the componentnormal to the spatial hypersurface.

This componentis definedby X,, = X, + n’X
1 and is related to X = g”

1X by
nX

0 = eX’.
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3. Canonical treatment of non-linear sigma models

In the introduction, we have alreadymentionedthe general result that the

bosonicsectorsof (extended)supergravitiesaregovernedby non-compactnon-lin-
earsigmamodels.We will now describethe canonicaltreatmentof thesemodels.
Since the resultsmight alsobe useful in othercontexts,we will temporarilyignore
all fields other than the scalars so as to make the discussionself-contained.
Becauseour main interest is the application of the canonical formalism to
non-linearsigmamodelscoupledto a non-trivial gravitationalbackgroundcharac-
terizedby the metric g,1,,, we will, however,keepthe dependenceon the metric
throughout;the flat spacemodelsare then easily recoveredby putting g~=

everywhere.Matter coupledsupergravitytheoriesin threedimensionshavebeen
completelyclassifiedrecently [28]. In contrastto pure (topological) supergravity
theories,which exist for any N, the numberof local supersymmetriesis bounded
by N ~ 16 in the presenceof mattercouplings.The mattersectorsof thesetheories
are describedby non-linearsigmamodelsof the non-compacttype [121,whose
targetspacesbecomemore and more restrictedwith increasingN. More specifi-
cally, for three-dimensionaltheories,we havethe following results[28]: for N = 1,
2 and 3, the target manifolds .4’ are riemannian, Kähler and quaternionic,

respectively,whereasfor N = 4, the target space is locally a product of two
quaternionicmanifolds associatedwith inequivalentN = 4 supermultiplets.Be-
yond N = 4, only homogeneous(and, in fact,symmetric) targetspacesareallowed.

The standardsigma-modellagrangianfor an arbitraryriemanniantargetmani-

fold 4’ is given by

.2= _~egIkVG~~(~p)a,1~ d~”, (3.1)

where ..� is parametrizedby thecoordinatefields ~m(x) with m, n = 1,.. . ,dim 4’,
and Gmn((P) is a riemannianmetric on 4’. Obviously, the main problem here is
posed by the non-linear interactionsinduced by the geometrical form of this
lagrangian,andthisproblemalso makesits appearancein thecanonicalformalism.
A first step in resolving the difficulties is to select(canonical)quantitiesthat,
despitetheir explicit dependenceon thecoordinatefields p”, transformastensors
underreparametrizations.Secondly,wewill seethat a further simplificationcanbe
achievedby utilizing tangent spacetensors(tangentspace,or just “flat”, target
spaceindiceswill bedesignatedby A, B, ...). Accordingly,we introducea vielbein
Em’~(co)satisfying

Gmn(co) ~ (3.2)

where flAB is a flat metric in tangent space(which neednot be unique); in the
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following, we will freely use this metric to raiseand lower flat indices. We also

define

pA~mEA (3.3)

The lagrangianthen takesthe simpleform

1 ,1vpApB (34
— 2eg ,1

This is also the form that appearsin the supergravitylagrangiansto be used later.
The canonicalmomenta,which are conjugateto the coordinatefields pm, are

now easilycalculated:

Pm = _eg
tIkG~

0(q~)3,19~. (3.5)

The basicPoissonbracketsaregiven by

{pm(’), q,”(y)} = —~3(x,y). (3.6)

Although the momentado transformproperly underreparametrizations(namely
as vectors, i.e. elementsof the tangentspaceT,,4’), the coordinatefields ~m do
not; therefore,one must dealwith non-covariantexpressionsat the intermediate
stagesof every calculationif oneusesthesevariables.The hamiltonianis given by

H := fd2x( Pa/P
tm —2’). (3.7)

Canonicalquantizationwill be awkward to carry out in termsof the variables ptm

and Pm due to operatororderingproblems and the concomitantshort distance
singularities(which may also spoil generalcovariancein targetspaceby “anoma-
lies”). In anycase,quantizationwill requirea definite orderingprescriptionfor the

operatorsinvolving the momentap~.Here, we find it convenientto employ
anothersetof canonicalvariablesandto performthe quantizationdirectly in terms
of them rather thanin termsof the original variablesçptm and ~ This procedure
definesthe quantumtheory in an unambiguousway, as it correspondsto a definite
choiceof operatorordering.

As our basiccanonicalvariables,we choosethe “composite”quantities

6pA =EA
m(co)P~, ~ :~=3~q~mEmA(cD), (3.8)
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whereEArn is the inversevielbein. The hamiltonian(3.7) canalsobeobtainedfrom

H(PA, cv) = fd2x(PAP,A—2’). (3.9)

The variables~A, which we now regardas the momenta,evidently correspondto
an anholonomicbasis in tangentspace(whereasthe p~are like a coordinate
basis).Ourchoice is also motivatedby thefact that the variables(3.8)areprecisely
the oneswhich will appearin the supergravityconstraintsto be derived in later
sections.

To computethe canonicalbracketsof ~A andP~,we employthe basicPoisson
brackets(3.6). Of course,it doesnot matterat this pointwhetheror not we usethe
original fields cvm andPm for this purpose;afterwards,we cansimply “forget” how
the resultswerederived.A straightforwardcalculationyields

{PA(x), PB(Y)) —DAB (x)P~(x)5(x y),

{PA(x), pB(y)} = (~a,— QAC x))PC(x)ö(x, y),

(pA(x) P
3’~(y))=0, (3.10)

where ~AB := 2E[AmEB]~~amEnc are the coefficientsof anholonomy(by Bm~we
denotethe derivativewith respectto ptm)~Here and in the remainder,spatial
derivatives8, will always be understoodto act on the first argumentin the
s-function (i.e. x in (3.10)). The Poissonbrackets(3.10) will be regardedas the
basic relations from now on. If we parametrizephasespace in terms of the
variables~ptm andthe momenta~A’ thesebracketsare reproducedby the general
formula

—

1d2 E ~ 6g —E m ~g{f, g} —J X A 5~pm(x) ~PA(x) A ~cvm(x) ~PA(x)

~5f t5g
+QAB(x)Pc(x)() 8PB(x) (3.11)

where f and g are arbitrary functionals~f c~mand ~

The transitionto the quantizedtheory is implementedby the replacement

PA(x) —*PA(x) = +iEAm(cv(x))

pA(x) -91~(x) =a~cvm(x)EmA(cv(X)). (3.12)
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The orderingprescriptionimplicit in this replacementensuresthat the relations

(3.10) can be directly replacedby quantum mechanicalcommutators(modulo
factorsof i), andthe geometricalstructureof (3.10) is thuspreserved.

At this point, not much morecan be said if the targetspace4’ is an arbitrary
riemannianmanifold. For this reasonand also in view of the fact that the target
manifoldsof supergravityareusuallyconstrainedby local supersymmetryto be of a

very specialtype, we will now make further assumptionson the structureof 4’.
The simplestpossibility is to assumethat the targetspaceis a group manifold, i.e.
4’ = G for someLie group G. Althoughthe targetspacesrelevantto our investiga-
tion arenot groupmanifoldsin general,we discussthiscasefirst sinceall relevant

formulascan be derivedfrom it. This is because,aswe will explainbelow,we can
formally treatthecosetmanifoldsoccurringin supergravityon thesamefootingas
groupmanifoldsif we add suitablegaugedegreesof freedom.

For groupmanifolds,we assumethe vielbein (3.2) to be a left invariantvector

field; this meansthat

m - n
3~m(cv)EA (cv(cv)) =EA (cv) ~ . (3.13)

where cv —~ ‘~(cv)is a diffeomorphism induced by left multiplication. Then, the
coefficientsof anholonomyandthe flat metric are givenby the structureconstants
of G, viz.

(~ C__i C ~ D,c C
AB — JAB ‘ flABJAC JBD

wherethe structureconstantsfABC aredefinedthroughthecommutationrelations

[ZA, ZB] =fABCZC (3.15)

for the generatorsZA of G. The vielbein EmA can be explicitly computedby
introducinga matrix representation~= ~~~(q,m(x)) E G,

?7~~l8m~/7=EmAZA, (3.16)

whereas before8m denotesthe derivativewith respectto the coordinatefield cvm.

From (3.3), weget the identification

PP,ZA=ô,1cv ~18m~=~_18,1~. (3.17)

The field theoreticmodel obtained in this way goesby the name of “principal
chiral model”; its lagrangianis simply obtainedby substituting(3.17) into (3.4).
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From the resultslisted above,we canimmediatelyderive the relevantbracketsby
substitutingthe structureconstantsfor thecoefficientsof anholonomy;in addition,
we candeterminethe bracketsbetweenthe momenta~A andthe matrices~‘(cv).
The resultis

{PA(x), PB(y)} = _fABCPC~(X, y),

(~‘(x),PA(y)) = ~17ZA~(x, y), (3.18)

As a check,we canrecalculatethe bracketsbetween~A and pB (cf. (3.10)) from

theseformulasand(3.17).
The aboveformulas are not yet quite what we want, since the relevanttarget

spacesto be consideredin the remainderare coset spacesrather than group
manifolds;however,the abovebracketswill nonethelessprove useful in that they
will enable us to compute the relevantPoissonbracketsfor cosetspacesigma
models as well. As is well known, any symmetric spacecanbe representedas a
cosetG/H; in the caseat hand,the groupG is non-compact,andH its maximally
compactsubgroup[121.There are now two equivalentformulations. One either
parametrizesthe manifold 4= G/H in terms of coordinates cv”’ with m =

1, . . . ,dim G/H as described above; or one introduces extra coordinatefields
u’~(x)associatedwith the subgroupH (so that r = 1,.. . ,dim H), in which casethe
coordinates(cvm, Ur) parametrizethe wholegroup G. If oneusesonly the physical
fields ~pm(x), part of the invariance under the isometty group G is realized
non-linearly.In thesecondcase,the invariancetransformationsunderthe isometry
group can be realizedlinearly, at the expenseof introducing an artificial gauge

invariancenecessaryto removethe unphysicaldegreesof freedomcorresponding
to the fields u’~(x).In the canonicalformalism, this gaugeinvariancewill lead to
constraints.

Sincewe preferto makeuseof the secondformulation,let usintroducea matrix
representation~= ~(~m(x), Ur(X)) E G. To get rid of the unwanteddegreesof
freedomwhich are representedby the fields uT(x), we postulatein additionthat
the lagrangianshouldbe invariantunderthe transformations

~(x) —*g~17(x)h(x), (3.19)

with g E G and h(x) E H, so that putting ur = 0, we recoverthe descriptionin
terms of the physical fields cv”’ (this gaugechoice is sometimesreferredto as the
“unitary gauge”). We split the generatorsZ of G into the generatorsX” of H
(a, f3,... = 1,. . . , r) and the remainingcosetgeneratorsy-~*; the structurecon-

* We hopethat thedual useof theindices A, B,... will not causeconfusion;theylabeleitherall group

generatorsas in (3.15)or just the cosetgeneratorsashere.
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stantsare decomposedaccordingly.For a symmetricspace,wehavefABC= f~~C=

0, and (3.15) reads

[yA yB] fABXY [X”, yB] faBCyC

[X”, X~] faf
3XT (3.20)

To write down the lagrangian,we decomposethe Lie algebravalues expression

~ accordingto

(3.21)

The lagrangianis then againgivenby (3.4). Note,however,that the sum over A

now runsonly over the cosetgenerators.As a consequence,the fields Q~”do not
appearin the lagrangian(however, they do couple to the fermionic fields in its
supersymmetricextension); they are just the gaugefields required by local H
symmetry. So we see that it is the lagrangianthat determineswhich degreesof
freedomarephysicalandwhich arenot; we canconvertthe principal chiral model

into a cosetspacesigmamodel simply by omitting those P,~correspondingto a
subgroupof H from the sum(3.4). Of course,for anon-compactgroupG, thereis

only onechoiceof the subgroupH for which the hamiltonianis positive definite. If
we definethe canonicalmomentaby

62’ 62’
Q:=____ (3.22)

the absenceof Q,” from the lagrangianimmediatelyimplies theconstraintQ,, = 0;
this must be interpretedasaweak equality in accordancewith the generaltheory
of constraints[29,32].The hamiltonianis now given by

H(PA, Q~, ~, u) = Jd2x(PAP,A+ Q,Q,” —2’). (3.23)

We repeatthat the main differencefrom the canonicalpointof view betweenthe
principal chiral model and the coset space sigmamodel characterizedby this

hamiltonian is that the momenta Qa correspondingto the subgroupH have
becomeconstraints.Nonetheless,the combinedset of momenta~A and Qa still
obeys the samePoissonbracketsas before; consequently,we can read off the
result directly from (3.18).So, we get

{PA(x), PB(y)} = —fAB~Q
7(x)

6(x,y),

(Qa(X), PB(y)} = faB’~1~C(1)6(~t,y),

{Qa(X), Q,~(y)}= —f~~7Q~(x)6(x,y). (3.24)



622 H-f. Matschull, H Nicolai / Canonicalquantumsupergravity

Furthermore,

{~(x), PA(Y)} = 77YA6(x,..v)’

(~(x), Qa(Y)} =~Xa8(X, y), (3.25)

which showsthat the Qa generatelocal H transformationson ~.

To constructan operatorrepresentationfor the ~A and Qa, we could simply
take over formula (3.12) with an appropriatesplit of indices. The matrix E~’1
would thenhaveto be decomposedaccordingly.The generalparametrizationof ~‘

in termsof corn and ur adoptedso far would, however,lead to formulaswhich are
somewhatunwieldy for practical calculations, as the physical and unphysical
degreesaredifficult to disentangle.For this reason,we chooseaslightly different
parametrizationin termsof which the constraintsare easierto solve. Locally, we
canalwaysassumethat thematrix ~(cv,u) can be written in the form

~(cv~u) =~(cv)h(u). (3.26)

Thena straightforwardcalculationshowsthat

~‘8m~=Q~(cv, u)Xa+EmA(cv,u)YA,

(/~18r~=Er”(u)Xa, (3.27)

where we haveexpandedthe right hand side in terms of the subgroupand the

coset generators,thereby defining the various submatrices.Consequently,the
vielbein on G (which is a dim G X dim G matrix) is triangular:

~ \ ç~a(
m ~ uj ~m~cv’ U

vielbein = . (3.28)
0

The advantageof this parametrizationis that the dim G/H X dim G/H matrix
ErnA(cv, u) can be identified with the vielbein on 4’= G/H after a u-dependent
tangentspacerotation. The inversevielbein on G is givenby

EA”’(cv,u) _EAmQf~E~(cv,u)
inversevielbein = , (3.29)

0 EaT(u)

and EA”’ canbe identified with the inversevielbein on G/H up to a u-dependent
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H rotation. Inserting theseexpressionsinto (3.12) and relabeling indices, one
arrivesat the following operatorrepresentations:

PA(x) =iEAm(
6 m( )

j
3A(x) =8~cv”’EmA,

‘(x) =d~q,”’Q~+3,u’ Er”. (3.30)

The constraint Qa is realizedby the operator

5
Q~(X)=iE~r() (3.31)

and dependsonly on the gaugedegreesof freedom.Observethat the momentum
operator~A canbeviewedas a connectionon theprincipalfiber bundleG —p G/H
with basespaceG/H andfiber H (it definesa “horizontal subspace”of 7~,~

1Gat
each point); note, however,that we are dealing with functional, not ordinary
derivatives here. We recall that in the quantized theory, any physical wave
functional 1p[cv, ul must satisfy Q~’J!= 0; with the aboveparametrization,this is
simply solvedby ~I’= ~~[cv].We emphasizehowever,that the u-dependenceof ~A

cannot be dropped since otherwisethe constraint algebra (3.24) would not be
obeyed.

From (3.19)it follows that G actsas a groupof isometrytransformationson the
targetspace4’= G/H. The associatedchargedensity7(x) (which is a matrix
with valuesin the Lie algebraof G) is obtainedby sandwichingthe momentaand

constraintsbetweenthe matrix ~‘ andits inverse.Thus

7(x) = (1~A~+ QaX”)~”~ (3.32)

The charges

&=Jd2xJ(x) (3.33)

constitute the canonical generatorsof the isometry group, and generatethe
isometrytransformationson the fields,as canbeverified from the relations(3.25).
Incidentally, this formula also remainsvalid in supergravitysincethe rigid groupG
does not act on the fermions, or only via induced H rotations. The above
expressionsfor the chargediffers from the one given in ref. [9] by the constraint
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generatorof H gaugetransformations,which precisely removes the fermionic

bilinearsin the formulasgiven there.
To concludethis section,we give anotherand equivalentrepresentationof the

operators(3.12) and(3.30), to be usedin sect. 5. Whenworking with a concrete
matrix representation7, we canregardthe elementsof 7 as independentfields.
To be sure,we would then haveto introducesecondclass constraintsto ensure

that 7 remainsan elementof the group G. However,thereis no needto enter
into the detailsof this constructionhere,as long as 7 is alwaysunderstoodto be

an elementof the group G in all formulasbelow. Let ussimply assumethat the
lagrangianis given as a function of the matrix field 7(x) andits inverse7 ‘(x) as

well as its “derivatives” P~(x).Similarly, the physical statesare assumedto be
representedby wave functionals ~I’ which dependon 7, 7 ‘ and their spatial
derivatives.On any such wave functional, we definethe momentumoperators~A

throughtheir actionon 7 and7’, which is givenby PA7:= i7ZA and ~

—iZA71. It follows immediately that [PA, ~BI = 1fABPC. Defining the matrix

valuedderivativeoperator5/67 by (5/57)pq := 5/6~~,the operatorrepresen-
tation for the momentabecomes

‘~A~Tr(7ZA~—)~ (3.34)

Sincethe matricesZA generatethe Lie algebraof G, the actionof thisoperatoris
tangentto the submanifolddefinedby the groupG in thespaceof all matrices7,
andhencedoesnot dependon how we definethe functional~P[7] awayfrom it. If

we aredealingwith a cosetspacesigmamodel,the sameremarksasbeforeapply;
we simply haveto split the groupindicesinto subgroupandcosetindices,andthe
momentacorrespondingto the subgroupbecomeconstraints.However,the solu-
tion to the constraint~1i~ = 0 apparentlycannotbe castinto a simpleform in this
representation.Finally,we note the simpleexpressionfor the quantummechanical
chargeoperator(3.33) in this representation;it is

~ ~A=IdxTr(ZA7~). (3.35)

(If we aredealingwith a cosetspacesigmamodel, the generatorsare &A and &~).

It is easyto checkthat & generatesthe global G transformationsacting from the
left on 7 accordingto (3.19).Furthermore,

[PA, ~ =0. (3.36)

In particular,the global chargescommutewith theconstraints~ for a cosetspace
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sigma model and are thus observablesin the senseof Dirac, or “conserved

charges”.

4. The N = 2 theory

The simplestnon-trivial exampleof mattercoupledsupergravityin threedimen-
sionsis providedby the N = 2 theory [34,10].We will herefollow the presentation
in ref. [101, where this model has been described in great detail, and only
summarizeits main featuresbefore moving on to the canonicalformulation. In
additionto the gravitationaldegreesof freedom,the theorycontainstwo gravitinos
i~i~(I = 1, 2), two matterfermionsx1 andx2 and two (real)bosonsthat live on the

cosetspaceSL(2, ER)/SO(2).The fermions are real (Majorana)spinors,whichwe
will combineinto complex(Dirac) spinorsby defining ~ = (1/ ~/~)(çli,~+ i~) and

x = (1/ ~1~Xxt+ ix2). If the SL(2, ER) symmetryis linearly realized,the fermions
transformonly underthe gaugegroupH. The caseof abelianH is a little peculiar
as the relative normalizationbetweenthe H generatorsand the coset(i.e. G/H)

generatorsis notfixed, unlike for non-abelianH. Consequently,the requirementof
local supersymmetryandH invariancedoesnot uniquely determinethe fermionic
SO(2)chargesin contrastto the theorieswith N ~ 3 ~. Our chargeassignments
agreewith those used in our previous work [101 and coincide with the ones
obtained by dimensional reduction of N = 1 supergravity in four dimensions
[33,26]to threedimensions(but differ from the onesthat onewould obtain from
the lagrangiangiven in ref. [28]). Thus the matterfermion x hascharge + ~ and
the gravitino field 1/1,1 hascharge — ~ the SO(2)groupcan thenbe interpretedas
the helicity group for the four-dimensionalancestortheory.

As explainedin the foregoingsection,we will parametrizethe bosonicfields by
a matrix 7 which takesvaluesin the group SL(2, ER). The unphysical degreeof
freedomcorrespondingto the subgroupH is removedby postulating invariance

underlocal H transformationsasin (3.19). In accordancewith thenotationusedin
sect.3, we denotethe generatorof the S0(2)subgroupby X, and the remaining
generatorsby yi andy2 Again,wefind it convenientto switch to a complexbasis
Y=(1/V~)(Y

1+iY2), }T* =(1/~/~)(Y’—iY
2). The SL(2, ER) commutationrela-

tions then read

[x,Y]=2iY, [X,Y*]= _2iY*, [y,y*] —2iX, (4.1)

andformula (3.21) becomes

7/7=P~7Y+P,1Y* + Q,1X, (4.2)

* This distinction betweenabelian and non-abeliansubgroupH was first emphasizedby deWit [39].
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Rememberingour SO(2)chargeassignmentsand(2.6), we can immediatelywrite

down the fully covariantderivativeson the spinors,

:= + ~A,1’~yOX— ~iQ,1x,

D,1I/i~:= V~i/i,+ ~A Ik YahIJ,1 + ~iQ,1~IIV,

D,1e~”:= V,1e,” — e0l~~A,1beVC, (4.3)

The lagrangianof N = 2 supergravityis thengiven by

.2’=5°~°~+.2’~’~+2~(2), (4.4)

where

= ~eI*~~Pe,10Fvpa+ E’~”~’llI,
1D/JJ~,

= —eg~P,~Pj~+ elIJ,1YYXPV+ eXyy~1f,1PV

— 2e111,1yyX,V~lIV— ~eky~y~/I,1 ~lI~x,

= — ~eXY~D,1X+ ~eD,1kY~X— ~exx x~x. (4.5)

Apart from the contribution involving the gaugefield Q,1, .2’~°~is identicalwith
the topological lagrangianintroducedin sect.2 (see(2.4) and(2.7)) for N = 2. The
full lagrangian(4.4) is invariantunderthe local supersymmetrytransformations

8E4),1 =D,1E + 2~1LVpYV(YX,

= —

5,7=~eY+EXY*,

(4.6)

where := P~— is the supercovariantizationof P,1. We refrain from giving
the variation of the gravitationalconnectionA,1”, as the variation of the action
under (4.6) is proportionalto the torsion equation,and therefore I5A,1” can be
chosenso as to cancelthis contribution(see e.g. ref. [26]). The torsion equation
reads

D[,1e~]= ~I’[,1Y4)V] — i~abcee~_~ (4.7)

In the canonicaltreatmentof this model,oneencountersthe following technical
difficulty [10]. As it turnsout, the Dirac bracketsbetweenthe componentsof A~°
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do not vanish, but rather commute to give a bilinear expressionin the matter

fermions x; furthermore, the Dirac bracketsbetweenAf and x do not vanish,
either. This featurepreventsstraightforwardquantizationvia the replacementof
phasespacevariables by functional differential operators.It has alreadybeen

pointedout in ref. [101that,for the N = 2 theory, the phasespacevariablescanbe
decoupledthrough a redefinition of the gravitationalconnectionby a fermionic
bilinear ~‘. In ref. [10], this redefinition was performed after setting up the
hamiltonian formulation, but, as we shall now demonstrate,it is much more
convenientto do so already at the level of the lagrangian,since this will entail
substantialsimplifications.For thispurpose,we definea newconnectionfield A,f

by

A~f:=A,1” + EabcE,1bX_YCX. (4.8)

Observethat the fermionic bilinearis purely imaginary,andhencethe connection
becomescomplex.The redefinitionand the decouplingalso work for thehigher N

theories,although the details are more involved and are therefore explainedin
AppendixA.

To seehow this redefinition affects the lagrangian,we now substitutethe new
connection(4.8) into the above lagrangian.For the gravitationalcurvature,one
finds

FIkpa = Fp’va —
2EabC D~,1(eul?],~~yc~)— 3e~bCe,1”eV’~XX,~x, (4.9)

Here, the prime on the covariantderivativeindicatesthe replacementof A,f by
Af. Because~ is complex, the Dirac conjugateof D,5~’would involve the
complexconjugateconnection;it is thusdifferent from the derivativeD,~usedin
the above equation,which is definedby D~k= — ~A~~yQ + ~ On the
other hand,

2’~ doesnot contain A,1” and is thereforeunchanged.In 9~(2) we
may replace A,f by ~ becausethe difference vanishesby simple symmetry
arguments.

Insertionof the new connectioninto 2~(0)yields

= +eIk~~e,1aFJP~— ~ D~(~y5~)+ ~ ~

EIk~P~IJ,1D~çfr~= EILVP~J,1D~iP~— x4’~— 4’/LX ~y~ip~), (4.10)

where the first equationholdsup to a total derivativeonly. We observetwo crucial
results.First, mostof the higherorder fermionic termsin the action arecanceled

* A very similar redefinition is necessaryin the metric formulation[23].
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by the redefinitionof the spin connection,which greatlysimplifies the lagrangian.

Secondly,the Einsteinterm now contributesto the Dirac termin sucha way that
all derivativeson ,~ disappearfrom the action. This is rather fortunate,because
otherwise,eitherhermiticitywould be lost (if all derivativesweredefinedwith the
complex connectionA,f, as we did above), or we would haveto introduce the
complex conjugateconnection (A,1O)*, which would not be subject to simple
commutationrelations(cf. (4.18) below) and spoil the decouplingof bosonic and

fermionicfields in the canonicalbrackets.
The total lagrangianin termsof the new connectionis now the sum of

= ~gIkP~e,10Fppa+ E~’Pili,1D~tIi~,

= eg’~P,1P~+ e~IJ,1yyXP,+ exy~’y’~i/f,1(PV—

2~(2)=—ek-y~D,1x, (4.11)

wherewe henceforthdrop all primes,asthe old spin connectionwill no longerbe
used.

For the canonical treatment, we must now perform a spacetimesplit as
describedat the end of sect. 2. After a little work, one arrives at the following
decompositionof the lagrangian:

= — leiieaA — e”

+ ~(n~ee1~t — nkea)eliF —

+ ~e’1(D~e10— ~~a~I’j)~’4f+ E1J(D~~J~/,, + i/i, D~4)3)

= —nP~P,7+ n + n e1.(~eyt~I~j*—

+ E~lJ~y~XPj*— ~I’YXP +~yj~/J~1~~

= —,~ey
t~— ~eytyaXAf + ~i,~eytxQ,

_n~e~~eyty,D
1~—n’~ey’Dkx, (4.12)

whichwill serve as our startingpoint for the canonicaltreatment.
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We next compute the canonical momenta,which lead to secondclass con-
straints(to makethe formulas lesscumbersome,we will not explicitly indicate the
x-dependencebelow); theyare

Pa’ = ~a = 0, Ha’ = ~a =

52’ 52’
= .. = 0, ~‘ = = — C

62’ — 62’
A=—=0, A=—--=~ey’. (4.13)

ox ox

We cannow readoff the secondclassconstraints

P,~:= pa’, z, := Ha’ —

A:=A, A:=A—~ey’,

.9”:=i.r’, F’:=~’+g’~/, (4.14)

As is well known, the Dirac brackets[291aredefinedby

(A, B} * = (A, B} — ~ (A, K}C(K, L)(L, B}, (4.15)
K,L

whereC( , ) is the inverseof the Poissonmatrix definedby

EC(K, L)(L, M} =5(K, M). (4.16)
L

Here K, L,... label the constraints(4.14).A little carehasto betakenas we are
dealing with fermions here, becausethey are anticommuting(Grassmann)vari-
ables.When defining the momentaby (4.13), A is the negative momentumof x
andthe hamiltonianreads,%~A— A~—2’. To get the right equationsof motion, the
Poissonbrackets,which are symmetric for fermions,must read {A~,~} = —8,~,

which in this order correspondsto thebosonicbracket{p,~’,eJ’} = — ~ Thusthe
Poissonbracketsarealwaysnegativeif the momentumis the first entry.
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Calculationof the C(, ) matrix now gives

c(z~,P~)= 2E~1fl’~’,

c(z~,A) = 2h_iCabceic.~~~/beyt,

C(A, A) = —h~ey
t,

C(I”, F~)= —e,~l, (4.17)

all other componentsvanish. As a consistencycheck, we note that C(,) is
antisymmetricif andonly if bothentriesarebosonic.Fromtheseformulaswe can
deducethe crucial result that the Dirac bracketbetweendifferent componentsof
the spin connectionnow vanishes,which is not the case for the original spin
connection[9,10]. This result follows essentiallyfrom the vanishingof C(Z~,A)

and the fact that A doesnot dependon the dreibein. Furthermore,it is alsoeasy
to check that the spin connectionnow commuteswith x. However, it does not

commutewith ,~,which is thereforenot a good canonicalvariable.Forthis reason,
we will not use ,~,but ratherA as an independentphasespacevariable;the two
fields are relatedby A = e~y’ by (4.14). All non-vanishingDirac bracketsare then
numericalandgiven by

{A,a(X), ejb(y)} * = 2
8,Jflbbo(x,y),

{x~(x),A,3(y)}~= ~

6ap6(X, y),

{~I’ia(x), ~‘
113(~)}* = e~16~~6(x,y). (4.18)

We repeatthat the absenceof the complexconjugateconnection(A,1~l)*from the
constraintsis an importantconsistencycheckon our results,sincethis field would
havenon-vanishingbracketswith both A,1a and x.

Next we proceedto the discussionof the first classconstraints.Defining the
momentaof the scalarfields as in (3.8),but with the complexnotationintroduced
above,we have

62’ —

P = = —nP~+ ~c~’~x—

82’
p*

= = — +iE’~~fJj+ ~i~ey’x. (4.19)



H-f. Matschull, H Nicolai / canonicalquantumsupergravily 631

From (3.18) weobtain their Poisson(or Dirac) brackets

{7,P}=7Z, (7,p*}7z* {7,Q}=7Y,

(P, p*} =2iQ, (Q, P) = —2iP, (Q p*} =2iP*. (4.20)

Thesebracketstogetherwith (4.18) constitutethe completelist of non-vanishing
Dirac bracketsof N = 2 supergravity(bracketsthat havenot been listed vanish).
To summarize,our basiccanonicalvariablesare

ef, A,”, 7 P, p*, Q, ~, x, ~, c!’1. (4.21)

Observethat quantizationis now straightforwardto implementby replacing the
momentaby functionaldifferential operators.The Lagrangemultipliers leadingto
first classconstraintsare

n~, n’, Ata, iPx, if’~. (4.22)

As the momentumQ doesnot containanytime derivativein (4.19), we havethe
first classconstraint

T= —Q — ~i&’i/i~i/j~+ ~iA,k’, (4.23)

which is the generatorof local U(1) transformations.The other first class con-
straints are obtainedby varying the lagrangianwith respectto the multipliers
(4.22).A,” yields the Lorentz constraint

La = 4e’J Dieja — “if’jYaif’j — 2’~’/ax~ (4.24)

The multipliers 4), and i/i, correspondto the supersymmetryconstraints

~ D,i/j~__,yP*_Eu)yj~Pj*,

2’= s” Dcli,. —P~+ ~ + e’~~(~~ — 4),x .~). (4.25)

The asymmetryin theseexpressionsis causedby the fact that it is the redefined
connectionA,” which appearsin the derivativeon in the secondline (andnot
(Af)*O, but in fact, the secondexpressionis the Dirac conjugateof the first
becauseof the Fierz identity

— ‘,x = —E”’~E’~eJb~yCXif’jYa~ (4.26)
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The first constraint in (4.25) is manifestly polynomial; to render the second

polynomial aswell, we multiply it by ey’ from the right so as to replace~ by X. In
this way, weget

= g” D,iJi~ey’— PA — e”P3A7, — s’~i~(xÀy, + ‘)‘jx A). (4.27)

Thederivativeof thelagrangianwith respectto n” andn gives thediffeomor-
phismand hamiltonianconstraints

z,~=—ek”E’F,J~—ADkx+P~P~+PkP*

+ Cu)P~*ifhjykx— E”F~Xykifhj,

Z’ ~ee”‘e”F,ja—e”Ay,D,~+i:;P* +/~fiP3*

— gh3pi*l/J~ey
tX+ E”P~Aifi~, (4.28)

where we usedthe supercovariantquantities

P~=P,—ifi~x,P—P—e’~c!’,y
1x,

p* p* xif~, ~ p* + e’~’xy,c!f~. (4.29)

The covariantmomentumP is nothingbut the time componentof the quantity
alreadydefinedin (4.6), as canbe seenby (4.19).

At first sightit seemsratherdifficult to casttheseconstraintsinto a polynomial

form, as ,5~appearsalso implicitly through P* and Pf’, but indeed all terms
containing ,~ can be eliminatedby addingsuitable multiples of other constraints.
Let us first considerthe diffeomorphismconstraint.The termscontaining ,~are

— E’
3P,,~ykifhJ+ e”Pk,~y,4)J. (4.30)

A short calculationshowsthat this is equalto

— C” D,4)JlfIk. (4.31)
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Thus if we subtract2’l/Jk from Z,~,all the ~ terms disappearand we get the

polynomialconstraint

= — ~eks’Fija — A Dkx — C’) D~IIJJ4)k

+P,~~P+P*Pk+eIJP
1*çliJy~~. (4.32)

As usualthis is not the realgeneratorof spatialdiffeomorphisms,but it generates
extra U(1), Lorentz, and supersymmetrytransformations.The generatorof pure
translationsis

~k ~k — QkT~Ak”La —

4)k2” (4.33)

andreadsexplicitly

= — ~e’(8,A
1 ek~+Ak” 8,e~~)— ~

4)k + if’k a,4)~)

+PPk +P Pk+QQk—A 3kx~ (4.34)

The situation is similar for the hamiltonian constraint. The ,~ terms to be
subtractedare

— h”JifIJ. (4.35)

Again this non-polynomialexpressioncanbe renderedpolynomialby subtractinga
suitablemultiple of .9’. It is equalto

+ e”e1’~DkI/Jl y.4)
1+ e”P~Aifi1. (4.36)

Insertingthis we getthe hamiltonianconstraint

Z = ~ee”E”Fia + e”A73 D~x+ P*p + p~*,.

+ 2e”P1A4)~ + e”e~D,ifi, Yk

4)t — eo)P~*IJie~ytx. (4.37)

We can now compute the classicalDirac bracketalgebra of constraintsand
verify that it closes.The bracketsbetweenthe “kinematical” constraintsL, T, Zk

and .9’ arestraightforwardand yield the expectedresults.The bracketsbetween
the supersymmetrygeneratorsrequiremorework, and,in particular,repeateduse
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of the Fierzidentitiesquotedin sect. 2. After a somewhatlengthy calculation,one
obtains

{s~’[fl, ~‘[fl]}* = fd2x(_~flZ+ ~k~~~gy1fl+ 2iA~~x T+ 2A~~“‘x La),

{..9’[fl, ..9”[~’]}~ =0,

{.~‘[~], .5~’k’]}* =2fd2x C’Jef(iIijfl S”Yafl’+4)jYafl ..9~ii’), (4.38)

where,for convenience,the supersymmetrygeneratorshavebeen smearedwith
smoothspinorial(i.e. anticommuting)testfunctions~(x) and ij(x) accordingto

fd2x ~(x).9’(x), ~7[~] = fd~x.
9’(x)fl(x). (4.39)

The formulas(4.38)show that indeedall the bosonicconstraintscanbe generated
from the fermionicones,andin this sense,the supersymmetrygeneratorscanbe
thoughtof as the squarerootsof the bosonicones.We note that a completecheck
of closure would also require the determinationof the bracketsinvolving the
hamiltonianconstraint,butwe omit this consistencycheck.

Finally, one canverify that the constraintsare the canonicalgeneratorsof the
associatedspace-dependentgaugetransformationson the fields as expected.Since
this computation is completely straightforward,we refrain from giving further
details.

5. Quantization and constraint algebra

We will now perform the canonicalquantizationandre-examinethe relations
(4.38) in the context of the quantumtheory. After expressingall the first class
constraintsas polynomialsin terms of the canonicalvariables(4.21), it is straight-
forward to give a quantum operatorrepresentationfor them. We usethe conven-
tion that the commutatoris obtainedby multiplying the Dirac bracketby — i. We

will also define the quantumconstraintsto be i timesthe classicalconstraints.In
this way they generatethe sametransformationson the fields as the classical
constraintsandno extrafactorswill appearin the constraintalgebra.

For eachpairof canonicallyconjugatevariables,we haveto chooseonewhich is
to be representedby a multiplication operator.The bosonic fields and their
momentaP, P * and Q will be representedby the matrix 7 andthe differential
operators(3.34), respectively.In this representation,the wave functionaldepends
on the scalars via the matrix 7(x). As we explained in sect. 3, we could
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equivalentlyuse the coordinates(corn, u) on SL(2, ER) (where m = 1, 2, and u

parametrizesthe subgroupSO(2)) as multiplication operatorsand representthe
momentaby (3.30).For the remainingoperatorswe are in principle free to choose

ef or Af, A or x’ i/i, or 4), as multiplication operators;of course,it is very likely
that the resultingquantumtheorieswill be inequivalent,dependingon this choice.
We will here adopt an operatorrepresentationwhich rendersall the constraints
homogeneousin the functional differential operators(see below), and which is
given by

0
—+

ja

— 0

0
4)ia~ i~jj~~ (5.1)

The wave functional~P(4))will thusdependon the fields A,”, 7, x~ifi,, which we
will collectively denoteby 4). With the aboveoperatorrepresentationthe Lorentz,
U(1) anddiffeomorphismconstraintsbecomewell-definedif orderedin such a way
that all differential operatorsappear to the right. In particular, they will then

generatethe respectivespace-dependentgaugetransformationson the fields (i.e.
without extraanomalouscontributions).Their algebrareads

[91[n’], 2J[m”}] =91[m’ 3
1n

1c— n1 aim”I,

[L[w”], L[v”]] =L[ETh1~wbnC]

[.~2r[n/~], L[w”]j = L[ —n’ 8,w”],

[2’[w”], T[q]] = T[ —n1 a,qJ. (5.2)

where 21[n”] := fd2x n”(x)21k(x), etc. Rememberthat the quantumconstraints
aredefinedas i timesthe classicalconstraints,thusthereareno extrafactorsof i

in the algebra. -

Next, we turn to the supersymmetrygenerators.9’ and .9’. In the representa-
tion (5.1), .5” becomesa first order differential operator; smearing with an
anticommutingspinor parameter~ as in (4.39),we get

5”[fl =fd2x[Di~~~~=-+~ Tr(7Y*~_) — ~ (5.3)
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Fromthis expression,it is easyto seethat thereare no orderingambiguitiesand
no short distance singularitiesin 2’. In this form .9’ can be regardedas a
“kinematical” constraintwhoseaction on the wave functional is just given by the
transformationof thefields undersupersymmetry.Below we will seethat it is even

possibleto exponentiatethis generatorto obtain a finite supersymmetrytransfor-
mation. -

The constraint 5”, on the other hand, is a secondorder operator in our
representationand is therefore “dynamical” like the hamiltonian constraint ~‘.

Explicitly, we have

= fd2x[4ie~t~ D,çli,.y~’q~ + Ifla Tr(7Y~) ~_-

- (Y”fl)a( - ~~x)]~ ~ (5.4)

In contrastto 5”, 5” must be regularizedbecauseit containsproductsof func-
tional differential operatorsat coincidentpoints.This can bedone for instanceby
smearingall operatorswith a regularized0-function OA(x, y) accordingto

p9(x) —~9A(x):=Jd2y OA(x y)~~9(y), (5.5)

where A is a regularizationparametersuch that limA ~.O OA(x, y) = 6(x, y). De-
noting the regularizedconstraintby 5’~,we automaticallyobtain a regularized
hamiltonian from the regularized commutator of 5” with S”~ that is obtained
from (4.38). In the remainder,wewill simply assumethat our formal manipulations
canbemaderigorousby means of a suitable regularization.

In additionto the problem of regularizationthereis also an operatorordering

ambiguity in the definition of 5”, as onecanplacethedifferential operatorseither
to the left or to the right “. Whicheverprescriptionwe choose,we then define the
ordering of the bosonic constraintsoperatorsby the right hand side of the
commutator(4.38),so all ambiguitiesdisappearoncewe havefixed theorderingof
5”. Relying on formal manipulations,one canconvinceoneselfthat any changeof
orderingin 9’ producesa singulartermproportionalto

— 8
iO(x, x)4)~y”~—~-~-, (5.6)

where the overall factor dependson which terms are interchanged.In (5.4), all

* Or in between.
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differential operatorshavebeenplacedto the right. Remarkably,andin contrast
to ordinary gravity, it turns out that the singular contributionsprecisely cancel
whenoneinverts this orderingby placingall differential operatorsto the left, so
that the two orderingprescriptionsin fact coincide! This changeof orderingalso
reversesthe order of canonicallyconjugateoperatorson the right handside of the

commutatorsin (4.38).
In order to be able to interpret the quantumconstraints5°’I’=5”~I’= 0 as

squareroots of the quantizedbosonicconstraints,andespeciallytheWheeler—De-
Witt equationZW = 0, we would like to find an operatororderingprescription
such that in the quantizedversionof (4.38), the constraintoperatorson the right
hand side always appearto the right of the field-dependentstructurefunctions.
Otherwise,therewill be extracontributionsfrom the bosonicconstraintoperators
actingon the structurefunctions,when(4.38) actson a wave functional, andthe
constraintalgebrawill be“anomalous”.Let us thusput all differential operatorsto
the right as in (5.4) andrecalculatethe commutator(4.38),now paying attentionto
theorder in which the operatorsappear.After some algebra,we arrive at the same
resultwith exactlythe orderingindicatedin (4.38). In particular,the operatorT is
properlyordered,i.e. with the differential operatorsto the right; this is important

becauseotherwiseT would not only generateU(1) transformationson the fields
but extra singularterms(the orderingdoesnot matterfor the Lorentz generator
L~becauseYa is traceless).We also observe that the last commutator in (4.38)
remainsthe sameif 5” is placedto the left becausethe singulartermsagaincancel
by virtue of the Fierzidentity

e’3ifi~y”~4),y~fl’E”iff
1fl

4)~fl’• (5.7)

In summary, all constraint operators appear in the desired order, except for the
diffeomorphismgenerator,which appearsin the “wrong” order,i.e. to the left of a
structurefunction.Consequently,the equations5”~I’= .Y~1’= 0 imply that Z~I’=

L~P= Till = 0, but not Z~W= 0. This meansthat a solutionof the supersymmetry
constraintscannotbe diffeomorphisminvariant,althoughit would satisfythe other
constraints.We note that a similar “anomaly” wasalreadyencounteredin ref. [4],
andwasthereidentified as the basicreasonwhy the solutionsof ref. [4] fail to be
diffeomorphisminvariant,despitethe fact that theyare formally annihilatedby the
hamiltonianconstraint.Anothersomewhatbothersomefeatureis that the ordering
inside Zk asobtainedfrom this commutatoris preciselyas in (4.34), i.e. with ~*

to the left of ~k (all the otheroperatorsin Zk are in the “correct” order).This
means that in addition to diffeomorphism Zk (or rather 2~)will generate
anomaloussingulartermswhenactingon the scalarfields.

We could now try to cancelthe anomalouscontribution by some intermediate
reorderingof the constraintoperators(notethat simply revertingthe order of the
operatorswill not do, becauseboth 5” and 5” remain the sameas we already
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explained).Commuting Zk through y, = efy~to the right, we pick up a singular
term

E~dZk~ylfl=E~�y1i7~~“k+ (gy”~ Ay~~—2Ey”’qLa)8(x, x), (5.8)

wherewe disregarda term involving a derivativeon 0(x, x). Herethe third term
canbe ignored, as it is proportionalto the Lorentz constraintL~,butthe second
term constitutesananomaly.It can be cancelledby a suitablereordering“inside”
the constraintoperators.Unfortunately,apartfrom the ratherartificial orderings
requiredfor this cancellationto work, this procedureleadsto new “anomalies”,
which mustbe cancelledin turn. We haveso far not found any orderingprescrip-
tion that would remove all anomaliesand maintain the desiredorderingof the
quantumconstraintalgebra,but we anyhow would not expect that this problem
canbe solvedsimply by a clever reorderingof the operators.What is reallyneeded,
but unfortunatelyunavailableat this point, is aproperlydefinedscalarproducton
the spaceof physical states.

Given thisstateof affairs, we believethat a morereasonableoptionis therefore
to give up diffeomorphisminvariance(at leastin any conventionalsense)of the
wave functional, replacingthe constraintsZ and Zk by a single(matrix valued)

newconstraint.5t’ := — C~ZkYl,whoseorderingis definedby the commutatorof
.9’ with 5”, but whosephysical significanceis obscure.In the remainder,we will
tentatively adopt this point of view, and discusspossible ansätzeto solve the

supersymmetryconstraints.We havealreadyseenthat 5” is homogeneousof the
first degreein thefunctionaldifferential operators,while the conjugateconstraint
operator5” is homogeneousof the seconddegree,andthereforemuch harderto
solve. We will now demonstratehow the constraint9’il’[4)] = 0 canbe solvedin
full generalityby the functional analog of the method of characteristicsknown
from the theoryof first order partial differential equations[35]. Before going into
the details,however,two remarksarein order.First of all, il’ 1 trivially solvesall
the constraintsif the differential operatorsareplaced to the right (this is not true
if anotherand inequivalentordering is chosen).Secondly,given one non-trivial
solution (i.e. ~l’~ 1), we can constructmany moresolutionsby applicationof the
conservedcharge& constructedat the end of the sect. 3 (cf. (3.35)). By use of
(3.36),oneshowsthat

[&, s”[fl] = k’~$;;~[~]]=0. (5.9)

Therefore ~‘á~Wsolves the supersymmetryconstraintsif il’ does.It is in this sense
that SL(2, ER) (and the correspondinghidden symmetry groups for higher N

supergravities)canbeviewedas “solution generatingsymmetries”of the quantum
constraints[9]. It would be interestingto checkwhetherthis symmetryis unitarily
realized on the spaceof physical states,in which case one could evengenerate
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infinitely many solutions out of a given non-trivial one.However, this question

againhingeson the unresolvedproblemof the scalarproduct.
In order to usethe method of characteristics,we mustdeterminethe orbits in

functional spacegeneratedby the actionof the operator5”. This is equivalentto
exponentiatingan infinitesimal local supersymmetrytransformationwith parame-
ter ~ = ~(x) so as to obtain the correspondingfinite local supersymmetrytransfor-
mation. Although this would be a formidableproblem in general,in the case at

handthe solutionscanbe obtainedin closedform, becauserepeatedapplicationof
the supersymmetrygenerator5” on any of the fields gives zeroafter at most three
steps.Labeling the “initial” fields by the superscript~ we thusfind

x(~)~ 7(e) =70~(1 +~X(O)Y*)

~ p*(~) = p*(O) P1(i) = + ~ ~ Q,(~)= Q~) — 2iPj*(O~X(o),

Af(~)=A~,°~”— 2p*(O)~.yaX(O)

4)~(~)=D~°~—2P,.*~~O~t/O)~ ~ (5.10)

Hence Pf’ and x are inert, whereasthe other fields transform in a relatively
simple fashion * sinceonly the gravitino field evolveswith terms quadratic in ~.

The trajectoriesdescribedby the fields 4(e) in functionalspaceas ~ is variedare
the orbits underlocal supersymmetry.This fact is reflectedin the identity

9’[~, 4)(~)}~[4)(~)]=fd2x ~(x)0 ~[4)(~)]. (5.11)

The mostgeneralsolution of the quantumconstraint 5”il’ = 0 is now obtainedby

choosing~I’suchthat (0/0~)’P[4)(~)]= 0, i.e. constantalong the trajectoriesgiven
by the “evolution equations”(5.10), and by prescribingarbitraryvaluesof il’ on
some (infinite-dimensional)hypersurfacein functional spacewhich is nowhere
tangentto the supersymmetryorbits.

In practice, choosing a functional hypersurfaceamounts to imposing some
gaugeconditionon the gravitino.For example,let us choosec’i/i, = 0, where c’(x)
is an arbitrarynon-vanishingvectorfield. Given an arbitraryconfigurationof the
fields 4) (which, in general,will not satisfy the gaugecondition), we must first
determineto which supersymmetryorbit it belongs.This requiressolving the first
order partial differential equationfor ~,

c’i/i,(~)= c’(D,~_ 2P,*~X~+ 4),) = 0. (5.12)

* Herewe assumethat all the fieldsare complexifiedto makethechiral supersymmetrytransformation

well-defined.
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We note the following subtletiesabout this (and similar) gaugeconditions. For
arbitraryandtopologicallynon-trivial spacelikesurfaces,the vectorfield c’(x) will
in generalhavezeros,at which the gaugecondition degenerates.Secondly,a given
i/i, is gaugeequivalentto a configuration satisfying c’l/J, = 0 if and only if the
solution ~ is singlevaluedon the spacelikesurface, i.e. obeys ~, dx’ d,~= 0 for
any closedcurve y. Then ~, which dependson the initial fields 4), is the finite
supersymmetrytransformationparameterconnectingthe given configurationof
fields to the gaugehypersurface.We now simply define

(5.13)

with ~ from (5.12),where ~P[4)(~)]is given by the previouslyassignedvalue of il’
on the gaugehypersurface.Incidentally, the differential equation(5.12) is again
solved by the method of characteristics,but now in ordinary, not in functional
space.Consequently,the transformationparameter~ is completelydeterminedby
(5.12)only afterspecificationof suitableinitial values.

To gain a somewhatdifferent perspective(and possibly also to establisha
connectionwith thework of refs. [4,5]), wewill now considerwave functionalsthat
do not dependon the fields on the whole spatial surface,but aresupportedonly
on a given set of curves c(s) determinedfrom theequations~‘(s) = c’(x(s)) where
c’(x) is the vectorfield introducedin (5.12)(the integralcurves x’(s) are just the
characteristicsof (5.12)).Along c(s), we now considerthe SL(2, ER) x SO(2)valued
gaugepotential (rememberSO(2) isjust the helicity groupof the N = 1 supergrav-
ity in four dimensions)

~y~(Af — 2Pj*~y~~X)+ ~i(Q, — 2iP,*~X), (5.14)

where ~= ~(4)) is determinedfrom (5.12). Note that the connection~ also
dependson the bosonic andfermionicmatter fields; it is just the gaugepotential
occurring in the covariant derivative on 4), shifted by a finite supersymmetry
transformationaccordingto (5.10).Next introducethe pathorderedintegral

~(a, b) =~ exP(fdsc’(x(s))di(x(s)))~ (5.15)

where the curve c is parametrizedsuch that c(0) = a and c(1) = b are the initial
and end points connectedby the curve c(s), respectively.Computingthe variation
of 7~underlocal supersymmetry,we obtain

[5”’[fl, I~(a,b)]

=f
1dsc~(x(s))I~(a,x(s))8d,(x(s))Tk(x(s), b), (5.16)
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with

= _y P*~yaX+ ~ + Pj*(0~X— 0~y”~y~). (5.17)

Here,the variation0~mustbe determinedfrom eq.(5.12).Namely,varying(5.12),
we find that aftera little algebraanduseof theidentity2~A’~= —~x~ — ~yaX ~‘

this equation reduces to

c’ D,(.~(~))(0~+~) = 0. (5.18)

The solution is thus

= —~(x)+ (0~+~)(a)T~(x,x), (5.19)

wherex = x(s) is any point along the curve.If the initial value ~ ~(a) is chosen
in sucha way that ~ + ~(a) = 0, thegaugepotential .nt’~is invariant,andthe right
handside of (5.16)vanishes.A solution,which is also invariantunderthe U(1) and
Lorentz constraintsis then easilyobtainedby closing the curve into a ioop and
taking the trace.Thesesolutionscan be regardedas “supercovariant”extensions
of the solutionsfound in ref. [4]. We havenotchecked,however,whetherthey are

also annihilated by the second order constraint 5”’. We note that for 0~(4))= —

one can construct many other invariants: since all the 4)(~)in (5.10) are invariant
with this choiceof ~, an arbitrary functional of them will also be invariant. In this
respect,thereis nothing specialaboutloop functionalsas opposedto functionals
that aresupportedon the whole spacelikesurface.

Appendix A. Decouplingof canonical variablesfor N> 2

In this appendixwe explain how the redefinitionof the spin connectionworks

for the higher N theories.We will not discussthesemodelsin detail here,but
refer the readerto ref. [28] for further explanations.In analogywith (4.8), we
proceedfrom the ansatz

A~,:=A,1” +B,1”, B,1” := ~iE e,1b~4yCxBYAE’ (A.1)

wherexA are the matter fermions,which transformas spinorsunderH. Observe
that the new spin connectionwill be complex just as for N = 2. YAE is an
antisymmetricmatrix to be determinedby requiring decouplingof the canonical
variables;wewill find that 7~ is a complexstructure,i.e. 72 = — 1. Insertingthis
ansatzinto (2.3), we obtain

F =F’ —2D’B”= BbBC A2p.L~a ,1va [~ vJ 6abc ~ ~, ,
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where the derivativeD, is covariantwith respectto the Lorentz groupSO(2, 1)

and the gaugegroup H (see ref. [28] for the precisedefinitions).As in sect. 4, we
may replacethe original spin connectionby A~” in the lagrangian.Up to a total

derivativewe then have

= +e”’”e,~”F,,’~~— ~iee”~~ D,~(,~V1y”x”JAB)

_1 A B a-. ,—C D a-.

4ex x ~BCXX ~DA,

~E1LVPIIJ,~IDVI/JP’ = ~g~LVPifJ~I D,~IIJ~’— +iC~~XA1IJ,~I~ JAp~ (A.3)

The contributionto the kinetic termof thefermion is slightly morecomplicated

than in the N = 2 case,becausethe covariantderivativeactson 7, too:

D,~(~y”~”JAE) = 2~y” D~xB7,~+~Aya~B D~JAE,

= ~ J]AE + Q,~[F”, J]AB. (A.4)

If the lastexpressiondoesnotvanish,i.e. if 7 doesnot commutewith thewhole
gaugegroup H, therewill be a mixing of complexifiedspinorsand their Dirac
conjugates.Since 7 generatesa U(1) subgroupof H, D,.~JAE= 0 wheneverH has
a U(1) factor, i.e. wheneverthetargetspaceis a Kaehlermanifold.This is the case
for the theorieswith N = 2 mod 4 [281. For N # 2 mod4, manifest invariance
underthosegeneratorsof H which do not commutewith 7 is lost. For instance,
the manifest SO(16) invariance of N = 16 supergravity is thereby broken to
SU(8) x U(1).

Inserting everythinginto the lagrangiangiven in ref. [28] and dropping the

primes on the redefinedspin connection,we get

= +e~”e,.f~ + ~8~~’P1f~DViIJI~’,

= — ~ +

+ ~E’~”(I4’EF~ + iO’ ),~BiIj,~:~

= — +e~y” D,~xB(0AE+ iJAE) — i—AB J~x_CxIi JñÄ

+ ~iekAyI2Xhi D,,~JAB+ otherx
4 terms, (A.5)

wherewe havedecomposedthe lagrangianas in (4.5).
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The momenta of the dreibein, spin connection, gravitinos andfermionsarenow

0.9’
Pa’ = = 0,

859
H = —--— = ~e”e

“ 8A~

02’
= = —

= = ~x~ey’(8,~+ iJEA). (A.6)

Observethat AA is complex and thusno longer a Majoranaspinor. The Poisson
bracketsread

{ef, p~,’}= 8~8/, {Af, Hb’} =

{ ~‘ 4’) = ~ {~-‘~‘,4)~’,~}= 8j8”8aí~~ (A.7)

andthe full set of secondclassconstraintsis

J~:=p~,’,

Z’==H1_A ii

2~ ja’

AAa A,~— ~.4’(Cey’),3~(8BA + iJEA),

F~’:=i~’+~e”ilij,C~,~. (A.8)

To obtain the Dirac brackets one has to invert the matrix of Poissonbrackets of
theseconstraints.The non-vanishingcomponentsof this matrix are

{P~,z~}=

{ P,,’, A~}= — ~x~(CYc)a~(0AA + iJA4CabcC”et,

{ ~a’ A~} = (Cey’)~p8AE,

{ r,j’, r~-’}= C”8’~Cat
3. (A.9)
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The inversematrix is foundto be

C(Pa’, zi) =

C(Z~,Zj~)= — e,Jh~
1ee”‘ee”,~’1x’~(0AB +7Ac7c4,

c(z~,AA~)= h_iC~uJce,b(0AB — iJA$(ey’C)~,
34’,

c(i~”,T,~’)= —e,10’~C~. (A.10)

The bracketbetweenAf and As” is easily seento vanish if C(Z~,Zt) vanishes.
This is the caseif andonly if JAEJ~= ~

0Aó~ HenceJAE is indeed a complex

structureas previouslyasserted.With y2 = —1, the combinations

~(0AE ±iJAB) (A.11)

becomeprojection operatorsacting on the fermions. This is importantbecause
only then the numberof physical fermionic degreesof freedom stays the same
after complexification: we are simply trading d-dimensional real spinors for
id-dimensionalcomplexones.However, as alreadypointed out above, the corn-
plexified spinors will no longer transform linearly under the group H unless
N=2 mod4.

Using the formula (4.15) we obtain

{ Af, AJ”} * = 0, (ef, ejb}* = 0, (AI”, ejb} * = 2s,
1~”

1’. (A.12)

Furthermore,

A,~,X~}* = 0, {XAa~AE~}* = 0. (A.13)

This shows that the AA are indeed good canonical variables as their brackets

decouplefrom A,”. On the other hand,the original real spinors~A are not, as
they mix with eachotherandthe spin connectionunderDirac brackets.However,
the correct variables are now easy to guess; they are

fl/I :=~ga~~~I= + iJAE)x’1, (A.14)

and are relatedto AA by AA = ~Aeyt where the bar on 77 denotesDirac conjuga-
tion. It is now straightforwardto checkthat

(Af, nl* =0, {fl~~n)~ 0, {n~~~~}* = ~0~0a~• (A.15)

This completesthe proof that the canonicalvariablescan be decoupledby the

redefinition(A.1).
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