
General Relativity and Gravitation, Vol. 25, No. 12, 1993 

Contributions to the Relativistic Mechanics of 
Continuous Media 

Jfirgen E M e r s  t 

Received July 12, 1993 

Tiffs is a t ranslat ion fl'om German of an article originally published in 
Proceedings of the Mathematical-Natural Science Section of the MMnz 
Academy of Science and Literature, Nr. 11, 1961 (pp. 792-837) (printed 
by Franz Steiner and Co, Wiesbaden), which is Paper  IV in the series 
"Exact Solutions of the Field Equations of General Relativity Theory" 
by Pascual Jordan,  J/irgen Ehlers, Wolfgang Kundt  and Ralner K. Sachs. 
The translat ion has been carried out by G. F. R. Ellis (Department  of 
Applied Mathematics,  University of Cape Town), assisted by P. K. S. 
Dunsby, so tha t  this outs tanding review paper  can be readily accessible 
to workers in the field today. As far as possible, the translat ion 2 has  
preserved bo th  the spirit and  the form of the original paper. ~ Despite its 
age, it remains one of the best  reviews available in this area. 

1. I N T R O D U C T I O N  

T h e  d e s c r i p t i o n  o f  m a t t e r  in  t h e  G e n e r a l  T h e o r y  o f  R e l a t i v i t y  c a n  b e  

c a r r i e d  o u t  w i t h  t h e  h e l p  e i t h e r  o f  a m o d e l  o f  p o i n t  m a s s e s ,  or  a m o d e l  o f  

a c o n t i n u o u s l y  s p r e a d  o u t  m e d i u m .  G i v e n  t h e  p r e s e n t  s t a t e  o f  k n o w l e d g e ,  

1 Present address: Max Planck Inst i tute  for Astrophysics, 85740 Garchlng-bei- 
M/inchen, Germany 

2 We thank  Dr. Ehlers for checking and correcting the English version. 
3 In accord with present day usage, the covariant derivative is represented by a semi- 

colon and part ial  derivative by a comma, instead of the double vertical line and single 
vertical line used for these quantit ies in the original paper. Thus T~b;c ~ T,b]lc, 
T,b,c = T~blc �9 
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only the second method of description can be carried out in a objection- 
free mathematical way, since no one has so far succeeded even in defining 
the concept of a "singularity of a metric field that describes a particle", 
much less in deducing the consequences of such a definition. 

From the physical viewpoint there is no decisive objection that gives 
fully convincing reasons to consider the first model as the more suitable. 
Indeed in our opinion this is not the case; for the considerations that led 
Einstein to setting up his theory related to macroscopic processes, and 
whether the theory can contribute something to the understanding of mi- 
crophysical elementary processes is at the present time undecided. (Pauli 
remarked in the introduction to the new edition of his Relativity Theory 
appearing in 1958, "These differences of opinion are merging into the great 
open problem of the relation of relativity theory to quantum theory, which 
will presumably occupy physicists for a long time to come. In particular a 
clear connection between the general theory of relativity and quantum me- 
chanics is not yet in sight.") In a macroscopic theory however there can be 
no doubt that the hydrodynamic (or elasto-mechanical) description should 
be regarded as primary and the point-mechanical as an approximating sim- 
plification. Hydrodynamics must therefore be considered as an essential 
part of gravitational theory. 

While the formal carrying over of the special-relativistic expressions 
for the energy tensor corresponding to hydrodynamics and the conserva- 
tion equations (replacing the ordinary by covariant divergence) was already 
carried out by Einstein in 1916, the attempt to develop a systematic gen- 
eral relativistic hydrodynamics was first undertaken in a beautiful work 
by J. L. Synge in 1937, and these investigations were carried forward with 
other methods by A. Lichnerowicz; the results of the last named author 
are presented in his volume on relativity theory that appeared in 1955. 
The works of these authors stimulated the present investigations and laid 
their essential foundations. We will not refer to the contributions of other 
authors here, but rather at the appropriate place in this work. 

The aim of this work is to communicate a series of new results in 
the framework of a comprehensive presentation that combines in a unified 
viewpoint the contributions of various authors. This seems all the more 
appropriate because the standard presentations of relativity theory--with 
the exception of the above-named book of Lichnerowicz--at best skim 
over this important and beautiful part of Einstein's theory. 4 Furthermore 

4 Some i m p o r t a n t  r e m a r k s  are  con ta ined  in the  recent  book  by J. L. Synge  [35], whose  
geomet r i c  p r e s e n t a t i o n  of re la t iv i ty  theory  serves as a m o d e l  for the  p resen t  work, 
a n d  in t he  book  of  V. A. Fock [29]. However these  r emarks  do no t  a d d  up  to a 
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no presentation exists that deals with the kinematic, mechanical, thermo- 
dynamic, and kinetic gas theory aspects, linked together and with reference 
to special solutions of the field equations, as is done here, naturally with 
restriction to suitably selected topics. (The treatment of specific solutions 
in particular is only sketched for the case of incoherent matter, but the 
foundations are developed for a corresponding description of solutions with 
ideal fluids that will follow.) 

In Section 2 neither (dynamic) conservation theorems nor field equa- 
tions are supposed; rather the general geometric properties of a congruence 
of timelike curves in a normal-hyperbolic Riemannian space are investi- 
gated. 

After an illustrative derivation of the kinematic basic variables of the 
theory, which completes the corresponding investigations by Synge and 
Lichnerowicz, in the second subsection special flows are characterised. 

The identities developed in the third subsection are used in the fourth 
paragraph for derivation of vorticity theorems. Furthermore stationary 
and static space-times are characterised by the test-particle relative mo- 
tions that are possible in them, and a new criterion for their Petrov type 
is proved. 

The kinematic characterisation of cosmological models in the fifth sub- 
section shows the usefulness of the hydrodynamic concepts and theorems 
for the derivation or' illustrative interpretation of particular line-elements. 
The derivation given there of the homogeneous-isotropic models is simpler 
than that of Robertson and Walker, usually referred to in the literature, 
despite the weaker presuppositions made here. 

Section 3 begins with a new version of the Weyl-Pauli way of motivat- 
ing the Einstein Field Equations. The two following subsections contain a 
derivation for the simplest cases of the thermo-hydrodynamic foundations. 
The general relativistic 'Navier-Stokes' equation (76) and the 'Poisson' 
equation (82) have not been given up to this point. 

The theory of an ideal gas given in the fourth paragraph is different 
from that recently published by Synge in 1958, in that here the Boltzmann 
equation is placed at the beginning, then an H-theorem proved and from 
this the equilibrium distribution won 'dynamically', while Synge (like ear- 
lier authors) uses the Boltzmann counting method (with an additional ad 
hoc assumption). Furthermore the determination of reversible flows in a 
gravitational field (Theorem 3.4.3), which is of cosmological interest, is 
new, as is the related gas-kinetic derivation of the Tohnan law concerning 
its relation with the gravitational (and so also centrifugal) potential. Re- 

systematic presentation. 
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marks by A. H. Taub [37] and M. Sasaki [38] have stimulated this part 
of the work. 

The last subsection contains general statements about the motion of 
pressure-free matter  and a hydrodynamic description of the known exact 
solutions. This subsection also contains some new remarks: it seems to us 
more significant that  the geometric presentation, avoiding a purely formal 
starting point, is significantly simpler than the usual ones and at the same 
time leads to a better understanding of the matter concerned. 

To conclude these introductory remarks I must stress tha t - -as  is 
shown also in this work--a truly physical understanding of Einstein's the- 
ory that  is so convincing in its foundations is only now gradually emerging. 
The wish to contribute to this clarification has led to this work. 

C o n v e n t i o n s  
Equality by definition: --. Proportionality: ,~. 
Tensor indices: a , b , c , . . .  = 1,2,3,4; A,p,u  . . . .  1,2,3. 

' Fbo). Symmetrisation: ( ) ,  e.g. F(ab) -- $(Fab + 
1 F Antisymmetrisation: [ ], e.g. F[abl = ~( ab -- Fba). 

Metric tensor: gab, Signature + + + - .  
Riemann tensor: Rabcd. 
Ricci tensor: Rab =-- t ~ C a c b ,  trace: R - -  Jggaa  . 

Einstein tensor: Gab ~- Rab -- 1Rgab,  G =- Gaa.  
Weyl tensor( = Conformal tensor): Cab~d. 
Partial differentiation w.r.t, xC: for example Fab,r 
Covariant differentiation w.r.t, xr for example Fab;c; Fab;~d = Fab;~;d. 

Covariant differentiation along xa(~): V k a  = ka;b(dxb/d)~).  
Conventions regarding units: Speed of light c -~ 1, Newtonian Gravita- 
tional constant 7 -- 1/8rr, thus Einstein gravitational constant ~ -- 1. 

2. K I N E M A T I C S  

2.1. ~ a n d a m e n t a l  concep t s .  D e c o m p o s i t i o n  o f  t h e  ve loc i ty  gra- 
d i en t  

The history of a continuously spread out body is described in relativity 
theory by a three-dimensional family of timelike curves, the world l ines  of 
the matter  elements. With respect to an arbitrary local coordinate system, 

x a = x a ( y  c', s)  (1) 

is a parametric representation of the family: the ya  designate the matter 
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elements, s the proper t ime along their worldlinesJ Then 

Ox a 
- -  - ic ~ ( u % ~  = - 1 )  (2)  

ua =-- Os  - -  

is the normalised tangent vector to the curve, usually referred to as the 
four-velocity  of the substance element. 

If 
5=_5y  ~ cO cOy~ (3) 

means the variation across the world lines and ()" the covariant derivative 
with respect to s along the world lines, then 

(6x~) "= ua;bSxb; (4) 

for both sides are 'vectors, and when we use locally flat coordinates (4) 
expresses the equality of certain second partial derivatives of the func- 
tions (1). 

The tensor 

he - ~ + ~ a ~  (~) 
projects the tangent vector-space at each point perpendicularly onto the 
three-dimensional subspace orthogonal to u ~. The vector 

5•  ~ = h~Sx b (6) 

is the posit ion vector of the particle (y~+  5y~) with respect to the particle 
(y~), and its Fermi  derivative 

v ~ -= h~ (~ •  ' (7)  

is (by definition) the velocity of the particle (ya + 5y ~) relative to the 
particle (y~). 

The (absolute) acceleration of the substratum elements is given by 
the spacelike vector field 

o b ( u o ~ o = 0 )  ( s )  it a -- u ;bU 

(In differential geometric terms, ua is the first curvature vector of the 
corresponding curve.) 

5 The transformation (1) corresponds to the transformation in classical mechanics from 
Lagranglan to Eulerian coordinates. 
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From eqs. (4)-(8) one can derive the velocity field in an infinitesimal 
neighbourhood of a material element: 

v ~ = U~;b~•  b ( 9 )  

According to the pat tern of classical hydrodynamics we decompose the 
a b tensor u ;bhr that  brings about the transformation Sxx ~ ---* v ~, into irre- 

ducible parts (with respect to the rotation group): 

h c �89 ~ta;c b ~ ~ab ~- Crab "~- (10) 

where 
a O, W~bU b Cr~bU b O. (11) W(ab)=a[~bl=0,  ~ =  = = 

The infinitesimal transformation that  the vector-space {6•  b} expe- 
riences in the time interval ds decomposes according to the preceding ex- 
pressions into a rotation w~b6• x b, a rotation-free, volume-preserving shear- 
ing O'ab~• b, and a rotation-free similarity lransformalion 1 a -~06• . The 
distances ~l =_ (g~b6• xb) 1/2 -= (h~,b~Xa6xb) 1/~ between neighbouring 
particles alter during this time according to the equation 

= -~ - - ,  eae a 1 (12) 61 3 "~- O'abeaeb' ea 61 = 

that  follows from (7),(9)-(11), and the directions to the neighbouring par- 
ticles according to 

h ~ g b = ( w a  b -- nab -- acdeCed~ab)eb. (13) 

According to (12) and ~ra~ = 0, if ~l means a direction average and 
~V the volume of an infinitesimal set of substratum particles, 

($1)" (14) 0=3( 0 - 

As (13) shows, h ~  b = w~be b holds exactly when e ~ lies in a principal 
shearing direction. Therefore that  material orthogonal triad of vectors 
which at any time s coincides with the main shearing axes experiences in 
the time interval (s, s + ds) the infinitesimal rotation determined by wab. 6 

6 Th rough  this, in general the t r iad ro ta tes  itself out of the main  shear  directions. An 
exception is given in Corollary 2 to Theorem 2.4.2 in subsection 2.4. 
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From the decomposition formulae (10) and the conditions (11) one can 
derive the following expressions for the vortex velocity ~Oab, the shearing 
velocity ~rab, and the expansion velocity O: 

wab = U[a;bl -- U[aUb], ( 1 5 )  

~ab = U(a;b) -- U(aUb) -- �89 (16) 

(9 = ua;a. (17) 

Instead of the vorticity tensor a)ab one can introduce the vorticity vector 

l_abed_ . 1 _ a b e d . .  (Ua wa  0); (18) 0.1 a -~- ~71 UbC~cd -~- ~ l  I a b u t ,  d 

~v a is dual to Wab in the rest-space determined by ua: 

~dab : 7]abcdCdCu d. (19) 

The consequent equation 
~ b ~  b = 0 ( 2 0 )  

implies, according to (9),(10), that  a~ a determines the rotation axis. Ac- 
cording to (18) the vector w a is spacelike, and by (20) lies orthogonal to 
the plane determined by the simple spacelike biveetor Wab. 

A family of timelike curves in general has exactly nine invariants of 
the first order (independent of each other): the six independent compo- 
nents of the vectors ti a and a~ ~ relative to the eigenvector basis of the tensor 
o'ab, two independent eigenvalues 7 of aab, and O. These magnitudes de- 
termine (for a given metric gab) the family of curves in the infinitesimal 
first order neighbourhood of a point uniquely up to homogeneous Lorentz 
transformations, as follows from the relation 

1 Ua;b -~ ~ab -1- Crab At" -~Ohab -- ilaUb (21) 

which is equivalent to (10). 
In addition to (9 we wish to explicitly introduce for later application 

the scalars 

~ (i~ai~a) 1/2, ~0 -- (Wacoa) 1/2 = (SrlWabW ab~l/~) , a = '2 ~o~(1-" .,,~b~l/2j . (22) 

These are non-negative and vanish only at the same time as their corre- 
sponding tensors. 

7 Or, algebraically simpler, a"ba~,, and a~bab~a~.. 
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While the physical meaning of the deformation of a substratum el- 
ement described by the formulae (12),(14) is immediately determined by 
the axiomatically laid down interpretation of the metric fundamental form 
gabdxadx b, the definition of a rotation given above contains an implied 
convention: this rotation relates to a Fermi-transported triad of vectors 
that  can be thought of as carried along in the rest-frame of the central 
particle (v a = 0 in (7) means that  5• a is Fermi-transported). How such 
a rotation can make itself dynamically felt, can naturally not be decided 
in a purely kinematical manner. 

2.2. Spec ia l  F lows.  R e d s h i f t  
With the help of the concepts introduced in the previous subsection, 

and with an eye on suitable applications, it is possible to introduce par- 
ticular designations for some types of flows. 

We speak of an inertialflow if the substratum elements follow the "in- 
ertial guiding field", i.e. when the mat ter  world lines are geodesic (~ = 0). 
A vortex-free, or irrotational flow is characterised by w = 0, a volume- 
preserving, or isochoric one by @ = 0. If infinitesimal substratum elements 
remain similar to themselves under the action of the flow, for which accord- 
ing to (12) ~ = 0 is characteristic, a shear-free flow (isotropic expansion 
or compression) is taking place. If a flow is isochoric and shear-free, thus 
when all the distances of neighbouring particles are constant in time, the 
flow is rigid (6) = cr = 0). 

Symmetry properties of a flow determined by a curve family K in the 
space-time W (or in a region of W) are described by groups s of isometric 
(or conformal) mappings of W into itself, which transform K into itself. 
If ~a is the generating vector of a one-dimensional Lie Group G1 and u a 
the tangent vector of a family of curves K,  the invariance of K under G1 
is expressed by 

uo;b~ b - ub~b;~ = 0.  ( 2 3 )  

If K is invariant under an isometry group G1 and the trajectories of G1 
in W are timelike, the flow is called stationary, and in the special case of 
hypersurface-orthogonal trajectories, static. If K is stationary and ~a 
u a, the flow will be named isometric, and in the more general case when 
~a ~ u a and G1 is conformal, it will be called conformal. 

The following statements are direct consequences of the definitions. 
i. Inertial flows are characterised by the equation 

Wab -~ U[a;b 1. (24) 

8 A m o n g  these  g roups  we also inc lude  local Lie groups,  which  ac tua l ly  are mos t  impor -  
t a n t  for us. 
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(We display this simple consequence because, while (24) is the f o r m a l  
analogue of the equation ~ = �89  of classical mechanics, that  analogue 
only holds in restricted cases. According to (18), (w ~) = �89 g always 
holds in the instantaneous rest-system of a substratum element, and this 
corresponds in con t en t  to the usual formula). 

ii. A flow is vortex-free exactly when there are (necessarily spacelike) 
orthogonal hypersurfaces to the matter  world-lines [3], i.e. when (locally) 
there exists a non-constant scalar t such that  9 

iU a -~ --t ,a ( ~  hbat,b : 0). (25) 

Equation (25) is at the same time characteristic of the fact that  the time 
functions defined along the matter  world lines are synchronous in Einstein's 
sense3 ~ Such a global time coordinate t agrees with the proper-time s 
everywhere only in the case of inertial flows; for such vortex-free flows 
ua = - t ~  and t is a solution of the Hamilton-Jacobi equation 

t , ~ t , ~ + l = O  (26) 

for free particles in a gravitational field. 
iii. Vortex-free flows are volume-preserving precisely when the orthog- 

u a onal hypersurfaces to the streamlines are minimal [2] ( ;a = 0 is in fact 
the condition for the vanishing of the first variation of the volume of the 
hypersurfaces orthogonal to ua). 

A similar statement,  useful for the geometry of static mat ter  fields, is 
the following. 

iv. A vortex-free flow is rigid precisely when its orthogonal hyper- 
surfaces are totally geodesic. (Namely let w = 0 and x~(~) a geodesic, 
d x a / d A  = t ~ Then 

1 
__d (u ta) = uabt  d = + Oh b --  o b)t~ b 
d~ ' 

so the property uat  a = 0 propagates itself along exactly when tr = O = 0.) 
v. Conformal flows are characterized by 

o, (uEo = 0 = - �89 (27) 

9 We use the fact that u~dx ~ has an integrating factor precisely when u[~ub,cl = 0 . 
10 This synchronisation condition is usually formulated non-covariantly and without 

recognition of its world-geometric meaning, see e.g.Ref. 1, pp. 259,260. 
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For them there exists a scalar U such that  

1 u 6o 50 , ,=ga  (u=l  - , ( 2 s )  

(The conditions (27) show that  a scalar U exists such that  ~a - eVu a 
obeys the conformal Killing equation ~(~;b) = (eV)'gab .) 

This implies the special case 
vi. Isometric flows are characterised by 

= O = O, fi[~;b] = 0. (29) 

For them there thus exists an "acceleration potential" 

uo = v o .  ( 3 0 )  

[(29) means that  a Killing vector is collinear with u a, namely ~a = eVu ~ 
with U according to (30)]. 

The relative motion of two particles and the "absolute acceleration" 
of each of them described by fia show up e.g. in the wavelength change 
that  occurs when one of the particles emits monochromatic light and the 
other receives it. We will suppose (in view of application to cosmological 
models) that  the mat ter  elements of the substratum we are considering 
send out and receive light, and wish to express dA/A for the light that  one 
particle receives from its neighbour, in terms of the kinematic quantities 
of the flow. 

A light ray is described in geometric optics by a geodesic null line 11 
k 

xa(v):  k a - d x a / d v ,  k~k ~ = O, V k  a = O. For monochromatic light 
k a can and will be chosen so that,  for an observer with 4-velocity u a, 
- k a u  a = 2~r/A (see, for example, Ref. 5, p.16). Therefore according to 
(21), along a light ray in our substratum we have: 

V ( - u o k  ~ = -uo;bk~ b = -(~ob - �89 - hou~)k~k ~. 

Furthermore (see Figure 1) 

~I2 = habdzadzb = (Uak~)dv2 = ( 2 - ~ )  dv2. 

This leads to 

dA 

A 
) 27r O.abeaeb 1 -- -~|  ~ l - ~ a ~ x x  ~ 

11 T h e  s u b s t r a t u m  is s u p p o s e d  t o  h a v e  t h e  r e f r a c t i o n  i n d e x  n --- 1. 
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and so f rom (12) finally 

dA 
= x~ (31) 

From this we draw two conclusions. Firs t ly  we conclude th rough  (12): 
vii. For a s u b s t r a t u m  part ic le  receiving light, dA/A is independent  of  

the direct ion of the  infinitesimally ne ighbour ing  radia t ing  part icles,  pre-  
cisely when its world line L is geodesic and  the  shear  velocity vanishes 
along L; then  

~ lo~1. (32) 
3 

Secondly we combine (27) with r emark  v., and ob ta in  
viii. On a conformal  flow Ae -U is cons tant  along a lightray. 12 

Figure 1. 

The  last  conclusion contains the theory  of redshift  in s t a t i ona ry  and 
s ta t ic  fields and in the Fr iedmann  cosmological  models  (see subsect ion 2.5). 
In the  first case O = 0, /~ r 0 and U (by definition) is the scalar  gravi ta -  
t ional  potent ia l ,  13 and in the last  case O r 0, u --- 0 and e U according to 
(28) is p ropor t iona l  to the  radius of  curva ture  of  the space (see subsect ion 
2.5), if in bo th  cases the t imelike orbi ts  of  the i somet ry  (resp. conformal)  
group are taken  as the world-lines of the subs t ra te .  

i2 

13 

This follows directly from the fact that the scalar product of the generating vector 
of an infinitesimal conformal transformation and the (parallely propagated) tangent 
vector of a null geodesic is constant along the geodesic. 
This definition is validated through (30) and proves itself both suitable and useful. 
In this connection see (82), Theorem 3.3.2, Theorem 3.4.4, and Ref. 32, Ch.2. 
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2.3. D i f fe ren t i a l  I den t i t i e s  for  t h e  K i n e m a t i c  Quan t i t i e s  
The derivatives of the kinematic quantities introduced in subsection 

2.1 are not independent of each other. Rather, they fulfil certain identities 
into which inter alia the curvature tensor of space-time enters. These 
equations are useful for the derivation of propagation and conservation 
theorems, and for the investigation of the relations between field equations 
and families of curves. 

First we determine the relative acceleration of neighbouring particles. 
We define it analogously to the relative velocity v a [see (7)] through 

b a =_ h~{~ b (33) 

and obtain for it from (9), using the Ricci identity, the expression 

b ~ = (R%~du% a + h~i?;r + i t~i~)5•  ~ (34) 

which generalises the well known formula for geodesic deviation [6]. 
The first term on the right hand side of (34) brings to light the in- 

fluence of the 'world' curvature (in Einstein's theory: the gravitational 
field gradient) on the relative acceleration. The tensor  Rabcd ud contained 
in it can be expressed in terms of the first derivatives of the kinematic 
quantities W~b, crab, | 

1 R u d ~bcd = Wc[a;b] + C%[a;b] + �89174 b] - U~;[bUa] 

"4- 10(UcWab -- Uc~t[aUb] -- U[aWb]c 

+ c~c[bU~ l + �89 l) -- 6~(~ab -- 6[aUbl)- (35) 

By contraction one obtains from this Rabu b and its components 
R~buau b, habRbcu% After simplification by partial differentiation, where 
the formulae (11),(21),(22) are used, the following formulae arise: 

Robu~ b = 6 + �89  2 - 6~ + 2 (~  2 - ~2)  (36) 

and 
hab~ c ~ ,  bc bc 2A,b ~ aab)it b. (37) -~bcU =nb~w ;c--or ; c + ' ~ v  / + ( w a b +  

Finally in order to express the tensor Rab~dUbU d that  occurs in (35) in 
terms of the kinematic quantities, we multiply (35) by u b and simplify the 
still very complicated expression by symmetrising with respect to indices 



R e l a t i v i s t i c  M e c h a n i c s  o f  C o n t i n u o u s  M e d i a  1237 

a, c and multiplying by h~hCf, which does not alter the left hand side. We 
obtain 

Rabcdub u d .-~ 03 aOdc -- w2 hac -}- O'abO'bc -Jr" ~ hac 

- i~ai~r + habhed(l-2(120"bd) " -  ~(b;d)). (38) 

Here we have also introduced a useful length scale l by 

1(o ) l = g O  ::v g g O  2 = ~ .  (39) 

(l is only determined up to a scalar factor that  is constant along the flow 
lines. 14 ) 

While the equations (36) and (38) contain the derivatives of the quan- 
tities @ and crab respectively, thus far wa does not occur. 1~ One can however 
derive a propagation equation for the vorticity vector from the identity 
Ra[bc]auau d = 0 by some transformations, or by direct calculation from 
the definition (18), which is comparatively simple: 

12 
h~(?~b) '  = ~%12~ b + -~ ~abC%buc;a (40) 

or equivalent to this 

13 h~,(t3~b).= a ,3 b ab~,~ : u ;b* w + -~ ~ Ub~*~;d. (41) 

It implies for the vorticity scalar 

I -4 (14w2) '=  2o'abw~w b + Wabi~ a;b . (42) 

~%r completeness we give also an identity, somewhat surprising in view of 
classical hydrodynamics, that  follows from the definition of the vorticity 
vector: 

Wa;a = 2~aw a. (43) 

14 Flow lines -- ma t t e r  world lines. 
15 It is clear tha t  there is no propaga t ion  equat ion for /~  because u *, i,% {~a can be 

given arbi trar i ly along a curve independently of the neighbouring curves. 
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2.4. V o r t i c i t y  t h e o r e m s  a n d  t h e o r e m s  for  r ig id  m o t i o n s  
As a first application of the formulae collected together in the last 

section, we will prove some theorems that  correspond to the vorticity the- 
orems of classical hydrodynamics. 

We designate as vortex lines of a flow, the (spacelike) curves that  have 
the vorticity vector as their tangent vector; according to (8) they cut the 
flow-lines orthogonally. 

The first result is the following lemma. 

L e m m a  2.4. The flow lines are geodesic with respect to the metric gab = 
W2gab (w > 0) precisely when (with respect to gab) 

~,~ = -h~  (log w),b (44) 

holds. 
The proof follows for example from the fact that  (44) represents the 

Euler equation for the variational problem 

6 / w ds = 0. (45) 

According to (25) and (28), eq. (44) will hold in particular for irrotational 
and for eonformal flows. 

We recall further that  two vector fields ~a, ya span 2-surfaces if and 
only if their commutator ~a,bT?b -- yab~b is (pointwise) linearly dependent 
on them. From this and (41) there follows 

T h e o r e m  2.4.1. The flow- and vortex-lines span surfaces ("vortex sur- 
faces") exactly when 

~[b ~}c]de] Ud~te; ] = 0 (46) 

holds. 16 
The property stated in the theorem means that  the vortex lines consist 

of the same substratum particles at all times ("material" conservation of 
vortex lines.) 

Condition (46) is in particular fulfilled for inertial flows, and more 
generally for flows satisfying (44), since the latter equation implies that  

1 abed �9 ~ ubuc;d = -- Ww wa" (47) 

16 This and the following theorem agree completely with the vorticity theorems given by 
Synge [3], Lichnerowicz [2], Fom'es-Brulmt [7], GSdel [8], Schllcking and Heckmarm 
[9]. 



R e l a t i v i s t i c  M e c h a n i c s  of  C o n t i n u o u s  M e d i a  1239  

This equations permits one to simplify (40),(41) and to conclude 

T h e o r e m  2.4.2.  In a flow satisfying (44) the (equivalent) propagation 
equations 

h~(wl2wb)" = o'abwl2w b and s  a) = 0 (48) 

hold, so the vector cwl3w a joins neighbouring particles (for infinitesimal 
e), and for a (thin) vortex tube the vortex strength w w 6 F  is constant in 
time: (ww6F)" = O. (6F is the surface area of a material section of the 
vortex tube orthogonal to wa). 

Corollary 1. Along the world line of a fluid particle, vorticity can 
neither be created or destroyed. 

Corollary 2. The direction of the local rotation axis is constant (in 
the sense of Fermi propagation) along a flow line, if and only if it lies in a 
principal shear direction. 

Secondly, we turn to rigid flows. For them there holds 

T h e o r e m  2.4.3.  In a rigid flow, u a is constant along the vortex lines and 
RabuaUb+ 1 R  + 3w ~ is constant along the flow lines. If furthermore u a is 
a Ricci eigenvector, then w is also constant along the flow lines. If finally 
(44) holds and w # 0, then the flow is isometric [10]. 

Proof .  Let O = c~ = 0. Then it follows from (21),(20) and (8) that  
ua;bw b = 0, thus the first statement.  From (37) and the definitions in 
subsection 2.1 there follows 

q~ =-- h~bRbcuC = wab;b + W~b6b -- 2W2U ~ (49) 

and from this 
qa;a + itaq a = -2(w2) " -  wabha;b. (50) 

Thus through (42) (with l = 1 since | = 0) 

q ;a +  oq~ = . ( 5 1 )  

To prove the second statement,  we need in addition the "conservation 
theorem" for the Einstein tensor Gab =-- Rab -- �89 Through @ = ~ = 0 
and (21) there holds 0 = ab uaG ;b = (UaG~b);b + G~bitaUb. On the other 
hand by definition G~bub = q~ -- uaGbcubu ~, and consequently 

q~ - uoq~ = (Gabu~ ". (52) 

Subtracting (51) from this, one obtains the second statement of the theo- 
rem. The third result comes from (51), since q~ = 0 means just  that  R~bu b 
is proportional to u a. Finally let (44) also be true. Then (49) shows that  

- -   ~ - -  a = 0 ( 5 3 )  
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holds. Because & = 0, the divergence of this gives that w~b;~(log w),b = 0. 
Contracting (53) with (log W),a thus gives w~b = 0, so that  when w r 0 
necessarily ~b = 0 must hold. However then according to (44), /ta is a 
gradient, so that  according to vi. in subsection 2.2 an isometric flow occurs. 

This theorem contains the noteworthy result that  a rigid body in a 
speciM Einstein space (Rab = 0) cannot change its angular velocity. This 
was early noticed in the case of speciM relativity, and was used as an 
argument against the validity of the concept of a rigid body in special 
relativity theory. 

In the next theorem we will characterise the isometric flows, formally 
defined in vi. in subsection 2.2, by transparent kinematic properties. 

T h e o r e m  2.4.4. The isometric flows are characterised amongst the rigid 
flows by the fact that  in them the vorticity vector is Fermi-transported 
along the flow lines, and the acceleration vector always points at the same 
neighbouring particles: 

0 = ~ = 0 :  ~[~;b]=O ~ {h~b b=O,  h~ii b=w~bub}. (54) 

Proof. From (40), for O = cr = 0, the first of the two equivalence state- 
ments follows: 

h~& b = 0 r u[~ub,r = 0 

�9 . _ ~ a b u  b . }  r {u[a,b] = u[~pb] with Pa = h~ub (55) 

The second equivalence is correct, since both equations state that ~Ca,b] is a 
simple bivector containing u~. The value ofp~ follows through contraction 
of the equation/t[~,b ] = U[apb ] by u b and use of the orthogonality relation 
u~p a = 0 and the identities iLaU a = 0 and (21). One can read off the 
correctness of the statement (54) from (55). 

Theorem 2.4.4 contains a transparent and purely kinematic (i.e. in- 
dependent of the field equations) character~sation of stationary and in 
particular static space-times. A universe is stationary, exactly when it is 
possible that  (at least) one cloud of test-particles can move rigidly and with 
constant angular velocity under the influence of inner non-gravitational 
forces. For a test-particle with rest-mass m moves according to the equa- 
tion m~t a = K a (Ua K a  = 0 ) ,  and we can assume that  in rigid motion the 
magnitude of the resultant force exerted on a particle by the other parti- 
cles is constant and its direction with respect to the neighbouring particles 
does not alter. Static universes are characterised by the fact that,  in them, 
test-body motions of the above described kind are possible without rota- 
tion. 
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T h e o r e m  2.4.5.  The trajectories of an isometric flow are Ricci eigenlines 
precisely when there exists a scalar V such that  

r a ---- e - 2 U V ,  a . (56) 

(U is defined by (30).) When that  occurs, V obeys the equation 

= 0 (57) 

P r o o f .  From the definitions of the kinematic quantities there follows the 
identity h ~I be - ,  ~b., b w ;c~-w Ub = --yabr SO we can conclude from 
(37) that  for e = c~ = 0 

u[, ,Rb]cu ~ = 0 ~ u[,,wb,~] + 2u[~wbu~] = 0. (58) 

When we contract the equation on the right with u a, use the supposition 
it~ = U,a and the relation h~5, ,b = 0 tha t  follows from this according to 
Theorem 2.4.4, and take into account WaU a = 0, we obtain from (58) for 
isometric flows the stronger equivalence 

U[aRblcU c : O .r 0.)[a;b ] -~ 2W[aU,  b] = 0 ~ (e2UW[a),b] = 0 

and thus the first s ta tement  of the theorem. The second s ta tement  follows 
directly from (56),(43) and ua = U~. 

To conclude these remarks we prove a further theorem-- in  analogy 
with certain theorems from the theory of pure gravitational radiation 
fields 17 - -which  shows that  curve families with specified kinematic prop- 
erties in general can only exist in space-times whose conformal curvature 
tensor belongs to a particular P e l r o v  l ype .  

T h e o r e m  2.4.6.  In a space-time W let K be a congruence of vortex- and 
shear-free curves. If  furthermore K is rigid or u a is a Ricci eigenvector, 
then the conformal curvature tensor is of type I and has real eigenvalues, 
and u a is a Weyl principal vector, or W is conformally fiat. 

P r o o f .  Let ~r = O = 0. Then a glance at (35) shows that  

u[aRbc]d~u ~ = 0 (59) 

and (37) reduces to 

u[aRb]~u ~ = 0. (60) 

17 According to Ref. 13 and the literature cited there. 
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From the equation defining the conformal curvature tensor C~b~d and the 
two previous relations comes 

u[~Cbe]deU e = 0 or --*CabedUbU d -= H ~  ---- O. (61) 

This is however characteristic of the claimed properties. If on the other 
hand ~ = w = 0 and (60) is supposed, then according to (37) O,a "-~ ua. 
Therefore (59) holds again, so that  the proof is attained. 

We remark further that  under the assumptions of the last theorem, 
Eac - -  CabcdU bud can be expressed in terms of R and the kinematic quan- 
tities through (36)-(38), and that  the theorem generalizes a known state- 
ment about static vacuum fields [11,12]. 

2.5. K i n e m a t i c  c h a r a c t e r i s a t i o n s  o f  cosmolog ica l  m o d e l s  
Among the structures (W, K)  consisting of a four-dimensional normal 

hyperbolic Riemann space W and a family K of timelike curves imbedded 
in it, those used in cosmological theory as models for the metric relations 
of the cosmos and the (average) motion of its matter ,  are characterised 
by high symmetry. We wish to derive them from the weakest and most 
transparent assumptions. 

De f in i t i on .  A flow (W, K)  is called iso$ropic relative to k E K if a group 
G of isometric mappings of W onto itself exists with the properties 

a) The mappings of G leave k pointwise fixed. 
b) The  mappings of G induce permutations of K.  
c) G acts transitively on the directions proceeding from k, orthogonal 

to k. 
When (W, K)  is isotropic with respect to k, all tensors constructed 

from gab and u a are invariant under G. Therefore along k we must have 
ca = cr = /,a = 0 and e 'a --~ u~; for otherwise preferred spatial directions 
would be determined by caa O.ab, i,a, habO,b, which is contradictory to 
c). 18 

Let (W, K)  be isotropic with respect to all k E K.  Then K is thus a 
vortex-free inertial flow and according to ii. in subsection 2.2 u~dx ~ - - d r  
for a suitable scalar t. By O,~ .~ ua, O = O(t); thus the scalar I introduced 
in (39) can be chosen so that  l = l(t).  From a) and b) it follows that  the 
(orthogonal to K)  hypersurfaces t -- const are mapped into themselves 
by G. According to c) and the theorem of Schur these are hypersurfaces 
of constant curvature K ( t ) .  Because of ~r = 0 they are mapped conformally 

18 From cr~ = O, aCb has at least one non-degenerate  e lgenvector orthogonal  to  u s 
w h e n  a ~ O. 
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onto each other by K [see (12)]; therefore the 'expansion radius' l ( t ) ,  so 
far only determined up to a constant factor, can be chosen so that  K = 
c1-2 (e = +1, 0). Since according to the definition (5) of hab the metric 
fundamental form G is equal to hab - (uadxa)  2, it follows further, on use 
of a coordinate system (x a) with (xu) '= 0, x 4 = t, that  

G = 12(t)dcr 2 - dt 2, u ~ = 6~ (62) 

where do" 2 is the metric (depending only on x ~) of a 3-space of constant 
curvature e. The (WI K)  described by (62) are isotropic and furthermore 
homogeneous; thus there holds the 

T h e o r e m  2.5.1.  ( W , K )  is isotropic with respect to all k E K exactly 
when K describes a vortex- and shear-free inertial flow in W, the or- 
thogonal hypersurfaces Rt  to K are spaces of constant curvature, and the 
expansion velocity is constant along Rt; a normal form for (gab, U a) is (62). 
In an isotropic flow the curves of K are Ricci eigenlines. 

In the literature the models (62) are usually derived, following 
Robertson [14], from the following postulates: i) u = 0, ii) w = 0, iii) 
isotropy, iv) homogeneity. Occasionally it is hinted that  iv) is superfluous. 
Our proof displayed above shows that  i) and ii), and hence the existence 
of a cosmic time ('Weyl's Postulate' ,  according to Refs. 14 and 15), also 
follow from iii), and without any assistance from group theory. The proof 
given here can be regarded as the completion of the sketchily presented 
considerations of Einstein [16]. 

It should still be remarked that  an isotropic flow is conformal, since 
Ua = - t , a ,  c~ = 0 and l = l ( t )  (according to v. in subsection 2.2), with 
lu ~ as generating vector, so that  by viii. in subsection 2.2, A l l  is constant 
along a light ray, and thus by (9),(10) respectively according to (34),(38) 
the local relative velocity, respectively relative acceleration field are given 
by 

= ~ 6• ~, = ~ 5• . (63) 

K i n e m a t i c a l l y  d i s t inguished  special  cases characterised by Theorem 
2.5.1 are the following models: 

a) Those that  are static (i = 0 ~ v ~ = 0), which (independently of 
Theorem 2.5.1) are characterised by u = w -- ~r = O = 0 (r u~;b = 0), 

b) The de Sitter (r 'Steady State')  model (.L ~ e. Ht, e = 0) charac- 
terised by stat ionary expansion, that  is O r 0 = O = K),  

c) the Milne model (c = -1 ,1  -,~ t ::~ b a = 0), charazterised by flatness 
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of W. 19 
Now we wish to characterise the simplest models  wi~h a rolal ing sub- 

s t ra tum.  

T h e o r e m  2.5.2.  i) Suppose (W,K)  describes an inertial flow with the 
following properties: (a) In the infinitesimal spacelike neighbourhood of 
each substratum element, the direction of the rotation axis is constant, i.e. 
(wa /w) ;b~•  b -- O. (b) The rotation axis is a main shear direction. Then 
(gab, U a) can be transformed to the normal form 

u~ = (64)  
G = dz  2 + 7 A B ( x A , t ) d x A d x  B -- (dr + UA(xB)dxA) 2 (A = 1,2) 

and this normal form is characteristic of the stated properties. 
ii) Suppose (W, K)  has the properties named in i) and also c~ = 0. 

Then O = 0, in (64) 7AS,t = 0, and w is constant in the vortex surfaces. 
iii) If additionally to ii) u ~ is a Ricci eigenvector, then w is constant 

(and with this Wa;b = 0). 

Proof .  i) From ~ = 0, (b) and Theorem 2.4.2 follows (wa/w)" = 0; from 
this and from (a) it follows that  (w~/w);b = 0. Then W decomposes 
directly, that  is G = dz 2 + G ' ( x  A , t )  with w a = wh~ (z  - x~). Through 
uaw~ = 0, thus u 3 = 0, the natural  projections of the flow-lines in the 3- 
space (x  A, t)  are geodesic with respect to G ~, and thus (64) can be attained. 
The converse is trivial. 

ii) From the normal form (64) one can read off that  the neighbouring 
particles with equal x A are rigidly connected, so that  from a = 0 and using 
(12) O = 0 and from this further follows 7AS,t = 0. According to Theorem 
2.4.2, w ~ is parallelly transported along the flow lines, thus w,~u a = O. 
Furthermore according to (43), 0 = (wa/w);a  = w,aw a. Consequently 

iii) According to Theorem 2.4.5 now Wa = WZa is a gradient, thus 
w = w ( z ) .  On the other hand w = w ( x A ) ;  the two together give w = const. 

We will use this theorem later to make possible a simple derivation of 
the Ghdel cosmological model. 

In the case of rigid inertial flows through (9),(10) and (34),(38) the 
relative velocity and acceleration are given by the relations 

v a = wab$•  b, b ~ = w a w # f •  c - w~5•  a (65) 

19 ]R~b ----- 0 is suft ldent,  since all models  (62) are conformally fiat because of the existence 
of a three-dimensional  isotropy group,  see e.g. Ref. 12, p.43. 
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of elementary kinematics. According to viii. in subsection 2.2 no change 
of the frequency of light signals occurs in such motions (even in the case 
of distant particles). The  transversal Doppler effect is here compensated 
by the gravitational 'redshift ' .  (In the Minkowski universe rigid rotational 
flows are necessarily non-geodesic, so that  such a compensation cannot 
take place, cf. (36). 

3. DYNAMICS 

3.1. T h e  G r a v i t a t i o n a l  F ie ld  e q u a t i o n s .  S i m i l a r i t y  law. 
The local equivalence of inertial and gravitational forces, empirically 

proved with great accuracy, but only formulisable through an ad hoc hy- 
pothesis in the framework of the conceptual system of Newtonian me- 
chanics and gravitational theory, led Einstein to the supposition that both 
these "forces" are expressions of one and the same structural property 
of the space-time manifold, for which Weyl coined the expression guiding 
field. The local validity of the special theory of relativity makes necessary 
that  this structure is mathematically represented by a normal hyperbolic 
Riemannian metric. 2~ 

Since on the one hand matter  generates the gravitational field and 
the Poisson equation describes well what is experienced, and on the other 
hand in the new theory gab are the state variables for the guiding field, 
and since in special relativity theory the mechanical properties of mat ter  
are described through the energy-momentum-pressure tensor Tab, it is a 
reasonable assumption that  
(1) The components Tab of the mat ter  tensor are equal to quasi-linear 
differential expressions of the second order in the components gab of the 
metric tensor. 

According to a theorem proved by Weyl (l~ef. 18, Appendix II), it 
follows from this very' general assumption alone that the field equations 
have the form 21 

Gab + (MG - A)gab = --nTab (66) 

where A, M and n (5  0) are constants with dimensions 22 -2 ,  0, 0 respec- 
tively. 

This equation is non-linear in the gab, that is the assumption (1) 
already contains that the metric field mediates an interaction between 
matter-filled world-tubes. 

20 The presentation of the foundations of Einstein's gravitational theory given here 
follows--with some modification and supplementation--Refs. 18 and 19. 

21 G~b -- Einstein Tensor, G ---= G~; see our conventions given above. 
22 With respect to length; c = 1, ~ ---- ~ ,  according to our conventions. 
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The symmetry of the matter tensor does not have to be introduced 
here as an independent hypothesis (equivalence of momentum- and energy- 
density) as in special relativity, rather it follows--if one considers postulate 
1) as an implicit definition of Tab--from the Weyl Theorem mentioned 
above: namely there exists in a Riemann space no quasi-linear, invariant 
bivector of 2nd order in the metric gab. In General Relativity theory, lhe 
s y m m e t r y  o f  the ma i l e r  tensor  is a necessary condition, in order that it 
can occur as a source of  the metr ic  field in the sense of  (1). 

From (66) it follows that  -G(1  + 4M) + 4A = xT. Therefore since 
T = const, is not always true, 1 + 4M 5k 0. From this one obtains from 
(66) on using the Bianchi identities the divergence equation 

M ) (67) Tba;b = eT, a e ~ 1 + 4 ~  " 

For the particularly simple case of matter only interacting through gravity, 
with its proper rest mass density of p and u a its four-velocity, according 
to the fundamental ideas of the theory sketched above one can set (see 
subsections 3.4 and 3.5) 

Tab = p~aub (p > 0). (68) 

Equations (67) is then equivalent to the system of equations 

(pua);a = eft, iLa = --ehba(logp),b . (69) 

The assumptions introduced this far thus lead to a theory in which in- 
coherent matter  moves on the geodesics of the metric -ffab -: P2egab (Lemma 
2.4) and in which spontaneous rest-mass creation takes place with the pro- 
duction density e/5 -- (e/e - 1)pO. 

If one introduces either the addilional assumption 
(2a) The rest mass  of  ma i l e r  that interacts only by gravity is conserved, 
o r  

(2b) The f low lines o f  ma t t e r  that interacts only through gravity are geo- 
desics with respect to the 'natural '  metric gab, 
it follows that  e = M = 0, and we obtain from (66) the Einste in  Field 
Equation 

Gab - Agab = --xTab (70) 

and from this the so-called conservation theorem 

Tab;b = 0 (71) 
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that  for (68) again leads to (2a) and (2b) as consequences. 
Since at the present time there exists no reason to reject the simple 

assumption (2a) and independently, the hypothesis (2b) fulfils the idea of 
the guiding field in the simplest manner [26], we take as a basis in the 
further development of this work the classic equation (70). 

The more general theory with e r 0 can easily be developed and leads 
for leJ << 1 to a theory that  is similar to Jordan's 'extended gravitational 
theory' (Ref. 25, books 2,3) and to Itoyle's cosmological theory (Refs. 15,27 
and the works cited there), but is simpler and, it seems to us, better 
grounded from the viewpoint of local physics (see above); we introduce 
no new hypothesis, rather omitting only one of the axioms of the Einstein 
theory, and indeed the mathematically least important one. It is easy to 
see that  this theory is incompatible with a stationary state in the sense of 
the PCP of Bondi and Gold [26]. We remark further that in the theory 
with e r 0, (71) holds for a Maxwell field, so that  the theory of light 
propagation remains unaltered. 

Through consideration of the spherically symmetric solutions 23 of 
(70), it turns out (with our choice of units) that  

= 1 (72) 

must be supposed. The positivity of ~ expresses the fact that matter 
attracts gravitationally rather than repels. 

The cosmological term Agab in (70) can be excluded (A = 0) through 
either of the following two assumptions: 
(3a) Apart from the speed of light and the Newtonian gravitational con- 
stant, the field equation contains no dimensional constants. 
(3b) In a vacuum, the trace of the tensor which transforms the relative po- 
sition vector of neighbouring free particles into their relative acceleration 
has vanishing trace 24 (corresponding to the Laplace equation of Newtonian 
Theory). 

Although we regard the specialisation A = 0 as appropriate on 
methodological grounds as long as experience does not indicate A ~ 0, 
for mathematical generality we will set A = 0 only when this restriction 
permits derivation of theorems that  otherwise would not be valid. 

23 Or th rough  (82) or a l ternat ively (123), where  to begin wi th  n is re ta ined  and  then  
i ts  value de te rmined  th rough  correspondence wi th  the  corresponding equat ions  of 
Newtonian  Theory. 

24 See (34) for /~ = 0. (3b) is Pi rani ' s  character isa t ion of special Einste in  spaces, see 
[28]. 
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According to the laws of classical hydrodynamics (with gravitational 
interaction) for every flow there exists a two-parameter family of similar 
flows. This is closely connected to the fact that  in the basic equations 
there enters only one universal constant with dimensions, the gravitational 
constant, so that  only one of the three basic dimensions of length, mass 
and time (let us say the mass) can be eliminated by a 'rational '  choice of 
units. In relativity theory, already kinematics contains a constant, namely 
c; one can thus expect a one-parameter family of similar flows to a given 
flow for A = 0, and none for A ~ 0. 

In fact the field equation (70) shows that  for A = 0 (and only then) 
out of each solution (gab, Tab) a family of similar solutions (yah,Tab) can 
be obtained through -ffab = m2g~b, -T~b = m2T~b, (m > 0). The space-time 
W is equivalent to W, only if W admits a homothetic mapping onto itself. 

In a classification of exact solutions of (70) with A = 0 it is useful 
to arrange the solutions into families that  are similar to each other, and 
to choose as characterising data  for a particular solution a 'similarity pa- 
rameter '  (proportional to the above m), together with such invariants or 
properties as characterise the whole family. 25 

For example within the Schwarzschild family of vacuum solutions the 
gravitational radius is such a similarity parameter,  and the family as such 
is characterised by the property of 'spherical symmetry ' .  Examples of 
when the above similarity transformation leads to equivalent worlds are 
provided by the Levi-Civita static cylindrically symmetric vacuum fields. 

3.2. C o n s e r v a t i o n  o f  r e s t  massy e n e r g y  t h e o r e m  a n d  e q u a t i o n  o f  
m o t i o n  for  p o n d e r a b l e  m a t t e r  

To determine if and in what sense the divergence equation (71) also 
describes the conservation of energy and momentum in gravitational fields 
(Rabcd ~6 0), one can either convert it (or the corresponding equation 
for the tensor density ( -g) l /2Tab)  into an ordinary divergence equation 
by addition of an affine tensor and thus set up for finite volumes two 
local conservation balances containing as well as material also gravitational 
energy and momentum--which as is known, on many grounds has not 
yet led to clear insights--or introduce an average four-velocir u a for the 
mat ter  and set up substantial balances related to matter  elements. We 
will briefly describe the second procedure, corresponding to thermo-hydro- 
dynamics .26 

25 To t he  l a t t e r  be long  for i n s t ance  the  Pe t rov  type  of the  conformal  t ensor  a n d  the  
s t r u c t u r e  t en so r  of  an  i some t ry  group.  

26 We follow essent ia l ly  Eckoa't [20], whose resu l t s  we comple te  t h r o u g h  the  ' N a v i e r -  
Stokes '  e q u a t i o n  (76). 



R e l a t i v i s t i c  M e c h a n i c s  o f  C o n t i n u o u s  M e d i a  1249 

First one can uniquely decompose a symmetric tensor field Tab with 
respect to an arbitrary timelike unit vector u a thus: 

Tab = #UaUb + phab + 2U(aqb) + ~rab (73) 

with hab according to (5), and 

qau a = O, rCabU b = O, ~raa = O. (74) 

By contraction of (71) with Ua, partial differentiation and using the kine- 
matic quantities (defined in 1.1) formed from ua, one can derive the equa- 
tion 

p --~ (~t -~ p)O -~ 7rabO "ab Jr qa;a "~- qaU a = O. (75) 

Correspondingly the 'spacelike' part of the equation (71) gives 

b ' c 4 (t, + p)6a + ha(qb + p,b + ~b;c) + (~ab + ~ab)q b + ~eqa = 0. (76) 

This pair of equations is, for a given decomposition (73), equivalent to the 
relation (71). 

The equations (70) and (74),(75) attain a concrete physical meaning 
only when the nature of the matter generating the field is stated and the 
introduced auxiliary quantities are subject to corresponding equations of 
state. 

For bulk matter it is permissible to assume that  for a uniquely deter- 
mined 4-velocity 27 u ~, the main part of the energy density # is the positive 
rest-mass proper density p that remains conserved, 

( , ) (pua);a = 0, ~:~ p~) = @, v--- - = specific volume . (77) 
P 

The quantity u = # / p  (which in general differs but little from 1) is 
the specific internal energy. Under this assumption we can designate the 
relation [following from (74),(76)] 

du + pdv a ~: ~rab 
P ds + q ;a+ ab +qait  a - - O  (78) 

as the substantial thermodynamic  energy balance, the equation (76) as the 
m o m e n t u m  balance or equalion of  motion,  2s and the quantities p, qa and 

27 The local 'baxycentric '  velocity, see e.g. [21]. 
28 Liclmerowicz [2] has, th rough  use of the auxiliary metr ic  referred to in Lemma  2.4, 

p roposed  another  relativistic equat ion of mot ion  which we consider as physically 
unfounded.  
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~rab respectively as the pressure, energy-flow density relative to the matter 
(arising from transport processes such as diffusion and heat conduction), 
and viscous pressure tensor. 

These equations differ from the corresponding non-relativistic ones 
only through the very smM1 terms qait a respectively hb ~b + (Wab + Crab + 
40hab)q b, necessitated by the inertia of energy, and through the fact that  
in (76), (/~ + p) occurs as the effective density of the inertial mass instead 
of p. 

From the definition (39) of I and (77) it follows that  the conservation 
of rest mass can also be written in the particularly transparent form 

pl 3 = const. (along the flowlines). (79) 

From the definition of the Einstein tensor, (70),(73) and (74) follows 

R -  3 p - / t  4A, RabuaU b A - 1 - = + 3 p ) ,  habRbcU  = q~ ( 8 0 )  

Thus the matter flow-lines are Ricci eigenlines, exactly when there is 
no energy flow relative to the matter. 

The last remark and (80) permit a dynamic interpretation of a state- 
ment in subsections 1.4 and 1.5. 

From (36),(39) and (80) results the equation 

3~ "~ 2 ( 0  ~ - -  ~)2) __ i~a;a jr 2 (]1 --~ 3 p )  - -  h = 0.  (81) 

This shows that  in rigid motions, the magnitude - A + � 8 9  ~ is the 
source density of the acceleration field. This statement can be interpreted 
as the relativistic analogue of the Gauss theorem divF = 1 - ~ p  + 2w 2 (F 
the field strength of the gravitational and centrifugal fields in a rigidly 
rotating system). 29 For isometric flows one obtains via (30) the 'Poisson' 
equation 

U;~176 = - A  + �89 + 3p) - 2w ~ (0  = 0). (82) 

Reformulating this as a three-dimensional divergence equation suggests 
designation of (p + 3/9) as the effective density of the active gravitational 
mass [28]. 

29 For  t he  spec ia l  case  w = 0 c o m p a r e  [30]. 
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3.3. E n t r o p y  T h e o r e m .  Idea l  f luids.  I s e n t r o p i c  flows. 
An exact description of mat ter  requires in addition to the concepts 

and laws introduced in the previous section further thermodynamic con- 
siderations, that  will not be carried out here in full generality; for the 
relativistic thermodynamics of irreversible processes we refer to the beau- 
tiful Handbuch article by Meixner and Reik [21], the literature cited there, 
and to Just  [22]. 

We will only sketch one example in anticipation of the next section, 
and on account of the soon to be handled case of an ideal fluid: the one 
component fluid (following Ref. 20). 

For such a fluid we require first the existence of a (thermal) equation 
of state 

= u(p, v). (83) 

Consequently there exist (scalar) functions T(p, v) and s(p, v) such that  

du + pdv = Tds. (84) 

With this, on referring back to (77) we can transform the energy equation 
(78) into 

ps + = psu ~ + = rl, 
;a ;a 

1 (~b~o b + qo(~ + (log T) ,~ ). ~=- - ~  (85) 

Under the further assumption T > 0 it is suggested to interpret T as the 
temperature, s as the specific entropy, and this equation as the entropy 
balance equation, which--in agreement with the meaning of 7tab, Crab [see 
(12)], q~ and T- - leads  to the phenomenological equations 

~r~b = -Ao'ab (A(p, v) -- viscosity coefficient), (86) 

qa = - g h ~ ( T b  + T~)b) (g(p,v) _= heat conduction coefficient). (87) 

The entropy theorem demands that the entropy production density ~ is 
non-negative, and consequently 

_> 0, ~ _> 0 (88) 

must be true. The 4-vector 

qa 

S~ - psu~ + -T (89) 
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is to be designated as the entropy f low density.  It appears in (89) separated 
into a convection part S a - psu  ~ and a conduction part q~/T ,  and always 
has non-negative divergence. 

In the equations (75),(76) the terms containing ~ra~ and qa are often 
very small in relation to the others; consequently one can then, in partic- 
ular when studying the interaction of matter with the gravitational field 
(taken into account implicitly through the covariant derivatives), ignore 
these terms. This leads to the introduction of the model of an ideal f luid 
defined in view of (86),(87) by 

,~ = 0, ~ = 0. (90) 

For an ideal fluid therefore according to (73) and (5), 

Tab = #UaU~ + phab = (# + p)uaub + Pgab. (91) 

(Since --uaub and h~ are projections orthogonal to each other, the first 
equation (91) is the spectral decomposition of Tba.) 

The energy and momentum laws simplify to 

~ + p ~  = 0 ,  

b + p) + hop,b = 0, 

and for a chemically homogeneous ideal fluid 3~ 

(92) 

(93) 

according to (94), always 

s = const, along the flow lines; (94) 

all processes in them proceed (adiabatically) reversibly. The flow-lines are 
Ricci eigenlines, by (91), (77). 

According to the rules of thermodynamics, the specific enthalpy 

w = w ( s , p )  = u + p v -  # + P  (95) 
P 

can be used as a thermodynamic potential; through elimination of s by 
use of the equations 

Ow Ow 
a---J = T,  Op v (96) 

30 During chemical reactions (84) must be replaced by the Gibbs fundamental equation, 
and in general (94) is no longer valid. 
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one obtains the thermal equation of state T = T(p,v)  and further the 
caloric equation of state (83). According to (95) and (96) along an isen- 
trope 

w ( s , p )  = w ( s , p 0 ) e x p  o 

A flow is called isentropic when, even in the whole domain of the flow, 
s = COASt. (compare Ref. 4 as well as Ref. 38). In an isentropic flow,/~, p 
and p are pairwise functionally dependent, and according to (97) and (95) 

dw dp dp # + p 
w # + p ' dw w P" (98) 

The equation of motion (93) is thus equivalent to 

ua = -h~(log W),b 

[eq. (44) above]. From this we can extract 

T h e o r e m  3.3.1. In an isentropic flow of a one-component ideal fluid, the 
pressure is a function of the specific enthalpy. The matter tensor, rest 
mass density and specific energy are determined by the formulae 

Tab = p W U a U b  -}- Pgab,  
dp p 

P = ~ w '  u = w -  - (99) 
P 

(with w > 0, (dp/dw) > 0). The divergence of Tab vanishes precisely 
when (pua);a = 0 and the streamlines are geodesics m of the auxiliary 
metric gab = W2gab" The energy theorem (92) is identically fulfilled as a 
consequence of the last two equations (99). 

Instead of the variables (w, u a) and the function p(w) one could also 
take (p, u a) with #(p) (e.g. Refs. 3,2) or with p(p) (e.g. Refs. 19,20); how- 
ever the representation in the theorem is the simplest because of (44). We 
mention also the often used (e.g. Refs. 3,2) representation following from 
(98),(99): 

Tab = p ~v + UaUb "bPgab (~v = W(pO), p = p(p)) (100) 
0 

31 Eisenhart  [24] recognised this geodesy in another  way. Through the formal analogy 
between (45) and the Fermat principle of geometric optics, Synge [3] designated w, 
whose thermodynamic  meaning he did not mention, as the ' index' of the fluid. 
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in which usually the unnecessary and often impossible specialisation p0 = 
0, w = 1 is presupposed. 

According to Theorem 2.4.1 and (47) the flow- and vortex-lines span 
vortex surfaces [2], and from Theorem 2.4.2 there follows for isentropic 
flows the dynamic vortex theorem (48) (with the present meaning for w); 
(97) shows the influence of the pressure on the vorticity. 

In an isentropic flow, O = 0 has the consequence that  w is constant 
along the flow lines, so that  with (44) and according to Lemma 2.2.6 there 
holds the following theorem. 

T h e o r e m  3.3.2. A rigid isentropic flow is only possible in a stationary 
gravitational field [4]. Then ~'~ = u a / w  is a Killing vector and U = - log w 
the scalar gravitational potential [defined in 2.2.6 and occurring in (82)]. 
The vortex vector w a is (Fermi-) constant along the flow lines (Theorem 
2.4.1) and satisfies the equations (56),(57). 

In conclusion we remark that  according to Theorem 2.4.6, a vortex- 
and shear-fi'ee isentropic flow is only possible in a gravitational field whose 
conformal tensor is of Type I and has real eigenvalues. This corresponds 
to the conception that  such fields contain no gravitational waves, which 
are apparently always tied in with shearing motions of the matter  that  
interacts with the field (according to Refs. 31 and 32, sec.2-4.8). 

3.4. K i n e t i c  gas theory .  H - T h e o r e m .  E q u i l i b r i u m  d i s t r i b u t i o n s  
in a g r a v i t a t i o n a l  field. 

In this section we will not idealise the matter from the beginning as a 
continuum, but rather describe it through the model of a statistical assem- 
bly of particles of rest mass m that  only interact with each other through 
elastic collisions. We take it that  the space-time in a 'physically infinitely 
small region' can be regarded as flat, as is required for the definition of the 
moments of the distribution function and in particular for the formulation 
of the Boltzmann collision equation, although the 'gas' as a whole may find 
itself in a gravitational field that  then (expressed in analogy to electron 
theory) can be regarded as the 'macroscopic' field. 

To define the (one-particle) distribution funcl ion F (x ,  p)32 w e  think of 
an infinitesimal space element characterised by the (pseudo-) vector d~ 
at the (arbitrary) event z, and in momentum space 33 an infinitesimal cell 
at the point pa on the mass-hyperboloid 

p~p~ = - m  2, (101) 

32 We leave ou t  t he  indices  of the  a rgumen t s :  p ~ (p") and  so on. 
33 This  can  be  ident i f ied  w i t h  the t angen t  space  at  x. 
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to which then analogously a d~a belongs. F is defined by the statement 
that  

F(x~,p~)ld~ad~a I (102) 

is the number of those particles whose worldlines intersect the space- el- 
ement d~a and whose momentum lies in the cell d t ~ .  Clearly F is a 
scalar. 

The function F obeys the relativistic Boltzmann equation formulated 
by Sasaki (Ref. 33; see also Ref. 37) 

p~F~ = f / / ( F " F " ' -  FF') W(p,p';pl',p"')dP'dP"dP '' . (103) 

The partial derivative F~ is to be thought of as relative to x ~ with paral- 
lelly propagated p~. The first argument in F" ,  F "~, F,  F ' is always x, the 
second respectively p", p"', p, p'; furthermore we set 

d~) a =_ padP (104) 

and so on. W(p, pl;p.,p,.) describes the probability for collisions p, pl _+ 
p",p"' (with corresponding phase space ranges). We have assumed 

w ( p , p ' ; p " , p ' " )  = W(p ' ,p ;p" ' , p" )  = W ( p " , p ' ; p , p ' ) .  (105) 

For the first moment 

ga(x) ~ / g(p)paF(x, p)dP (106) 

of an arbitrary function g(p) there follows from (103),(105), 

x ( F " F ' " -  FF')WdPdP'dP"dP'". (107) 

This balance equalion holds analogously also for tensors gab.., instead of g. 
When g is an additive collision invariant, there holds therefore ga;, _,_ 

0. From this follows: 
(i) The material flow density 

pu ~ - - / m p " F d P  (uau a = -1 )  (108) 
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(g = m) obeys the continuity equation 

(pua);o = o. (76) 

(p is according to (102),(104),(108) the density of the restmass in the local 
rest system determined by the four-velocity u ~.) 

(ii) The matter tensor 

T ab = f p a p ~ F d P  (109) 

(g __~ pa) is divergence-free: 

Next we define through 

ab T ;b = 0. (71) 

f 
S a - - J p a F l o g  F d P  (110) 

the enlropy flow density of our gas. There holds 

Sa;a = - / ( 1  + log F)F, apadp, 

from which by the same transformation that leads to (107), 

arises. Thus there holds the following covariant relativistic form of the 
Boltzmann H-Theorem; 

Theorem 3.4.1. The entropy production density 

sa;a -- 

is non-negative and only vanishes in a world region if there at every point 
F is an additive collision invariant. 84 

If on the grounds of the relativistic collision laws we make the very 
plausible assumption that  (corresponding to the Grad theorem [34] in the 

34 Therefore in special relativity the 'total entropy at a fixed time' is only a scalar when 
an equilibrium distribution is at hand. 
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non-relativistic theory) the general collision invariant has the form c-~ap a, 
it follows from Theorem 3.4.1 that  the general equilibrium distribution of 
a relativistic gas has the form 

F(x, p) = C(x) exp((a (x)p a). (112) 

From this and (108),(109) there follows 

T h e o r e m  3.4.2. (Ref. 35, sec.14, where, further references are given.) For 
local equilibrium, the distribution function of an ideal gas has the form 

o p(x)~ 
F(x,p) = 47rm3I(2(m~) exp(~uapa). (113) 

The corresponding matter tensor is equal to that  of an ideal fluid (91) with 
the equation of state 

where G(y) is given by 

u = G ( 1 )  -pv ,  (114) 

2 K~(v) f ~  G(y)- if(y)= exp(-ycosh z)cosh(2z)dz. (115) y K2(y)' 

The partition parameter ~ is related to the density and pressure by 

. ~  = ~. (116) 
P 

We now determine what conditions the Boltzmann equation (103) 
imposes on the state variables p(x), ~(x) and ua(x). 
T h e o r e m  3.4.3. An equilibrium distribution (113) is possible only in 
a stationary gravitational field, and indeed ~ = ~u a must be a Killing 
vector; thus the flow is isometric. Furthermore in the flowfield 

p~2x 
I(2(rn() = A = const. (117) 

must hold. These conditions are sufficient, too. 

Proof. For an equilibrium distribution (112), because of four-momentum 
conservation at collisions, (103) reduces to the Liouville equation 

0 

;oF~ =0, (11s) 
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which is thus written out with log C -- c to 

C,ap a + ~a;bpap b = O. (119) 

This equation must be fulfilled at every point x for all pa that  lie in the 
forwards lighteone, with pap a = - m  s. From this follows (for example by 
choosing some special values for the pa) 

e,~ = 0, ~a;b = 0 ,  (120)  

whereby with (112),(113),(116) the theorem is proved, since from (120) 
naturally again (118) follows. 

Comparison of this theorem with the corresponding theorem of the 
non-relativistic theory (Ref. 39 and cf. Ref. 36) shows: 
The reversible flows of a relativistic ideal gas are kinematically more 
strongly restricted than those of a non-relativistic one; they are namely 
not only shear-free, but also volume-preserving. Thus, in the isotropi- 
cally expanding models of relativistic cosmology, one cannot understand 
the subs t ra tum--as  in the corresponding Newtonian models [40,41]--as an 
ideal gas in equilibrium. 35 

Next we decompose the entropy flow (110) following the example of 
equation (89) into a convection and a conduction part:  

s ~ = ~ + ( n o ,  ~ - o). ( 1 2 1 )  

For an equilibrium distribution, s a vanishes according to (110),(112), and 
one obtains an expression for s after a short calculation (in the rest frame), 
that  is connected to u from (114) through ~(du + pdv) = ds. Thereby 
1/~ = T is identified as the temperature and the connection with the 
phenomenological theory of the previous section recovered--at  least in the 
equilibrium case. 

The relation ~ = 1/T,  Theorem 3.4.3, and the remark 2.2.vi give 

T h e o r e m  3.4.4.  For an ideal gas in thermodynamic equilibrium in a 
gravitational field, there exists the relation 

T e U =  const. (122) 

between temperature  T and the gravitational potential U. 

35 Thereby a question posed by Heckmann, Ref. 40 p.50, is answered at least in a simple 
c a s e .  
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Tolman [42] derived the relation (122) for a (phenomenologically de- 
scribed) isotropic radiation field in a static gravitational field; for the gen- 
eral stationary case this is contained in Theorem 3.3.2, since for the "fluid" 
considered there one can take isotropic radiation, which is permitted. 

It should be pointed out that  in the case of a rotating gas, the cen- 
trifugal potential is also contained in U; the temperature difference for this 
case asserted by (122) is of the same order of magnitude as that recently 
measured by Pound and Rebka [43] through the transverse Doppler effect 
by means of the Mhssbauer effect. 

Through the use of distribution functions that  differ from (113) 0nly 
0 

by such a small amount that  we can still set log F "~ log F, one can 
still through the definitions of qa [(73),(108),(109)] and s a [(121),(110)] 
determine that  s a = ( 1 / T ) q  a. Thereby then the phenomenological entropy 
theorem [(85) with q > 0] is recognized as a consequence of the statistical 
H-theorem 3.4.1. The phenomenological equations (86),(87) have been 
motivated statistically by Sasaki [33] (without use of the entropy concept); 
his equations appear to us however not to be sufficiently general. 

We remark further, that  the assumptions made by Synge about the 
direction of time (Ref. 35, p.54) in handling of shockwaves in gases, fol- 
low from the H-theorem. It should however be stressed that because of 
Theorem 3.4.3, the ,use of equations (114)-(116) in general flows is strictly 
speaking not permitted. 

3.5. D y n a m i c s  o f  i n c o h e r e n t  m a t t e r .  
Incoheren t  m a t t e r  is formally defined by the matter tensor 

Tab = pu,~ub. (68) 

One can obtain this expression if in the general representation (73) one 
regards the pressure p, the eigenvalues of the viscosity tensor 7tab, and 
the total energy-flow density qa as negligibly small in comparison with 
the energy density /z [and then sets # = p through (77)]. If one takes 
as a foundation the statistical model of matter handled in the previous 
section, formulae (108),(109) or the distribution function (113) show that  
(68) emerges exactly when F has a sharp maximum in momentum space 
at the point pa = m u a  (the limiting case T ~ 0.). 

In this subsection (68) will be taken as given. 
Almost all the previously formulated theorems can be applied to (68); 

we collect some together here. 
i. The streamlines are geodesic: u = 0. 

ii. The (proper) mass density is conserved: pl 3 = M ,  11",I = O. 
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iii. In vortex-free flows, there exists a time coordinate t that  is equal to 
proper-time along the flow lines, synchronised to be equal to each 
other; the hypersurfaces t = const, are geodesically parallel. 

iv. Conformal, non-rigid flows are vortex-free [see (28)] 
v. Rigid flows are isometric: u a then generates a translation group, and 

w a is harmonic. 36 
vi. The  usual Doppler formula d)~/)~ = (5 0" holds for the redshift of in- 

finitesimally neighbouring particles. 
vii. Stream- and vortex-lines span (2-) surfaces [see (46)].. 

viii. For shear-free motion, (12wa)' = 0, thus 12w - ~,  i2 = O. (With 
ii.: The  (Newtonian) angular momentum of a sphere (consisting of 
specified mat ter  particles) of r a d i u s / i s  J = (8~r/15)Mf~, J = 0.) 

ix. The flow lines are Ricci lines: [see (37)]: 

hata~bc bc 2A,b" ~ b~ ; c - e  ; c + ~ v  j = 0 .  (123) 

x. Curvature scalar, density and cosmological constant stand in the re- 
lation R = - p -  4A [see (80)]. 

xi. There holds the "expansion equation ''37 [see (81)] 

i" 1 
3? + 2(r ~2 - w 2) + ~p - h = 0. (124) 

xii. The field equations (70) with (68) are equivalent to ix., xi. and 

--h~bRbCh~d = (A + �89 (125) 

(xi. arises through contraction of the field equations by u~u b, ix. with 
uah be, xii. with h~chbd.) 
From xi. there follows the noteworthy 

T h e o r e m  3.5.1.  [44,45]. If along a flow line ~A+I w2 _< ~pl + a 2 (in 
particular thus for w = 0, A _< 0) and O(s) > 0 at a (proper-)time s, then 
there exists a (finite) so < s such that lims_~so+0(ps 2) = +co: at the time 
s = so a singular explosion has happened. For given O(s), s - so, the 
'age' of the geodesics, is increased by increasing r or A, and is lowered by 
increasing cr or p. 

[These statements follow immediately from xi., if one observes that l" 
is the curvature of the graph of the function l(s)  and 0 = i/ l .  For shear- 
free flows, ~ = 0, one can through ii. and viii. obtain from xi. an ordinary 
differential equation for l(s).  This equation can be integrated once.] 

36 That is to say, vortex- and divergence-free; see Theorem 2.4.5. 
37 This equation was derived by Raychaudhtu-i [44] in a special coordinate system. 
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xiii. For shear-free flows there holds the simplified expansion equation 

2~ 2 M 
3i2 + 12 l AI 2 - 10E (126) 

with parameters ~, M, and E constant (along the flow lines). 
In a vortex-free flow, (125) has the meaning of a condition for the 

curvature of the space-sections t = const. (UaX a = -dt) .  From the defini- 
tions of the quantities O, aab it emerges that  in this case (w = 0, ~ = 0) 
(up to a conventional factor) (r + �89177177 b along t = const, is 
the second fundamental form of these space sections, so that  according to 
the formulae of differential geometry 3s the left hand side of (124) can be 
reduced to the Ricci tensor of the space sections. Thus there holds 

T h e o r e m  3.5.2.  In a vortex-free flow, 

K(x~176  (A+p+l - ol Z-3(13 ob) oeb (127) 

is the Gauss curvature of that  surface F which is generated by the flowlines 
of the geodesics (drawn with respect to the induced metric) going out from 
x a, orthogonal to e a at xa; where eau a = 0 (see Figure 2). 

This theorem is a simple example of how in Einstein's theory the 
curvature of the rest-space of the mat ter  is determined by its distribution 
and relative motion; the second term shows that  form-altering motions 
of the mat ter  inter alia are connected with an anisotropy of the spatial 
curvature (for the exceptions see Theorem 3.5.5.). 

The equation (124) holds also in the Newtonian Mechanics of pressure- 
free matter  interacting only through gravity; the relation (127) is the first 
typical of the Einstein theory. The first remark leads us to interpret the 
equation (126) as an energy theorem. In fact in Newtonian Theory the 
expansion energy, rotational energy, inner potential gravitational energy 
of a (small) mat ter  sphere of radius l, consisting of substratum parti- 
cles, are respectively given by the first three terms in (126) multiplied by 
(27r/15)M. If one adds to these a A-energy of magnitude -(27r/15)M12A, 
then (126) states the conservation of energy (47r/3)13pE of this sphere. 
This mechanical energy theorem must however be distinguished from the 
thermodynamic energy theorem (78) (trivial for incoherent matter) .  The 
first concerns itself with a finitely extended system, and correspondingly 
contains a gravitational part, the second to an infinitesimal substratum 

38 Equations of Gauss and Codacci, see e.g. Ref. 46, sec.43 or Ref. 12, eq. (2.2.4a). 
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i 

F i g u r e  2. 

particle, in which according to the equivalence principle gravitation does 
not make itself noticeable. 

The dynamical conservation theorems viii. and xiii. holding for a 
mat ter  sphere K under the supposition o" = 0, are valid although K is not 
a closed system. On shrinking of K through snaall spheres ki the energy 
does not behave linearly: the Ei are related to local inertial systems moving 
relative to each other, and furthermore the ki interact through gravitation. 

We now seek the kinematically simplest solutions of the gravitational 
equations for incoherent matter.  

A. (w = (9 = c~ - 0) The simplest flow is a vortex- free rigid motion; 
this is by xi. and Theorem 3.5.2 only possible if p = 2A and the rest- 
space of the matter  has the constant positive curvature K = A; and these 
conditions are by xii. and ix. Mso sufficient: Einstein-Universe. 

B. (w = ~ = 0, (9 ~ 0) The next simplest possibility is that  only 
and w vanish. Then (126) and (127) hold, and give the Friedmann- 

Lemaitre models. The rest spaces have the constant curvature K = 
- ( lO/3)(E/ l  2) ~ (k /R 2) (k = +1,0) .  This curvature is thus equal to 
the above defined energy of a / - sphere ,  divided by (4/lO)Trpl 5. [That 

and p are constant in the rest spaces follows from (124) and (127)]. 
The theorems developed here and Theorem 2.5.1 permit, without further 
calculation, to draw the conclusion: 

T h e o r e m  3.5.3. (proved in Ref. 44 by other methods). The only uni- 
verses with shear- and vortex-free motion of incoherent mat ter  are those 
among the everywhere isotropic models characterised in Theorem 2.5.1, 
whose curvature radius obeys the Friedmann-Lemaitre equation (126) 
(with l = R, f2 = 0, 10E = -3k ) .  39 

39 For A = 0, k s epa ra t e s  th ree  classes of s imi la r  so lu t ions  (in the  sense  of Sect ion 3.1) 
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In anticipation of the application of these models to the system of 
extra-galactic nebulae, it is useful to replace the suppositions w =- 0 and 
c~ = 0 respectively by isotropy of  the density distribution [48] (hap,b~ = O) 
and redshift [47]; from this namely follows according to 2.2.ii. and 2.2.vii. 

= 0 and a = 0. Both properties are in principle observable. 
C. (O = ~r = 0, w r 0) Among the shear-free flows with rotation, the 

simplest are those that  obey the conditions formulated in Theorem 2.5.2. 
For them there holds in suitable coordinates 

G = dz 2 + dcr 2 - (dt + u a ( x B ) d x a )  2, u a = 5~, (64) 

where da 2 = " /AB(XC)dxAdx B is a surface metric. According to (125) 
necessarily �89 = A+2w 2. Therefore according to Theorem 2.5.2 p = coast. 
and w = c o n s t .  must hold. Since G is the direct sum (see e.g. Ref. 12, 
Ch.1.4.) of the z-line and a V3, from (125) necessarily A + �89 = 0 must 
hold. Thus there follows p = 2w 2 = -2A,  and to show that  wa is constant 
one need only further solve the equation h~bRbChed -- 0 for (64), which 
for example can be easily done with the help of the formulae in Ref. 12 
(eq. (2.3.3), p.36), and then gives the GSdel cosmos [17,47,49-51]. 

T h e o r e m  3.5.4.  The GSdel cosmos is the only universe with incoherent 
mat ter  in which the motion of the substratum proceeds shear-free, and the 
direction of the rotation axis in the infinitesimal spacelike neighbourhood 
of each particle is constant. 

As the theorem shows, a rigid, spatially-constant rotation is only con- 
sistent with the field equations for A <: 0; the rotation must therefore only 
be so strong, that  the matter  can be held together by the (usual) gravita- 
tional and A-at tract ion.  If one however does not require constancy of w, 
there are permit ted for A = 0 flow fields with rigid rotations that  with the 
help of remarks v.,viii.,ix.,xi.,xii, can be reduced to the static solutions of 
the vacuum field equations R~b = 0 in a surprisingly simple way (Ref. 47, 
w 29, Theorem IV). Since this has already been presented completely in the 
spirit of the methods used here (Ref. 52; see also Ref. 53), we refrain from 
a repetition and simply remark: In these solutions, p - 4w:; p > 0 there- 
fore does not have to be assumed separately. Solutions with (spatially) 
constant density do not exist (Ref. 47, w 29, Theorem II I ) - -contrary  to 
the Newtonian theol~y, where from @ = a = 0 it follows that  p = const. 
(Ref. 41, I), just as there exist no solutions with compact orientable 3- 
space (Ref. 47, w 29, Theorem IV). Axially symmetric solutions of this 
kind have been constructed--without  reference to vacuum fields--by van 

f rom each other;  in  each class,  M is a s imi lar i ty  p a r a m e t e r .  
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Stockum [54]. This author also found the only singularity-free solution 
of this kind known up to now, a rotating cylinder with a static ([) vac- 
uum field attached to it; solutions that  contain singular points, surfaces, 
and so on can be obtained in great numbers (Ref. 47, w 29, Theorem IV). 
It is an interesting question, whether these singularities can be eliminated 
through introduction of physically acceptable pressures, or through joining 
to a vacuum field. 

D. (w = 0). The next simplest flow is one that  is vortex-free and  
volume-preserving; according to xi. this is at best possible for A = �89 2 
(> 0). Solutions of this type [except for ~ = 0, see (A)] have not been 
given, to my knowledge. Under the more complicated assumptions w = 
0, | r 0 ~ a, firstly the spherically symmetric flows can be specified, 
and have been exhaustively investigated by several authors [55,56]; in the 
framework of this presentation, they can be lucidly handled with the help 
of statements xi.,ix, and 3.5.2. 

From Theorem 3.5.2, ix. and xi. follows the 

T h e o r e m  3.5.5. In a vortex-free flow of incoherent matter, the rest-spaces 
of the substratum are of constant curvature K(t) if and only if the tensor 
13~r~b is constant along the flow lines. For such flows the Einstein equations 
are equivalent to ix., xi. (for w = 0) and 

k l ( A + p + ~ 2  1 ) 
I(( t)-  R2 - 3 - 3  02 " (128) 

The corresponding flows are natural generalisations of the Friedmann- 
Lemaitre models: examples of this kind have been determined (from an- 
other viewpoint and using other methods) by Schiicking and Heckmann, 
see Ref. 9. 

It is clear that  in the characterisation of more general flows, the vanish- 
ing or not of kinematic quantities or their constancy is not sufficient, rather 
further invariants must be introduced; and that  for w r 0 the metric deter- 
mined by h~b should be considered as the metric of the three-dimensional 
space of the flow-lines, for which circumstances theorems analogous to 
3.5.2 should be formulated. We will not investigate these questions here; 
our aim was to show the simplicity and applicability of geometrically for- 
mulated hydrodynamics in Riemannian space for the handling of exact 
solutions, and presentation of the simplest examples. 4~ 

40 More general solutions, that are spatially homogeneous, have been determined by 
Heckmann, Schficking, and Ozsvath; these works have not yet been published (private 
communication). 
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