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We discuss the canonical treatment and quantization of matter coupled supergravity in three
dimensions, with special emphasis on N =2 supergravity. We then analyze the quantum
constraint algebra; certain operator ordering ambiguities are found to be absent due to local
supersymmetry. We show that the supersymmetry constraints can be partially solved by a
functional analog of the method of characteristics. We also consider extensions of Wilson loop
integrals of the type previously found in ordinary gravity, but now with connections involving the
bosonic and fermionic matter fields in addition to the gravitational connection. In a separate
section of this paper, the canonical treatment and quantization of non-linear coset space sigma
models are discussed in a self-contained way.

1. Introduction

The search for solutions of the Wheeler-DeWitt equation [1] is one of the key
issues of present day research in quantum gravity (for a recent review and many
further references, see e.g. ref. [2]). Unfortunately, progress has been severely
hampered by technical problems, most notably the fact that the Wheeler—-DeWitt
equation is a non-polynomial functional differential equation that is even difficult
to define properly. The equation can be substantially simplified by retaining only a
finite number of degrees of freedom and thereby converting it into an ordinary
partial differential equation (which is still not easy to solve); this is the so-called
“mini-superspace approximation”, see e.g. ref. [2] for further explanations. An-
other, and perhaps more promising attempt to come to grips with the Wheeler—
DeWitt equation, which does not involve any mutilation of the physical degrees of
freedom, is based on Ashtekar’s new variables (see ref. [3] for a recent summary
and many references). The main advantage of this approach, which so far works
only in three and four spacetime dimensions, is that the canonical constraints
become polynomial, which in turn facilitates the search for solutions. Indeed, it is
then possible to construct formal solutions to all the constraints of pure quantum
gravity in four dimensions [4,5]. At a kinematical level, one can also incorporate
matter in such a way that the constraints remain polynomial; however, little
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progress has been made so far in extending the results of ref. [5] to matter coupled
theories, but for special cases generalizations of the Wilson loop variables may be
constructed [6]. Furthermore, it is not easy to see what has become of the
singularities of perturbative quantum gravity in this approach. As a consequence, it
is far from clear how the requirement of quantum mechanical consistency could
possibly affect matter couplings in this approach, whereas experience with string
theory [7] and 2d gravity [8] would make us expect such consistency requirements
to impose stringent constraints on the allowed theories. In our opinion, the
inclusion of matter couplings and their proper treatment beyond the purely
kinematical aspects remains a major open problem. The present work constitutes
an attempt to address this problem in the context of three-dimensional supergrav-
ity.

This paper, then, deals with the canonical quantization of matter coupled
supergravities in three dimensions. It is based on and considerably extends our
previous results [9,10], where mostly classical aspects were studied. In sect. 2, we
review pure (topological) supergravities, which exist for any number of local
supersymmetries; this section will also serve to set up our notations and conven-
tions (see also ref. [10]). The canonical treatment of non-linear sigma models is
discussed in sect. 3, where we show that there exists a choice of canonical variables
which renders the constraints polynomial. Since the results described there might
also be of interest in other contexts, and because the literature on this topic seems
to be scarce (see ref. [9] for the canonical formulation of N = 16 supergravity and
ref. [11] for a discussion of flat space sigma models), we have aspired to make this
section self-contained as far as possible. Sect. 4 is devoted to a detailed study of
the N =2 theory, which represents the simplest non-trivial example of a locally
supersymmetric theory with matter couplings in three dimensions. Since the
generalization of these results to N > 2 is to a large extent straightforward, we
have relegated the discussion of the higher N theories to an appendix, where we
explain the redefinition of the gravitational connection required for the decoupling
of the phase space variables. A central part of this paper is sect. 5, where we
quantize the N =2 theory and analyze its quantum constraint algebra. In particu-
lar, we will find that at least some of the operator ordering ambiguities present in
the bosonic theories disappear due to local supersymmetry. Unfortunately, apart
from the trivial solution ¥ = 1, we have so far not been able to find solutions to all
of the constraints. Nonetheless, we can report some partial progress in this
direction by demonstrating that at least one half of the supersymmetry constraints
can be solved by a functional analog of the method of characteristics; this requires
the exponentiation of an infinitesimal local supersymmetry transformation to a
finite transformation. Furthermore, we discuss a class of partial solutions based on
Wilson loop integrals over a connection constructed out of the gravitational fields
and the matter fields, which can be regarded as a “supercovariant” extension of
the Wilson loop functionals considered in ref. [4].
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As is well known, supergravity theories are generally characterized by rather
complicated lagrangians with non-polynomial scalar self-interactions and quartic
fermionic terms. Readers might therefore wonder why one should choose to study
them rather than models with simpler matter couplings such as scalar or Dirac
fields without self-interactions. One of the main reasons why we prefer these
models over simpler ones is the geometrical structure that is always present in the
matter sectors of supergravity theories and that is at the origin of their “hidden
symmetries” [12]. We believe that these symmetries may eventually play an
important role in improving our understanding of the matter coupled Wheeler—
DeWitt equation for the following reason. Associated with the hidden symmetries,
there are non-trivial observables (or conserved charges) in the sense of Dirac,
which act on the space of solutions of the quantum constraints. These symmetries
may therefore be interpreted as “solution generating symmetries” for the
Wheeler-DeWitt equation. An intriguing aspect is the emergence of infinite-di-
mensional symmetries acting on the space of classical solutions of the gravitational
field equations in the reduction to two dimensions [13] (for more recent develop-
ments, see ref. [14]). If the theories could be quantized in a way compatible with
these symmetries, the Wheeler—DeWitt equation would become integrable in this
reduction.

The fact that pure gravity in three dimensions is much easier to quantize than
theories of gravity in higher dimensions has been fully appreciated only relatively
recently, although classical aspects (absence of gravitational excitations, i.e. gravi-
tons, in empty space, conical singularities at the locations of matter point sources,
etc.) have been understood for a long time [15]. Since Einstein’s action is superfi-
cially non-renormalizable in three dimensions, the theory was for a long time
thought to make no more sense as a quantum theory than gravity in four
dimensions. The discovery that the quantum theory can be solved exactly came
thus as quite a surprise [16] (see also ref. [17] for further studies of the quantum
theory). An important ingredient in that work was the reformulation of Einstein’s
theory as a Chern-Simons gauge theory. Here, we will, however, not make use of
this formulation, but rather adopt an alternative and equivalent version based on
ref. [18], which is a direct extension of Ashtekar’s formalism to three dimensions,
and which provides an alternative route to solving the quantum theory *. Both
formulations in an essential way exploit the fact that pure gravity in three
dimensions is a topological theory, whose physical phase space is related to the
moduli space of flat SL(2, R) connections and hence finite-dimensional for each
genus. This result obviously relies on the use of the gravitational (or spin)
connection as the primary canonical variable and would be much more difficult to

* We note that there is no reality constraint on Ashtekar’s variables in three dimensions unlike in four
dimensions [19]. However, this feature, which may be viewed as another virtue of three dimensions, is
lost when gravity is coupled to fermionic matter, as we will explain in sect. 4 and the appendix.
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obtain in the usual metric formulation of quantum gravity. Similar statements
apply to pure supergravity in three dimensions, which has been discussed exten-
sively in ref. [10], where a solution to the quantum constraints of pure N=1
supergravity has been presented, and in ref. [20], where a Chern—Simons formula-
tion has been used. A common feature of the topological theories is the existence
of a complete set of observables in the sense of Dirac, based on Wilson loops with
or without dreibein and gravitino insertions. By means of these observables, the
solutions to the quantum constraints can be obtained by applying the observables
to a suitable “vacuum functional”.

There are several reasons for studying locally supersymmetric theories rather
than non-supersymmetric ones. Local supersymmetry leads to a constraint which
can be thought of as the square root of the Wheeler-DeWitt constraint, and is
related to it in the same way as the Dirac equation is related to the Klein—-Gordon
equation (as was first observed in ref. [21]). However, due to the technical
complexities, the early papers on canonical supergravity [22] make no attempt at
exploiting this idea, but content themselves with setting up the canonical formalism
and discussing the classical constraint algebra in terms of Poisson (or Dirac)
brackets. The first investigation of the quantum theory appears to be ref. [23],
where the metric formulation is utilized. More recently, there have been several
treatments of canonical quantum supergravity in the mini-superspace approxima-
tion [24]. A well-known feature of supersymmetric theories is the absence of
certain short distance singularities. From the analogy with the so-called non-renor-
malization theorems of perturbative supersymmetric quantum field theories [25]
and explicit calculations in perturbative quantum supergravity [26] one would
expect local supersymmetry to mitigate (if not eliminate) the singularities occurring
in the canonical constraint operators as well, and thereby eliminate some of the
operator ordering ambiguities that afflict the canonical treatment of non-super-
symmetric theories *. In sect. 5, we will show that this is indeed the case for the
constraint generators of supergravity. In particular, one of the supersymmetry
generators is a first order functional differential operator and manifestly free of
ordering ambiguities and short distance singularities, while the other is a second
order operator, and the absence of ordering ambiguities is due to a non-trivial
cancellation. These results provide a first glimpse as to what a non-perturbative
non-renormalization theorem in canonical quantum supergravity might look like.
However, it must be stressed that the question of non-perturbative divergences and
operator singularities cannot be resolved until a scalar product in the space of
physical states has been found.

* For instance, the solutions of refs. [4,5] are based on the prescription that all functional differential
operators should be moved to the right. If one chooses the opposite operator ordering prescription,
one obtains very different, and presumably inequivalent solutions [27] (since the solutions of ref. [27]
require a non-vanishing constant in contrast to ref. [S]).
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While writing this paper, we received three preprints dealing with canonical
quantum N =1 supergravity in four dimensions. Ref. [36] discusses a supersym-
metric extension of the solution found in ref. [27] (with non-vanishing cosmological
constant) and makes use of the Ashtekar formulation. Ref. [37] is based on the
metric formulation and proposes a solution very similar to the Hartle—Hawking
wave functional; see, however, ref. [38] for a criticism of this ansatz.

2. Pure gravity and supergravity in three dimensions

The geometrical background for both pure and matter coupled supergravity is
characterized by a general three-dimensional spacetime manifold, which is
parametrized by local coordinates x*, y*,.... We use Greek letters u, v,... =0,
1, 2 for curved indices in three dimensions and Latin letters a, b,... for tangent
space indices transforming under the local Lorentz group SO(1, 2) = SL(2, R).
With e, the usual dreibein, the spacetime metric is given by g,, = eu“e,,”nab; it
has signature (— + + ). The Levi-Civita tensor with flat indices is defined by
g2 = —g,,=+1; it is related to the Levi-Civita tensor density by e*** =

ee,‘e’ye’ &,y Instead of the usual (first order) spin connection w,,, it is
advantageous to use the dual connection
a_ _ 1_abc
A= — 787 @ e (2.1)

in terms of which the Lorentz (i.e. SO(1, 2)) covariant derivative acting on a
three-component vector V¢ reads

DV,=3V, e, ALVE. (2.2)

The use of A,° rather than o, simplifies the canonical treatment considerably;
in fact, as a canonical variable, this field is the direct analog of Ashtekar’s variable
in three dimensions. The field strength of the connection A4,* is related to the
Riemann tensor by
b 1
F, = 6”A,,a —0,A,, — €, A, A = —3¢

uwva

abcRy.Vbc (23)

so that Einstein’s action becomes

S=5[dx eR =1 [d*x e*%e,°F, (2.4)

vpa-*

To introduce fermions, we make use of the real y-matrices y,=io,, y; =0,
and y, = o3, which satisfy

Y¥p = nabl - sabc’yc' (25)
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The matrices y* generate the group SL(2, R) (the covering group of the Lorentz
group SO(1, 2)); because this group is real, a reality constraint is not necessary
unlike in four dimensions *. The Lorentz covariant derivative on a spinor e reads

D,e= (3” + %yaA#“)e. (2.6)
In addition to the dreibein e, and the connection field A,% we need N

gravitino fields ‘/’;f’ where I, J,...=1,...,N. The Rarita—Schwinger action in
three dimensions reads

S=1[d% e*g Dy, D) =V,0)+ 14, 4. (27)

The sum of (2.7) and (2.4) is invariant under the local supersymmetry transforma-
tions
o= &'y, :, 5e¢,f =Du61' (2.8)
It may seem curious that the combined action is supersymmetric for arbitrary N,
but this can be understood by noting that the topological bosonic and fermionic
degrees of freedom need rnor balance in a supersymmetric theory unlike the
propagating degrees of freedom. The fact that the above theories are topological is
straightforward to verify. Namely, varying (2.4) with respect to the dreibein we
immediately deduce that the field strength F,,, must vanish ** (note that, in three
dimensions, the Rarita—Schwinger action is independent of the dreibein and
therefore does not contribute to this variation). Hence, the connection A4 . 1s pure
gauge, at least locally. However, 4,° may still be non-trivial in that there may not
exist a globally defined function g(x) € SL(2, R) such that A4, = 34 %y, =g~ ' 4, 8.
Similar conclusions hold for the gravitino fields (//,f. The Rarita—Schwinger equa-
tion s“”PD,,d;p’ = 0 implies that a/;,f, too, is locally pure gauge: we can always find a
locally defined spinor ¢’ such that ¢, =D,¢’ (of course, this is only true if
F,“,(A) = 0). Again, an obstruction only arises if the spinor ¢’ cannot be defined
globally.
As is customary, for the canonical treatment we will assume the spacetime
manifold to be the product of a spatial two-dimensional hypersurface and the real

e e

* Our conventions regarding spinors are as follows: Dirac conjugation is defined by ¥ = X*iyo. The
charge conjugation matrix is C = y° and obeys the usual properties CT = — C and (Cy*)T = + Cy°.
Majorana spinors satisfy ¥ = yTC. Later on, we will make use of the Fierz identity yoA¢ =
— 3Aox¥ — sAy% Xy, for anticommuting spinors x, ¢, A and . The underlying completeness
relation can also be expressed directly in terms of y-matrices y75Ya,5 = — 8,00,5 +28,50,5.

** The variation with respect the connection 4 o~ tells us that the covariant derivative of the dreibein
is equal to a fermionic bilinear (torsion); this equation can be solved for the connection in terms of
the dreibein and the fermions (“second order formalism” [26]).
*** Standard references on the canonical formulation of gravity are refs. [26-31}. For a general
discussion of constrained hamiltonian systems, see refs. [29,32].
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line, parametrized by the time coordinate ¢ [16]. Derivatives with respect to ¢ are
denoted by a dot. Local coordinates on the spacelike hypersurface will be denoted
by x’, y‘,..., or simply just by boldface letters x, y,..., so that the three-dimen-
sional coordinates decompose as x* = (¢, x*), etc. There is a corresponding split of
the three-dimensional curved indices u, »,... into a time index ¢ and spatial
indices i, j,..., so that u =(¢, i), etc. The Levi-Civita tensor density splits as
' =", where ¢/ = ¢, is the tensor density on the spacelike manifold.

Finally, we explain the canonical decomposition of the dreibein and the metric.
With e = det e,”, we define the lapse and shift variables by [30]

ni= egtt, ni ..=gti/gtt. (29)
The dreibein is thus parametrized by the Lagrange multipliers » and #‘, and the
remaining six components ¢, not all of which are physical phase space degrees of
freedom since three of them can be eliminated in principle by local Lorentz
rotations. The metric on the spatial hypersurface, its inverse and determinant are
then given by

hi=g;, hV=gi—e 'nn'n’, h=—en. (2.10)

The following polynomial functions of the dreibein components e will turn out to
be useful:

h' = hh'l = gikellg, | ee'd = —1gcgile, e, (2.11)
Furthermore, it is convenient to employ a “curved” basis for the y-matrices, which
is given by y,=ey, and ey’ = j&"y,y;; observe that these, too, are polynomial
functions of the dreibein components. Given two three-vectors X* and Y*, we
have
eX*Y, =nX,Y, —n"'h'XY,,
eX,y'y*Y, =nX,Y, —n hUX,Y, + n~ e X,ey'Y;
- EU(X,,%‘YJ‘ +Xi7an),
ey*X, =ey'X, +n"'evey'y, X,. (2.12)
The index n here stands for the component normal to the spatial hypersurface.

This component is defined by X, =X, +n'X; and is related to X* =g'"X, by
nX, =eX'.
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3. Canonical treatment of non-linear sigma models

In the introduction, we have already mentioned the general result that the
bosonic sectors of (extended) supergravities are governed by non-compact non-lin-
ear sigma models. We will now describe the canonical treatment of these models.
Since the results might also be useful in other contexts, we will temporarily ignore
all fields other than the scalars so as to make the discussion self-contained.
Because our main interest is the application of the canonical formalism to
non-linear sigma models coupled to a non-trivial gravitational background charac-
terized by the metric g,,, we will, however, keep the dependence on the metric
throughout; the flat space models are then easily recovered by putting g,, =7,,
everywhere. Matter coupled supergravity theories in three dimensions have been
completely classified recently [28]. In contrast to pure (topological) supergravity
theories, which exist for any N, the number of local supersymmetries is bounded
by N < 16 in the presence of matter couplings. The matter sectors of these theories
are described by non-linear sigma models of the non-compact type [12], whose
target spaces become more and more restricted with increasing N. More specifi-
cally, for three-dimensional theories, we have the following results [28]: for N =1,
2 and 3, the target manifolds .# are riemannian, Kihler and quaternionic,
respectively, whereas for N =4, the target space is locally a product of two
quaternionic manifolds associated with inequivalent N =4 supermultiplets. Be-
yond N = 4, only homogeneous (and, in fact, symmetric) target spaces are allowed.

The standard sigma-model lagrangian for an arbitrary riemannian target mani-
fold .# is given by

F=— %eg’“’Gmn((p) a,0™ d,0", (3.1)

where .# is parametrized by the coordinate fields ¢™(x) with m, n=1,...,dim .#,
and G, (¢) is a riemannian metric on .#. Obviously, the main problem here is
posed by the non-linear interactions induced by the geometrical form of this
lagrangian, and this problem also makes its appearance in the canonical formalism.
A first step in resolving the difficulties is to select (canonical) quantities that,
despite their explicit dependence on the coordinate fields ¢™, transform as tensors
under reparametrizations. Secondly, we will see that a further simplification can be
achieved by utilizing tangent space tensors (tangent space, or just “flat”, target
space indices will be designated by 4, B,...). Accordingly, we introduce a vielbein
E, (o) satistying

Gon(@) =E,*(¢)E ()45, (32)

where 77,5 is a flat metric in tangent space (which need not be unique); in the
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following, we will freely use this metric to raise and lower flat indices. We also
define

A m A
Pr=0,0" E,", (33)
The lagrangian then takes the simple form
F= _%eg‘“}P“APVBnAB. (3.4)

This is also the form that appears in the supergravity lagrangians to be used later.
The canonical momenta, which are conjugate to the coordinate fields ¢™, are
now easily calculated:

0% ,
p,, = 6(’? = —eg “Gmn((P) a,u,(Pn‘ (3.5)

The basic Poisson brackets are given by

{Pn(x), 0"(9)} = —8,5(x, ¥). (3.6)

Although the momenta do transform properly under reparametrizations (namely
as vectors, i.e. elements of the tangent space T,.# ), the coordinate fields ¢™ do
not; therefore, one must deal with non-covariant expressions at the intermediate
stages of every calculation if one uses these variables. The hamiltonian is given by

H= [dx(p,¢" ~2). (3.7)

Canonical quantization will be awkward to carry out in terms of the variables ¢
and p,, due to operator ordering problems and the concomitant short distance
singularities (which may also spoil general covariance in target space by “anoma-
lies”). In any case, quantization will require a definite ordering prescription for the
operators involving the momenta p,. Here, we find it convenient to employ
another set of canonical variables and to perform the quantization directly in terms
of them rather than in terms of the original variables ¢™ and p,,. This procedure
defines the quantum theory in an unambiguous way, as it corresponds to a definite
choice of operator ordering.
As our basic canonical variables, we choose the “composite” quantities

80

“DA =EAm(‘P)Pm, P,'A =0,0™ EmA(€°), (3-8)

P, =
48P
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where E /™ is the inverse vielbein. The hamiltonian (3.7) can also be obtained from
H(Py, ¢) = [d%(P,P* - 2). (3.9)

The variables P,, which we now regard as the momenta, evidently correspond to
an anholonomic basis in tangent space (whereas the p,, are like a coordinate
basis). Our choice is also motivated by the fact that the variables (3.8) are precisely
the ones which will appear in the supergravity constraints to be derived in later
sections.

To compute the canonical brackets of P, and P, we employ the basic Poisson
brackets (3.6). Of course, it does not matter at this point whether or not we use the
original fields ¢ and p,, for this purpose; afterwards, we can simply “forget” how
the results were derived. A straightforward calculation yields

{PA(x)’ PB(J’)] =0,5°(x) Pe(x)d(x, y),
{PA(x)7 PiB(y)} = (5531 —-QACB x))PiC(x)ﬁ(x, y)
(PA(x), BP(5)} =0, (3.10)

where €, =2E "Ep['3,E,  are the coefficients of anholonomy (by 4, we
denote the derivative with respect to ¢™). Here and in the remainder, spatial
derivatives 4, will always be understood to act on the first argument in the
§-function (i.e. x in (3.10)). The Poisson brackets (3.10) will be regarded as the
basic relations from now on. If we parametrize phase space in terms of the
variables ¢™ and the momenta P,, these brackets are reproduced by the general
formula

" of og g 8g of
d¢™(x) 8Ptx) 7 8¢™(x) SP(x)

(f. 8) =/d2x(EA

f dg

"'QABC(x)Pc(x)m m ;

(3.11)

where f and g are arbitrary functionals of ¢™ and P,.
The transition to the quantized theory is implemented by the replacement

" é
Py(x) 2> Py(x)= +iEAm(¢(x))W’

PA(x) = BA(x) =d,¢™(x) E,((x)). (3.12)
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The ordering prescription implicit in this replacement ensures that the relations
(3.10) can be directly replaced by quantum mechanical commutators (modulo
factors of i), and the geometrical structure of (3.10) is thus preserved.

At this point, not much more can be said if the target space .# is an arbitrary
riemannian manifold. For this reason and also in view of the fact that the target
manifolds of supergravity are usually constrained by local supersymmetry to be of a
very special type, we will now make further assumptions on the structure of .#.
The simplest possibility is to assume that the target space is a group manifold, i.e.
A = G for some Lie group G. Although the target spaces relevant to our investiga-
tion are not group manifolds in general, we discuss this case first since all relevant
formulas can be derived from it. This is because, as we will explain below, we can
formally treat the coset manifolds occurring in supergravity on the same footing as
group manifolds if we add suitable gauge degrees of freedom.

For group manifolds, we assume the vielbein (3.2) to be a left invariant vector
field; this means that

I¢™ ()

E(#(0)) =E(9) =5 (3.13)

where ¢ — @(¢) is a diffeomorphism induced by left multiplication. Then, the
coefficients of anholonomy and the flat metric are given by the structure constants
of G, viz.

"QABC = "fABC’ NaB =fACDfBDC’ (3.14)
where the structure constants f, - are defined through the commutation relations

[ZA7 ZB] =fABCZC (3~15)

for the generators Z, of G. The vielbein E,* can be explicitly computed by
introducing a matrix representation 7= 7 (¢™(x)) € G,

7, 7=E,"Z,, (3.16)

where as before 3, denotes the derivative with respect to the coordinate field ¢™.
From (3.3), we get the identification

PiZ,=08,0" 7 9, 7=7"19,7. (3.17)

The field theoretic model obtained in this way goes by the name of “principal
chiral model”; its lagrangian is simply obtained by substituting (3.17) into (3.4).
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From the results listed above, we can immediately derive the relevant brackets by
substituting the structure constants for the coefficients of anholonomy; in addition,
we can determine the brackets between the momenta P, and the matrices 7 (o).
The result is

{PA(x)’ PB(y)} = _fABCPCa(x’ ¥)s
(7'(x), Py(»)}=7Z,8(x, ¥), (3.18)

As a check, we can recalculate the brackets between P, and P? (cf. (3.10)) from
these formulas and (3.17).

The above formulas are not yet quite what we want, since the relevant target
spaces to be considered in the remainder are coset spaces rather than group
manifolds; however, the above brackets will nonetheless prove useful in that they
will enable us to compute the relevant Poisson brackets for coset space sigma
models as well. As is well known, any symmetric space can be represented as a
coset G/H; in the case at hand, the group G is non-compact, and H its maximally
compact subgroup [12]. There are now two equivalent formulations. One either
parametrizes the manifold .#=G/H in terms of coordinates ¢™ with m =
1,...,dim G/H as described above; or one introduces extra coordinate fields
u"(x) associated with the subgroup H (so that r =1,..., dim H), in which case the
coordinates (¢™, u”) parametrize the whole group G. If one uses only the physical
fields ¢™(x), part of the invariance under the isometry group G is realized
non-linearly. In the second case, the invariance transformations under the isometry
group can be realized linearly, at the expense of introducing an artificial gauge
invariance necessary to remove the unphysical degrees of freedom corresponding
to the fields u’(x). In the canonical formalism, this gauge invariance will lead to
constraints.

Since we prefer to make use of the second formulation, let us introduce a matrix
representation 7= Z"(¢™(x), u'(x)) € G. To get rid of the unwanted degrees of
freedom which are represented by the fields #"(x), we postulate in addition that
the lagrangian should be invariant under the transformations

7(x) 287 (x)h(x), (3.19)

with g€ G and A(x) € H, so that putting u" =0, we recover the description in
terms of the physical fields @™ (this gauge choice is sometimes referred to as the
“unitary gauge”). We split the generators Z of G into the generators X* of H
(a, B,...=1,...,r) and the remaining coset generators Y* *; the structure con-

* We hope that the dual use of the indices A4, B,... will not cause confusion; they label either all group
generators as in (3.15) or just the coset generators as here.
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stants are decomposed accordingly. For a symmetric space, we have f pc=f,pc=
0, and (3.15) reads

[Y4,YZ]=f*2 X7, [X*,Y?]=fB.YC,
[Xe, XP]=faB_X7. 3.20
Y

To write down the lagrangian, we decompose the Lie algebra values expression
7719, according to

719, 7= PAY, + WX, (3.21)

The lagrangian is then again given by (3.4). Note, however, that the sum over A
now runs only over the coset generators. As a consequence, the fields Q) do not
appear in the lagrangian (however, they do couple to the fermionic fields in its
supersymmetric extension); they are just the gauge fields required by local H
symmetry. So we see that it is the lagrangian that determines which degrees of
freedom are physical and which are not; we can convert the principal chiral model
into a coset space sigma model simply by omitting those P,f‘ corresponding to a
subgroup of H from the sum (3.4). Of course, for a non-compact group G, there is
only one choice of the subgroup H for which the hamiltonian is positive definite. If
we define the canonical momenta by

0Z 0%

A’ 8PtA, Qa:= 6Q;1

(3.22)

the absence of Q; from the lagrangian immediately implies the constraint Q_ = 0;
this must be interpreted as a weak equality in accordance with the general theory
of constraints [29,32]. The hamiltonian is now given by

H(Py, Qg ¢, u) = [x(P P + 0,08 ~2). (3.23)

We repeat that the main difference from the canonical point of view between the
principal chiral model and the coset space sigma model characterized by this
hamiltonian is that the momenta Q, corresponding to the subgroup H have
become constraints. Nonetheless, the combined set of momenta P, and Q,, still
obeys the same Poisson brackets as before; consequently, we can read off the
result directly from (3.18). So, we get

{PA(x), PB(J’)} = —fag’Q,(x)8(x, y),
{Qa(x)’ PB(y)} = —fusPc(%)8(x, y),

{Qu(2), Qp(9)} = —£os70,(x)8(x, ). (3.24)
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Furthermore,
{7(x), PA(y)} =7Y,5(x, y),
{(7(%), Qu(9)} =7X,8(x, y), (3.25)

which shows that the Q, generate local H transformations on 7.

To construct an operator representation for the P, and @, we could simply
take over formula (3.12) with an appropriate split of indices. The matrix E,*
would then have to be decomposed accordingly. The general parametrization of 7
in terms of ¢™ and u” adopted so far would, however, lead to formulas which are
somewhat unwieldy for practical calculations, as the physical and unphysical
degrees are difficult to disentangle. For this reason, we choose a slightly different
parametrization in terms of which the constraints are easier to solve. Locally, we
can always assume that the matrix Z°(¢, u) can be written in the form

7 (¢, u) = Zy(¢)h(1). (3.26)
Then a straightforward calculation shows that
7719, 7= 0@, W) X, + E, (¢, W)Yy,
7 9. 7=E*(u)X,, (3.27)
where we have expanded the right hand side in terms of the subgroup and the

coset generators, thereby defining the various submatrices. Consequently, the
vielbein on G (which is a dim G X dim G matrix) is triangular:

. o EmA(§D7 u) Q;(‘P’ u)
V1elbem—( 0 E*(u) ) (3.28)

The advantage of this parametrization is that the dim G/H X dim G/H matrix
E,“(¢, u) can be identified with the vielbein on .#= G/H after a u-dependent
tangent space rotation. The inverse vielbein on G is given by

E;"(¢, u) —EAmQﬁEar(#” u)

. £ ) (3.29)

inverse vielbein = (

and E ™ can be identified with the inverse vielbein on G/H up to a u-dependent
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H rotation. Inserting these expressions into (3.12) and relabeling indices, one
arrives at the following operator representations:

Bx)miE | —2— — sy
A(x) L A 8qu(x) Qm B sur(x) ’

BA(x) =d,™ E,,

07 (x) = di9™ Q5 +du" E. (3.30)

The constraint @, is realized by the operator

\ 8
Q.(x) =iE, 5 (%) (3.31)

and depends only on the gauge degrees of freedom. Observe that the momentum
operator ﬁA can be viewed as a connection on the principal fiber bundle G —» G/H
with base space G/H and fiber H (it defines a “horizontal subspace” of T,,.,G at
each point); note, however, that we are dealing with functional, not ordinary
derivatives here. We recall that in the quantized theory, any physical wave
functional ¥[¢, ul must satisfy Qaq' = (; with the above parametrization, this is
simply solved by ¥ = ¥[¢]. We emphasize however, that the u-dependence of 15A
cannot be dropped since otherwise the constraint algebra (3.24) would not be
obeyed.

From (3.19) it follows that G acts as a group of isometry transformations on the
target space .# = G/H. The associated charge density #(x) (which is a matrix
with values in the Lie algebra of G) is obtained by sandwiching the momenta and
constraints between the matrix 2 and its inverse. Thus

F(x)=7(PY*+Q,X*)7 1. (3.32)

The charges
@=[d*x #(x) (3.33)

constitute the canonical generators of the isometry group, and generate the
isometry transformations on the fields, as can be verified from the relations (3.25).
Incidentally, this formula also remains valid in supergravity since the rigid group G
does not act on the fermions, or only via induced H rotations. The above
expressions for the charge differs from the one given in ref. [9] by the constraint
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generator of H gauge transformations, which precisely removes the fermionic
bilinears in the formulas given there.

To conclude this section, we give another and equivalent representation of the
operators (3.12) and (3.30), to be used in sect. 5. When working with a concrete
matrix representation 7, we can regard the elements of 7 as independent fields.
To be sure, we would then have to introduce second class constraints to ensure
that 2 remains an element of the group G. However, there is no need to enter
into the details of this construction here, as long as 7~ is always understood to be
an element of the group G in all formulas below. Let us simply assume that the
lagrangian is given as a function of the matrix field 2" (x) and its inverse 2~ (x) as
well as its “derivatives” PMA(x). Similarly, the physical states are assumed to be
represented by wave functionals ¥ which depend on 7', 7! and their spatial
derivatives. On any such wave functional, we define the momentum operators ﬁA
through their action on " and #~!, which is given by 15A7== i7Z, and IsA%*l =
—iZ, 7\ 1t follows immediately that [P,, Py]=if,,,CP.. Defining the matrix
valued derivative operator 8 /8% by (8/6% )pq =§/87,,, the operator represen-
tation for the momenta becomes

A

o
PA=iTr(WZA5—%), (334)

Since the matrices Z, generate the Lie algebra of G, the action of this operator is
tangent to the submanifold defined by the group G in the space of all matrices 7,
and hence does not depend on how we define the functional ¥[%?"] away from it. If
we are dealing with a coset space sigma model, the same remarks as before apply;
we simply have to split the group indices into subgroup and coset indices, and the
momenta corresponding to the subgroup become constraints. However, the solu-
tion to the constraint QaW = (0 apparently cannot be cast into a simple form in this
representation. Finally, we note the simple expression for the quantum mechanical
charge operator (3.33) in this representation; it is

]
@’=@’AZA, a, =fd2x TI’(ZAWE‘%). (335)

(If we are dealing with a coset space sigma model, the generators are &, and &,).
It is easy to check that & generates the global G transformations acting from the
left on %" according to (3.19). Furthermore,

[2,, 2] =0. (3.36)

In particular, the global charges commute with the constraints Qa for a coset space
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sigma model and are thus observables in the sense of Dirac, or “conserved
charges”.

4. The N = 2 theory

The simplest non-trivial example of matter coupled supergravity in three dimen-
sions is provided by the N = 2 theory [34,10]. We will here follow the presentation
in ref. [10], where this model has been described in great detail, and only
summarize its main features before moving on to the canonical formulation. In
addition to the gravitational degrees of freedom, the theory contains two gravitinos
! (I=1, 2), two matter fermions x' and x? and two (real) bosons that live on the
coset space SL(2, R)/SO(2). The fermions are real (Majorana) spinors, which we
will combine into complex (Dirac) spinors by defining ¢, = (1/ V2 X, + ip2) and
x=Q/V2Xx' +ix?. If the SI(2, R) symmetry is linearly realized, the fermions
transform only under the gauge group H. The case of abelian H is a little peculiar
as the relative normalization between the H generators and the coset (i.e. G/H)
generators is not fixed, unlike for non-abelian H. Consequently, the requirement of
local supersymmetry and H invariance does not uniquely determine the fermionic
SO(2) charges in contrast to the theories with N >3 *. Our charge assignments
agree with those used in our previous work [10] and coincide with the ones
obtained by dimensional reduction of N =1 supergravity in four dimensions
[33,26] to three dimensions (but differ from the ones that one would obtain from
the lagrangian given in ref. [28]). Thus the matter fermion y has charge + 2 and
the gravitino field ¢, has charge — %; the SO(2) group can then be interpreted as
the helicity group for the four-dimensional ancestor theory.

As explained in the foregoing section, we will parametrize the bosonic fields by
a matrix 2° which takes values in the group SIL(2, R). The unphysical degree of
freedom corresponding to the subgroup H is removed by postulating invariance
under local H transformations as in (3.19). In accordance with the notation used in
sect. 3, we denote the generator of the SO(2) subgroup by X, and the remaining
generators by Y! and Y 2. Again, we find it convenient to switch to a complex basis
Y=01/V2XY,+iY,), Y*=(1/V2XY"' —iY?). The SL(2, R) commutation rela-
tions then read

[X,Y]=2iY, [X,Y*]=-2iY*, [Y,Y*]=-2iX, (4.1)
and formula (3.21) becomes
779, 7=P}¥Y+PY*+(Q, X, (4.2)

* This distinction between abelian and non-abelian subgroup H was first emphasized by de Wit [39].



626 H.-J. Matschull, H. Nicolai / Canonical quantum supergravity

Remembering our SO(2) charge assignments and (2.6), we can immediately write
down the fully covariant derivatives on the spinors,

D, x =3,x + 34,°Y.x — 310, X,

Dp.dlv = Vu‘/’v + %AuaYal/j;L + %iQ}LdIV’

Dyef=Ve, — g“bcAubeW, (4.3)
The lagrangian of N = 2 supergravity is then given by
P=20+ 704 2O (4.4)
where
PO _ %Suvpe“apvpa + E#VPJ[.LDlep’
FO = —egh PP} + e,y y*x P} +eXy"y", P,
—3e0, 7 v x XU, — 1€X7* Y, ¥.X,
ZPD = —lexy*D, x + 3eD, Xv"x — YexXx X 4.5
2eXv"D, x + zeD, Xv*x — 7eXX XX- (4.5)

Apart from the contribution involving the gauge field Q,, Z© is identical with
the topological lagrangian introduced in sect. 2 (see (2.4) and (2.7)) for N =2. The
full lagrangian (4.4) is invariant under the local supersymmetry transformations

8:¥, =D, €+ 38,7 €X7°X
8., =&y, — v,
8,7 =xeY + exY *,
8. x= y“el”;, (4.6)

where IS,L =P, - @L X is the supercovariantization of P,. We refrain from giving
the variation of the gravitational connection A% as the variation of the action
under (4.6) is proportional to the torsion equation, and therefore 8A," can be
chosen so as to cancel this contribution (see e.g. ref. [26]). The torsion equation
reads

Dy ety =y, — 76 €, e, XX (4.7)

In the canonical treatment of this model, one encounters the following technical
difficulty [10]. As it turns out, the Dirac brackets between the components of A4/
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do not vanish, but rather commute to give a bilinear expression in the matter
fermions y; furthermore, the Dirac brackets between A4, and y do not vanish,
either. This feature prevents straightforward quantization via the replacement of
phase space variables by functional differential operators. It has already been
pointed out in ref. [10] that, for the N = 2 theory, the phase space variables can be
decoupled through a redefinition of the gravitational connection by a fermionic
bilinear *. In ref. [10], this redefinition was performed after setting up the
hamiltonian formulation, but, as we shall now demonstrate, it is much more
convenient to do so already at the level of the lagrangian, since this will entail
substantial simplifications. For this purpose, we define a new connection field AL°
by

A=A +e“b‘e“b)?yc)(. (4.8)

Observe that the fermionic bilinear is purely imaginary, and hence the connection
becomes complex. The redefinition and the decoupling also work for the higher N
theories, although the details are more involved and are therefore explained in
Appendix A.

To see how this redefinition affects the lagrangian, we now substitute the new
connection (4.8) into the above lagrangian. For the gravitational curvature, one
finds

Fy.va = Fu’va - 2£abc D[’y,(evb]y’yc/\/) - 38abcep.bevcix /YX’ (49)

Here, the prime on the covariant derivative indicates the replacement of A L by
A" Because A4, is complex, the Dirac conjugate of D) x would involve the
complex conjugate connection; it is thus different from the derivative D, x used in
the above equation, which is defined by D,y =d,% — 34,7y, + 5iQ, X. On the
other hand, ¥ does not contain A, and is therefore unchanged. In #® we
may replace 4,“ by A,“ because the difference vanishes by simple symmetry
arguments.
Insertion of the new connection into .#? yields
%E}LVpe“ﬂF = %SﬂvpepaFulpa - %ee#a D;:(/Y'YCX) + %e)?)( /?X7

vpa

&7, Dy, = &%, D, = 3" (I, x X, = Bx X¥,)s  (4.10)

where the first equation holds up to a total derivative only. We observe two crucial
results. First, most of the higher order fermionic terms in the action are canceled

* A very similar redefinition is necessary in the metric formulation [23].
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by the redefinition of the spin connection, which greatly simplifies the lagrangian.
Secondly, the Einstein term now contributes to the Dirac term in such a way that
all derivatives on y disappear from the action. This is rather fortunate, because
otherwise, either hermiticity would be lost (if all derivatives were defined with the
complex connection 4,7, as we did above), or we would have to introduce the
complex conjugate connection (A“")*, which would not be subject to simple
commutation relations (cf. (4.18) below) and spoil the decoupling of bosonic and

fermionic fields in the canonical brackets.
The total lagrangian in terms of the new connection is now the sum of

Z0 = %s“””e#"F,,pa + e’“’"tZ#D,,(ﬁp,
ZO = —eghP, P* + ey, v y*xP* + exy*y ¥, (P, — ¥,x)
@ = —exy*D,x, (4.11)

where we henceforth drop all primes, as the old spin connection will no longer be
used.

For the canonical treatment, we must now perform a spacetime split as
described at the end of sect. 2. After a little work, one arrives at the following
decomposition of the lagrangian:

FO0=_ %Eife,“Aja - Ei@id)j
+3(n"lee® — n*e,*)e"F;;, — 3ie"Y 0,
+36%(Diejo = Fvaty) AL + (Dt by + 8, D)
FDO = —nP B¥ +n RIPP* + n‘le""(lzieY’Xﬂ* - fe”t‘l’iﬁf)
+ 8”(@7,-)(1’,-* — B PE+ Xy By - Y”‘”f'ﬁ")’
D= —xey'y — ixey'y,x A" + 2ixvey'xQ,
—n~'e"xey"y, Djx —n*xey' Dyx, (4.12)

which will serve as our starting point for the canonical treatment.
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We next compute the canonical momenta, which lead to second class con-
straints (to make the formulas less cumbersome, we will not explicitly indicate the
x-dependence below); they are

0T 3T,
pa_ﬁéi"_ ’ a_aAia_ZE jas
87 8L -
7Tl=—_.=0, l="‘T=*£U i1
8"/][ 8‘/’1
8% - &
A= g = 0, A= a —_-fe}’t. (413)

We can now read off the second class constraints
[ i,_ i_ 1.4
Pa =Dy Za '-Ha 2& eja’

A=A,  A=A-xey',

Fl=a', T'=%+¢'y,. (4.14)
As is well known, the Dirac brackets [29] are defined by

{A, B}, ={A, B} - Y {4, K}C(K, L){L, B}, (4.15)
K,L

where C(, ) is the inverse of the Poisson matrix defined by

Y C(K, L){L, M} =8(K, M). (4.16)
L

Here K, L,... label the constraints (4.14). A little care has to be taken as we are
dealing with fermions here, because they are anticommuting (Grassmann) vari-
ables. When defining the momenta by (4.13), A is the negative momentum of x
and the hamiltonian reads yA — Ay —%. To get the right equations of motion, the
Poisson brackets, which are symmetric for fermions, must read {A,, )_(B} = —0,p;
which in this order corresponds to the bosonic bracket {p,’, e} = —8/8,. Thus the
Poisson brackets are always negative if the momentum is the first entry.
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Calculation of the C(, ) matrix now gives
c(Zi, P))=2&;m,
C(Zi, A)=2h""e e Xy ",
C(A, A)= —h"ley’,
C(I'', Ty = —¢,1, (4.17)

all other components vanish. As a consistency check, we note that C(,) is
antisymmetric if and only if both entries are bosonic. From these formulas we can
deduce the crucial result that the Dirac bracket between different components of
the spin connection now vanishes, which is not the case for the original spin
connection [9,10]. This result follows essentially from the vanishing of C(Z!, A)
and the fact that A does not depend on the dreibein. Furthermore, it is also easy
to check that the spin connection now commutes with y. However, it does not
commute with ¥, which is therefore not a good canonical variable. For this reason,
we will not use y, but rather A as an independent phase space variable; the two
fields are related by A = exy' by (4.14). All non-vanishing Dirac brackets are then

numerical and given by
{Aia(x), ejb(.V)}* = 25ij7lab5(x, ¥),
{Xa(x), XB(y)}* = —8,50(x, ),

{‘/’ia(x)a %B(y)}* =Eij5aﬁ8(x’ y). (4.18)

We repeat that the absence of the complex conjugate connection (A,%)* from the
constraints is an important consistency check on our results, since this field would
have non-vanishing brackets with both 4, and y.

Next we proceed to the discussion of the first class constraints. Defining the
momenta of the scalar fields as in (3.8), but with the complex notation introduced
above, we have

8. — T
= 5—1’,": = —nP, +nd, x —"Yyix,
P*_&S/_ PE 4 nvd — il
= EIT, =-—nP +nxd,—¢ Xyid,i’
8 A 3
Q= — = = diely; + digey'x. (4.19)
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From (3.18) we obtain their Poisson (or Dirac) brackets

(7, Py=72Z, {7,P*}=%2*% {7,0}=7Y,

{P, P*} =2iQ, {Q,P}=-2iP, {Q, P*}=2iP*. (4.20)
These brackets together with (4.18) constitute the complete list of non-vanishing

Dirac brackets of N =2 supergravity (brackets that have not been listed vanish).
To summarize, our basic canonical variables are

eiaa Aia5 %a P’ P*’ Q’ Xa X Ezﬁ (»bi' (421)
Observe that quantization is now straightforward to implement by replacing the

momenta by functional differential operators. The Lagrange multipliers leading to
first class constraints are

n—l, ni’ Ata’ Jt’ lpt’ (422)

As the momentum Q does not contain any time derivative in (4.19), we have the
first class constraint

T=—-Q— ey + 3irx, (4.23)
which is the generator of local U(1) transformations. The other first class con-

straints are obtained by varying the lagrangian with respect to the multipliers
(4.22). A/ yields the Lorentz constraint

L, =3¢ Diej, — 36"y, — 5A7.X. (4.24)
The multipliers J, and ¢, correspond to the supersymmetry constraints

& = il D= xP* = eliy,xP¥,

F =" Dp;— Px +e"Pxy, + e x xv;—¥;x X)- (4.25)

The asymmetry in these expressions is caused by the fact that it is the redefined
connection A/ which appears in the derivative on Jj in the second line (and not
(A%, but in fact, the second expression is the Dirac conjugate of the first
because of the Fierz identity

e(x Xy, = Box X) = =2 e, XX Uy (4.26)
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The first constraint in (4.25) is manifestly polynomial; to render the second
polynomial as well, we multiply it by ey* from the right so as to replace ¥ by A. In
this way, we get

Fi=Fey' =" Dil—p-]-e'y' — P — eiijX)/i - sij(_p_i(x X'yj +vx X) (4.27)

The derivative of the lagrangian with respect to #* and n~! gives the diffeomor-
phism and hamiltonian constraints

Hy=— %ek"eijFija - D, x +ﬁﬁk* +15kﬁ*

+ e "P*Uyx — "B v,
Z' = jee's'F,, — "Xy, D;x + PP* + hVP.P*
—£p* t-,l_ljey’,\/ + e"fﬁ,.X(/;,., (4.28)
where we used the supercovariant quantities
B=P—yx, P=P—eTyyx,

p* —P* — ¥y, Pr=—p*4 3”)77,‘(//]'- (4.29)

1]

The covariant momentum P is nothing but the time component of the quantity
already defined in (4.6), as can be seen by (4.19).

At first sight it seems rather difficult to cast these constraints into a polynomial
form, as y appears also implicitly through P* and Isi*, but indeed all terms
containing Y can be eliminated by adding suitable multiples of other constraints.
Let us first consider the diffeomorphism constraint. The terms containing y are

_Pf¢k - 5ijﬁi)?7k¢j + eijPAk/?Yil//j' (4.30)
A short calculation shows that this is equal to

Py — € D, (4.31)
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Thus if we subtract 57;0,{ from #,, all the ¥ terms disappear and we get the
polynomial constraint

K= — %ekasijFija - Dy x - g Dilzfdfk

+PFP + P*P, + P gy, x. (4.32)

As usual this is not the real generator of spatial diffeomorphisms, but it generates
extra U(1), Lorentz, and supersymmetry transformations. The generator of pure
translations is

D =#-QT-AS L,— 4,5, (4.33)
and reads explicitly

D= —76"(0,Af era + A" diey,) — sij(ai'Zj e + U 3;"1’,')

+PP¥+P*P, +QQ, — A 9, x- (4.34)

The situation is similar for the hamiltonian constraint. The ¥ terms to be
subtracted are

e"Pxya, — hB.xy,. (4.35)

Again this non-polynomial expression can be rendered polynomial by subtracting a
suitable multiple of .%. It is equal to

-—Eij.57‘yi¢lj + &k Dy, v, + EijIS;Xl/Ij- (4.36)
Inserting this we get the hamiltonian constraint
¥ = %ee’“eijf}ja + 5”7\7]. D, x + P*P + ﬁPi*ﬁj
+ 2811']3;% + gligh! Dilz]- vl — sijPi*lee)"X- (4.37)

We can now compute the classical Dirac bracket algebra of constraints and
verify that it closes. The brackets between the “kinematical” constraints L, T, #,
and .% are straightforward and yield the expected results. The brackets between
the supersymmetry generators require more work, and, in particular, repeated use
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of the Fierz identities quoted in sect. 2. After a somewhat lengthy calculation, one
obtains

{5’[6], 5}[77]}* = fdzx(—én}"/+8k’/7k5ym +2iAn &y T+ 2An éy°y La),
{Z[e], #1€']} « =0,
(ZIn), FIn'lbs = 2fd elles(dm Sy’ + Bvan '), (4.38)

where, for convenience, the supersymmetry generators have been smeared with
smooth spinorial (i.e. anticommuting) test functions €(x) and n(x) according to

Fe)= [dx &%) #(x), Fln]= [d’x F(x)n(x). (4.39)

The formulas (4.38) show that indeed all the bosonic constraints can be generated
from the fermionic ones, and in this sense, the supersymmetry generators can be
thought of as the square roots of the bosonic ones. We note that a complete check
of closure would also require the determination of the brackets involving the
hamiltonian constraint, but we omit this consistency check.

Finally, one can verify that the constraints are the canonical generators of the
associated space-dependent gauge transformations on the fields as expected. Since
this computation is completely straightforward, we refrain from giving further
details.

5. Quantization and constraint algebra

We will now perform the canonical quantization and re-examine the relations
(4.38) in the context of the quantum theory. After expressing all the first class
constraints as polynomials in terms of the canonical variables (4.21), it is straight-
forward to give a quantum operator representation for them. We use the conven-
tion that the commutator is obtained by multiplying the Dirac bracket by —i. We
will also define the quantum constraints to be i times the classical constraints. In
this way they generate the same transformations on the fields as the classical
constraints and no extra factors will appear in the constraint algebra.

For each pair of canonically conjugate variables, we have to choose one which is
to be represented by a multiplication operator. The bosonic fields and their
momenta P, P* and Q will be represented by the matrix #” and the differential
operators (3.34), respectively. In this representation, the wave functional depends
on the scalars via the matrix 2(x). As we explained in sect. 3, we could
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equivalently use the coordinates (¢™, u) on SL(2, R) (where m=1,2, and u
parametrizes the subgroup SO(2)) as multiplication operators and represent the
momenta by (3.30). For the remaining operators we are in principle free to choose
el or Af, Aory, (Zi or i; as multiplication operators; of course, it is very likely
that the resulting quantum theories will be inequivalent, depending on this choice.
We will here adopt an operator representation which renders all the constraints
homogeneous in the functional differential operators (see below), and which is
given by

a 2 6
el — zeijaAja,
R i

-
o laxa b
1)
‘/’ia_’ —isij—_—. (5.1)
oY,

The wave functional ¥(¢) will thus depend on the fields 4/, 77, x, Ji, which we
will collectively denote by ¢. With the above operator representation the Lorentz,
U(1) and diffeomorphism constraints become well-defined if ordered in such a way
that all differential operators appear to the right. In particular, they will then
generate the respective space-dependent gauge transformations on the fields (i.e.
without extra anomalous contributions). Their algebra reads

[2[n*], 2[m*]] =@ [m' o,n* —n' gm],
[L[w®], L[2°]] = L[e**wyn,],
[2[n*], L[] =L[-n' 90°],
[2[w°]. T[q]] = T[-n'8,q]. (5.2)

where 2[n*]:= [d’x n*(x)2,(x), etc. Remember that the quantum constraints
are defined as i times the classical constraints, thus there are no extra factors of i
in the algebra.

Next, we turn to the supersymmetry generators % and . In the representa-
tion (5.1), % becomes a first order differential operator; smearing with an
anticommuting spinor parameter € as in (4.39), we get

5 5 5
=1 — 2 - = ®*___ | _"Dzaa -
el = [d x[D,-e&zi + ey Tr(%y 5%) 28y XPfaA,.a]‘ (5.3)
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From this expression, it is easy to see that there are no ordering ambiguities and
no short distance singularities in %. In this form .% can be regarded as a
“kinematical” constraint whose action on the wave functional is just given by the
transformation of the fields under supersymmetry. Below we will see that it is even
possible to exponentiate this generator to obtain a finite supersymmetry transfor-
mation.

The constraint ., on the other hand, is a second order operator in our
representation and is therefore “dynamical” like the hamiltonian constraint #.
Explicitly, we have

d%x|die D b Tr| 7Y i
y[n]—f ie ¢7a775A SAC*'”M T 57 ox.
o 5 8
+2i[n,(87x) = (Y o P~ ¥:x)| =57 5A7 By, (54)

In contrast to .%, .% must be regularized because it contains products of func-
tional differential operators at coincident points. This can be done for instance by
smearing all operators with a regularized 8-function 8,(x, y) according to

7(x) > O)(x) = [d% 3,(x, y)o(), (5.5)

where A is a regularization parameter such that lim, _,, 8,(x, y) = &(x, y). De-
noting the regularized constraint by ,5%,, we automatically obtain a regularized
hamiltonian from the regularized commutator of .% with 7, that is obtained
from (4.38). In the remainder, we will simply assume that our formal manipulations
can be made rigorous by means of a suitable regularization.

In addition to the problem of regularization there is also an operator ordering
ambiguity in the definition of S, as one can place the differential operators either
to the left or to the right *. Whichever prescription we choose, we then define the
ordering of the bosonic constraints operators by the right hand side of the
commutator (4.38), so all ambiguities disappear once we have fixed the ordering of
%. Relying on formal manipulations, one can convince oneself that any change of
ordering in & produces a singular term proportional to

i8(x, )y —— (5.6)

8AS°
where the overall factor depends on which terms are interchanged. In (5.4), all

* Or in between.
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differential operators have been placed to the right. Remarkably, and in contrast
to ordinary gravity, it turns out that the singular contributions precisely cancel
when one inverts this ordering by placing all differential operators to the left, so
that the two ordering prescriptions in fact coincide! This change of ordering also
reverses the order of canonically conjugate operators on the right hand side of the
commutators in (4.38).

In order to be able to interpret the quantum constraints ¥ =¥ =0 as
square roots of the quantized bosonic constraints, and especially the Wheeler—De-
Witt equation # V¥ =0, we would like to find an operator ordering prescription
such that in the quantized version of (4.38), the constraint operators on the right
hand side always appear to the right of the field-dependent structure functions.
Otherwise, there will be extra contributions from the bosonic constraint operators
acting on the structure functions, when (4.38) acts on a wave functional, and the
constraint algebra will be “anomalous”. Let us thus put all differential operators to
the right as in (5.4) and recalculate the commutator (4.38), now paying attention to
the order in which the operators appear. After some algebra, we arrive at the same
result with exactly the ordering indicated in (4.38). In particular, the operator T is
properly ordered, i.e. with the differential operators to the right; this is important
because otherwise T would not only generate U(1) transformations on the fields
but extra singular terms (the ordering does not matter for the Lorentz generator
L, because vy, is traceless). We also observe that the last commutator in (4.38)
remains the same if & is placed to the left because the singular terms again cancel
by virtue of the Fierz identity

ey n Gy’ =elym Y’ (5.7)

In summary, all constraint operators appear in the desired order, except for the
diffeomorphism generator, which appears in the “wrong” order, i.e. to the left of a
structure function. Consequently, the equations .#¥ =.%¥ = 0 imply that #V¥ =
LY =TV¥ =0, but not #,¥ = 0. This means that a solution of the supersymmetry
constraints cannot be diffeomorphism invariant, although it would satisfy the other
constraints. We note that a similar “anomaly” was already encountered in ref. [4],
and was there identified as the basic reason why the solutions of ref. [4] fail to be
diffeomorphism invariant, despite the fact that they are formally annihilated by the
hamiltonian constraint. Another somewhat bothersome feature is that the ordering
inside #, as obtained from this commutator is precisely as in (4.34), i.e. with P*
to the left of P, (all the other operators in %) are in the “correct” order). This
means that in addition to diffeomorphism #, (or rather 2,) will generate
anomalous singular terms when acting on the scalar fields.

We could now try to cancel the anomalous contribution by some intermediate
reordering of the constraint operators (note that simply reverting the order of the
operators will not do, because both % and .% remain the same as we already
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explained). Commuting #, through y,=e/y, to the right, we pick up a singular
term

e eym =eXeym #, + (Ey“n Ay, x — 2&y°n La)a(x, x), (5.8)

where we disregard a term involving a derivative on 6(x, x). Here the third term
can be ignored, as it is proportional to the Lorentz constraint L, but the second
term constitutes an anomaly. It can be cancelled by a suitable reordering “inside”
the constraint operators. Unfortunately, apart from the rather artificial orderings
required for this cancellation to work, this procedure leads to new “anomalies”,
which must be cancelled in turn. We have so far not found any ordering prescrip-
tion that would remove all anomalies and maintain the desired ordering of the
quantum constraint algebra, but we anyhow would not expect that this problem
can be solved simply by a clever reordering of the operators. What is really needed,
but unfortunately unavailable at this point, is a properly defined scalar product on
the space of physical states.

Given this state of affairs, we believe that a more reasonable option is therefore
to give up diffeomorphism invariance (at least in any conventional sense) of the
wave functional, replacing the constraints /# and #, by a single (matrix valued)
new constraint .% = # — ¢*'#,y,, whose ordering is defined by the commutator of
% with ., but whose physical significance is obscure. In the remainder, we will
tentatively adopt this point of view, and discuss possible ansitze to solve the
supersymmetry constraints. We have already seen that . is homogeneous of the
first degree in the functional differential operators, while the conjugate constraint
operator .% is homogeneous of the second degree, and therefore much harder to
solve. We will now demonstrate how the constraint .#%[¢] =0 can be solved in
full generality by the functional analog of the method of characteristics known
from the theory of first order partial differential equations [35]. Before going into
the details, however, two remarks are in order. First of all, ¥ = 1 trivially solves all
the constraints if the differential operators are placed to the right (this is not true
if another and inequivalent ordering is chosen). Secondly, given one non-trivial
solution (i.e. ¥+ 1), we can construct many more solutions by application of the
conserved charge @ constructed at the end of the sect. 3 (cf. (3.35)). By use of
(3.36), one shows that

(e, #1e]]l = [e, #[n]] =0. (5.9)

Therefore €V solves the supersymmetry constraints if ¥ does. It is in this sense
that SL(2, R) (and the corresponding hidden symmetry groups for higher N
supergravities) can be viewed as “solution generating symmetries” of the quantum
constraints [9]. It would be interesting to check whether this symmetry is unitarily
realized on the space of physical states, in which case one could even generate
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infinitely many solutions out of a given non-trivial one. However, this question
again hinges on the unresolved problem of the scalar product.

In order to use the method of characteristics, we must determine the orbits in
functional space generated by the action of the operator .. This is equivalent to
exponentiating an infinitesimal local supersymmetry transformation with parame-
ter £ = £(x) so as to obtain the corresponding finite local supersymmetry transfor-
mation. Although this would be a formidable problem in general, in the case at
hand the solutions can be obtained in closed form, because repeated application of
the supersymmetry generator . on any of the fields gives zero after at most three
steps. Labeling the “initial” fields by the superscript ”, we thus find

X(€) =x©, 7(§) =701 +E0Y*)
= P*(E)=P*, 151(5) = PO 1 £ pOyO), 0:(8) = QO = 2iP* VO,
Aiu(g) =A(1'0)a _ 2E*(0)§_Yax(0)5

$,(£) = DOE - 2PV @ E+ ¢ (5.10)

Hence P* and x are inert, whereas the other fields transform in a relatively
simple fashion * since only the gravitino field evolves with terms quadratic in &.
The trajectories described by the fields ¢(£) in functional space as £ is varied are
the orbits under local supersymmetry. This fact is reflected in the identity

5
BE(x)

The most general solution of the quantum constraint ¥ = ( is now obtained by
choosing ¥ such that (8 /6¢£)¥[$(£)] = 0, i.e. constant along the trajectories given
by the “evolution equations” (5.10), and by prescribing arbitrary values of ¥ on
some (infinite-dimensional) hypersurface in functional space which is nowhere
tangent to the supersymmetry orbits.

In practice, choosing a functional hypersurface amounts to imposing some
gauge condition on the gravitino. For example, let us choose c'g, = 0, where c¢'(x)
is an arbitrary non-vanishing vector field. Given an arbitrary configuration of the
fields ¢ (which, in general, will not satisfy the gauge condition), we must first
determine to which supersymmetry orbit it belongs. This requires solving the first
order partial differential equation for £,

7le, ¢(8)]w[6(8)] = [d*x &(x) [ 4(£)]. (5.11)

W (§) =c'(DE— 2P Ex E+ ) =0. (5.12)

* Here we assume that all the fields are complexified to make the chiral supersymmetry transformation
well-defined.
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We note the following subtleties about this (and similar) gauge conditions. For
arbitrary and topologically non-trivial spacelike surfaces, the vector field ¢i(x) will
in general have zeros, at which the gauge condition degenerates. Secondly, a given
; is gauge equivalent to a configuration satisfying ¢'gs; =0 if and only if the
solution £ is single valued on the spacelike surface, i.e. obeys ¢, dx' 9, =0 for
any closed curve y. Then £, which depends on the initial fields ¢, is the finite
supersymmetry transformation parameter connecting the given configuration of
fields to the gauge hypersurface. We now simply define

v[$]:=v[o(£)]. (5.13)

with £ from (5.12), where P[$(£)] is given by the previously assigned value of ¥
on the gauge hypersurface. Incidentally, the differential equation (5.12) is again
solved by the method of characteristics, but now in ordinary, not in functional
space. Consequently, the transformation parameter g.,? is completely determined by
(5.12) only after specification of suitable initial values.

To gain a somewhat different perspective (and possibly also to establish a
connection with the work of refs. [4,5]), we will now consider wave functionals that
do not depend on the fields on the whole spatial surface, but are supported only
on a given set of curves c(s) determined from the equations ¥‘(s) = c¢’(x(s)) where
c’(x) is the vector field introduced in (5.12) (the integral curves x‘(s) are just the
characteristics of (5.12)). Along c(s), we now consider the SL(2, R) X SO(2) valued
gauge potential (remember SO(2) is just the helicity group of the N = 1 supergrav-
ity in four dimensions)

;= 3% (Af = 2P*Ey°x) + 3i(Q, — 2iPEx), (5.14)

where £=¢£(¢) is determined from (5.12). Note that the connection ., also
depends on the bosonic and fermionic matter fields; it is just the gauge potential
occurring in the covariant derivative on JI shifted by a finite supersymmetry
transformation according to (5.10). Next introduce the path ordered integral

T.(a, b) =% exp(];)lds cI(x(5)) & (x(5))], (5.15)

where the curve c is parametrized such that ¢(0) =a and c(1) = b are the initial
and end points connected by the curve c(s), respectively. Computing the variation
of T, under local supersymmetry, we obtain

(<121, T.(a, b)]

= [[as ¢/(x()T(a, 2() 8 (2()Te(x(s), B),  (5:16)
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with
8t = ~v,P*ey°x + P*ex + P*(8éx — 8&y°¢v,). (5.17)

Here, the variation 8¢ must be determined from eq. (5.12). Namely, varying (5.12),
we find that after a little algebra and use of the identity 2&y € = —éx £ — ey®x £v,,
this equation reduces to

¢’ D, (€))(8€+€)=0. (5.18)

The solution is thus

3&(x) = —&(x) + (8&+&)(a)T(x, x), (5.19)

where x = x(s) is any point along the curve. If the initial value £, = £(a) is chosen
in such a way that 8¢, + €(a) = 0, the gauge potential ., is invariant, and the right
hand side of (5.16) vanishes. A solution, which is also invariant under the U(1) and
Lorentz constraints is then easily obtained by closing the curve into a loop and
taking the trace. These solutions can be regarded as “supercovariant” extensions
of the solutions found in ref. [4]. We have not checked, however, whether they are
also annihilated by the second order constraint .. We note that for §&(¢) = —¢,
one can construct many other invariants: since all the (&) in (5.10) are invariant
with this choice of £, an arbitrary functional of them will also be invariant. In this
respect, there is nothing special about loop functionals as opposed to functionals
that are supported on the whole spacelike surface.

Appendix A. Decoupling of canonical variables for N > 2

In this appendix we explain how the redefinition of the spin connection works
for the higher N theories. We will not discuss these models in detail here, but
refer the reader to ref. [28] for further explanations. In analogy with (4.8), we
proceed from the ansatz

A=A +Br B =i, X v x® i, (A1)

where XA are the matter fermions, which transform as spinors under H. Observe
that the new spin connection will be complex just as for N=2. #;, is an
antisymmetric matrix to be determined by requiring decoupling of the canonical
variables; we will find that _#; is a complex structure, i.e. #? = — 1. Inserting this
ansatz into (2.3), we obtain

F.= -2 D|,Bj= eachu”B,,‘, (A2)

uva
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where the derivative D, is covariant with respect to the Lorentz group SO(2, 1)
and the gauge group H (see ref. [28] for the precise definitions). As in sect. 4, we
may replace the original spin connection by A4,? in the lagrangian. Up to a total
derivative we then have

%sp.vpeuaF = E,wpe ag’ —;tee“ D'(X X fAB)

vpa vpa
—1eX“%® Fsexx® Fois
Yereq! Dyl =ter el DIyl — tiem ol X0y, Zip-  (A3)

The contribution to the kinetic term of the fermion is slightly more complicated
than in the N = 2 case, because the covariant derivative acts on _#, too:

D, (% y'x? £is) = 2x4y° Dix® Zis+%"v*x® D, a5,
D, Zig=307 [T, #lis+Q2IT* £is. (A4)

If the last expression does not vanish, i.e. if _# does not commute with the whole
gauge group H, there will be a mixing of complexified spinors and their Dirac
conjugates. Since # generates a U(1) subgroup of H, D, #;; = 0 whenever H has
a U(1) factor, i.e. whenever the target space is a Kaehler manifold. This is the case
for the theories with N =2 mod 4 [28]. For N # 2 mod 4, manifest invariance
under those generators of H which do not commute with _# is lost. For instance,
the manifest SO(16) invariance of N = 16 supergravity is thereby broken to
SUB) x U(1).

Inserting everything into the lagrangian given in ref. [28] and dropping the
primes on the redefined spin connection, we get

ZO0= 7€"%e °F, , + 28“”"1//’ D,,z[/p’,

vpa
FW=— %eg“VﬁAuPAV + %E#VpﬁA;LF/{CYCYPleI
+%£”VP(FAB C+161{fBC) B‘/’;{ A_/Cyp )
ZP = —gexy* Dx%(845 +i5ip) — iX X% FpcXx® Fpi
+Liex Ay xB D, 7,5 + other x* ter A5)
slex“y*x” D, %ip + other x” terms, (A.

where we have decomposed the lagrangian as in (4.5).
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The momenta of the dreibein, spin connection, gravitinos and fermions are now

0.7
=il 1 _ijg I
T - ES”(I{]. H

=6—¢'i’=

X._E_l—l? USsi4i Foi A6
A—S).(A'—z)( eY(BA+lfBA)- (A.6)

Observe that A ; is complex and thus no longer a Majorana spinor. The Poisson
brackets read

{eia, ij} =878/, {Aia’ Hbj} = 548/,

(Xio xB) = —888,, (7l ) = —5/6"5,4, (A7)
and the full set of second class constraints is
P,=p;,

[P i_ 1.ij
Z,==II}—z¢e";,,

Ao =2Ni0— 3%2(Cey") pa(85.4 +i.754),
=7+ ey Cp,. (A8)

To obtain the Dirac brackets one has to invert the matrix of Poisson brackets of
these constraints. The non-vanishing components of this matrix are

(P, 2§} = = 2mae”,

== %X:(C’yc)aﬁ(aAB + ifA'B)eabceijejb’

(A.9)
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The inverse matrix is found to be
C(P‘f, Z{;) = 28,-]-17“1’,
C(Zi, Z}) = —e;h ‘e ee ™ XX B (8,45 +Fic Fes )
C(Zi, Ago) =h ' e,y(843—1.5i5)(€Y'C)apxp»
C(T, Tf) = —e,87Co4. (A.10)
The bracket between A and A} is easily seen to vanish if C(Z%, Z]) vanishes.

This is the case if and only if ;5 %3¢ = —98,c. Hence £, is indeed a complex
structure as previously asserted. With _#? = —1, the combinations

Pis=3(8451175) (A.11)

become projection operators acting on the fermions. This is important because
only then the number of physical fermionic degrees of freedom stays the same
after complexification: we are simply trading d-dimensional real spinors for
3d-dimensional complex ones. However, as already pointed out above, the com-
plexified spinors will no longer transform linearly under the group H unless
N =2 mod 4.

Using the formula (4.15) we obtain

(A, 42} =0, {ef,ef} =0, {42 et} =2em"". (AL2)
Furthermore,
{42 Ni}s =0, {XA,,, XB-,;}* =0. (A.13)

This shows that the A, are indeed good canonical variables as their brackets
decouple from A/. On the other hand, the original real spinors x* are not, as
they mix with each other and the spin connection under Dirac brackets. However,
the correct variables are now easy to guess; they are

17‘4 :=gXBXB=%(8AB+ifAB)XB’ (A.14)

and are related to A4 by A ; = 7ey’, where the bar on n denotes Dirac conjuga-
tion. It is now straightforward to check that

{42 0t =0, {nd, nf}. =0, {'nf, )_‘BB}* = —858,5. (A.I5)

This completes the proof that the canonical variables can be decoupled by the
redefinition (A.1).
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