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Abstract. We reformulate the transport equation which determines the size, shape and 
orientation of infinitesimal light beams in arbiuary spacetimes. The behaviour of such light 
beams near venices and Conjugate points is investigated, with special mention to the singular 
behaviour of the optical swJars. We then specialize the general transport equation to the case 
of an approximate metric of an inhomogeneous universe, which is a F r i e d m  metric 'on 
average' With superposed isolated weak matier inhomogeneities. In a Series of well defined 
approximations, the equations of pvitatiorwl lens theory are derived. Finally, we derive a 
relative optical focusing equation which describes the focusing of light beams relative to the 
case that the beam is UnafFected by matter inhomogeneities in the universe, from which it follows 
immediately that no Lam can be focused less than one which is unaffected by matter clumps, 
before it propagates through its first conjugate point. 

PACS numben: 042.5, 95303,9862s 

1. Introduction 

The propagation of light rays in curved spacetimes is described by the equation for null 
geodesics. Below, we consider congruences of light rays, so called light beams (for an exact 
definition, see section 2) and study their propagation in arbitrary spacetimes. Infinitesimal 
light beams are described by Jacobi's differential equation for deviation vectors. In this 
paper, we study some properties of the solutions of this propagation equation. In particular, 
we provide a detailed study of the behaviour of light beams near vertices and conjugate 
points. The behaviour of the optical scalars (Sachs 1961), which may diverge near conjugate 
points, is determined. We find the leading order behaviour of the convergence, shear and 
twist of light beams and their relation to the optical tidal matrix which represents the source 
of beam deformation. 

We then specialize the propagation equation to the case where the metric can be 
described by that of a Friedmann universe, with superposed weak local inhomogeneities; 
this is the situation most relevant for light propagation in the universe. Here, the optical 
tidal matrix can be split into a contribution due to the background universe and one due to 
the local inhomogeneities, which is described in the first post-Minkowskian approximation. 
The background universe is assumed to have the overall geometry of a smooth F r i e d "  
universe, but is locally modified due to matter inhomogeneities. 

If the matter inhomogeneities along the light beam are well localized, i.e. if the spatial 
extent of the inhomogeneities is much smaller than the distance from the source to an 
observer, the contributions from the inhomogeneities can be described in the impulse 
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approximation, in which the contribution to the optical tidal mahix due to inhomogeneities 
is replaced by a sum of delta distributions. We will then show that this approximation leads 
to the gravitational lens equations, which are usually used to describe the influence of weak 
matter inhomogeneities on light propagation in the universe (for a review on gravitational 
lens theory and its applications, see Schneider, Ehlers and Falco (1992), hereafter SEP). 
Hence, the gravitational lens equations follow from the exact propagation equations for 
tight beams with a series of well defined approximations. 

The behaviour of the cross sectional area of an infinitesimally small light beam is 
described by the optical focusing equation (Sachs 1961), which contains the trace of the 
optical tidal matrix and the shear of the light beam as source terms. We will show that 
a relarive optical focusing equation can be obtained which describes the cross sectional 
area of a beam relative to one which is unaffected by matter inhomogeneities. The 
uniquely determined independent variable for this relative focusing equation is the x -  
function introduced for other reasons in section 4.6 of SEF. From this relative focusing 
equation it follows directly that no light beam can be less focused than one which is 
unaffected by matter inhomogeneities before the beam propagates through its first conjugate 
point. In the frame of gravitational lens theory this fact has been proved earlier (Schneider 
1984, Seitz and Schneider 1992, her& paper I, 1994). 

2. Infinitesimal light beams 

In this section we review some consequences of the fact that, according to the geometrical 
optics approximation to Maxwell's equations in an arbitrary spactime (M, a locally 
nearly plane electromagnetic wave, propagating without interaction with matter, is associated 
with a hypersurface-orthogonal congruence of null geodesics representing light rays. We 
denote the corresponding phase function by S and the wave vector by ka = -g"BS,j; then 
&ku = 0 and k' := k,;pkP = 0. (For details concerning this section see, e.g., sEF chapter 3, 
and Wald (1984) sections 9.2 and 9.3, see also Blandford and Narayan (1992)) 

We fix attention on one 'central' light ray yo and denote by Yu any deviation vector 
field (Jacobi field) 'connecting' yo to one of its neighbours. Then, kzYe is constant on yo. 
Deviation vectors differing by a (constant) multiple of P represent displacements to the 
same nearby ray. Given the four velocity Uc of an observer at an event p on yo, one can 
always mange that YQ is spatial for Um, i.e. UuY" = 0. 

Two events p. q on M are said to be conjugate if there exists a not identically vanishing 
Jacobi field which is zero at p and q.  For such a Jacobi field, key" = 0. A deviation vector 
satisfying the last equation (whether it vanishes somewhere or not) C O M ~ C ~ ~  rays contained 
in the same phase hypersurface S = const. 

Henceforth we consider exclusively 2-parameter families of rays contained in one phase 
hypersurface which we call beams. Their deviation vectors obey k.Y' = 0, consequently 
the size, shape and orientation of an infinitesimal cross section of a beam is independent of 
the 4-velocity of the oherver who measures it. 

Given the 4-velocity Un of an observer at an event p on yo. one can choose deviation 
vectors to all neighbouring rays such that, besides k,Y' = 0, also U,Y" = 0. Such vectors 
YOL span a 2-dimensional, spacelike subspace of the tangent space Mp of p which we call 
a screen adapted to P, U'. 

In studying conjugate pairs on a ray yo it suffices to consider deviation vectors belonging 
to a beam surrounding yo. 

For gravitational lensing, the important beams are those which are contained in either 
the future null cone C$ of an event s-flashes of light emitted from a source event s 4 r  
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the past null cone C; of an observation event 0. (In the second case, the rays of a beam 
beIong to different, usualIy mutually incoherent, locally plane waves emitted from different 
source events. This does not matter for the applications considered in this paper. It is often 
helpful to think of the rays as (classical models of) photons.) In the remainder of this paper 
we are concemed with such beams only. 

C; is generated by all null geodesic rays ending at 0. The set of all events conjugate 
to the vertex o on those rays forms the caustic of C;. C; has the shape of a (hyper-) 
cone only between o and the first sheet of the caustic; thereafter in general it bifurcates and 
intersects itself. This is the (theoretical) reason for the phenomenon of multiple imaging in 
gravitational lensing. 

Consider an observer at the event o with 4-velocity U:, UfU,. = 1, and the past light 
cone C;. Choose the affine parameter h of the rays ending at o such that (i) h = 0 at 0, 

(ii) A increases to the past, (iii) at 0, i.U: = - 1 .  Then, p = dx'/dh is past-directed, and, 
for events on C; infinitely close to 0, dA is the distance from o measured by the chosen 
obsever. The 'new' p is related to the wave vector introduced above by ka = -(o,/c)k 
if w, is the frequency associated with V at the observer. .& is purely kinematical, the 
same for all monochromatic waves which might be travelling in the direction -.&. Let y ,  
be a ray, and let U'! on M be the result of parallelly propagating U:. Choose, along yo. 
orthonormal bases (E: .  E;) on the screens adapted to la, Ua, parallel on yo. The deviation 
vectors of the beam centred on yo can then be written as Y a  = -.$,E? - h E ;  -top; then 
the screen components $1 (i = 1,2)  change according to the deformation equation 

<i = sijc, s, = E?~&E~S 
where a dot denotes differentiation with respect to the affine parameter. In matrix notation 
we write 

= S€. (2.1Q) 

The optical deformation matrix S is composed of Sachs' optical scalars of the beam (Sachs 
1961), i.e. its rate of expansion 

@ ( A )  := !&&) 

and its (complex) rate of shear, 

u(h) := ~%;8(A).)*a(A).)*B(A) 6' : = E r  +iEf  

according to 

(2.lb) 

Since k, = -& is the gradient of the phase S, &.;a = 
matrix. Differentiation of (2.la) with respect to h gives 

and therefore S is a symmetric 

€(A) = W)€(J.) (2 .24 

where 

stsz=7 
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Combining the last equation with Sachs' transport equations for 0 and U, 

e +e2  + = R 

a + 200 = 3 

shows that the oprical tidnl matrix 7 is given by 

(2.2e) 

where 

R(A) := - $RpY(L)L@(A)Ly(A) (2.2f) 

F(A) := - iCopya(A) €"*(A)Lp(L)€Y'(A)1;6(A). (2.2g) 

Similar equations have been derived by Blandford el al (1991) and Peebles (1993, 
chapter 14)t. The optical tidal matrix is symmetric due to the symmetry Capya = CsYp. of 
the conformal curvature tensor. Equations ( 2 . 2 4  (2.2eH2.2g) exhibit how the Ricci and 
conformal curvatures govem the evolution of infinitesimal light beams: they are equivalent 
to the geodesic deviation eguution (Jacobi equation) for screen vectorst. 

The linearity of the Jacobi equation (2 .24 implies that the solution E ( A )  is related to 
its initial value $CO) =: 6 by a A-dependent linear transformation 

E(A) = D(A)@. (2.3) 

With the choice of A described above, 0 is the (vectorial) angle between yo and a 
neighbouring ray. Because of (2 .24 ,  E(0) = 0 and &O) = 8, D(A) is determined by 

( 2 . 4 ~ )  

(2.46) 

or, equivalently, by the linear integral equation 

.I 

D(A) = hz + dA' ( A  - A') 'T(A')D(A'). (2.5) 

The Jucobi map (2.3) takes infinitesimal changes of ray directions at the observer back to 
a screen at an event of yo given by the value of A. If that event is taken on some source 
'plane' z = const, D(A) corresponds to the properly scaled magnification matrix (in the 
terminology of SE) of lens theory. Note that in contrast to S and 7, 2) is in general not 
symmetric. 

Equation (2 .44 implies: 
(1) If I ( A )  is continuously differentiable k times, D(A) is continuously differentiable 

k + 2 times; assuming k sufficiently large (which is permissible) justifies our later use of 
Taylor polynomials to study the local properties of D(A) at special points. 

t Note, however, that the mmponent a k" of Y' cannot be d e  to vanish for all A, wneary to the claim in 
Peebles (consider equation (14.9) in his book, where t i  Corresponds to 'OUT' Y'). 
In equation (2.29) one may write the full curvature tensor instead of C = Q ~ ~ ;  the Ricci parr d m  nM contribute. 
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(2) 5r'D - 'D'5 is a first integral of (2.4a). Since it vanishes in consequence of the 
initial conditions (2.4b). all solutions of (2.4) obey 5"D = 'DT'b, provided 7 k continuous 
there. At discontinuities and 6-fype singulanties of I this relation is preserved. 

According to the definitions given above, Ac corresponds to a point pc conjugate to the 
vertex (observer) if and only if det D(Ac) = 0. If the rank of D(AJ is equal to zero, i.e. if 
'D(h,) = 0, all rays arriving at a have been intersecting to first order at pc; if the rank 
of 'D(A,) is equal to one, the cross section of the ray bundle has been degenerating into 
an infinitesimal line segment at pc. In the first case, pc is called a focus (or degenerate 
conjugate point) of the caustic of C;, in the second case, it is said to be a non-degenerate, 
or simple, conjugate point. 

Comparison of (2,la) and the derivative of (2.3) shows that 

v=sv (2.6) 

thus S can be obtained from 'D (see below, section 3). With (2.6) we alternatively derive the 
symmetry of the S matrix from the 'basic' differential equation (2.4a) and the vertex initial 
conditions (2.46): at an affine parameter where D-' and thus S exist, 5"D = 'Drv is 
equivalent to S = ST. This also implies that at points where det'D = 0, the antisymmetric 
part of S is equal to zero. 

Consider now the determinant of the Jacobi map. From its definition in (2.3) it follows 
that its absolute value is equal to the area 6A(h) of the cross section of the light beam at 
this &ne parameter, divided by the solid angle 6Q which that cross section subtends at the 
observer: 

(2.7) 

At a non-degenerate conjugate point the Jacobian determinant changes its sign; at a focus 
its sign is conserved, as will be shown in section 3. Thus, det'D(A) contains information 
about the area 6A(A) as well as the parity, i.e. the orientation of a beam at A relative to that 
close to the vertex. Between the vertex and conjugate points, the area 6A(A) is governed 
by Sachs' focusing equation: 

(2.8~) 

This ordinary differential equation has C2 solutions in any A-interval in which R(A)- 10(A)1~ 
is continuous. This is the case except if the interval contains simple conjugate points, see 
section 3. The initial conditions for the solution of (2.8a). which gives the area of the 
beam, are = 0 and (d&/dA)(O) = a, where Q is the solid angle of the beam 
at the observer. If there is an odd number of non-degenerate conjugate points between 
the observer and A, one has to take the negative root of A, otherwise the positive one. 
The driving term of the focusing equation, R - Iu I*, is non-positive: the Einstein field 
equation with an energy-momentum tensor of an ideal fluid yields a non-positive source 
of convergence 'R, this also holds for a cosmological constant. Hence, equation (2.8~) 
describes how a light beam is focused at h due to the 'local' curvatum (Ricci focusing) and 
due to its own shear rate at this affine parameter. Since this shear rate was produced by 
the source af shear 3 at a smaller A, this implies that both 'R and 3 yield a focusing of 
the light beam. Hence, as long as one considers only the area and not the shape of a light 
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beam, the actions of R and 7 are not distinguishable. In the following we do not consider 
the evolution of the area of a light beam, but that of 

w(A) := SQ[detD](A) sign ( d e t D ( A ) ) , / m  (29) 

the absolute value, IwI (A) = = , / 8 8 ,  of this function describes the 
angular diameter distance along the beam considered, and the sign is the parity of the Jacobi 
map. From (2.7) we obtain that w also satisfies the focusing equation 

*(A) = ['R(A) - lu(A)Iz] w(A) (2.86) 

between conjugate points; the initial conditions for w are: w(0) = 0 and ~(0) = 1. It is 
not clear a priori how to connect the solutions between conjugate points with each other, 
or whether one at all can integrate over conjugate points: the matrix S of equation (2.6) 
and thus 0 and U become singular at the vertex and at a conjugate point A,. We investigate 
the behaviour of a light beam near the vertex and a conjugate point in the next section 
and show that the solution of (2.8) is nevertheless well defined at conjugate points between 
source and observer. 

3. The behaviour of light beams near vertices and conjugate points 

Preliminaries: parametrization of u 2 x 2 mutrir For our further discussion we parametrize 
a real 2 x 2 matrix A in terms 04 'convergence' r, 'twist' o and 'shear' rl and rz and 
write them as real and imaginary parts of complex numbers A and r, respectively: 

r [ A ]  := l (a l i  +U=) o[A]:= + ( u ~ x - u ~ I )  ALA] = s[Al +iw[Al (3.1) 

r i [A]  := 4 (uti - U=) r d A 1  := (aiz + a2.1) r [Al  = r l [ A l +  ir*[A]. (3.2) 

Then, the trace of A is t rA  = 2ReA[A] and its determinant is detA = lAIAIIZ - lr[A112. 
Note that transforming A with a proper orthogonal matrix (rotation matrix) 

to A' = R-'AR leaves A invariant (ALA'] = A[Al) and transforms r to r[A'] = r[A]eaB. 
A and 1r[ have an intrinsic, coordinateindependent meaning for the map given by A, 
whereas the phase of r fixes the coordinate system to which A refers. We illustrate our 
definitions for S and I: 

A[S](A) = e @ )  E W r[S](A) = -U*().) 13.3) 

A['T](A) = R ( A )  E W I'[n(A) -.T(h). (3.4) 

If the argument of A is the Jacobian matrix D, we simply write A[D] =: A, and obtain for 
the derivatives with respect to A that @](A) = &A) and A@](A) = A@); analogous 

t n e s e  names are chosen for convenience and are not intended to contain a geometrical meaning. In the case of 
he Jawbi mauix. the geomerrlcal interpretation of A and r will be given below equation (3.5). 
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relations hold for r. This complex formalism is very convenient for matrix operations; e.g., 
we obtain for the multiplication of real 2 x 2-matrices A and B 

To obtain the geomerrical interprctation of A and r we consider the polar decomposition 
of D. If D # 0, there exist unique numbers bl, bz, with 0 < bl >, b2, and unique angles 
4 and 8 . 0  < 4 6 n, 0 < I9 6 2n, such that 

D = R(I9Mbi I 9 . 6 )  

R is the rotation matrix which has already been defined, and B is a symmetric matrix 
B = B ~ :  

In the polar decomposition bl, bz and I9 are the coordinate invariant numbers, 4 depends on 
the chosen coordinate system. The matrix B describes a rotation-free deformation, whereas 
R(I9) rotates the plane by an angle 0.  The relation of [A, r} to (bl .  bz, e, 4) can be derived 
with (3.5); we obtain: 

1-41 f IF1 = bl,z 

F = 

A = $ (b1 + bz)eiu 

(bl - bz) ei(Wbu). 2 

Inserting the values of bl and bz yields that the 'twist' w is related to the rotation angle I9 
of the Jacobi map via 

3.1. Consequences of the symmetry of S 

symmetric. Evaluating the twist part of b T D  yields: 
(1) After (2.5) we have derived that fiTV = DTD, or o [ b T D ]  = 0, or that S is 

Im{li*A+r*r}=o. (3.7) 

This constraint equation is valid at every affine parameter, and in particular at the vertex 
and at every conjugate point. Equation (3.7) illustrates that solving for @ = TD, one has 
not 8 but only 7 free initial conditions. If one chooses the altemative way of solving for 
the light propagation-evaluating the optical scalars and then solving ~ = S M e n  one 
has a priori only 7 free initial conditions, and the constraint equation (3.7) is hidden in the 
non-linear differential equations for the optical scalars. 

(2) Consider a light beam in an interval1 A E [An, A,+l] where I ( A )  = R(A)Z, i.e. where 
the source of shear vanishes. Then every component of 2, satisfies the same differential 
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equation, and the general solution z) is a linear combination of two linearly independent 
solutions f and g of x = 7%: 

where D(A;) =: D; and f. = 1, f , + l  = 0, g, = 0 and gn+l = 1 t. Since g and f are 
linearly independent solutions, we also have gn # 0 and f.+l # 0. Inserting (3.8) into 
i j r D  = DrD and evaluating this matrix at An yields D:+lDn = D;Dnr%+l. Hence we have 
shown: if there is no source of shear between A,, and A.+l, the matrix product 

(3.9a) 

is symmetric. If one matrix (say D,J is not singular, i.e. there is no point conjugate (to the 
vertex) at A,, then the symmetry of ( 3 . 9 ~ )  can be expressed as the statement that the matrix 

D"+lD;l (3.96) 

which carries connection vectors from An to An+] is symmetric. This property has been 
used extensively in the proof of the magnification theorem in gravitational lens theory in 
paper I. 

3.2. The Jacobi map near a vertex 
At the vertex, A = 0 = r, = 0 = ImA and Rei\ = 1. In this subsection we do not 
investigate the behaviour of the optical scalars at the vertex since it is the same as that near 
a focus; this is due to the fact that locally a beam at a focus differs from that at a vertex 
only by the opening angle: this angle cancels out in the optical scalars because they are 
relative quantities. We investigate the Jacobi map in a Taylor expansion as a function of 
t = A - & = A :  we put T(0) =: '& and obtain with (2.4) 

~ ( 6 )  = zE + a 5 6 3  + o@). (3.10) 

Equation (3.10) implies with the symmetry of 'E, that the shear of the Jacobi map is at least 
of third order near the vertex, and the twist increases even more slowly at the vertex. In 
other words, the cross-section of an initially circular light beam becomes distorted to an 
ellipse before it can get twisted. To compare the evolution of the shear of the Jacobian with 
its twist in more detail, we claim: ifthefirst non-vanishing contribution to r is of the order 
e", n > 3, at a vertex, the leading term of- is at least of the order eh (generically, n = 3).  

For the proof, we insert the Taylor expansions of rl and rz into the constraint equation 
(3.7); this yields that the first non-vanishing contribution of this term is of the order 2n. 
Inserting the Taylor expansions of 5 and o and using that the first non-vanishing contribution 
to 5 is of order one we find that, in order to satisfy the constraint equation at every order 
of E, the leading order of w must be at least 2n. 

Therefore the twist w increases at the vertex very slowly compared with the shear; this 
explains that 'not too far' from the observer the light beam can not be twist dominated, 
i.e. wz < IrI2 holds. This slow increase also holds for the rotation angle I9 of the polar 
decomposition of the Jacobian matrix near the vertex, since with (3.6) tan19 = o/r. With 
S ( E )  = E + O(c3) and o = a@ C O(e7), the rotation angle 0 = arctan(o/r) becomes near 
the vertex = ac5 + o(&. 
t This is a S l u m  boundary value problem the functions f and 8 exist if and only if the solution with x. = 0 and 
2" = 1 satisfies xn+, # 0. This wndition is violated if and only if An+1 and A, correspond to a pair of conjugare 
points. 
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3.3. The light beam near a conjugate point 

Non-degenerate conjugate points A, are characterized by 0 # Ir(A,)l = IA(AJ. Since A, 
but not F, is invariant under rotation of the coordinate system, we can orient the latter such 
that r(Ac) = A(&) at the conjugate point. At a focus r(A,) = 0 = A(h& In the following 
we describe the light beam, as before near the vertex, in a Taylor expansion about the 
conjugate point as a function of E := A - Ac. We first derive properties which are common 
to both kinds of conjugate points; investigating the local behaviour of beams at a conjugate 
point, we are only interested in solutions of ( 2 . 4 ~ )  which obey the initial conditions (2.4b). 

Theorem. At a conjugate point x ,  an eigenvector belonging to the eigenvalue zero of 'Dc 
cannot be a zero eigenvector to 5c. In particular, this implies that at a focus the rank of 
5c is two, and at a non-degenerate conjugate point the rank of 'bc is at least equal to one. 

Proof. Assume that there exists a conjugate point where = 0 and '&E = 0. Let 
<(A) = D(A)z.  Then this Jacobi field obeys .$ = 0, & = 0, and hence E = 0 and also 

0 
In order to derive Taylor expansions of det'D, 6 and U near conjugate points, we consider 

the differential equation I? = TD. Using (3.5) we rewrite this linear mahix differential 
equation as system of coupled differential equations for A and r: 

E(0) = 0, which is in contradiction to i(0) = f3 # 0. 

A - R A = - 3 F  r-Rr=-PA (3.11) 

which describe two coupled, planar oscillators with the same eigen-frequency and the same 
absolute coupling strength. Taking the nth derivative of (3.1 l), one can iteratively calculate 
the Taylor expansion coefficients of r and A in the (n + 2)th order as a function of A,, rc, 
Ac and pc (for the case of a non-degenerate conjugate point) or as a function of A, and I;, 
(for the case of a focus). A conserved quantity of the differential equation system (3.11) is 

(3.12) 

Thus, if L vanishes at one value A it vanishes everywhere, for any C2 solution (A, r). (R 
and 3 assumed in Co.) Using that the real part of L is zero and that r and A have to 
satisfy the constraint equation (3.7), yields L = 0 for a physical solution of (3.11). In terms 
of r, A and their derivatives, U and 6 can be written as 

L := A*A - AA* + r*r - rr*. 

(3.13) 

provided the Jacobi map does not become singular; note that the reality of 6 is equivalent 
to L = 0. Therefore, one can obtain the series expansions of 6 and U by inserting the 
expansions of r and A which are derived from (3.11). 

The light beam at a focus. At a focus, A, = 0 = rc; from our theorem we know that 
Ir,l # [AJ (otherwise the rank of fit would be smaller than two). We obtain from (3.11) 

A(€) = €Ac + (RA, - ~ 2 ~ )  + 0(c4) (3.14a) 

r(6) = c r c  + i t 3  (&rc - q A c )  t 0(e4) (3.14b) 

and thus the determinant of the Jacobian becomes 

det D(c) = 6' [ 1 + 4c2Rc] det t O(c5). (3.15) 
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Since detfic # 0, the leading term of detD(s) is of second order. The optical scalars 
become near the focus 

(3.161~) 

U = fZ€ +e@). (3.166) 

1 e = - [I + $221 + o ( 2 )  
E 

The function w defined in (2.9)'is equal to 

W(E) = sign(detfic) I E I M ( I  +O(E')) (3.17a) 

thus, it is continuous but not C' at the focus; ri, has a finite discontinuity. One obtains the 
expansions of r and A near the vertex by inserting the special values ?, = 0 = Im A, and 
ReAV = 1 into (3.14). As expected we obtain for w at the vertex: 

U)(€) = E (1 +U@)) E > 0. (3.17b) 

As already claimed, the optical scalars (3.16) have the same slructure at a vertex and at a 
focus, since the expansions of the light beam around these points differ only by the opening 
angle det5" = 1 and detfic which cancels in the numerator and denominator of 6' and U .  

Note that in lowest order (E-]) the behaviour of 6' and U at the vertex (focus) is expected: 
the infinitesimal neighbourhood of such an event can be treated asymptotically as the Bat 
Minkowski spacetime. In Minkowski spacetime, however, @(A) = l / A  and u(A) 0 holds 
for all A, in particular at the vertex. The first order terms in 8 and U demonstrate that the 
source of convergence & < 0 at the vertex (or focus) decreases the divergence of a beam, 
and that the source of shear produces a shear rate U :  

U(0) = jF0. (3.18) 

This implies 3 0  = 0 u(0) = 0, and with (2.26). F = 0 e U = 0. Thus, a beam 
centred on yo is shear free if and only if the tangent vector of M is one of the at most 4 
principal null. directions of the conformal tensor, a rare, exceptional case. Thus generically 
0 # 0. 

The fact that U = 0 at the vertex implies that the coefficient of the rbs of the focusing 
equation (2.8) is continuous at the vertex; thus its solution w is well defined at least from 
the observer to the first conjugate point. 

The light beam a! a non-degenerate conjugate point. At a non-degenerate conjugate 
point, the local expansion of the beam is determined by rC = A, # 0, A, and fc. Since the 
constraint equation (3.7) bas to be satisfied, there are only five free initial conditions: let a 
and b be the unique complex numbers which satisfy A, = a& and pc = bAc; then (3.7) 
yields Im[a + b] = 0, =+ Re[a - b] = (I - b'. The zero eigenvector of 'Dc is not a zero 
eigenvector of 'Dc if and only if Re [a - b] # 0; therefore Re [a]  # Re [b] .  With (3.1 1). the 
expansions of A and F near the conjugate point can be written as 

(3.19ff) 

(3.19b) 

NE) = [I + a €  + $ez (% - FJ] Ac + O ( 2 )  

lYs) = [ 1 +  bc + isz (% -E)]  A, + O(c3). 

The determinant of the Jacobian matrix is equal to 

detWE) = 2Re[a - bIIA,lzE + [lalz- Ibl'] l A c l z ~ z +  O(E') (3.20) 
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thus, the leading order of this expansion is equal to one. For the optical scalars, we obtain, 

d 
2Re[a - b] (3.21a) 

(3.21b) 

hence, the rate of shear is real (in the chosen coordinate frame, in which A, = rC) in zeroth 
order, it becomes imaginary in first order if and only if Fe is a not real. The function w is 

or with the abbreviation d, = [(d/dA) detD]~,: 

W ( E )  = sign(d,s) (1 + O(6')) . 
Thus at a non-degenerate conjugate point w is continuous, changes its sign, and has an 
infinite first derivative. 

Now we summarize the results for the behaviour of the determinant of the Jacobi map 
and the optical scalars near conjugate points: 

(1) at a non-degenerate conjugate point, detD a E ,  e = 1 / 2 ~ ,  m a I / % ;  in leading 
order; 

(2) at a focus, detD N 8, 0 = 1/s, U = 0. 
With our knowledge of the behaviour of the shear rate U at a conjugate point, we can 

now prove that the focusing equation (2%) is integrable over the singularity at a conjugate 
point: in the worst case, the rhs of (2.8b) behaves like (U 1' a this yields 
W ( E )  a s i g n ( s ) m .  Thus the solution is well defined, even for the case where there is 
a conjugate point between source and observer. The behaviour of the determinant of the 
Jacobian map at the two different types of conjugate points also varifies that the sign of w 
from (2.8) changes only at a non-degenerate conjugate point, as was claimed in section 2. 
Our results also show that the points of yo conjugate to the vertex form a discrete set. 

4. The derivation of the gravitational lens equation from geometrical optics 

So far, no approximation has been used. To evaluate the propagation equation (2.4) in an 
inhomogeneous universe requires several approximation assumptions. These will be stated 
in thii section, and used to rederive the basic relations of the standard gravitational lens 
theory formalism from general relativity. 

The F r i e d "  universe. If one assumes that the universe is isotropic and homogeneous, 
then its metric is given by the Robertson-Walker metric. The only non-vanishing 
components of the metric tensor are then gll = e', gii = -R'(t)&t, with irr = 1/(1 -kr'), 
goo = r2 and 5~ = rz (sine)'; the value of k = 0, +1, -1 determines whether the 
space is flat, spherical or hyperbolic; t is the cosmic time. A fundamental observer with 
four velocity U"@) at an event A on the cenbal ray of a beam measures the frequency 
w(A) := ck'(A)U&) = -wo.&(A)U&) =: ~ ( l  +z(A)); ku is the wavevector of the 
central ray, WO is the frequency at the vertex of the beam and z(A) is (by definition) the 
(red)shift. In a Robertson-Walker mehic, the redshift is isotropic and is related to the scale 
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factor of the metric by R ( z )  = Ro/(l+ z ) ,  where RO is the scale factor at the vertex of the 
beam (z  = 0. f = to). The affine parameter redshift differential equation is 

(4.1) 

Note that this yields a proper distance affine parameter relation at redshift z of 

dDproper = (1 + Z )  d,i (4.2) 

which is consistent with our convention that the affine parameter equals the proper length 
at the vertex at h = 0 = z. For a Friedmann universe with zero cosmological constant and 
an energy momentum tensor of a matter-dominated ideal fluid, p << pcz, equation (4.1) can 
be solved by inserting the FriedmaM equation for R(t)/R(t): 

(4.3) 

HO is the Hubble parameter d(ln R)/dt at the observation event g. 
Parallel transport in a Robertson-Walker spacetime. To calculate the source of shear 

defined in (2.2g), we need the screen vectors E;, i = 1,2, and La along the central ray. 
We choose the centre of the spatial coordinate system ( r ,  0, $5) at the observer, and the 
central ray y~ connecting source and observer in the direction of 6 = a/2. Consider the 
dimensionless function 

It solves the eikonal equation; the hypersurface T(t, r )  = T(f', 0)  defines the past null cone 
of (t', 0). Therefore, the phase functions converging on the world line r = 0 are all given 
by S ( t ,  r )  = f (T ( t ,  r ) ) ,  where f depends on the phase S(t, 0). The vector (which is 
on C;) has to be a constant multiple of T., = R-'(f), I/-, 0,O) t; since LO = -1 
at the vertex, we obtain 

( 

and thus 

(4.4) 

The spacelike screen vectors Ef and E: adapted to 
proportional to [O, 0, 1, 01 and lo, 0.0, I]. For general z we then obtain 

can be chosen at the observer 

t The components of a 4-vector E' are xo  = ct. r. 0.4. 
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The components of the vectors EP(0) become singular at the observer at z = 0. This is due 
to the choice of the coordinate system: the vectors themselves and their inner products are 
regular. 

The on-average Friedmann universe. Of course, a homogeneous universe is not realistic. 
A better model must take into account that only a fraction 0 < c? < 1 of the matter is 
distributed homogeneously, whereas the rest is concentrated in clumps. Imagine a model 
universe that is inhomogeneous on small scales and homogeneous on large scales (some 100 
Mpc) such that this clumping of matter does not affect 'global' (or large scale) functions 
like R(t) ,  R(z ) ,  A(z) and the parallelly transported fields i"(z), E&(z) .  This means that, 
on average, this universe behaves like a Friedmann universe with density PF which has the 
same total matter content as the actual universe. Thus, such a model is called an on-average 
Friedmann universe (see, e.g., Zeldovich 1964, Dyer and Roeder 1973). 

This picture of the matter distribution in OUT universe is a realistic one if one is interested 
in the light deflection caused by 'strong', isolated matter inhomogeneities, such as galaxies 
and clusters of galaxies, the deflectors which produce multiply-imaged Qsos, radio rings, 
and luminous arcs. In these situations it seems to be a fair approximation to consider the 
light beams between us and the deflector, and between the defiector and the source to be 
nearly unperturbed by matter inhomogeneities; if there is more than one deflector along the 
line of sight, this can be accounted for in the present prescription. An alternative view of 
the matter distribution in the universe is provided by considering larger scales, at which 
the density inhomogeneities are linear or quasi-linear. Then it is more realistic to model 
the matter distribution as a field Sp which is superposed on the Friedmann density m;. such 
that (Sp) = 0, and the average is taken at spatial scales which are small compared with 
the Hubble length, but larger than the largest scale at which the density fluctuations Sp 
still have appreciable power (see, e.g., Gunn 1967, Blandford et al 1991, Kaiser 1992 for 
studies of light propagation in such a weakly inhomogeneous universe). In the following 
we adopt the first view, that of a clumpy universe; we note, however, that most of our 
results derived below also apply for the weakly inhomogeneous universe. In particular, the 
(multiple deflection) gravitational lens equation can also be used in the latter case, if the 
universe is 'sliced' into redshift bins and the matter inhomogeneities are projected onto 'lens 
planes' in the bins, since the multiple deflection gravitational lens equation can be considered 
just as a discretization of the exact propagation equation (2.4). The only modification that 
has to be applied in the case of a weakly inhomogeneous universe is that no longer is 
non-positive, and the projected surface mass density X in each lens plane can attain positive 
and negative values. Furthermore, since the magnification, defined in section 5 below, is 
defined relative to the Friedmann-Lemaiie universe, the mean magnification relative to 
that must be unity (see the discussion in section 4.5.1 of SEF), and the focusing theorem of 
section (5.3) no longer holds, since 'Re! can have either sign. 

4.1. The sources of shear and convergence for  we& isolated inhomogeneities 

Weak, isolated inhomogeneities. We assume that inhomogeneities Like galaxies or clusters of 
galaxies are isolated from each other such that in each domain containing an inhomogeneity, 
small compared with the Hubble distance, the metric can be approximated by a post- 
Minkowskian line element 

ds2 = (I + 2 $)c2dr2 - (1 - 2 ; )  dz2. 

The relative velocities of its mass distribution are small, U << c, and its Newtonian 
gravitational potential @ is weak, @ << c2. If the density outside such regions is &F 
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and we write for the density inside a clump i v p ~  + pel. such that pd is localized in the 
region, Poissons's equation As@ = 4IrG&r holds withiin the regiont. The mehic does not 
change appreciably on the time scale light needs to propagate through the inhomogeneity. 
We therefore call such inhomogeneities quasi-static, weak inhomogeneities. 

The source of convergence. First we consider the source of convergence R, defined 
in (2.2f). Inserting the field equations rvith an energy-momentum tensor of an ideal fluid 
yields: 

In this equation, @ is the 4-velocity of the ideal fluid, which devgtes from the velocity 
in a pure Friedmann universe U" by the peculiar velocity U;. U" = U= + U&, and 
5 is the wave vector of the central ray of the beam considered, which deviates from 
the wavevector-@' in a Friedmann universe due to deflection within the inhomogeneity by 
a vector S i - ,  K' = + S i a .  The matter density ,Z = fig + pd is given as a sum of 
the reduced background density in the on-average Friedmann universe, pb, = em, and 
the matter density of the clump pd. If we use that peculiar velocities of inhomogeneities 
(e.g. galaxies) are small, up.. 5 10-3c, and that their gravitational fields are also small, 
62, FS 2@/c2 << 1, we can neglect the contributions from U& and Sk' and obtain from 
(4.6) that in lowest order, with R = qg + 7&(, the contribution of the clumps is given by 

p,,U, up ia ip .  (4.7) 
47rG R c l a - -  

C' 

Consider an inhomogeneity along a ray yo localized in the &ne parameter interval 
[Amin, A ~ n  + AA] which is small compared with its distance to us: AA (c. Ad.; let Zd be an 
element of the comesponding redshift interval [.?min, zmin + Az]. Since the inhomogeneity 
must not change significantly during the time the light beam haverses it, we can calculate 
(4.7) for one instant of time, t (zd) .  The line element in the asymptotically flat neighbourhood 
U O f  A(Zd) is dr2 = (1 + 2@/Cz) (cdt)'-(l - 2@/C2) (dc'), with t = RdVr Rj do: M (dc)' 
and R(Zd)  = R d ;  (t, C) denote POSt-hlinkOWski C O O d i M t e S  centred on A(Zd) and oriented 
such that (3 is parallel to the spatial direction of yo there. We calculate R and 3 not only 
on the central ray yo of the beam considered, but for all spatial positions C in U. This yields 
R and 3 for all rays traversing U, where the spatial paths of the rays are parametrized by 
c@); note that the rays in U do not have to be infinitesimally near to yo in the sense of 
(2.3). The source of convergence on a ray in U is the sum of 

where we have written z instead of z(A). If one uses the Poisson equation As@ = 
4rrGp,r for the quasi-stationary Newtonian gravitational potential @(td, C) FS @(c) of the 
inhomogeneity, this yields for XI: 

(4.86) 

t Conceming the difficult problem of cunsmeting approximate solutions of Einstein's equations eonraining quasi- 
static, weak inhomogeneitie seperated by 'empry regions' and being Friedlnanniao on a large s d e ,  see Pufamase 
and Saraki (1989), Jacobs er d (1993); see also &ai (1993). 
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Up to now we have considered weak inhomogeneities which are small in size compared 
with their distance from us. Now we will restrict ourselves to those which are sufficiently 
thin, such that one can replace the wavevector and the vectors E' in (2.2g) by (4.4) and 
(4.5) evaluated at the redshift of the clump. (That is, for the calculation of the source term 
for the evolution of the light beam, one can neglect the deflection relative to the unperturbed 
light beam). Thus we approximate 

<(A) a (fl(Ad).  tZ(Ad). 5 3 W )  (4.9) 

for rays which are roughly parallel to yo at A(zd); the deviation of rays from the parallel 
direction must be small, as well as the typical deflection angle caused by an inhomogeneity, 
otherwise the approximation (4.9) would break downt. With our choice of the coordinate 
system, 1'1 and C2 are orthogonal coordinates on the screen defined in section 2. Therefore 
we write ((1 (Ad), <Z(Ad)) = < in the following; < is a parameter for labelling rays. Equations 
(4.8) hold for an infinitesimal beam with central ray yo (< = 0), and for any other ray which 
is in U and roughly parallel to yo at Ad. 

The approximation (4.9) is equivalent to one on which gravitational lens theory is based: 
there, the source term for the light bending along the deflected light ray is approximated 
locally by that evaluated along the path of the unperturbed ray. 

The source ofshear. Outside the matter inhomogeneities, where pb, = c p ~ .  we neglect 
the source of shear due to clumps; i.e. we neglect the long range gravitational action of the 
weak inhomogeneities, and put 7 = 0. At the inhomogeneity we evaluate (2.2g) in post- 
Minkowskian coordinates, hence we have to iransform the coordinates from (x", I, 8 , 4 )  to 
(xo, 51, <z, r3).  Note that we have chosen the &direction of the new coordinate system 
parallel to the spatial direction of the central ray. Since the normalization of all vectors 
stays invariant under the transformation of the coordinate system and since the norm in 
the local Minkowski system is built with q = diag(1, - 1 ,  - 1 ,  -I), we have to replace the 
metric tensor g by q in (4.4) and (4.5) and we obtain 

~ ( Z d ) = - ( 1 + Z d ) [ l , o . o , - 1 ]  E ~ ( Z d ) = [ O , 1 r O , O ]  E:(Zd) =[o,o, 1 9 0 1 .  (4 .10 )  

The Riemann tensor in the post-Minkowskian approximation in et and F coordinates is 
equal to 

(4 .11)  

Thus, (4.10) and (4 .1  1)  yield that there are only contributions to the source of shear in (2.2g) 
if a, y E ( 1 . 2 1  and p.6 E (0,3); hence the summation contains only 1 6  non-vanishing 
contributions. Using the quasi-stationarity of the metric, Q,o << a,;, yields that in lowest 
order of v/c,  only the following eight components of the curvature tensor contribute to 
(2.2g): 

Rioio = - - a.11 

1 
R e p y s = - -  cz { B . y ~ , g s - ~ ~ g y ~ . u s - ~ ~ 6 ~ . ~ y + G ~ ~ Q . a v ] .  

1 1 1 
c2 CZ 

1 1 1 
cz c2 

R t m  = R m ~ o  = - - @,IZ R n 1 3  = - 7 (Q.33 + a.11) 

Rmm = - - 0 , ~  R13s = Ru13 = - -@.12 Rz3u = - 2 (Q.33 + @,d. (4.12b) 

t In asaophysidy relevant situations the beams under consideration have an opening angle of - 1 arcminute - 3 W 4  for galaxy clusters, and of - 10 arcseconds .., 5 x IO-' for lensing by individual galaxies, the 
wmponding typical deflection angles are of the same order or smaller. 

( 4 . 1 k )  
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Inserting Q.12 = 0.21, (4.12) and (4.10) in (2.2g) and using (4.9) yields 

1 
&I(€; = 7 (1 + 2)’ [ @.I1 - @,ZZ - 2i@.21} (5; (3 (A)). (4.13) 

Therefore we obtain with (4.13), (4.8~~) and (4.8b) that the optical tidal matrix along a 
family of rays traversing an asymptotically flat neighbourhood of an event hd localized in a 
weak geometrically thin clump in an on-average Friedmann universe, such that their spatial 
directions are roughly parallel to the (3-direction at hd, is T(c; h) = ‘&(z) + Zl(A) with 
‘E,&) = Rbg(Z)z and 

(1 + (4.14) (%)it ( E ;  A) = - 7 [2(@,u) + (Sit@.33)] (E; <3(h)) 

Thus, the optical tidal matrix is simply related to the ordinary tidal matrix, i.e., the matrix 
of the second derivatives of the Newtonian potential. In these equations, z = z(h),  and is 
the screen position of the ray considered at hd relative to one chosen ray yo of the family; 
r3 is the direction in the post-Minkowski coordinate system parallel to the rays at hd, hence 
with (4.2) 

i ,k  E 1 1 , Z I .  

d 5 3 = ( 1 + ~ ) d h .  (4.15) 

If one evaluates the mapping of an infinitesimally thin beam (i.e. one needs the value of 
(4.14) on one ray M only). one puts E = 0 in (4.14). 

4.2. The thin lens approximation 

One of the simplifying assumptions underlying lens theory is that the inhomogeneities are 
geometrically thin. Thus one approximates the inhom0geneitie.s by two-dimensional surface 
mass densities S. Let one of the distributions be situated on the ‘plane’ (3 = 0, 

P& (3) %3 W 3 ) ~ : ( € )  (4.16) 

where 

+m 

W E )  := /- 4 3  P ~ S ~  (3). 

The Newtonian potential of this distribution is 

(4.17) 

(4.18) 

The derivatives @,ik, Q.33 which occur in the tidal matrix (4.14) decrease as the inverse third 
power of the distance from the plane of the mass distribution. It is. therefore, reasonable to 
approximate the optical tidal matrix for a clump of matter as a delta-distributional source 
term in h: 

+m 
GCS; A) := 6(A - i d  /- ’&(E; <3@‘))&’. (4.19) 
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The deflection potential 6. The defection potential 6(€) of an inhomogeneity is defined 
as usual by 

(4.20) 

(see SE=, sections 4.3 and 5.1). In the deflection potential the denominator in the argument of 
the logarithm is an arbitrary length, to make this argument dimensionless; we have chosen it 
equal to the so called empty cone angular diameter distance D d  := D(Zd)  from the observer 
to the redshift Zd. Under a change of this length scale, the value ofA4.20) changes only by 
an unimportant additive constant. It is straightforwad to see that Y and C are related to 
each other by the Poisson equation for the surface mass density 

(4.21) 

where A2 is the two-dimensional Laplace operator. 
We now show that the approximate tidal matrix of equation (4.19) can be expressed 

in terms of the second derivatives of the deflection potential rather than in terms of 
the @ derivatives. In fact, using equations (4.18), (4.20) and (4.15) one verifies by a 
straightforward calculation that, for i ,  k E [1.2}, 

Pm 

(4.22) 

(4.23) 

= - (1 + Zd)8(A - Ad)'?([). (4.24) 
In the last_step, we haze defined the deflection matrix v"(<) as the Hessian of the deflection 
potential U(<) =: X[Y ](e). 

We can generalize the result (4.24) to the case of several inhomogeneities, i.e. for the 
following case, which also is the 'standard situation' in gravitational lens theory: given an 
observer at redshift zero in an on-average Friedmann universe, a source at redshift zs =: Z N + ~  

and an arbitrary number N of geometrically thin, weak inhomogeneities between source and 
observer, situated at A,,.., AN with corresponding redshifts of ZI,..,ZN. Then, if we indicate 
the two-dimensional screen positions of a ray (relative to one ray yo of $e family) in the 
inhomogeneities with <j and the deflection matrices at those positions as Uj(€j ) ,  the optical 
tidal matrix is equal to 

N 
~"(€I,...,€N;A) = % g ( h ) Z - C ( l  +zi)fii(€i)8@-AO (4.25a) 

the different rays considered must be roughly parallel to each other before the first 
inhomogeneity, then, the same holds at every following inhomogeneity provided the 
deflection angles are small. Again, considering only one infinitesimal beam with central ray 
yo. one has to consider 

i=1 

(4.256) 
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4.3. The recurrence relation for the mapping ofthe lighr beam 

The equations (4.25) result from well defined assumptions and approximations. Hence we 
can solve the differential equation (2 .k )  with (4.25) as source term. We again consider not 
only a single beam, but a family of beams with (nearly) parallel central rays, and label a 
beam by the screen position of its central ray relative to one reference ray M. Defining 
@(&) := limALAn fi(&; A) and @;(e) := limA,qn fi(&: A), this yields: 

m") - i w l J  = -U + Z")3"(€")'Dn(€") (4.26) 

thus the Jacobi mabix, but not its derivative, is continuous at an inhomogeneity in the 
lens approximation. On the Ihs of (4.26) we want to express the derivatives of the Jacobi 
matrices as functions of the values of the Jacobi matrices at redshifts &-I. z,, and zn+l. 
In order to do this, we fin1 have to determine the evolution of an infinitesimal light beam 
outside clumps. 

The evolution of a beam outside clumps, Dyer-Roeder differential equation. We now 
investigate the evolution of a beam outside clumps, which we call empty beam or empfy 
cone in the following. Since outside of clumps the source of shear vanishes, the differential 
equation (2.4a) simplifies with the first of (4.8a) to 

4rrG 
~ ( A )  = %&)'D(A) = - 2 &(z)  11 + zJ~'IJ(A). 

C 

If we insert the evolution of the density with redshift, p&) = apo(l t z ) ~ ,  the definition 
of the density parameter R = &/,onit with pht = 3Hi /8nG,  we find that each component 
of 2, satisfies the differential equation 

Using the &ne parameter redshift relation (4.3). this finally transforms to the Dyer-Roeder 
differential equation (Dyer and Roeder 1973) 

(4.27) 

This second order differential equation has two linearly independent solutions; two solutions 
BI and B2 are independent if and only if the Wronskian W ( z )  := - &Bl(z) is 
different from zero at one value of z (and thus for every z). The first and second terms of 
equation (4.27) describe the evolution of a light beam due to the expansion of the universe, 
therefore appears; the third term describes the convergence of a light beam due to the 
local homogeneous matter density in the empty cone (no clumps); for this reason, 
a term ER occm. Consider a solution D ( z j , z )  of (4.27) which is zero at redshift 21 
and whose derivative with respect to redshift obeys the local Hubble law, or equivalently, 
the infinitesimal quantity (dD/dz) dz equals the infinitesimal proper length dDpmpcr(zj) at 
redshift zi. Then D(z1, z z )  is the empty cone angular diameter distance from redshift z1 to 
z2; it can be described by a function r(zi ,  z ) ,  solving (4.27) with boundary conditions 
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in the following form: 

C 
D ( Z I , Z Z )  = - Ir(zi,zz)l. (4.29) 

The general solution of this initial value problem is provided in Seitz and Scbneider (1994). 
If there is no inhomogeneity in the beam between its vertex and redshift z ,  the JdCOhi 
mahix D(z)  is given by 'D(z) = (c/Ho)r(O. z)Z; in particular, at the first inhomogeneity at 
z l ,  D(z1) = D(0, z1)Z. To describe the solution of equation (2 .4~~)  between the (n - 1)th 
and nth and between the nth and (n + 1)th inhomogeneity, we put: 

H O  

2%) = XiBi(z) + YBz(z )  z E [zn-i ,  znl (4.30) 

D(z)  = XZBi(Z) + ZBZfZ) z E [zn,zn+ll .  (4.31) 

Here, B1 and B2 are linearly independent solutions of the Dyer-Roeder differential equation; 
we choose them as Bl(z)  := D(0. z )  =: D(z )  and Bzfz) = D(z. ,z) .  Xi, Xz, Y and Z are 
real 2 x 2 matrices, determined by the boundary conditions. Evaluating (4.30) and (4.31) 
at zn immediately yields X := X1 = XZ = ( l /Dn)Dn =: A.. Then, we calculate the 
derivatives of (4.30) and (4.31) with respect to A, evaluate these at An and obtain with (4.3) 
and (4.28) the difference: 

(4.32) 

The matrices Y and Z can be calculated by evaluating (4.30) and (4.31) at zn-l and zn+l, 
respectively. With the abbreviations D(z; ,  z j )  =: Dij and D(zi)  =: Di this yields: 

d d 
dA dA fJ$ - = Z - D(z,, z ) I ~ \ ~ .  - Y- D k n ,  z)lrrz. = (1 + z ~ ) [ Z  + YI. 

We insert (4.33) and (4.32) into (4.26), use the Etherington (1933) reciprocity relation 

~ ) l z = z t  - D(ZZ. ~ ) ~ z = r i  - 
1 + z1 l+zz  

and obtain for D,+l: 

(44.34) 

However, this relation is equivalent to the recurrence relation for the Jacobi matrices in lens 
theory. This becomes clear if one rewrites this equation, as is common in lens theory, in 
djmensionless form. One has to insert the dimensionless deflection matrix V ( x )  related to 
U(,$) via 
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and the definitions of the dimensionless Jacobi matrices Ai(ri) := (I/Dj)Q(Djrj).  
Defining the geometrical quantities 

and 

1 $ i  < j <  N+1 p1j := DijDNtI 

DIDi.NtI 

as in paper I, this yields 

Ant1 -Bn,n+lUnAn - u,ZA.-I + (1 + u ~ ) A ,  = T.A. - u~A.-I  (4.35) 

where the 2 x 2 matrices T, are defined as T, := (1 + ui )2 -  &n+lUn, 1 $ n $ N and the 
starting condition is A1 = Z. This is the same recurrence relation as that in gravitational 
lens theory, see e.g. equation (2.21) of paper I. Hence we have shown that the recurrence 
relation for the mapping of the Jacobi matrices in lens theory can be derived as a direct 
approximation from geometrical optics. 

4.4. The dejection angle, the lens equation 

We have seen that Light propagation for infinitesimal light beams can be derived from 
geometrical optics. Can one also derive the lens equation and the deflection angle from 
geometrical optics? Yes, provided that the matter outside the clumps is homogeneous and 
the source of shear due to the clumps is assumed to vanish outside of the clumps. Therefore, 
the mapping between two consecutive lens planes can be considered to be linear on a large 
scale, i.e. not just for infinitesimal beams, but also for 'fat beams' (which of course have 
to be smaller than the typical separation between clumps). 

Consider two rays M and M including an angle 0 at their intersection point at the 
observer, where this angle is small enough to ensure that these rays are approximately 
parallel, but not necessarily infinitesimally small. 

We treat one of them (m) as a reference ray, adapt a screen to it (as defined in section 2) 
and denote the screen position of M at redshift z by &z). We calculate the evolution of 
this separation vector from the observer (z = 0) to the source at zr = zNtl in two steps: 

(1) Due to the remark above, the separation vector has to satisfy the Jacobi deviation 
equation (2.24 with the source term 7 = outside inhomogeneities. Hence, each 
component of this separation vector has to satisfy the Dyer-Roeder differential equation 
(4.27). Thus, if we indicate the screen position of M (relative to w) at the jth inhomogeneity 
by ,$ we can describe this separation vector between the (n - 1)th and the nth lens plane 
by 

(4.36) 

Note, that r(zn, z) and r(zn-l. z) form a pair of linearly independent solutions of the Dyer- 
Roeder equation and that inserting zn and zn-l yields the correct boundary conditions. 

(2) If there was no inhomogeneity at redshift zn. (4.36) would stay valid also for z > zn .  
But since there is an inhomogeneity, we have to correct for this and we have to take into 
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account that for L > zn the optical tidal matrix again becomes 7 = ?&Z. The correction 
function has to be a solution B(z) of the Dyer-Roeder equation. Thus we obtain 

c, is a non-zero vector quantity, therefore B must vanish at zn. We can choose the derivative 
of B at zn such that 

(4.38) 

holds, and thus B(z)  = D(z.. z). 

with respect to the afiine parameter, before and after the nth inhomogeneity: 
The defiction angle. We define the derivatives of the separation vector of the two rays 

Since dDpraper = (1 + zJdA for an observer at zn. 

eoYI = (1 + ZJ 1 E.+ 'I and ei. = (1 + zn)-'€;- (4.40) 

are the angular directions of M relative to M before (e& and &r traversing the 
inhomogeneity (eomt), respectively. We use (4.36). (4.37) and (4.38) to obtain 

with (4.40) this becomes 

(eout - ei,) = - c.(€!,). (4.42) 

Hence, cn(.$ is the difference of the deflection angles at the screen position c!, and the 
reference ray position (5. = 0). we now cdculate the vdue of the vector cn(c;) as a 
function of the surface mass density of the inhomogeneity and show that it is qual  to 
the difference of the deflection angles &(E!,) - &(O) used in lens theory. 

Consider a family of rays forming an infinitesimal beam with central ray M ;  we denote 
their screen vectors in the nth lens plane by & = <: + A& and their angular positions 
relative to yr at the observer by AO. Discussing the Jacobian map of this infinitesimal beam 
D&) = aA&,/aAO and its derivatives 

at the inhomogeneity, we obtain with (4.41) for the difference of these matrices 

(4.43) 
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On the other hand, we have from (4.26) 

This implies 

(4.44) 

for every and therefore, 

The additive constant has to be -V&Gn(0); this can be obtained from the limit f3 -+ 0, 
i.e. the case where the ray considered coincides with the reference ray: for this ray c ( z )  = 0. 
Therefore, we finally obtain with (4.18) 

as claimed before this is the difference of the deflection angles of the ray considered and 
the reference ray. 

The lens equation. Evaluating (4.37) at redshift zntl, inserting B(z,+I) = Dfz, ,  zn+I), 
(4.46). (4.29) with r(z., zn-l) = - lr(zn, znJ, Etherington's reciprocity relation, and 
dropping the indices 'I' yields: 

Using the quantities U: and &.+1 and the dimensionless impact vectors z, = &/D, shows 
that the first term on the rhs of (4.47) can he rewritten as 

for the second one, using the equations (C2) and (C5) of paper I, we obtain: 

(4.486) 

With the definition of the scaled deflection angle a := (D,,/D&i, we find 

&,.+I [&(%A - &W] DntlSn.n+I t a m ( % )  - c ~ n ( O ) l  (4.48~) 

inserting the equations (4.48) in (4.47) yields the dimensionless recurrence relation for the 
impact vectors xj in the lens planes 

(4.49) 2 2 =.+I = (1 + U,) zn - U, ="-I - Bn+ti bn(4 - a.(0)1 1 < n < N. 



The gravitational lens approximation 

We transform the centre of the Coordinate system in each lens plane such that 

j-1 

z; := z j  - C p j j a i ( 0 )  

a;(.;) := aj (Zj) 

i=l 

define 
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(4.50a) 

(4.50b) 

and obtain with (C8) of paper I and the comment below this equation in paper I, the 
recurrence relation one uses in lens theory (see paper I. equation (2.19)): 

2 ,  zk+l = (1 + U:) zk - U,, - h,.+tah(zk) 1 6 n 6 N .  (4.51) 

whereas (4.49) describes the mapping of a ray relative to a reference ray, which is also 
ddected at every inhomogeneity, (4.51) describes the mapping of a ray relative to the 
‘optical axis’. This optical axis can be constructed by piecewise smooth null geodesics 
(of the empty cone metic) connecting the (new) centres of the coordinate systems on 
consecutive lens planes with each other; thus this optical axis represents a kinematically 
possible ray, but not necessarily an actual light ray (see Fennats principle in SEF, e.g. chapter 
9.2). It has been shown already in SEF that the formulation (4.51) of the multiple lens plane 
equation is equivalent to the more familiar one (now we drop the primes), 

for the special case j = N + 1, we obtain with &,N+L = 1 for the source position that 

Therefore we have shown in this chapter that the equations describing the mapping of a light 
ray and that of a light beam in gravitational lens theory can be derived, with a series of well 
defined approximations, from the description of light propagation in geometrical optics. In 
essence, the multiple deflection gravitational lens equation can be viewed as a discretization 
of the exact propagation equation (2.4), applied to the case of weak gravitational fields (but 
not necessarily weak matter inhomogeneities). 

4.5. Remark on Fennat’s principle 

In SE, section 4.6, the derivation of the lens equation was based on a relativistic version 
of Fermat’s principle. The argument leading to the geometric contribution to the time 
delay, equation (4.65), p 145 in SEF, suffers from an apparent inconsistency. On p 143, it is 
Iirst stated that light rays from the source to the neighbourhood of the deflector and, after 
deflection, those from that neighbourhood to the observer, form ‘shear-free beams ... subject 
only to the focusing of the smooth part of matter’, i.e. to aim; but the subsequent calculations 
are said to be based on the large scale Rw metic which is related to the average density, 
p ~ .  This, however, presents an apparent difficulty only. In the ‘empty’ region, outside 
clumps, the shear of light beams is assumed negligible there. Now, it is known that the 
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only conformally flat non-static dust spacetimes are Friedmann ones (see Kramer etal 1980, 
sections 22.2, 32.42, 32.5). Therefore, it seems reasonable to approximate the universe in 
‘empty’ cone regions by a Friedmann model whose mean motion equals that of the large 
scale background model, but whose density is Zpp. This implies that the metric, a’, is 
related to the large scale metric, dr2, by a constant conformal factor, 

p =ti-’& =6-1 R 2 (11) -do:] . 
Therefore, the spatial paths of light rays in empty regions are the same for as for ds2, 
namely geodesics ‘of dup ,  and the reasoning on pp 144-5 leading to equation (4.65) applies 
without change, since that equation is invariant under a constant rescaling of the RW metric. 
(Angles and the redshift z d  remain unchanged, and the distances CA-,, Da. Os, Db are 
rescaled by the same factor.) 

5. The magn&ation of the Uux of Ught beam 

5.1. Theflux of a r&tion$eu magnification factor 

The monochromatic flux S, of a radiation field, measured by an observer at frequency w,  is 
given by the product of its specific intensity I,,, and the solid angle dS2 the source subtends 
on the observer’s sky: S, = Z,dS2. The specific intensity at the observer is related to 
that at the source by the conservation of the phase space density of photons. This implies, 
according to SE, section 3.6, that for any non-interacting radiation field the scalar I,/w3 is 
observer-independent, i.e. independent of his four velocity, and constant on a light beam: 

where h is the affine parameter of the cenrral light ray of the beam, w(0)  =: and 
u(hs) =: 0,. 

Consider an infinitesimal monochromatic source radiating with frequency us, and 
observed with frequency w ;  its observed flux S,,, depends on the source of shear and 
convergence along the beam connecting source and observer. Changing these source terms 
such that the frequency at the observer and the &e parameter redshift relation stays the 
same, then, for the same observer, the observed flux of the source changes according to (5.1) 
to S,,, = s”,(dQ/dn0), with s”, being the flux before changing the source terms. In an on- 
average Friedmann universe the frequency of the light is not changed by the deflection and, 
by definition, the &ne parameter redshift relation is not affected by the clumps. Hence, we 
can compare the flux S, of the source with the case where there are no intervening clumps 
between source and observer, and obtain for the ratio 

p is the so called magnification factor; if /L > 1, the light beam is said to be magnified 
relative to the empty beam. dQ and dQ0 are the solid angles which the source subtends on 
the sky for the cases with and without clumps in the beam. If we use (2.7). we obtain that 
the magnification p(h)  of a source at the &ne parameter h compared with the case where 
the source is observed through the empty beam, can be described as 

(5.3) 
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For the second equality we have used that, for the empty beam, the Jacobi matrix is 
given by @(A) = D(h)Z, with D(h) being the angular diameter distance of the empty 
beam, i.e. the solution of the Dyer-Roeder equation (4.27) with boundary conditions 
(4.28). The thud equality follows from the definition of the dimensionless Jacobian matrix 
A@) = (l/D(A))ZJ(h). Hence, the discussion of the matrix A or the magnification factor 
p in gravitational lens theory always implies the discussion of light propagation relative to 
the empty beam case. This point of view is reasonable. 

(1) As long as there are only a few clumps, i.e. if 1 - & is small, most light beams 
are empty cone beams. Therefore, the magnification factor in (5.3) describes the observed 
flux of a source whose beam is distorted between source and observer, relative to the most 
typical case, where the beam is not distorted. 

(2) The other extreme is the case where 1 - & becomes approximately one: the source 
of convergence becomes extremely small, and for the description of the very few light 
beams that do not traverse a matter inhomogeneity, one cannot neglect the source of shear, 
which is different along every individual beam. Hence, there no longer exists a typical light 
beam, and the definition of the magnification factor as in (5.2) and (5.3) has no illustrative 
meaning: it compares the flux of the considered light beam with that of a ficticious beam. 

(3) As mentioned at the beginning of section 4, for a weakly inhomogeneous universe 
(e.g. if one considers spatial scales on which the matter inhomogeneities are (quasi-)linear), 
the magnification is defined relative to that of the smooth Friedmann-LematZre universe. In 
this case, the angular diameter distances D(A) are those obtained from (4.27) with & = 1, 
and pd = Sp (the density fluctuations) can have either sign-therefore, no longer is 
non-positive. 

5.2. The relative focusing equation 

The focusing equation (2.8) describes the evolution of the angular diameter distance of a 
light beam due to the Ricci focusing and the shear rate of the beam. In the case of an 
on-average Friedmann universe all light beams have the empty cone background density as 
a common contribution to their focusing, and different additional source terms due to the 
clumps. Therefore we want to derive a differential equation which describes the evolution 
of the beam relative to the empty beam; the source terms of this relative focusing equation 
are then produced by the clumps only. 

Consider the differential equation 

(5.4) 

and let w(A) be the (unknown) solution of (5.4) with boundary conditions w(0) = 0 and 
ti(0) = 1. Assume that u(A) is the well known solution of (5.4) for the case c(h) 0, 

(5.5) 

with the same boundary conditions: u(0) = 0, u(0) = 1. We define a sbictly monotonically 
decreasing function X ( A )  by 
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so that X(A-) = 0; the value of A, will be specified below. Then, inserting the equations 
(5.5) and (5.6) in (5.4), we obtain for the ratio a := w/u the differential equation: 

(5.7) 
d2 

d X  
--a(X) = u'(X)c(X)a(X). 

Using i i r ( A ) l ~ a  = 0 = U(A)IA=O, the boundruy conditions for a become, as a function of A, 

a(h)l~,o = 1 - u(A)IA=o = 0. (5.8) 

We interpret? (5.4) by inserting h = %&) and c = 7&(A) - 1u(A)I2; then, w and U denote 
the angular diameter distances of the 'actual' beam considered and that in an empty cone, 
respectively. Therefore, (5.7) describes how the considered light beam is focused relative 
to the empty beam and is therefore called the relative focusing equation; the solution of 
(5.7) can be described, with 

d 
dA 

C 
u(A) = D(A) = - r(z(A)) 

Ho 

as 

1 

D(A) 
a@) = --[det2)1(A)=S&[detA(A)I. (5.9) 

The inverse of (5.9) yields the magnification of the beam at a position h:la(A).)12 = p-'(A). 
We can identify (c/Ho)X with the cosmological X-function, defined in equation (4.68) of 
SEP, since 

dX 
dA 

yields, if we put Aman = lim,,,A(z) and use equation (4.3), 

Inserting (5.10) and (5.9) in (5.7). the relative focusing equation can be rewritten as 

Note that due to the shictly monotonic behaviour of x and A as functions of z, we can 
consider any variable on a light ray as a function of z. A or x. 

t One can calculate the relative magnification of two tight beams Wfth (5.7) even in a ca.% of a non-Friedmann 
universe, if  the affine pBIilmners of these Light beams att the same (e.g. as a hurction of redshift). 
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5.3. The focusing theorem 

The non-positiveness of the source term ‘%&I - 1 0 . 1 ~  due to the clumps in the focusing 
equation shows that a beam propagating through clumps is always more focused than the 
empty beam (in the absence of conjugate points between source and observer). Hence, as 
long as the beam has not formed its first conjugate point, the angular diameter distance must 
not he greater than that of an empty comparison beam at the same redshift. This so called 
focusing theorem can be restated with the use of the relative focusing equation: as long as 
the light beam has not formed its first conjugate point, the function u(A) is alway between 
one and zero, 

l > u ( A ) > O  W p(A)>l O < A < h ,  (5.12) 

or, the light beam is not de-magnified relative to one in an empty cone. This can be 
proved immediately. Using the boundary conditions of u(A) described in equation (5.8) 
and that, due to the non-positiveness of [%I - Iulz]. the second derivative of a in (5.11) is 
always non-positive, one obtains that the value of a is always between one and zero in the 
interval between the vertex and the first conjugate point of the beam. One can also prove a 
stronger statement: as long as the beam hos not passed a conjugate point, the function a(A) 
is monotonically decreasing. 

Proof. Since x tends to plus infinity at the vertex, and lim,,,(da/dx)(x) = 0, one can 
w’te 

and therefore, da/dA can be rewritten as 

Since the integrand is non-positive, du/dA < 0 follows. 0 

6. Summary and conclusions 

We have investigated the propagation of infinitesimally small light beams in arbitrary 
spacetimes, and have derived a Jacobi type of differential equation for the matrix providing 
the hear mapping from the inclination angle of a light ray of the beam to the separation 
vector at arbitrary value; of the a fhe  parameter. This matrix carries full information 
about the size, shape, orientation and twist of the beam. We have then concentrated on 
the investigation of the behaviour of light beams near a vertex and near conjugate points; 
in particular, we have derived asymptotic representations of the optical scalars near such 
points. It has been pointed out that near a vertex and a focus, the twist of a beam is a 
higher order contribution to the Jacobi mapping than are expansion and shear. 

We then turned to the special case where the metric is that of a perturbed Friedmann 
universe. i.e. where the overall geometry of the universe is described by a Friedmann 
metric, which, however, is locally modified to allow for matter inhomogeneities. If the 
matter inhomogeneities are considered to be weak, so that they can be described locally by 
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a post-Minkowskian metric, and geometrically thin and isolated, so that typical light beams 
propagate most of the time through the background Friedmann metric, the influence of the 
matter inhomogeneities on the light beam can be described by a sum of delta distributional 
contributions to the source term of the Jacohi equation for the linear mapping mentioned 
above. In this way we have derived the equations of gravitational lens theory, which 
represents an approximation to the exact propagation equations which is particularly useful 
for, and applies to, most astrophysically relevant situations of light propagation in the 
universe. We want to point out that in contrast to earlier treatments of the lens equations 
(e.g. SEF, section 4.6). we have made no use of the existence of an optical axis relative to 
which the impact vectors are defined; instead, our reference ray is a physical, i.e. deflected, 
light ray. To relate our formulation to the earlier treatment, a redefinition of the coordinate 
frames in the lens planes was performed which yielded the lens equation in the standard 
form. 

We remind the reader that a derivation of the gravitational lens equation can also start 
from Fermat’s principle (see Blandford and Namyan 1986, SEF section 4.6 and references 
therein); however, the derivation presented here appears to be more direct, in that one does 
not make use of geometrical constructions for the calculation of the ‘geometn’cal time delay’, 
which are less easy to justify in an ‘on-average Friedmann universe’ than the approximations 
used here. The advantage of our derivation of the lens equations lies in its explicit listing 
of approximations which have to be made. All but two are not critical and well satisfied in 
astrophysically relevant situations. The two which are as yet not very well understood are: 
(1) the source of shear has been assumed to vanish between two consecutive lens planes: 
(2) it has been assumed that the metric of a clumpy universe can be written locally as a 
post-Minkowskian modification of the standard Friedmann metric. Note that a number of 
investigations have suggested the validity of this latter approximation (e.g. Futamase and 
Sasaki 1989, Jacobs et al 1993). The former assumption certainly has to break down if 
the universe is highly clumpy, i.e. for 652 of order unity. However, since it seems that 
the clumpiness of our universe is much smaller than unity, we conclude that the (multiple 
deflection) gravitational lens equations provide a useful and fairly accurate approximation 
in most relevant cases. 

Finally, we have derived an equation for the size of a light beam in a clumpy universe, 
relative to the size of a beam which is unaffected by the matter inhomogeneities. If we 
require that this second-order differential equation contains only the contribution by matter 
clumps as source term, the independent variable is uniquely defined and agrees with the 
x-function previously introduced (see SEF. equation (4.68)) for other reasons. This relative 
focusing equation immediately yields the result that a light beam cannot be less focused than 
a reference beam which is unaffected by matter inhomogeneities, prior to the propagation 
through its first conjugate point. In other words, no source can appear fainter to the observer 
than in the case that there are no matter inhomogeneities close to the line of sight to this 
source, a result previously demonstrated for the case of one (Schneider 1984) and several 
(paper I, Seitz and Schneider 1994) lens planes. 
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