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Abstract. From a simple estimate for the formation time of
galaxy clusters, Richstone et al. have recently concluded that
the evidence for non-virialized structures in a large fraction
of observed clusters points towards a high value for the cos-
mological density parameter {2y. This conclusion was based
on a study of the spherical collapse of density perturbations,
assumed to follow a Gaussian probability distribution. In this
paper, we extend their treatment in several respects: first, we
argue that the collapse does not start from a comoving motion
of the perturbation, but that the continuity equation requires an
initial velocity perturbation directly related to the density per-
turbation. This requirement modifies the initial condition for the
evolution equation and has the effect that the collapse proceeds
faster than in the case where the initial velocity perturbation
is set to zero; the timescale is reduced by a factor of up to
=~ (.5. Our result thus strengthens the conclusion of Richstone
et al. for a high Q. In addition, we study the collapse of den-
sity fluctuations in the frame of the Zel’dovich approximation,
using as starting condition the analytically known probability
distribution of the eigenvalues of the deformation tensor, which
depends only on the (Gaussian) width of the perturbation spec-
trum. Finally, we consider the anisotropic collapse of density
perturbations dynamically, again with initial conditions drawn
from the probability distribution of the deformation tensor. We
find that in both cases of anisotropic collapse, in the Zel’dovich
approximation and in the dynamical calculations, the resulting
distribution of collapse times agrees remarkably well with the
results from spherical collapse. We discuss this agreement and
conclude that it is mainly due to the properties of the probability
distribution for the eigenvalues of the Zel’dovich deformation
tensor. Hence, the conclusions of Richstone et al. on the value
of {2 can be verified and strengthened, even if a more general
approach to the collapse of density perturbations is employed.
A simple analytic formula for the cluster redshift distribution in
an Einstein-deSitter universe is derived.
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1. Introduction

In a recent paper, Richstone et al. (1992; hereafter RLT) have
considered the formation of clusters of galaxies. Starting from
the linear approximation to gravitational collapse, they esti-
mated the (comoving) density of clusters at a cosmological
epoch characterized by redshift z. They found that the rate of
cluster formation as a function of z depends critically on the as-
sumed value of the density parameter {); for values of {2y near
its closure value, p = 1, many clusters seen today have only
formed recently, whereas for small values of €2y, most clus-
ters seen today should be relatively old. With the assumption
that clusters which are not yet virialized (as judged from their
galaxy distribution and/or their X-ray emission) are young ob-
jects, RLT concluded that the large fraction of non-virialized
clusters indicate that a high value for {2y can be inferred from
cluster observations.

For deriving their results, RLT assumed that a spherical mat-
ter overdensity (characterized by the fractional overdensity ¢ in
its interior, § = p/{p) — 1, where (p) is the background den-
sity) starts to expand at early times with the expansion rate of
the background model, i.e., that the initial Hubble parameter of
the density perturbation is the same as that of the background
universe.

In this paper, we argue that this initial condition for the col-
lapse is a severe restriction; in fact, in a non-rotational flow,
the continuity equation couples density perturbations with ve-
locity perturbations. An initially overdense region will tend to
have a negative divergence of the flow velocity. We quantify
this fact and its consequences on the basis of the Zel’dovich
approximation in Sect.2. In Sect.3, analytically known statis-
tical properties of the Zel’dovich approximation are employed
for an independent estimate of cluster-formation timescales. We
find that the inclusion of initial velocity perturbations in accord
with the continuity equation decreases the collapse time-scale;
hence, for the same value of €y, the clusters obtained from this
theory are older than in the treatment of RLT, thus strengthen-
ing their conclusion about a high value of . Sect.4 presents
results for collapse timescales of homogeneous ellipsoids; we
find that this generalization of the collapse theory does not alter
our results significantly. In Sect.5 we summarize our results.
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Besides the use of consistent initial conditions for perturba-
tions instead of initially comoving expansion, the present paper
differs from RLT in two further respects. First, we normalize
the amplitude of fluctuations leading to clusters with the am-
plitude of the density perturbation spectrum rather than with
the number density of present-day galaxy clusters, and second,
we employ the statistical properties of the eigenvalues of the
Zel’dovich deformation tensor to obtain an approximation to
anisotropic cluster collapse.

2. Spherical collapse
2.1. Dynamics of the collapse

Let us first concentrate on the dynamics of a spherically sym-
metric, homogeneous density perturbation in a Friedmann—
Lemaitre (FL) background model. Spherical symmetry implies
that the density perturbation can be considered as a “mini-
universe” of its own, with a slightly different value of its corre-
sponding density parameter. For simplicity, we assume that the
cosmological constant vanishes, A = 0. The equation of motion
for the ‘radius’ r of the density perturbation can be integrated
to yield

87G pir?
7"2——71-—&=2E

T o=k, M

provided the matter inside is non-relativistic (“dust”, p = 0).
‘Radius’ here means some measure for the radial extent of the
perturbation. The index ‘i’ refers to some initial instant of time
t; where deviations from the homogeneous and isotropic back-
ground model are still small but where matter is already dom-
inating radiation, and p is the density. ' is a constant of inte-
gration with the dimension of a specific energy. Note that (1) is
valid for any homogeneous, pressure-free, spherically symmet-
ric matter distribution irrespective of its size.

In the case of an FL universe, p is the homogeneous back-
ground density (p). It is convenient to introduce the usual cos-
mological parameters of the background universe, namely

H(t) = T (Hubble function), and
o 2
Q@) = %< ) (density parameter)

(Note that Q2 and H are functions of time here.) H and {2 evolve
with redshift z according to

HZz)=Hy(1+2)\/1+Q2z , (3a)
_ 1-Q \ 7'
Q(Z) = (1 + m) s (3b)

as long as z is sufficiently small so that the universe is matter

dominated; z < 103. For z > Qy ! we can approximate
1—Q

Q()(l +2) ’

Q)= 1—-ez) , €2) le(z)| < 1. @)
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(This equation illustrates the cosmological flatness problem: A
very small deviation of €2(z) from unity at high redshifts may
develop into a deviation at present times much larger than the
observed range.)

We now consider a spherical volume whose density deviates
from the background density (p); by definition of the density
contrast 6, we then have p = (1 + 6){(p). Equation (1) can then
be written in the form

W= +H; \/ 25 +%<1+51), 5)

7"i2Hi2

where the cosmological parameters [Eq. (2)] at time ¢; were

inserted and u = (r/r;) was introduced. We will later need only

the positive branch of ¥ and will therefore drop the ‘—’ sign.
Using Eq. (4), we may expand

AT+6)f=A—-e)1+6)~1—€6+6, ©6)

since ¢; < 1 and §; < 1, and Eq. (5) transforms to

2K 1_6i+6i
= H, . 7
u '\/T?Hi2+ U @

Note that the Hubble constant of the background model is used
throughout.

2.2. The initial condition

Up to this point, our treatment agrees with that of RLT. How-
ever, RLT now choose E such that u; = Hj, i.e., that the density
perturbation initially expands with the Hubble flow of the back-
ground model. In contrast, we argue that a density fluctuation
at early times is connected with a peculiar velocity field which
makes the overdense region expand slower than the surrounding
universe.

To see this, we turn to the Zel’dovich approximation
(Zel’dovich 1970; Buchert 1989, 1992). The physical picture
we have in mind is the following. Consider a homogeneous and
isotropic model universe at times very close to the big bang. If
we require that the perturbations can be considered to be peri-
odic on a ‘cube’ with size much smaller than the horizon, the
linearized perturbations of this model can be decomposed into
one growing and one decaying irrotational mode, plus one de-
caying rotational mode. Assume that at very early times, the
density and the velocity field are slightly perturbed in an ar-
bitrary way. The rotational mode of the velocity field and the
decaying mode will eventually ‘die out’, i.e., they will become
negligibly weak compared to the growing mode. The velocity
field will then also be oriented parallel to the gravitational ac-
celeration exerted by the density perturbations. Conversely, if
at some later time a decaying mode would still be compara-
ble to the growing mode, it would dominate at early times. If
we therefore assume small arbitrary perturbations at very early
times which are not dominated by the rotational mode, we obtain
at later times perturbations which are still small and dominated
by the growing, irrotational mode. In mathematical terms, we
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thus require that the relative deviation of perturbed from unper-
turbed particle coordinates is bounded for ¢ — 0. The velocity
field can then be described by the gradient of some potential
®, and since the velocity will preferentially be aligned with the
direction of gravitational acceleration, this potential will also be
the potential of the density perturbations. For the purposes of
this work, it is therefore sufficient to assume that at ¢; there exists
a perturbation potential whose gradient yields the velocity per-
turbations and which at the same time, via Poisson’s equation,
fixes the density perturbation.

Under these assumptions, the Zel’dovich approximation de-
scribes ‘particle’ trajectories 7(t) as functions of their positions
g in Lagrangean space,

r(t) = a(t) [q + bV, D(q)] - ®)

a(t) is the dimensionless cosmological scale factor normalized
by a; = 1. For t = t;, r = q, with b(t;) = b; = 0.
b(t) is monotonous, obeying the differential equation
3H? 2

6+2H6——2—Qb=¥a“3, 9)

which can be obtained from Lagrangian perturbation theory
(see, e.g., Buchert 1992, Eq. 9) by specializing to the assump-
tions mentioned above. The constant factor on ther.h.s. of Eq. (9)
has been chosen for later convenience. For )y = 1, the general
solution to (9) is

b=Aa**+Ba—-1, (10)

where A and B are arbitrary constants. The conditions that b(t)
vanishes at ¢; and that the decaying mode can be neglected (A =
0) yield

bt)=a(t)—1, (I1)
and therefore
bi = H; . (12)

For sufficiently early times [redshift z > et Eq. 4)],
Eqgs.(11,12) are valid for any €2, since £2; — 1.

The Zel’dovich approximation is valid as long as the density
contrast is small compared to unity, i.e., it applies at least for
such values of ¢ where the linear approximation applies; in fact,
the Zel’dovich approximation can be extended into the weakly
non-linear regime. As we show now, it provides an appropri-
ate method to obtain the initial conditions for the gravitational
collapse.

From (8), we obtain

a

P=—-r+abV,®,

=— (13)
a

where the first term is due to the Hubble expansion and the

second to peculiar motion. At time ¢;, Eq. (12) can be used to

write (13) in the form

7 = H; (q + qu)) . (14)
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It is evident from Eq. (13) that the curl of 7 vanishes identically.
Differentiating (13) with respect to the time once more, we
obtain

it = Zp + (ab+2a0)V, P .

(15)
a

If evaluated at time ¢;, the term in brackets yields (3 H. iz) /2 [com-
bine Eqgs.(9,12) with ¢; = H; and ¢; = 2/(3H;)], and Eq. (15)
reduces to

3H?
7 =dm+—2—‘vq‘1>. (16)
Since the Lh.s. of Eqs.(15,16) is the (gravitational) acceleration,

the divergence of Eq. (16) yields, by virtue of Poisson’s and
Friedmann’s equations,

3H?
4nGp; = 4nG{p); — 21 AD . a7
If we now use the definition of the density contrast, we find
81
AP = ———={(p)i . 1
3 le <,0> i (18)

Again, since t; is taken close to the big bang, we have ; =~ 1

and therefore 87wG(p); ~ 3H, i2; hence, we have
Ad ~ —§; . (19)

If we denote the relative expansion rate of the perturbation by
(H;)p, we can write the divergence of Eq. (14) in the form

AR =3(Hi)p=3Hi+HiA(I) (20)
or, using Eq. (19),

1
(Hi), = H; (1 - §5i> . 21

This equation can now be combined with (5) to obtain the correct
choice of the constant F,

&\° 5
=(l-—%) —(A-g+&)=6— 36
< 3> (1—¢+b) e 36

2F
7'i2Hi2

After insertion into (7), this yields

= % VI =€ +6)+ (6 — cdu,
where we inserted c instead of 5/3 for later demonstration of
the effect of peculiar velocities (¢ = 5/3) vs. initial ‘comoving
expansion’ (¢ = 1), as adopted by RLT. Note that the factor
¢ = 5/3 was already derived and discussed by Gunn & Gott
(1972), but found irrelevant for the purposes of their work.
The spherical perturbation achieves its maximum radius max
when 4 = 0; from Eq. (22), it follows that

U= (22)

1——€i+6i

2
Céi — € ( 3)

Umax =

Perturbations with & < (¢;/c) never collapse.
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2.3. Collapse times and statistics

We now return to the procedure described by RLT. From
Eq. (22), we have

Vu du
\/(1 — €+ 51) + (ei — C(Sj)’lL '

H; dt = (24)

The collapse time 7 is twice the time which the perturbation
needs to approach un,y, since the differential equation (22) does
not contain the independent variable explicitly:

H]7_=2 max ﬁdu
o VI —€&+8)+ (6 —chu 25)
o 2uma ' Vzdx
_\/1—€i+5i 0 \/1—117 ’

where we have integrated from time ¢ = O instead of ¢ = ¢;, the
difference being small since the initial time ¢; can be chosen very
small. [For the collapse, the negative sign in Eq. (5) applies.]
Solving the integral and keeping only the leading term in the
small quantities ¢; and 6;, we find with (23)

™

Hor~—"1
T s — eyl

(26)

It is now convenient to relate 7 to the cosmic time which has

passed since ¢;, or, since ¢; is small, the present age of the uni-

verse, tg. If ¢y is written in units of Hi_l, T =ty H;, we have
Vs

T(cb — )32

=12 @7)
to
For ¢; = 0 (£29 = 1), the inclusion of the peculiar velocity field,
expressed by Eq. (21), shortens the collapse timescale by a factor
of (3/5)/% ~ 0.46.
If we now assume that, at ¢t = ¢;, the density perturbations
follow a Gaussian probability distribution with width (Aé"),

! ex [ L& ] dé;
Varas) TP |2 @]
then the probability to find a density contrast §; > A; is given
by

dP(6;) = (28)

P > A) = erfc [ 29)

o)
V2(86)]
where erfc(z) is the complementary error function.
Equation (27) yields the collapse time of a spherically sym-
metric density perturbation with density contrast ;. Conversely,
inversion of Eq. (27) yields the (minimum) value of §; necessary
for a perturbation to collapse before ¢/,

&) = [(%)2/3+6i:| %

Substituting 6;(¢") for A; into (29), we obtain the probability for
density perturbations to collapse before ¢/,

, 1 m\2/3
Pt == erfc{\/_c(A(S/ [(ﬁ) +ei}}.

(30)

(3D
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For general cosmological parameters, this equation is best eval-
uated numerically.

As an illustrative example, let us now consider the case g =
1 or, from Eq. (4), ¢ = 0. The present age of the universe is
to = (2/3)H; !, and from (3a) we obtain

2
T=toH=3(1+ %)% (32)
Defining (A6) = (1 + z)(A8’), which can be interpreted
as the width of the Gaussian density-fluctuation distribution
linearly extrapolated to z = 0, and substituting Eq. (32) into
Eq. (31), we obtain

3 2/3 1 1 2/3
i) = gerte {( 2 > N (t_> '

Instead of ¢/, we now use the redshift z at which the perturbation
collapses as the independent variable,

(33)

t=(l+2)72, 34
and end up with

o= 255
with

g= % (37”)2/3 ~ 1.988 (36)

2.4. Choice of the perturbation distribution

The question is now which value for (A$) is appropriate. RLT
determine (A§) by requiring that P{0} should reproduce the
present-epoch spatial number density of galaxy clusters. If we
follow that procedure, which we will criticize below, the choice
of ¢ = 5/3 instead of ¢ = 1 in Eq. (35) has merely the con-
sequence that (A6) is changed to (3/5)(A¥) to yield the same
present-epoch cluster density, and thus P{z} is not changed at
all.

Alternatively, the width (Ad) of the density fluctuation spec-
trum can be obtained from the (Fourier) spectrum P(k) of the
primordial density fluctuations,

D !

Pas(h ~ K) = o (o) B (k) 37
where the hat indicates the Fourier transform and the asterisk
the complex conjugate; we can calculate (A§) once P(k) is

specified. With the definition of the Fourier transform, we obtain
from (37):

dk

2 —
(Bor= @ny

@y = | ~ Pk, (38)
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where the first equality is valid because (6) = 0, from the def-
inition of the density contrast. Conventionally, P(k) is written
in the form

P(k)= A k™ T?(k), (39)
where T'(k) is the so-called transfer function which has the prop-
erties T(k) — 1 (k — 0) and T'(k) — 0 (k — o) and is deter-
mined by the particle species dominating the cosmic medium.
The amplitude A is chosen from the requirement

dkv

ar )3 (40)

o= [ P Wi

where Wg(k)isa ‘window function’ which essentially smoothes
P(k) on scales larger than R. Usually, A is chosen such as to
make o3 = o(R = 8 Mpc/ h) = 1. The dimension of A is de-
termined by requiring that P(k) have the dimension of k=3, in
agreement with Eqgs.(37,38).

Since we are interested in density fluctuations on cluster
scales, we modify Eq. (38) by

dk

2 _
BO= | any

PRy Wi (k) , (41)

where R’ now is a characteristic scale length for galaxy clusters,
R’ ~ 5 Mpc/h, say. Quite independent of the transfer function
(since R’ ~ R), we obtain from Eq. (41) for Qo = 1
(Ad) ~ 14, (42)
in agreement with the value quoted by RLT. A linear bias factor
b, to be introduced into the normalization of P(k) in Eq. (40)
in the form og = (1/b), would also change (A6) by 1/b. This
bias factor is generally supposed to range between 0.8 < b < 2,
with a possible dependence on scale (Cen & Ostriker 1992). It
therefore provides a major uncertainty of our approach; how-
ever, Ostriker (1993) quotes the values og ~ 1.1 and b ~ 0.9,
leaving (A6) from Eq. (42) basically unchanged.

Using the fixed window scale of R’ in Eq. (41) implies that
cluster masses at the time when clusters decouple from the Hub-
ble flow are proportional to £29. However, in a low-density uni-
verse, clusters form early and may significantly accrete mass
until ¢g.

If (Ad) is determined from Eq. (41) rather than from the
criterion used by RLT, the inclusion of peculiar velocities in
Eq. (21) changes P{z} significantly. To illustrate this, we dis-
play in Fig. 1 the function

P{z}

F(Z)EP—{OT’

43)

which is the present fraction of all those perturbations which
have already collapsed before z. For the figure, (A§) was chosen
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Fig. 1. The fraction F'(z) from Eq. (43) of present-day clusters which
have collapsed before redshift z for o = 1 , ¢ = 1 (solid curve),
Qo =1, ¢ =5/3 (short-dashed curve), 2 = 0.2 , ¢ = 1 (dotted
curve) and 2 = 0.2, ¢ =5/3 (long-dashed curve); it is seen that the
inclusion of peculiar velocities in the initial condition (¢ = 5/3 instead
of ¢ = 1) shifts the median of F'(z) from z ~ 0.2to z ~ 0.3 for 0 = 1
and from z ~ 0.6 to z ~ 1.4 for 2o = 0.2

such that for ¢ = 1 the curves presented by RLT (solid and dotted
lines for Qy = 1 and 2y = 0.2, respectively) are reproduced.

We prefer the view that (A6) should be derived from the per-
turbation spectrum as described above rather than from requir-
ing that P{z} should reproduce the present-epoch cluster den-
sity, since the latter quantity is only poorly determined. More-
over, if peculiar velocities are included, and (A¢) is fixed via
the cluster density, then (Aé) < 1 for = 1, in contrast to
the observation that og ~ 1; typical cluster scales are smaller
than 8 Mpc/h, and therefore (Ad) should be close to, but larger
than unity. On that basis, it appears that the lower limit for Q,
Qo = 0.5, derived by RLT from indications that clusters are
young, is further increased; we estimate 2y < 0.7.

3. Cluster collapse in Zel’dovich approximation

Another, entirely different estimate for cluster-collapse time-
scales can be given starting with the Zel’dovich approximation,
Eq. (8), extending the Zel’dovich approximation into the non-
linear regime. In comoving coordinates x, defined by

r=al)x, (44)
the Zel’dovich approximation (8) reads
z(g,t) =g+ b(H)V,P . (45)

The motion described by Eq. (45) causes a ‘deformation’ of
the cosmic material, which can locally be approximated by the
so-called Zel’dovich deformation tensor,

ij = 8quk = 6jk + b(t)q)d‘k . (46)
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This tensor is manifestly symmetric and can therefore be diag-
onalized. If \; , j € {1,2,3}, are the eigenvalues of (P i),
then

(Fjk) = (diag[1 + b)) - (47)

From the equation of continuity, it follows that the density p of
a perturbation is given in terms of the mean cosmic density {p)
as

p=(p) (L+6) | det(Fyp)| ™" -

From the statistical properties of 6;, which are fixed by the
density perturbation spectrum P(k) [Eq. (39)], the statistical
properties of ® ;. or, equivalently, of A; can be derived; in
particular, a probability distribution for the A; can be given
(Doroshkevich 1970; Bartelmann & Schneider 1992; see also
Bardeen et al. 1986):

(48)

153
A= ——— (A3 —=ADA3 — ) — A
p(A) 87r\/§(A6’)6( 3= ADA3 = A2)(A2 — Ap)
3 (49)
X eXp{——2(A6’)2 [200] + 23 + A3
—(MA+ A+ )]},

where X abbreviates { A;, A2, A3} and where the eigenvalues are
assumed to be arranged in ascending order,

A< < s (50)

in (49), we have written (A§") = (A)/(1 + 2;), as before. Drop-
ping the assumption of ordering (49), the probability distribution
must be modified by dividing through the number of permuta-
tions of the A’s, i.e. through 3! = 6, and by taking the absolute
value of the resulting expression; this then agrees with the dis-
tribution derived by Doroshkevich (1970).
A collapse along a trajectory x(q, t) occurs when

det [ij(q, t)] vanishes. According to Eq. (47), this happens for
the first time when

1
bt)y=——:
(t) N
Equation (51) yields the time when a ‘pancake’ is formed.
Hence, the probability that a perturbation collapses before time
t equals the probability that its smallest eigenvalue is smaller

than the value described by (51), i.e.,

B —1/b(t) oo oo
P(t) =/ d)\l/ d/\z/ dAsz p(A) .
— 00 )\1 )\2

Of course, this distribution is independent of the choice of z;,
since (A§) scales like (1 + 2)~!, as do the \’s, whereas the
scale factor scales like (1 + )~ '. For Qy = 1 and ¢t > ¢,
b(t) =~ a(t) o< (1 +2)~" o t?/3, and Eq. (52) is easily trans-
formed to a function of redshift, P[z]. For this case of an
Einstein-deSitter universe, Fig. 2 displays F'(z) [Eq. (43)] for
c € {1,5/3} together with F(2) = (P[z]/P[0]). It is clearly
seen that the cluster collapse distribution derived from the statis-
tics of the Zel’dovich approximation coincides well with F(z)

D)

(52)
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Fig. 2. Redshift distributions of collapsed overdensities in an Einstein-
deSitter universe. Dashed curve: F(z) for ¢ = 1 (RLT’s result), solid
curve: F'(z) for ¢ = 5/3 (peculiar velocities included), dotted curve:
F(z)(Zel’dovich approximation); while F'(z) coincides well with F(z)
for ¢ = 5/3, it departs significantly from F(z) withc =1

for ¢ = 5/3, but departs significantly from the result given by
RLT.

4. Gravitational collapse of homogeneous ellipsoids

The probability distribution of Eq. (49) vanishes when \; = A,
J # k. This means that the deformation described by Fjy, is
generically anisotropic, an observation which led to the term
‘pancake theory’. However, this indicates that the assumption
of an isotropic peculiar velocity field in the neighborhood of a
density perturbation — and thus the assumption of a spherical
collapse — is an oversimplification. We therefore investigate in
this section the consequences of explicitly accounting for the
anisotropy of the peculiar velocity field.

An initially spherical volume will be deformed into an ellip-
soid by the anisotropic velocity field. The gravitational potential
inside a homogeneous ellipsoid is given by the quadratic form

¢ =nGpdjkTiTk (53)

where the r; are cartesian coordinates and p is the physical
density inside the ellipsoid. ¢, is a symmetric tensor and can
be diagonalized, at each time

(Pj1) = (diag(e1, ¢z, 93)) ,

where the ¢; can be found in, e.g., Peebles (1980) or Binney
& Tremaine (1987). For the spherical case, all ¢; = 2/3; in the
general case, these eigenvalues still obey the relation ¢; + ¢, +
¢3 = 2. The equation of motion reads

.99

’i"j 67']' = —271'Gp¢j’f‘j .

(54)

(55)

For convenience, we now transform to comoving coordinates
[see Eq. (44)], and choose a time coordinate T such that terms
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proportional to (z;)’ = (dz;)/(dr) vanish. In an Einstein-
deSitter universe, the resulting transformation reads

1/3
T= (E) / =a /2.
t

Moreover, the comoving density inside the ellipsoid can be writ-
ten as a product of the initial density and the deformation of the
volume,

(56)

3H12 : 1
=—L(1+§ ,
p 87TG( )ul Up U3

(57)

where we have defined u; = [; / x;(%;)], the relative change of
the comoving coordinates along one of the three principal axes.
Inserting these expressions into (55), the equation of motion
becomes

/ . 3¢,
(u)" = % [2— Ha(bj

k=1 Uk

1+ 60} . (58)

This coupled set of equations can be solved numerically with
the boundary conditions

u’j(tl) =1,

de . (59)
E(tl) ==2X;;

in the second equation, we have used (45), together with (56) and
the fact that ¢; H; = 2/3. The initial density of the perturbation
is, according to (19),

3
S==> N .

J=1

(60)

If \; = X forall j, then & = —3\, and ¢; = 2/3 for all j,
and then (58) and (59) are equivalent to (1) and (21), as is most
easily veryfied by transforming Egs.(1,21) from r to z and from
ttoT.

We have numerically solved (58) with the initial conditions
(59) for a large number eigenvalue triples {\; }, drawn from the
probability distribution (49). The coefficients ¢; which depend
on the instantaneous axis ratios of the ellipsoid, i.e., on the ratios
of the u;(t), are calculated at each timestep.

Figure 3 displays the numerical result for the collapse-
redshift distribution of homogeneous ellipsoids compared to
F(2) for Qy = 1 and ¢ = 5/3. It is seen that the ‘ellipsoidal
collapse’ is slightly faster than the spherical collapse, but the
differences between the two curves are very small. This result
seems to be very surprising at first sight, for several reasons:
(1) Consider first the Zel’dovich approximation. It predicts that
the collapse time depends only on the value of the smallest (i.e.,
‘most negative’) eigenvalue. If we consider a triple of eigenval-
ues and its corresponding collapse time, it will be smaller than
the collapse time of the corresponding spherical collapse which
starts with the same initial density contrast §;, since the mean
of the eigenvalues is certainly larger (‘less negative’) than the
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Fig. 3. Collapse-redshift distribution of homogeneous ellipsoids (solid
curve) compared to the function F'(z) [Eq. (43)] for  and ¢ = 5/3.
The ‘ellipsoidal collapse’ is slightly faster than the spherical collapse,
but the difference between the two curves is small

smallest eigenvalue. The Zel’dovich approximation thus pre-
dicts that elliptical collapse is faster than the corresponding
spherical collapse with the same initial density contrast. (2) We
have seen that the Zel’dovich approximation yields a very ac-
curate approximation to the distribution of collapse times for
spherical collapse (see Fig. 2). It is difficult to understand intu-
itively that the results of two approximations (spherical collapse
and Zel’dovich approach) yield basically the same result, which
also agrees with the result obtained for the elliptical collapse.

There are several reasons for these coincidences. As has
been pointed out by several authors before (see, e.g., Buchert
1989, 1992 or Grinstein & Wise 1987), the Zel’dovich approx-
imation works extremely well up to the first occurrence of mul-
tiple streams, i.e., up to the time when the determinant of (47)
vanishes first. However, the accuracy of the Zel’dovich approx-
imation depends on the anisotropy of the collapse; it works best
for highly anisotropic collapse and worst for spherical collapse.
This is mainly due to the fact that for the spherical collapse the
density contrast is largest, for a fixed value of the smallest eigen-
value, so that self-gravity is most important. We have checked
that the collapse time predicted from the Zel’dovich approxima-
tion agrees well with that obtained from the integration of (58)
in those cases where the eigenvalues are sufficiently different.
This thus explains the good agreement between the dotted curve
in Fig. 2 and the solid curve in Fig. 3.

The good agreement between the collapse time distribution
obtained from the Zel’dovich approximation and the spherical
collapse, as illustrated in Fig. 2, cannot be explained so easily.
There are certainly cases where the Zel’dovich approximation
predicts a collapse of a perturbation whereas the corresponding
spherical collapse with the same initial density contrast does not
occur. To illustrate this point further, consider the case that the
sum of the eigenvalues \; vanishes, so that according to (60), the
initial density contrast vanishes. If Ay is sufficiently small, this
perturbation is predicted to collapse by the Zel’dovich approxi-
mation, whereas considered as a spherical collapse, the density
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Fig. 4. Example of the redshift dependence of the radius of a sphere
(dotted curve) and of the earliest-collapsing axis of a homogeneous
ellipsoid (solid curve) and in Zel’dovich approximation (dashed curve).
The Zel’dovich approximation predicts a similar collapse redshift as
the other two, but departs significantly otherwise; in particular, the
Zel’dovich approximation predicts re-expansion after collapse, while
in the spherical and the elliptical model the perturbation remains bound
due to self-gravity

contrast would remain zero. Examples like this originally mo-
tivated us to consider the elliptical collapse in this framework.
The reason why such cases do not corrupt the agreement be-
tween the spherical and the elliptical collapse is the shape of
the probability distribution (49) for the eigenvalues. Eigenvalue
triples of the sort discussed above simply do not occur suffi-
ciently frequently to destroy the good agreement between the
Zel’dovich results and that obtained from spherical collapse. We
have checked this fact numerically by looking at a large num-
ber of perturbations which collapse according to the evolution
equations (58) and comparing their collapse redshift with the
redshift where a corresponding spherical perturbation with the
same density contrast would collapse. In basically all cases, the
elliptical collapse occurs slightly earlier, but the differences are
very small. Figure 4 displays an example.

5. Summary and discussion

We have repeated part of RLT’s analysis of cluster-formation
timescales by explicitly taking into account that a density per-
turbation in a Friedmann-Lemaitre background model is con-
nected with a perturbation of the peculiar velocity field. There-
fore, an overdense matter distribution expands slightly slower
than the background universe. This reduces the collapse time-
scale given by RLT by a factor of (3/5)*/% ~ 0.5 for Q = 1.
If one adopts the same procedure for finding the width (A6)
of the density-fluctuation distribution as RLT, who normalized
the fluctuation spectrum from the (in our opinion, not well-
defined) space density of observed galaxy clusters, then this
reduction of the collapse time leads to a reduction of (Ad) by
3/5, which exactly cancels the effect caused by the initial pe-
culiar velocity. Therefore, we conclude that peculiar-velocity

M. Bartelmann et al.: Timescales of isotropic and anisotropic cluster collapse

perturbations should be included, but do not change the results
of the analysis done by RLT if one adopts their normalization
procedure.

However, the use of the present-epoch cluster density for
determining (A$) appears to us not the best way for normal-
izing the density fluctuation spectrum, since we doubt whether
this density is known to sufficient accuracy. Instead, one could
use the density-perturbation spectrum to fix (A6), as described
in Sect.2. This has the advantage that it derives (A§) from a
consistent cosmological frame of hypotheses, related to the ob-
servation that the perturbation amplitude approaches unity on
a scale of ~ 8 Mpc/h. Moreover, as already mentioned above,
since clusters are density fluctuations on scales smaller than 8
Mpc/h, (A6) should be comparable to, but greater than unity.
However, including peculiar velocities and adopting RLT’s nor-
malization procedure, we would obtain (Ad) < 1.

Determining (Ad) from the perturbation spectrum, we ob-
tain results for F'(z) which deviate significantly from RLT’s
results, see Fig. 1. Following the argument in RLT that the large
number of observed clusters which appear non-virialized im-
plies that these clusters are young, their conclusion on a lower
limit of € is strengthened by our approach; with the inclusion
of initial peculiar velocities cluster formation occurs faster, i.e.,
at higher redshift, and one needs a higher value for 2y to have
cluster formation still going on than in the case where the initial
peculiar velocities are neglected.

We have compared the spherical collapse model with the
Zel’dovich approximation and an elliptical (or, more precisely,
an anisotropic) collapse, which is possible because the proba-
bility distribution of the eigenvalues of the Zel’dovich deforma-
tion tensor (or, equivalently, the distribution of the initial pe-
culiar velocities) is known analytically. It was found that both,
the Zel’dovich approximation and the elliptical collapse, yield
essentially the same results as the spherical collapse. This is
mainly due to the properties of the eigenvalue probability dis-
tribution: the probability for three very similar eigenvalues, in
which case the Zel’dovich approximation would overestimate
the collapse time-scale, is very small, as is the probability for
peculiar eigenvalue-triples for which the Zel’dovich approxi-
mation and the corresponding spherical collapse (with the same
initial density contrast) would produce widely different collapse
times. Hence, the success of the Zel’dovich approximation can
be traced back to the properties of the probability distribution
(49) of the eigenvalues.
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