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Superdifferential operators of order 2n+ 1 which are covariant with respect to 
superconformal changes of coordinates on a compact super-Riemann surface are 
studied herein. It is shown that all such operators arise from super-Mobius 
covariant ones. A canonical matrix representation is presented and applications 
to classical super- W-algebras are discussed. 

I. INTRODUCTION 

The study of linear nth order differential operators in one complex variable which are 
conformally covariant represents a classic subject in the mathematical literature.‘12 In recent 
years, these topics have regained considerable interest and a variety of applications in mathe- 
matics and physics have been discussed (see Ref. 3 for a partial review and further references). 
In particular, it was realizedM that these operators give rise to classical W-algebras. 

The natural supersymmetric extension of this subject consists of the study of operators of 
theform D2”+‘+--- (where D=a/%+&V& and n=0,1,2,...,) which are defined on compact 
super-Riemann surfaces. The subclass of these operators which only depends on the projective 
structure (and not on additional variables) has been investigated in detail in Ref. 3: these are 
the so-called super-B01 operators. In the present work, we will be concerned with the most 
general operators of order 2n + 1 which are superconformally covariant. Along the lines of Ref. 
5, we will study their general structure, their classification, and discuss the applications to 
classical super- W-algebras. 

This article is organized as follows. After introducing the necessary tools and notation in 
Sec. II, we discuss the general form of covariant operators of order 2n + 1. In the sequel, 
specific subclasses of these operators are constructed by starting from operators which are 
covariant with respect to superprojective changes of coordinates. The first examples are pro- 
vided by the super-B01 operators L?” mentioned above and the second class is given by 
operators M’$ (with 1 (k<2n + 1) which do not only depend on the super-projective structure, 
but also on some superconformal fields IV,. (In the applications to W-algebras, the projective 
structure is related to the superstress tensor while the conformal fields W, correspond to the 
currents for the W symmetries.) By adding the operators &$L to the super-B01 operator L?,, , 
we obtain again a covariant operator of order 2n+ 1 

y=y +M’“‘+*-+M($ n WI Z”fi’ 
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In Sec. VI we will show that this already encompasses the most general case. In other words, 
all operators of order 2n+ 1 which are superconformally covariant can be cast into the form 
( 1). Thereafter, it is shown that the operators M& represent special cases of operators which 
are bilinear and covariant and which are of independent interest. However, in the sequel, we 
return to the linear operators and we present a matrix representation for them, thereby eluci- 
dating the underlying algebraic structure. Section IX is devoted to the application of the 
previous results to the description of classical super- W-algebras. In fact, the aforementioned 
matrix representation provides a convenient set of generators for these algebras and the Poisson 
brackets between these generators involve the previously constructed covariant operators. 
While our main discussion is concerned with superfields, the derivation of component field 
results is addressed in Sec. X. We conclude with some remarks on topics which are closely 
related to our subject (covariant operators of even degree, in N=2 supersymmetry and in 
higher dimensions, singular vectors of the Neveu-Schwarz algebra). In an Appendix we collect 
some of the algebraic concepts which are referred to in the main text. 

II. GENERAL FRAMEWORK 

Let us first recall the notions which are needed in the sequel.’ The arena we work on is a 
compact N= 1 super-Riemann surface (SRS) parametrized by local coordinates z= (z,@. 
(Our discussion applies equally well to a real one-dimensional supermanifold for which case 
the changes of coordinates are superdiffeomorphisms.) The canonical derivatives are denoted 
by a=& and D=a,+ f3a. By definition, any two sets of local coordinates on the SRS, z and z’, 
are related by a superconformal transformation z --) z’ (z), i.e., a transformation satisfying 
Dz’ = 8’ ( 013’). This condition implies D= ( De’) D’ and ( De’) ( D’e) = 1. 

Throughout the text, the Jacobian of the superconformal change of coordinates z-+z’( z) 
will be denoted by 

e -wE De’. 

By ,4”, we denote the space of superconformal fields of weight n/2 on the SRS, i.e., 
super-fields with transformation properties C”(z) + CL( z’ ) = e”?,(z) . The field C,, is taken 
to have Grassmann parity ( - )“. 

The super-Schwarzian derivative of the coordinate transformation z+z’ (z) is defined by 

9(&z)=-[D3w+(aw)(Dw)]=~-2 
(ae’) (D3ey 

(De’)2 . (2) 

Under the composition of superconformal transformations, z+ z’ + z”, it transforms according 
to 

Y(z”,z) =e-3w.Y(z”,z’) +Y(z’,z), (3) 

which implies Y (z’,z) = - e-3wY (z,z’ ) . 
Coordinates belonging to a superprojective atlas on the SRS will be denoted by capital 

letters, Z= (Z,O). They are related to each other by superprojective (Super-Mobius) trans- 
formations, i.e., superconformal changes of coordinates Z-Z’(Z) for which Y(Z’,Z) =O. 
Direct integration of this equation and of D&Z’ =O’ ( Do@‘) gives 
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aZ+b 
Z’=- cZ+d+O cc~;+j~, (ad-bc= 11, 

yz+s @‘=- 1+(1/2My 
cZ+d+@ cZ+d - 

(4) 

Here, a,b,c,d are even and y,y,S are odd constants; we redefined the parameters in such a way 
that the even part of the transformation for Z coincides with ordinary projective transforma- 
tions. The associated Jacobian then reads 

D(@‘=(z+d+Og-1, 

with C=c( 1-&), i=d( 1 -$y), y=cS-dy. 

III. THE MOST GENERAL COVARIANT OPERATORS 

The most general superdifferential operator which is linear, superanalytic, and of order 
2n+ 1 has the local form 

where the coefficients u~Eu~)(z) are analytic super-fields. We will always take up to have 
Grassmann parity ( - )P. If the leading coefficient a, does not have any zeros, one can achieve 
a,~ 1 by dividing by this coefficient. In the sequel, we will make this choice and we will study 
this type of operator on the SRS from the point of view of superconformal changes of coor- 
dinates. 

The requirement that L?’ maps superconformal fields (of a generic weight p/2) again to 
superconformal fields, i.e., 

determines the transformation laws of the coefficients al,...,a2n+i under a superconformal 
change of coordinates z--r z’ (2). For the first two coefficients, one finds that 

(5) 
aa=e2WC[u2-n(p+n)caw>l +n(Dw)aJ. 

From the first of these equations, we see that u, is a superconformal field of weight f if p = - n. 
In that case, al can be eliminated from Y by performing the resealing 

y+g-‘Yg, with g(z)=exp[-- Jz dEal(Z (6) 

where the integral is to be understood as an indefinite integral,’ i.e., 
0s; d P ai (E) = CZ, (z). As a result, one obtains an operator of the form 

2n+l 

y(n)=@n+l+ c (@n+l-P* 

p=2 

(7) 

From now on, we will consider this operator which will be referred to as “normalized operator” 
of order 2n + 1. 
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Lemma 3.1: There are transformation laws of the coefficients aP under superconformal 
changes of coordinates z-+z’(z) such that the operator Y”‘) maps superconformal Jields to 
superconformal fields; more precisely, 

2W.FJhY- n+l9 

which entails that 2”” transforms as 

(8) 

~(n)~~(n)‘=e(n+l)w~(n)enw. (9) 

The transformation laws of the first few coefficients are explicitly given by 

a’ =e2”a 2 27 

+4(n-l)[(n+2)(D3w)+(n+6)(dw)(Dw)la2, 
I 

+%(n-1)(n-2)[(3+2n)(Dw)(D3w)+(n+3)(a2w)+(n+9)(aw)‘la2, I 

where ai = ai (z’ ), aP= a*( z), and where Y = Y (z’,z) denotes the super-Schwanian derivative. 
Since the coefficient a2 of YCn) transforms homogeneously, it is possible to set it to zero in 

a consistent way. If we do so, we have a3( z) = ( 1/2)n( n + 1 )5PZe( z), where 5%’ represents a 
superprojective (or super-Schwarzian) connection on the SRS:3 locally, the latter is given by a 
collection of odd superfields .%‘Ze which are locally superanalytic and which transform under a 
superconformal change of coordinates according to 

.9?zt~t(z’) =e3w[9?ze(z) -Y(z’,z)]. (11) 

In the general case ( a2 not identically zero), we conclude from Eqs. ( 10) and ( 11) that 

Z3=a3--fDa2=fn(n+ 1)s. (12) 

On a compact SRS, there is a one-to-one correspondence between superprojective connec- 
tions and superprojective structures (i.e., superprojective atlases). This relation is expressed 
by3 

-@ze(z) =Y(Z,z), (13) 
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where Z belongs to a projective coordinate system and z to a generic one. Note that the 
quantity ( 13) transforms as in Eq. ( 11) with respect to a conformal change of z and that it is 
inert under a super-Mobius transformation of Z. 

Since a3 (z) a Y (Z,z> [or a3( z) a Y (Z,z) for a2=0], this coefficient vanishes if z is chosen 
to belong to the same superprojective atlas as Z. In the next section, we will start from such an 
atlas and define simple operators which are covariant with respect to super-Mobius transfor- 
mations. Then, we go over to a generic coordinate system and recover conformally covariant 
operators. 

IV. EXAMPLE 1: SUPER-BOL OPERATORS 

In this section, we recall some results from Ref. 3. We start from a superprojective atlas 
with coordinates Z,Z’ related by Eqs. (4). A field 5$‘,,(Z) transforming covariantly with 
respect to these changes of coordinates, Ce A (Z’ ) = ( D,O’ ) -“5$ n (Z), is called a quasiprimary 
field of weight n/2. 

Obviously, the simplest normalized operator of order 2n+ 1 is given by @+‘. For this 
operator, we have the following result which can be proven by induction: 

Lemma 4.1 (Super-Bol Lemma): For quasiprimary superJields %? --n of weight -n/2, the 
field D$+tg -,, is quasiprimary of weight (n+ I)/2, i.e., it transforms under projective changes 
of coordinates according to 

(~“+l~_n)~=(D,O’)-(~+‘)~~+‘~-.. (14) 

We now go over from the projective coordinates Z to generic coordinates z by a super- 
conformal transformation z+ Z( z) . Then, @$‘+I becomes the so-called super-B01 operator L?,, 
acting on the conformal field C-,(z) 

D~+lCe_n=(DO)-‘“+‘)~nC-n, with U.+(Z)=(D@)“C-,(z). (15) 

In operatorial form, this relation reads 

2n+l 
(DO)” 

=[D-nB][D-(n-l)B]..*[D+nB], (16) 

where we introduced the quantity B= D In Do. 
Corollary 4.1: The super-B01 operator Tn as defined by Eq. (1.5) represents a normalized and 

conformally covariant operator of order 2n + I. It depends only on the superprojective structure, 
Le., it depends on B only through the superprojective connection 

9?(z) =y(Z,z) =aB- BDB. 

The explicit expression for T,, has the form 

(17) 

x[(~29?)+f(2n+3)9?(D9)]@n-6+***. 

For later reference, we display the first few super-B01 operators 

(18) 
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(19) 

Methods for constructing Y,, and further properties of these operators are given in Ref. 3 
and in Sec. VIII below. Here, we only note the following. Under a conformal change of z, the 
field B transforms like a superaffine connection 

Bet(z’) =eW[ Be(z) + Dw]. (20) 

Henceforth, [D’ - p B’]Ci = e (p+l)w[ D L pB]C, where C, has conformal weight p/2 and 
thereby we can locally define a supercovariant derivative 

V(p) :q+q+ 19 

++V,,,C,= ID-PBIC,. 
(21) 

Writing V6) -VQ+L~)- **V(p+l)V(p), the factorization equation ( 16) for the super-B01 oper- 
ators reads 

A+vy_+n;. (22) 

It should be emphasized that superprojective structures exist on compact SRS’s of any 
genus and that superprojective connections are globally defined on such spaces.3 Thereby, the 
lemma and corollary stated above also hold there. By contrast, the covariant derivative defined 
by Eq. (2 1) only exists locally. In fact, the quantity B is not invariant under superprojective 
changes of the coordinate Z; under a conformal change of z, the field B transforms like a 
superaffine connection (these quantities only exist globally on SRS’s of genus one). Neverthe- 
less, the local definition (21) is useful at intermediate stages’ and we will use it again in the 
next section. 

V. EXAMPLE 2: OPERATORS PARAMETRIZED BY CONFORMAL FIELDS 

Consider a fixed n E N and some tensors Wk~ Fk (with 1 < k<2n + 1). In analogy to the 
expression (22)) we can locally introduce covariant operators M($i of order 2n + 1 - k in terms 
of the fields W, and the covariant derivative (2 1) : we define them by 

M($;:F-,+F n+lp 

(23) 
2n+l-k 

C+H & P~‘(v[ck)Wk)VT”-+-k-tC-n, 
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where &) denote some complex numbers. These operators are linear in wk and its derivatives 
up to order 2n + 1 -k. Under a superconformal change of coordinates they transform as 
M$L-+e (n+l)qf(;;enw* 

Proposition 5.1: There exist numerical coeficients /$$I, normalized to &=I, such that the 
operators iU($L depend on B only through the superprojective connection S?=aB-BDB. The 
coeficients are expricitiy given by the following expressions where we distinguish between k,l, 
even and odd: 

~~;~~=~nJk~(k~‘~l~, &\l+,m(n’k)‘:;“’ (l<k<n) 
9 (,k+;- 1) ’ - (;:‘) ’ ’ ’ 

(24) 

p’ ) 
2nk+ 1,21= 

, ,,$~12t+l~~‘J:i (“8 (&,kGn) 
* - (2k+$i-1) ’ ’ 

The proof is by construction and uses a variational argument?’ we vary B subject to the 
condition 6%’ =0 and require 6~54,~ (*) = 0. The condition 6.5%’ = 0 implies 

(SB) = (Sli) (DB) + B( D6B). (25) 

To proceed further, we need the following results. From Eq. (25) and the definition of the 
covariant derivative, one can derive the following operatorial relations: 

V,,,(SB) = - @B)V,,-,,+ (V,i,SB), 

vC,,(VC,,SB) = O’,,,~B)V,,-2,~ 

V(p+~,V,,,(fiB) = (WVd’(p,, . 

Using these relations, one shows that 

(26) 

(27) 

with coefficients 

d$)= -n, b$‘= -n(p+n- 1) , 

d$;Pn)+l= - (p+nh bi$+,= -n(p+n). 
(28) 

Indeed, one has 6V,,, = -p6 B (i.e., d, @) = -p,biP’ =0) and Eq. (27) is then proved by induc- 
tion: one is led to the recursion relations d$), = - (dip’ +p+Z) and bjrjl =djp) + bjp) with 
solutions given by Eqs. (28). 

Now, we are ready to prove the proposition. Variation of the operator MEL leads to the 
recursion relations 
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(a) flpj+ldj:‘,+( -)k+t@/d&$~-kMt=O, for 0<1<2n-k, 

(b) &,(+2 ~+2+@$;;$-/+~=@ for O<Wn--k- 1, (n) b(k) 

with &‘$= 1. One first shows that (b) follows from (a) by using the explicit form of the 
coefficients djt” and bit’) given by Eqs. (28). Then, one solves (a) and finds the solution (24). 

III 
Corollaty 5.1: Let wk (with l<k<2n + I) be a quasiprimary Jield of weight k/2. Then, the 

operator M$jk, as defined by its action on a quasiprimary Jield, Ce -,, , 

2n+l-k 

itf(&;%-n- c pj(;‘(D~;rYk)D~+l-k-‘~_n, 
l=O 

with pfi) given by Eq. (24), transforms linearly under a superprojective change of coordinates 

(M~~~_,)‘=(D,O’)-‘“+“(MM %‘-,I. 
k 

(30) 

This operator is related to the operator M$L by a change of variables in analogy to Eq. ( 15 ) 

+, with pk(z)=(m)-kWk(z). 

As an illustration of our results, we give explicit expressions for the simplest M$i 

e;,+*= W2n+l7 M$;“= W,,D+f(DW,,>, 

ME;,-,= w,.-,a+& WWdD+& (aW2,-,), (31) 

VI. CLASSIFICATION OF COVARIANT OPERATORS 

By adding the covariant operators considered in the last two sections, we obtain the 
operator ( 1) which is again covariant and of order 2n + 1. In fact, the procedure leading to the 
expression ( 1) can be reversed to show that all normalized linear differential operators of order 
2n+ 1 which are superholomorphic and superconformally covariant can be cast into the form 
( 1) with W1 =0= W3. In particular, this means that all normalized and conformally covariant 
operators come from Mobius covariant ones. 

Theorem 6.1 (Classification Theorem): Let Eq. (7) be the local form of a normalized 
dtrerential operator of order 2n + 1. According to Lemma 3.1, there exist transformation laws for 
the coeflcients ak (under superconformal changes of coordinates) such that ~‘n’:F-n+3,, ,. 
If ak are chosen to transform in this way, one can Jind a reparametrization of these coeficients 
in terms of superconformal fields Wk EFk (with 1 <k<2n + 1) such that Y(n) is given by 
expression (I). 

Wk are polynomials in ak and their derivatives. These relations are invertible and allow one 
to express ak as dtperentiai polynomials in 2 and in Wk (with coe&ients that are dtflerential 
polynomials in 9). 
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To summarize, any holomorphic and covariant operator of the form (7) can be parame- 
trized by a superprojective connection 9? and 2n+ 1 superconformal fields W,,..., W2n+l 
(which are differential polynomials in ak). 

The proof is by construction. In fact, with Eq. (12) 

as=fn(n+1)9++fDa~ (32) 

the W, are easily found in terms of ak by setting to zero the coefficient of tin+‘-’ in 
2’-Y(n). For the first seven fields, we find 

W,=O, Wz=a2, W,=O, 

W,=a4-~n(n2-l)D9--f(n-l)&22, 

(33) 

These fields transform covariantly. 

VII. COVARIANT BILINEAR OPERATORS 

The expression Mwk (n)C-, can be viewed as the result of a bilinear and covariant map J, i.e., 
M’“‘C-, a J( Wk,C-,). The mapping J represents the graded extension of Gordan’s trans- 

wk 

vectant.1’2V5 It will reappear in the next sections in the context of the matrix representation for 
linear covariant operators and in the Poisson brackets of super- W-algebras. 

To define this extension, we proceed as for the definition of MC;:. First, we note that for 
any ,u,v,m E Z, the map 

(34) 

(F,Gh--+ f fl(p,v) (V;;;‘F) W&3 
I=0 

[with r;“(p,v) denoting a numerical factor] is bilinear and covariant. We then have 
Proposition 7.1: There exist numerical coeflcients Y;n(p,v) such that the operator q,, de- 

pends on B only through the superprojective connection .9? =dB- BDB. These coeficients are 
explicitly given by 
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&Yw)=(--1)~ 7 
( 1 

@FL) 
m 

;r(v)i’ ~T+l(cc,v)=(-l)‘+‘(mT1) @FL) 
m 

-y(v)itl. 

(35) 

Yz;“+‘Q-w)=(--1)~ 7 (a)m+~~~(v)i’ ~f;:‘(~.v)=-(-1)‘+u(‘I) @FL) 
i 1 m 

-:(v)i ,Y 
+ 

where we made use of the Pochammer symbol 

(r)o--l, (r>l=r(r+l)***(r+Z-1). 

The proof proceeds along the lines of the proof of Proposition 5.1: the coefficients are deter- 
mined by requiring that Sq,,(F,G) =0 for variations SB satisfying 89 =O. From Eq. (27), we 
get the following recursion relations for the coefficients y=‘y(p,v): 

&L-(-l,” m+y$.Y1, r;;;,=c-l,r~& 

Using a convenient choice for yo, one is led to the solution (35). 
The last proposition can be reformulated by saying that 

cl 

JpF,Y)= E r;“(p,v)(Dgm--m(D$9) (36) I=0 

[with y given by Eqs. (35)] is a quasiprimary supertield of weight i(p+v+m) if 9 and 9 are 
quasiprimary of weight p/2 and v/2, respectively. In other words, the operator (36) is bico- 
variant with respect to super-Mobius transformations. 

The super-Gordan transvectant [i.e., the mapping J;I: with y given by Eqs. (35)] has the 
symmetry properties 

J~T(F,G)=(-- l)“+~“J@(G,F), 
(37) 

J2”+‘(F,~)=-(- I)~+P~J$+~(G,F). P 

As a simple example, we consider p = 2 = v, m = 3, and F = Gz VEF, for which we get 

=2V(D3V)-3(DV)(rW,-49V’. (38) 

As noted at the beginning of this section, the quantity MgiC-,, is a special case of 
$‘,,( F,G) : in fact, for 

p=k, v=-n, m=2n+l-k, F= W,, G=C- n 

we find 
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(39) 

(k-l)! ---M’“’ c- 
n. I w2k ” 

for p=2k 

~,SF,G) = k, 

~M~~k+,C-n, for ~=2k+l. 

.VIII. MATRIX REPRESENTATION 

The differential equation F2,,+ 1 = A?(“) f 2n+ 1 which is of order 2n + 1 is equivalent to a 
system of 2n+ 1 first-order equations. The latter system can be cast into matrix form which 
provides an elegant and efficient way for determining explicit expressions for the covariant 
operators. Moreover, the matrix representation exhibits most clearly the underlying algebraic 
structure which is due to the covariance with respect to super-Mobius transformations. 

Let us first discuss the case of the super-B01 operator Y,, . We consider it in its factorized 
form [see Eq. (22)] 

.L?‘,=(D-nB)***(D+nB), 

where B represents a superaffine connection. For n=O,l,..., the scalar equation 

(40) 

F 2”+*==5%f-2n+l~ with fz,,+lEF+ 

is equivalent to the (2n + 1) X (2n + 1) matrix equation 

F = &f, 

with F=(F,,+t,O ,..., 0)‘and f=(fl ,..., f2n+l)‘. Here, 

a!,=-J-+DI---BH, 

where 1 stands for the unit matrix and 

/o . . . . . . . . . 0 

1 --. . 
J-=01’-. . : 

-_- -.- : 

\o *** 0 1 0 

The matrices J- and H satisfy 

I , H= 

n 0 

0 n-l 

. 

. 
0 . . . 

[H, J-1 =-J-. 

Together with the upper triangular matrix 

J+= 

) n 0 . . . . . . . . . 

: -.* -1 
: --_ n-l 

-. -2 . . 
: -. -. . . . 

-. . 
3 .,. . . . . . . . . . ..a 

. . . . . . 0 

--. 
-. . --. : . 

--. 0 

. . . 0 -n 

0 
. 

. 
: . 
0 

-n 

0 

\ 

, 

I 

(41) 

(42) 

(43) 

(4.4) 

(45) 

(46) 
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which satisfies 

[H, J+l=J+, CJ+, J-I=H, (47) 

they generate an osp( 112) algebra. In fact,’ these matrices represent the superprincipal em- 
bedding osp( 1[2),, of osp( 112) into the superalgebra sl( n+ 11 n). For an elaboration on the 
algebraic structure, we refer to the Appendix. The matrix Q, can be cast into a canonical form 
Q,, by conjugation with a group element NE OSP ( l/2),,, C SL( n + 11 n ) . This makes the de- 
pendence on the superprojective structure manifest: 

Theorem 8.1 (Matrix representation for the super-B01 operator): The scalar operator Yn 
is equivalent to the matrix operator Q, defined by 

Q,s’?+j~= -J-+ Dl-SPJ;. 

Here, 3 =dB- B( DB) represents a superprojective connection and 

(48) 

N=exp{-BJ+-(DB)J:}, &=exp{+BJ+-(DB)J%}. (49) 

As for the proof, we first note that J, (J”,) is odd (even) with respect to the Z,-grading 
i+ j( mod 2) of matrix elements defined in the Appendix. In Eq. (49), these generators are 
multiplied with odd (even) parameters and therefore the corresponding expressions represent 
well-defined elem:nts of thf supergroup SL( n + 1 ( n). 

The element N=exp{M} follows from Nrexp{M} by changing the sign of the anticom- 
muting part of the algebra element M. (This operation represents an automorphism of the 
superalgeb_ra.‘) The consideration of & is necessary in the conjugation (48), because the 
operator Q,, has a grading different from the one considered for the superalgebra (e.g., 6, 
contains odd elements on the diagonal). 

The result (48) is a simple consequence of the relations 

WJ-N=J--BH-(DB)J++~B(DB)J:, 

lir-l~N=~i-(DB)J++[B(DB)-(~B)]J:, 

I?-‘BHN= B[H- BJ, -2( DB)J;], 

which follow from Fqs. (45) and (47). 
The matrix (48) still describes the operator 9, .l” In fact, one can transform an equation 

of the form (42) by upper triangular matrices 

N(z) = 

which leads to the equation 

1 * * *-* * 

D 1 * *** * 

-.- -.- : . 

: . -.* * 

3 . . . . . . 0 1 

F’=&ff, (50) 

with F’=I$F, f’rNf, and QA=$&N-‘. Since Fi,,, = Fzn+l and f&,+l = fz,,+l, the matrix 
equation (50) is equivalent to the scalar equation (41)) i.e., 6; still describes the operator Y,, . 

0 
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To conclude our discussion of the super-B01 operator, we remark that the matrix repre- 
sentation (48) for L?,, is equivalent to a representation in terms of an (n + 1) x (n + 1) matrix 
involving DS’ and the operators D, ~3 as given in Ref. 3. 

Next, we consider the most general covariant operators YCn) as discussed in Sets. III and 
VI. 

Theorem 8.2 (Matrix representation for covariant operators): For n =O,l,..., the most 
general normalized and covariant operator of order 2n + I is given by the scalar equation 

F 2n+l==-@n)f2n+l, with f2n+lE3-n9 (51) 

which is obtained after elimination off 1 ,...,f2,, from the matrix equation 

Wzn+ 1  ,O ,..., O)‘=Q(n)(f, ,..., fzn+$. (52) 

Here, Q”‘) is the (2n + I) X (2n + 1) matrix 

Qcn’=-J-+Dl+ f, vk+lMk, (53) 

where V,=L%,, VkEFk for k=2 andfor 4<k<2n+l and Mk=(MIjk with 

M,= 

0 n  0  . . . . . . . . . 0  

: -. 
. - 1 
: --. n-l : 
: --. 2 . 

: 
. 

: -.- *. 
I 0  

: *- n . 
0 . . . . . . . . . ..* . . . 0 

(54) 

A few comments concerning this result and its interpretation are in order. First, it should be 
noted that the representation (48) for the super-B01 operator is a special case of the represen- 
tation (53), since J: = - (M1)2. 

The representation (53) obtained here as a generalization of Eq. (48) is analogous to the 
results based on the work of Drinfel’d and Sokolov and on constrained Wess-Zumino-Witten 
models (see Refs. 11, 5, 6, 9, and references therein). The superconformal fields vk are 
introduced in the matrix representation along with the highest weight generators of the 
osp( 1 I2),,i subalgebra of sl( n + 11 n). These are the generators MP which satisfy the graded 
commutation relation 

[J, a M,l=O, 

where MP is characterized by its H eigenvalue 

[H, $,I =pMP. 

The smallest value is p= 1 and one easily finds for M, the matrix (54) as a solution of the 
previous equations. The integer powers of Ml still belong to the superalgebra and one readily 
shows that 

CH,(M,)“I=P(MI)~, [J, ,W,Y’)=O (55) 

from which we conclude that MP= (Ml )p. 
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In conclusion, we note that the superconformal fields V, occurring in Eq. (53) represent 
a parametrization of the operator A” (@ which is equivalent to the one in terms of W, discussed 
in Sec. VI: the two sets of superfields are related to each other by differential polynomials. For 
concreteness, we illustrate the situation for n = 3. In this case, Eq. (53) yields 

Y(3) =y3+@3) + . . . +@3’ 
W2 W7’ 

where ,k”, is the super-B01 operator and M ‘$L the operators of Sec. V with W, depending on 
V, and their derivatives according to 

w,= 12v2, w,=o, w,= lOV‘$+44( v#, w,=5vs, 

W6=2V,+48( V,)3+36V,V,, (56) 

Up to an overall factor, the expression in brackets coincides with the super-Gordan trans- 
vectant Ji,2 applied to the pair of fields ( V2, V2), see Eq. (38). Obviously, VkCFk implies 
W~EF~ and the last set of relations is invertible since the leading term of W, is always given 

by vk* 

For later reference, we also summarize the results for n = 1 and n = 2. In these cases, one 
finds, respectively, LL’(‘) = L?i + Mgi with 

w2=2v, (57) 

and Y(2) = LY2 + Mc2’ + * * * + Mc2’ with 
w2 W5 

W,=6V2, W,=O, W4=4V,+8( V2)2, W5=4V,. (58) 

For any value of n, we have W2 = n (n + 1) V2 where the coefficient n (n + 1) represents the sum 
of elements of the matrix M, . 

IX. CLASSICAL SUPER-W-ALGEBRAS 

Classical super- W,-algebras represent nonlinear extensions of the classical super-Virasoro 
algebra. We recall that the latter is generated by the superstress tensor 7 which transforms 
like a superprojective connection 9 or rather like the combination (12) 

=3 -(n)~aaS”)--~a:n)=r,~, with Lo--fn(n+l), (59) 

which involves the coefficients ai”’ and a$“’ of a normalized covariant operator of order 2n + 1. 
The Poisson bracket defining the super-Virasoro algebra is then given by12 

{a:“‘(z’),a:“‘(z)}=f[~,D’+3aS”‘a+(D~l”’)D+2(da:“))]6(z-z’), (60) 

where S(z-z’) = (0-&)S(z-z’). By substituting Z 5”’ = L,,%’ into this relation, we see that 
the operator on the rhs coincides with &Y2 where LY2 is the super-B01 operator (19). 
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Arguing along the lines of the bosonic theory,4-6 one can say that the super- W,,-algebra is 
generated by the superstress tensor Z $“’ and the superconformal fields Wk (with 2<k<2n+ 1) 
which parametrize covariant operators of order 2n + 1 according to Sec. VI. It follows from the 
results of Gel’fand and Dickey and their generalization to odd superdifferential operatorsi that 
the Poisson brackets between these generators form a closed algebra. For the n = 1 and n = 2 
cases, these brackets have recently been constructed’4 (see also Refs. 15, 16). Starting from 
normalized covariant operators Y (‘I, the authors of Refs. 14 and 15 found that these brackets 
take the simplest form if they are written in terms of superconformal fields vk which are 
SpeCifiC differential polynomials in the COeffiCientS ak (n) of ylcn). For the examples studied, these 
combinations are precisely the combinations vk that we encountered for the matrix represen- 
tation of covariant operators in Sec. VIII. Thus, these fields seem to be better suited for the 
parametrization of super- W-algebras than the combinations Wk discussed in Sec. VI for the 
classification of covariant operators. In any case, our results provide a general method for 
determining these combinations. 

Our results admit a further application to the formulation of super- W-algebras. The n = 1 
and n = 2 Poisson brackets derived in Ref. 14 by virtue of a long and tedious calculation involve 
a large number of terms which depend on the generators g$“’ and vk. All of these contribu- 
tions can be rewritten in a compact way in terms of the covariant operators constructed in the 
present work (i.e., Yn,Mwk, my (*) J”’ ) and of some covariant trilinear operators. In the following, 
we briefly summarize the results of Ref. 14 while emphasizing and elucidating the underlying 
algebraic structure. 

For n= 1, one starts from the covariant operator 

and Eqs. (59),(57),(33) then yield 

gL~yLay-@ay) 

2V2= W2=ai1). 
(61) 

The superstress tensor Y-Zil’ and the superconformal field Ne2V2 satisfy the algebra {in 
the {Y-,X} bracket of Ref. 14, there is an obvious sign error which we have corrected here [cf. 
Eq. (82) below]} 

{9-(2’),4(2)}=2[ 03+9-]6(2--27, 

{T-(z’),T-(z)}=$[ D’-t3El+ (lx?-)0+2(dY-)]S(z-z’), (62) 

{9-(z’),N(z)}= - [ (dsq +a-f(DJqD]S(z-z’). 

Noting that .Y=.%’ in the present case, we recognize the super-B01 operators Y1 and Y2 on 
the rhs of the first and second equations, respectively. The operator in the last relation is 
covariant, since it can be obtained from the super-Gordan transvectant c,, as a linear operator 
-Wg,-2(X, . ). This relation represents the transformation law of the superconformal field 3 
under a superconformal change of coordinates generated by the stress tensor ..Y. For a field 
CkEFk, it generalizes to 

{.7(z’),C,(z)}=n~~,_2(C,, * )s(Z-Z’), with jlk= - (- l)kk. 

Component field expressions for n= 1 follow from the &expansions 

(63) 
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Z-(z) =J(z) +6G2(z), T-(z) =G’(z)f8T(z), (64) 

where T(z) represents the ordinary stress tensor. These component fields together with their 
commutation relations following from Eqs. (62) deflne a representation of the N=2 super- 
conformal algebra. 

For n = 2, one considers 

and Eqs. (59),(58),(33) now lead to 

F=39?=ii3=a3--fDa2, 

N=6V2= W2=a2, 

% ~4V4= W4-8( V2)2=a4-;Da3-$a2-~(a2)2, 

(65) 

where ak=ai2). (In order to avoid confusion with the Schwarzian derivative, the superfteld S 
of Ref. 14 is being referred to as 9. ) The n = 2 super-Poisson brackets read 

c~wv-(z)l= -2.&-&c. J&z-z’), {.7(z’),% (z)}= -4J;,-,( %, * )S(z-z’), 

c~(z’),~(z)}=5J:,_,(~; Mz-z’>, C~(z’>,~(z))=~~,_1(8,. )&z--z’), 
(66) 

CQ (Z’LQ WI= - [~~3+~~[o:)--~~)]s(z-zI), (9 (z’),N(z)}=2w-S(z-z’), 

{Y(z’),% (z)}= [y&,(X, * ) -tZO&,( Y, * ) -Ji,-4(W6, * ) +&JG,4,-4(~sQ9 * ) 1 

XS(z-z’), 

C~W),WCz,)= - [ :24+gJ;,-4(W4, * ) +%,--4(X% * ) -&c&,5,-4(cv-, * ) 

+j&&.&&,(JT9-, - )INz-z’)9 

with 

w4=90% -2.F, w&$%3--&F@ 3 
9 9 W,=2ti%@-+27J2,,(~,cf) (67) 

and 
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K;,4,-4(x,Q, * ) =N(V%?L)V--2(VX) %v+2(v2JJ-) 9 -X(V2@) -Z(Vfl) (V% ), 

K;,s,-4($yf-, . ) =4N(v~>v-lo(v~) %?7-5(V2N)~+2N(V2%“) +7(vN) (VT), 
(68) 

In Eqs. (66), the commutator of r with itself and the one of 7 with the other fields represent 
special cases of the relations (60) and (63)) respectively. The operators (68) are examples of 
trilinear and covariant operators, 

K~~p:3~~3v03p-*3~+Y+p+m 
(69) 

(F,G,H) ++ f$‘,,JF(F,G,H), 

which only depend on superconformal fields and on the superprojective connection Z? (i.e., on 
the superprojective structure). Whereas the bilinear operators discussed in Sec. VII are unique 
(up to an overall normalization), this is in general not the case for multilinear generalizations. 
For any value of n, the Poisson brackets are at most cubic in the generators Wk(2<k<2n + 1) 
(Ref. 5) and therefore they involve at most quadrilinear covariant operators. 

X. PROJECTION TO COMPONENT FIELDS 

All superfields F(z) admit a @expansion F(z) =f(z) +6$(z) where the component field 
f has the same Grassmann parity as F. In particular, the superprojective connection CZ can be 
written as3 

~&) =i pzew +ehw I, (70) 

where r, corresponds to an ordinary projective connection on the Riemann surface underlying 
the SRS. 

In order to project down the supercovariant derivative (21) to component field expres- 
sions, we note that the superconformal transformation Z=Z(z) relating the generic coordi- 
nates z to the projective coordinates Z satisfies DZ=OD@. This equation implies ( DO)2=dZ 
+@13@ and therefore 

oao 
B=Dln D@=iDln aZ+fD z . I 1 (71) 

In the following, we denote the lowest component of a generic superfield F by F 1. Writing 
B=(i/2)B+8[(1/2)b] and using Eq. (71), we get 

b=d In azj +susY, (72) 

where SUSY stands for the contributions which are due to supersymmetry. By virtue of Eq. 
(2 1) we obtain the component field expression 
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(V$)Cp, I = a-4 b Cpl-$3(DC,, 1 1 1 
=9 (p/2&7/2 + XJSY. (73) 

Here, Cp I =cp/2 represents an ordinary conformal field of weight p/2 and gc(p,2) 4 
- (p/2) (a In dZI ) denotes the ordinary covariant derivative acting on such fields (see, e.g., 
Ref. 5 ) . From the 8 expansions of 2 and B and from Eqs. ( 17), (72)) we conclude that b and 
fl give rise to the following local form of the projective connection r: 

r=a2 In azl -f(d In azl )2+SUsY. (74) 

The projection of the super-B01 operator A?,, has been discussed in Ref. 3 and it was shown 
that 

(DZ+,C,,-1,) 1 =L,c-(,-,)/,+SUSY, (75) 

where L, denotes the ordinary Bol operator of order n. For instance, for n = 3 

(DY2C-,) I =L3c-r+SUSY, with L3=a3+2ra+(ar). 

For the operator Mgi introduced in Eq. (23), we can extract the purely bosonic contri- 
bution in the same way 

(DM~2;1)C+,,) 1 =M3+,,,,+SUSY. 

Here, B&I =wk is an ordinary conformal field of weight k and ME’ represents the 
bosonic result5*2 

n-k 

M;‘= c a~‘(~.:k)Wk)~;~:~~~1),2), with C@= 

(k+;-l)(n,k) 

I=0 
(2k+;- ‘) 

(76) 

known 

(77) 

and with 9 denoting the covariant derivative introduced in Eq. (73). We note that the 
derivation of Eq. (76) makes use of the relation 

p-l’+p’n-1’ 
2k,21- 1 = d!’ 3 (O<l<n-k- 1). 

Proceeding in the same way for the bilinear operator J$p,2,,, we find 

(78) 

DJ;;,1(15;p,G2v) I =.i,“,(f, ,s,) +SUSY. (79) 

Here, F2p I =fp, G2,1 =g, are ordinary conformal fields of weight p and V, respectively, and j 
denotes Gordan’s transvectant 1p2,5 

j,“,(f,,g,) = /z. %‘%%yl Cg$fp> C$,+$, with &‘%GY) = (- 1)’ cpj 
m 

Iltvji. 

(80) 

The result (79) follows from the relation 
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By construction, the operators (75), (76), and (79) depend on the quantity a In dZl only 
through the projective connection (74). 

Component field expressions for the super-Poisson brackets of Sec. IX immediately follow 
from the &expansions. Here, we only note that the transformation law of superconformal fields 
C,(z) =+,2(z) -f-&(k+i)&) as described by the superbracket (63) implies the usual trans- 
formation law of ordinary conformal fields under conformal changes of coordinates z+z’ (z). 
In fact, from Eqs. (63) and (64), it follows that 

{T(Z'),Ck(Z)}=[(aCk)+kCkd]S(Z-Z') 

=kj;,-,(Ck, . )&Z--z’), 

where i denotes Gordan’s transvectant (80). 

(82) 

So far we have outlined the projection of our superfreld results and we have verified that 
they encompass the known bosonic expressions. For the presentation of complete component 
field results, it may be convenient to interpret a superiield F(z) = f (z) +0$(z) as a doublet 
cf(z),$(z))’ and to describe the action of a superdifferential operator 2 on it by a 2 X 2 matrix 
whose elements are ordinary differential operators. This approach was considered in Ref. 16 
where some basic aspects of covariance and super- W-algebras have been discussed in terms of 
this formalism. 

Xl. CONCLUDING REMARKS 

We have discussed superconformally covariant differential operators and their relevance 
for classical super- W-algebras. Our discussion was restricted to operators of odd degree in D, 
i.e., y=tin+l+-**- . Let us now comment on operators of even degree, i.e., operators of the 
form ~=~n+al~n-1+a2-dn-2+...=~n+al~-1+a2an-1+... . One first notices that 
for these operators it is not possible to eliminate the coefficient a, of the subleading term in the 
way it was done for bosonic operators or for the supersymmetric operators discussed in this 
article. One can however eliminate a2 and if one requires a2 to stay zero under superconformal 
changes of coordinates, one finds that Z has to map F1-,, to ,?-l+n. Yet, if one tries to 
generalize the super-B01 operators and considers VT;,, one finds for any choice of p that this 
expression depends on the connection B not only through the superprojective connection .%‘, 
but also through other differential polynomials in B. This means in particular that the super- 
Bol lemma does not hold in this case and that the analysis presented in this article does not 
carry over directly to normalized superdifferential operators of even degree. They do not seem 
to be relevant for classical super- W-algebras (see also Refs. 16, 17), but, interestingly enough, 
the even operator Y(n) D (where Y(n) = pfl + *. * is a normalized covariant operator) 
represents the Lax operator for the generalized N=2 super-Korteweg-de Vries (KdV) hier- 
archy. l5 

Our discussion of differential operators and classical W-algebras has been based on N= 1 
superconformal fields. The super- W-algebras considered in Sec. IX are however N = 2 algebras. 
For instance, in the n = 1 case, one has the N = 2 super-Virasoro algebra involving the super- 
stress tensor and the superfield a2 which contains the U( 1) current J and the second super- 
charge G2 as component fields. As mentioned in Sec. III, we can consistently set a, to zero 
which reduces the symmetry algebra to N= 1. Thus, the N= 1 formalism used here encom- 
passes both the N= 1 and N=2 cases. To exhibit the N=2 structure more clearly for a,#O, 
one could use an N=2 supefield formalism.” In that case, the osp( 112) algebra should be 
replaced by an sl( 2 I 1) algebra according to the discussion of the spin content of super-w- 
algebras in Ref. 9. 
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As we were finishing this work, we became aware of Ref. 19 where a general formula for 
the basic singular vectors of the Neveu-Schwarz (NS) algebra was presented. If written in 
terms of matrices, this formula uses the same representation of osp( 112) as the one we en- 
countered in Sec. VIII. In terms of our notation in Sec. VIII, the main result of Ref. 19 reads 

F= [ -J-+ $ (z)G-~~~+1),2(f~~~lf. (83) 

Here, f 1 ,...,f2,,+~ and Fz,,+, belong to the Verma module J$:h, of the NS algebra; more 
specifically, f 2n+ i = 1 h) represents a highest weight vector and F2n+ i = 1 $i,,) a singular vector 
of the fundamental type (i.e., all the others can be obtained from these ones”). G, denotes the 
fermionic generator of the NS algebra and t a complex parameter. 

In conclusion, we mention that some conformally covariant operators on ordinary Rie- 
mann surfaces (like Bol operators) admit a natural generalization to higher dimensional Rie- 
mannian manifolds2’ The corresponding covariant operators can be constructed by virtue of a 
matrix representation or by using homomorphisms of Verma modules. Superconformally co- 
variant operators as discussed in Ref. 3 and in the present work should allow for an analogous 
generalization to higher dimensional supermanifolds and our results should provide the ap- 
propriate basis for their construction. 
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APPENDIX: SOME FACTS ABOUT SUPERALGEBRAS 

In this appendix, we collect some general results on superalgebras relevant for our discus- 
sion of the algebraic structure of matrix operators in Sec. VIII. 

By definition, the superalgebra sl(n+ 11 n) is the graded algebra of (2n+ 1) x (2n + 1) 
matrices M with vanishing supertrace 

n+l 2n+l 
str, ME C Mii- 1 Mii=O. i=l i=n+2 

The matrix M is made up of blocks 

t-41) 

M= (A21 

with A,B even and C,D odd. 
In Sec. VIII, we encountered another representation of sl( n + 1 I n) which is based on a 

different definition of the grading and trace. In this representation, one associates a Z2-grading 
i+j (mod 2) to the element Mii of the matrix M’ ESI( n + 11 n). Then, there are no more even 
and odd blocks as in Eq. (A2), rather the elements of a row or column of M’ are alternatively 
odd and even. The supertrace is now given by an alternating sum over the diagonal elements 
of the matrix 

2n+l 
str, M’- 2 (- l)‘+‘Mii. 

i=l 
c-43) 

Note that in both expressions (Al) and (A3) the number of plus (minus) signs is n + 1 (n). 
The graded commutator is defined by 
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2n+l 
[Mt,N’}ikE C (MjjN;k- (- l)‘i+j~cj+k~iV~j.M~~) 

j=l 
(-44) 

and one has 

str2[M’,N’)=0. 

The two different representations of sl(n + 1 In) are related by a similarity transformation 

M’ = G- ‘MG, (A51 

where G is a permutation matrix, Gij=S,,j, with 

P(2i+ 1) =i+ 1, for O<i<n, 

P(2i)=n+i+l, for l<i&n. 

In the following, we consider supertraceless matrices of the type M’. To simplify the 
notation, we will suppress the “prime.” 

Let Eij denote the matrix 

(Etj)/ct=Siksjt. (A61 

As a basis of the Cartan subalgebra of sl (n + 1 I n ), we can take the matrices 

hi=Eii+Ei+l,i+l, for l<i<2n, 

while the simple roots can be chosen to be fermionic and represented by 

ei= Ei,i+ 1 (positive roots), f i= Ei+ i,i (negative roots). 

Then, the superprincipal embedding of the graded algebra osp( 112) in sl( n + 1 I n ) is given by 
J- =2yEi fi and H,J+ [as given by Eqs. (44),(46)] supplemented by the bosonic generators 
X, = J”,. These matrices satisfy the graded commutation relations (45) and (47) from which 
it follows that 

[H,~*l=~=*, [X+,X-1=--H, [J,,X,l=*J,. (-47) 
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