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To clarify some issues raised by D'Eath's recent proposal for the physical states of N = 1 supergravity in four 
dimensions, we study pure (topological) N = 2 supergravity in three dimensions, which is formally very similar, but 
much easier to solve. The wave functionals solving the quantum constraints can be understood in terms of arbitrary 
functions on the space of moduli and supermoduli, which is not Hausdorff. We discuss the implications for the wave 
functionals and show that these are not amenable to expansions in fermionic coordinates, but can serve as lowest-order 
solutions to the quantum constraints in an expansion in h in more realistic theories. 

Motivated by recent work on the nature of  the full 
non-perturbat ive wave functional of  d = 4, N = 1 
supergravity [1,2] we study pure d = 3 , N  = 2 su- 
pergravity in this letter. In contrast  to supergravity in 
four dimensions,  this theory possesses only topolog- 
ical degrees of  freedom, so the problems associated 
with propagating degrees of  freedom, such as operator  
product  singularities and ordering ambiguities,  which 
plague the canonical formulat ion of  supergravity in 
four dimensions,  are absent. Moreover,  this model  
can be solved exactly at the quantum level, just  like 
3D gravity [3,4]. For  these reasons, and because the 
status of  perturbat ive renormalizabil i ty versus non- 
renormalizabi l i ty  of  the d = 4, N = 1 is theory still 
pending, it appears to be well suited to settle some of  
the issues raised in [1 ]. 

The reduced wave functionals of  N = 2 super- 
gravity are given by arbitrary functions depending on 
the modul i  and supermoduli  of  fiat SL(2,R) connec- 
tions on a connected spatial surface of  arbitrary genus. 
However, the unreduced wave functionals still depend 
on an infinite number  o f  coordinates in the full con- 
figuration space. F rom their  structure it is immedi-  
ately clear that they are not amenable to the kind of  
expansion in terms of  the fermionic coordinates on 

which the arguments of  [ 1 ] are based. Furthermore,  
wave functionals of  this type also arise in four dimen- 
sions in the l imit  h ---, 0, where they can be used as 
input for a consistent perturbat ive approach. We note 
that pure d = 3, N = 1 supergravity was already 
discussed in [5]. Here we prefer to consider N = 2 
supergravity instead, mainly because the two Majo- 
rana gravitinos can be combined into one Dirac vec- 
tor spinor and therefore admit  a s impler  representa- 
t ion of  the fermionic quantum operators.  As a conse- 
quence, the associated quantum constraints are for- 
mally very similar to those of  d = 4, N = 1 super- 
gravity as written down in [1], apart  from the fact 
that we work in the so-called connection representa- 
tion, whereas [ 1 ] is based on the more familiar  met- 
ric formulation. Moreover  the N = 2 theory arises 
naturally in the reduction of  d = 4, N = 1 super- 
gravity to three space- t ime dimensions,  which makes 
it an obvious starting point  for this study. 

We use first-order formalism for the connection 
field, so the basic fields are the dreibein e~ a, the spin 
connection A~, and the two-component  complex 
gravitino field ~ ,  which transforms as a spinor under  
SL(2,R), corresponding to the spinor representat ion 
of  the Lorentz group SO (1,2). The Lorentz-covariant  
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derivatives and curvatures are 

D,eva = apeP - & abc A,,b eve, 

F /,“a = a,Ava - &A,, - &,bc A,bA,’ . (1) 

With this notation the Lagrangian of N = 2 super- 
gravity is given by 

L = LeP’Pe ‘F 
4 p “pa + E “* Fp D, wp . (2) 

It is invariant under local Lorentz transformations 

SA; = D,d, 6vp = -+hlWp, 

6eNa = & 
abc 

wb eFc , (3) 

and local supersymmetry transformations with pa- 
rameter E 

6A,a = 0, 6y/, = Dpc, 

Be,” = Fyatyp - ~pync . (4) 

Our conventions are as in [ 5,6]. The space-time 
manifold is assumed to be a direct product of a con- 
nected two-dimensional manifold of genus n (with 
local coordinates X) and the real line. Greek indices 

K v,. . * denote coordinates on the space-time mani- 
fold; with respect to the direct product structure they 
take the values t for the time coordinate and i, j, . . . for 
the local coordinates on the spatial manifold M. Flat 
SO( 1,2) indices are designated by a, b, . . . = 0, 1,2. 

The canonical treatment of the Lagrangian (l), 
which is explained at length in [ $61” , shows that 
the time components e,“, Ata, tyf and v/, become La- 
grange multipliers. They generate the constraints to 
be given below. The components with spatial indices 
i,j,... span the phase space. After quantization one 

obtains the (anti)commutation relations 

[AF(x),ejb(Y)] = -2ifieijqnbd(z,y), 

{Via(X)rVj~(Y)} = -ifiEij&bS(X,Y). (5) 

(We will frequently suppress the SL( 2,R) spinor in- 
dices (Y, B . . . on vi and vi.) An operator realization 

*’ Standard references on the canonical formulation of 
gravity are [ 71. 
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is easily found (this would be slightly more tricky for 
the N = 1 theory where the gravitino is Majorana). 

As the basic variables, we take the connection Af (x) 

and vi (X ). Consequently, the wave functionals are of 
the form Y = Y [Aia, vi]. The canonically conjugate 
fields ein and vi are represented by the functional dif- 
ferential operators 

6 eia = -2ih Eil 6Aj, , 
6 

v/io, = ifr Eij z . 

Inserting these into the classical constraints we obtain 
the quantum constraints 

(7) 

EiiFija (A) Y = 0, (8) 

EijDi(A)Wj Y = 0, (9) 

LY=O. Di(A) dvi (10) 

Observe that there are no operator ordering ambi- 
guities or singularities in these expressions. Solving 
quantum supergravity in three dimensions amounts 
to solving these four functional differential equations. 
The Lorentz constraint (7) implies that Y is invariant 
under local Lorentz transformations and is thus triv- 
ially solved. The constraints (8) and (9) tell us that 
Y [A, ty] has support on flat SL(2,W) connections A:, 
and on gravitino fields y/i whose Rarita-Schwinger 
field strength vanishes. The former constraint is just 
the Wheeler-Dewitt equation, which is implied by 
the constraints (9) and ( 10). This last constraint re- 
quires Y to be invariant under the supersymmetry 
transformations 6vi = Dit. 

Unlike the constraints given in [ 1 ] for supergrav- 
ity in four dimensions, our constraints do not depend 
on fi, which reflects the topological nature of the the- 
ory. In both cases the supersymmetry constraints are 
of first order and homogeneous in the fermionic op- 
erators. Consequently, the fermionic constraints can 
be studied separately on wave functionals Y with def- 
inite fermion number. Application of the constraints 
to the zero-fermion sector of supergravity in four di- 
mensions has lead to conflicting conclusions [ 1,2]. 

We now discuss the solutions of the quantum con- 
straints, following the analysis given in [ 51. We start 
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with (8) and (9), since this is where most of the sub- 
tleties reside. For this purpose, we find it convenient 
to employ differential forms A and ~t on 3,t defined 
by 

A := IA iayadx i ,  ~ / := ~ i d x  i. (11) 

Consequently, we must solve the conditions F (A) = 
0 and D (A) ~, : = (d + A) ~ = 0. Clearly, these equa- 
tions tell us that A and ~ are pure gauge locally, hence 
the absence of propagating degrees of freedom. Glob- 
ally, this need not be true in general, and the leftover 
degrees of freedom are called "moduli" (for A) and 
"supermoduli" (for ~t). Locally A and V are thus ex- 
pressed by 

A = g - l d g ,  ~ = g - i d a ,  (12) 

where g is an element of SL(2,R) and ~b a fermionic 
spinor function. Unlike A and V, g and ¢ are not 
necessarily globally defined (they are single-valued on 
the covering manifold, however). Moreover they are 
only defined up to multiplication of g by a constant 
group element h0 and shifts of ~b by a constant spinor 
Co. Hence g, ~b and g', ~b' related by 

g ' ( x )  = h o l g ( x ) ,  

~b' (x )  = hol (fb(x) - e0), (13) 

are equivalent. We note also that under local Lorentz 
and supersymmetry transformations g and ~b trans- 
form as 

g ( x )  ---+ g ( x )  h ( x ) ,  

4~(x) ~ ¢ ( x )  + g ( x ) e ( x ) ,  (14) 

where h (x) and e (x) are single-valued on 34. 
A representation of g and q~ can be constructed as 

follows. Pick an arbitrary point x0 E 34 and let F de- 
note the first fundamental group of.M with base point 
x0. Given arbitrary field configurations A and ~/on 
3,t with vanishing field strengths F (A) and D ( A ) ~ ,  
we define g (x) and ~b (x) by 

J J g ( x ) : = 7  9 e x p  A, ~b(x):= g~u. 

x0 x0 

(15) 

These expressions depend on the base point Xo, but 
are insensitive to continuous deformations of the path 
connecting x0 to x. Therefore they are affected by 
local Lorentz and supersymmetry tranformations at 
the base point, which induce the transformations (13) 
with ho - h(xo)  and e0 - e (x0). Likewise, changing 
the basepoint and thus the path connecting it to x, 
changes g and ~b in accord with (13). 

For y E F and f (x) an arbitrary and not nec- 
essarily single-valued function on 34, we denote by 
f ( x o  + y) the value of f obtained by starting at 
x0 and letting x traverse the loop Y once. Assuming 
single-valuedness for A and ~t implies that the effect 
of traversing the loop may lead to a deficit of the form 
(13). The bosonic and fermionic holonomies g~ and 
~br parametrize this deficit and are thus defined by 

g(xo  + y) = gy g(xo)  , 

(b(xo + ~) = 4~ + g~b(Xo).  (16) 

Under local Lorentz and supersymmetry transforma- 
tions gr and ~b~ are invariant. As g and ~b are only 
defined up to the transformations (13), the bosonic 
and fermionic holonomies related by 

g~ = hol g~ho, 

~)'? = hol  (~)? + (gy - 1)%) (17) 

should be identified. Therefore the wave functionals 
depend only on the conjugacy classes with respect to 
(17). (This can for instance be ensured by choosing a 
reduced wave functional that is invariant with respect 
to the tranformations (17). ) 

The space of moduli and supermoduli on a spatial 
(Riemann) surface of genus n is now defined as the 
space ofholonomies (16) modulo the transformations 
(17) and the constraint 

n 

1-Iotjfljot;lfl;l= 1, (18) 
j = l  

defining the first fundamental group on a Riemann 
surface of genus n, where a 2,1t2 (J = 1,. . . ,  n) con- 
stitute the usual basis of homology cycles on the Rie- 
mann surface [8]. More rigorously, the space of (su- 
per)moduli consists of the set of conjugacy classes of 
group homomorphisms from the fundamental group 
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into the gauge group (the combined group of local 
Lorentz and supersymmetry transformations). This 
homomorphism is defined by ( 15 1. Condition ( 18 ) 
thus translates into similar constraints on the corre- 

sponding quantities (goi, 4, ) and (gp,, $y, 1, because 
g (x ) and 4 (x ) must be single-valued around the con- 

tractible loop defined by ( 18 1. Here one must use the 
composition law induced by the homomorphism, 

&, vJ2 = g,, gY2 J 4 YlOY2 = 4Y2 + gY2 dY, , (19) 

where we used that 4 vanishes at the base point. 
Detailed discussions of the bosonic moduli space 

of flat SL(2,R) connections may be found in [4] 
and and [9]. However, the first reference discusses 
only elliptic conjugacy classes of SL(2,R), while the 
second deals only with hyperbolic conjugacy classes, 
which are shown to be directly related to Teichmuller 

space’* . On the other hand, it could be plausibly 
argued that any discussion of 3D quantum super- 
gravity should take into account all of (super)moduli 
space (see also [ lo] ). An unexpected property of 
the bosonic moduli space is that it is not a Haus- 
dorff space in general [ 111. This feature is usually 
related to the fact that moduli space is defined as the 
quotient of two infinite dimensional spaces, and has 
been known to mathematicians for a long time [ 121; 
we will explain it in terms of an elementary example 

at the end of this paper when discussing the torus. It 
also has implications for the fermionic moduli and 
for the wave functionals. In particular, the presence 
of extra fermionic moduli seems to be correlated with 
the lack of the Hausdorff property. To explain this 
point, let us count the number of fermionic moduli. 
There are 2n &,‘s, each with two spinor components, 
hence altogether 4n fermionic holonomies. Since 
c5 (X ) must be single-valued when transported around 
the contractible loop ( 18 ), only 4n - 2 of them are 
independent (see the discussion above). Moreover, 
for generic bosonic holonomies, we can use ( 17) to 
gauge away two more fermionic holonomies, so in 
general there will be 4n - 4 fermionic moduli. For 
non-generic g, E SL (2, R ), the matrices (g, - 1) may 

#* It would be interesting to see whether the space of su- 
permoduli as defined above can be similarly related to 
the super-Teichmiiller space of a Riemann surface if one 
restricts the bosonic conjugacy classes to the hyperbolic 
sector. The dimensions of these spaces are the same. 
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not be invertible. From ( 17)) it is evident that we 
can still remove two fermionic degrees of freedom as 
long as there remains at least one homology cycle y, 
for which (g, - 1) is invertible. Otherwise, we cannot 
use ( 17) to gauge away fermionic holonomies, and at 
such non-generic points, there will be more fermionic 
moduli. This means that the “superspace” spanned 
by the bosonic and fermionic moduli is not a direct 
product space, but rather more like a sheaf! The 
existence of such singular points is a feature which 
is entirely due to the non-compactness of SL(2,R), 
since invertibility may only fail for parabolic con- 
jugacy classes. Since all matrices (gY - 1) must be 
non-invertible for extra fermionic moduli to exist, 
the singular points form a set of very low dimension 
and therefore become “less and less important” with 
increasing genus n. Nevertheless, we still face the 
obvious question how to define wave functionals on 
such a space. If we insist on continuity, these must 
be constant along those bosonic moduli for which 
the Hausdorff property breaks down; this is also the 
point of view adopted in [ 111. For the same reason, 
they could not depend then on the extra fermionic 
moduli, either. One can also avoid the singular points 
altogether by restricting the space of bosonic moduli 
to the hyperbolic sector from the outset as proposed 
in [9]. In any case, different prescriptions can be 

expected to lead to inequivalent theories of quantum 
(super)gravity. 

The physics content of the theory is completely en- 
capsulated in the wave functions f ( gaj, gs,, &j, 4sj ) 
depending on the conjugacy classes of the fermionic 
and bosonic holonomies as defined by ( 17) and the 
constraint ( 18 ). Since these moduli and supermoduli 
form a finite dimensional space at each genus, all fur- 
ther manipulations are in principle well-defined. So, 

we can now define a scalar product by means of a 
suitable measure and evaluate the observables intro- 

duced in [ 51 on the states. We note, however, that it 
is a priori not clear what measure to choose due to 
the non-compactness of the group SL( 2,R) and how 
to define the class of admissible functions f (see e.g. 

[lOI). 
We can equivalently describe the solutions in terms 

of wave functionals on the full configuration space 
spanned by Ai” (x ) and v/i (X ) . The resulting expres- 
sion is somewhat cumbersome and reads 
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j = l  

aj aj 

× f l  {dg,/dCa,,J(ga/-Pexp f A) 
j '  = 1 ,S j ,  

× J(¢#j, - f g ~/) } f (g,~j,g#j,¢,~j,¢#j) 
Pj, 

× H J(F(A(x)))J(eiJDi(A)~ui(x)), (20) 
x 

where dg denotes the Haar measure on SL(2,R) and 
de are Grassmann integrals; the prime attached to 
the (finite-dimensional) integral is to indicate that it 
is to be performed only over those holonomies satis- 
fying the constraints following from (18). The delta 
functionals in the last line enforce the quantum con- 
straints (8) and (9). The fermionic delta functional 
is defined as the infinite product over its arguments 
in the usual way. Evidently, this makes an expansion 
of the wave functional in terms of fermionic coordi- 
nates starting "at the bottom" or "at the top" of the 
Dirac sea rather pointless, because the sea is neither 
empty nor completely filled. Applying the last con- 
straint (10) to the above wave functional we get two 
contributions. On the fermionic delta functional (last 
line of (20)), it produces a curl e~JD~Dj, which van- 
ishes by F (A) = 0, while on the delta functions (sec- 
ond line of (20)), it gives zero because the moduli 
are locally supersymmetric. Similarly, (20) is anni- 
hilated by (7) because the delta functionals are, and 
the remaining part of the integral involves only man- 
ifestly Lorentz invariant quantities. Thus, the wave 
functional (20) satisfies all constraints. 

Obviously, the above expression is highly formal 
and at best of heuristic value; rigorous manipulations 
can only be performed in terms of the functions f .  
With this in mind, we now return to the constraints 
of d = 4, N = 1 supergravity as written down in [ 1 ]. 
They read 

(eijkeaa,i(X) Dj~(x)-  ½h~c2~/a(x) jeiaa~ (x-----~) 
x ~[e ,~ / ]  = 0, (21) 

) ½hX2jefa'(x) J~uf (x) 

× ~ [e ,  cz] = O, (21 cont'd) 

where the notation has been appropriately changed 
to four dimensions (with two-component spinor no- 
tation). It is not relevant for our arguments that [ 1 ] 
uses the dreibein (or metric) representation rather 
than the connection representation that we have been 
using up to this point. Observe that these constraints 
depend on h, which reflects the presence of propagat- 
ing degrees of freedom in this theory. Obviously, these 
constraints are much harder to solve, because both 
the dreibein and its conjugate momentum appear in 
(21 ), so the constraint operator is not just a multipli- 
cation operator as in the 3D theory. The dependence 
of (21 ) on h suggests an expansion of ~ in terms ofh. 
In analogy with (20) the first of the constraints (21) 
is schematically solved by 

~ [ e , ~ ]  = I - I  J(R(3)(e(x))) 
x 

+ O(h) (22) 

to lowest order in h, where by "moduli" we mean 
all the bosonic and fermionic degrees of freedom 
contained in the dreibein and gravitino which are 
not killed by the first constraint (there are now in- 
finitely many such moduli, because we have propa- 
gating modes). Note that the argument of the delta 
functionals are just the O(h °) parts of the Wheeler- 
DeWitt operator and the first supersymmetry con- 
straint in (21 ), respectively. To lowest order, the sec- 
ond constraint then annihilates the wave functional 
(22) as well, because application of the O(h °) term 
produces a commutator of two covariant derivatives, 
which after a little calculation is found to be pro- 
portional to the curvature scalar, and thus vanishes 
on (22) #3 . Apart from the highly singular nature 
of the O(h °) term, we again see that an expansion 

#3 For this argument we have to make use of the formula 

Ri jk l  = g i kR j l  - gjkR~l - g i lR jk  + g j lR ik  

+ ½R(gikgyl  -- g j k g i t ) ,  

which is valid in three dimensions only. 
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in the fermionic coordinates does not seem feasible. 
Just as in (20), the fermionic occupation is such 
that ~u starts "in the middle" of  the Dirac sea at 
infinite distance from both its top and bottom, but 
there will now be further terms at higher orders in 
h. With (22) as lowest-order solution we can thus 
apply perturbation theory in h, at least in principle. 
In practice, matters become quite complicated and 
we have not attempted to carry these considerations 
any further. We suspect that the short-distance sin- 
gularities, which were so conspicuously absent from 
[ 1 ], will reappear in higher orders. 

We conclude this paper by briefly discussing the 
space of  moduli and supermoduli for the torus and ex- 
plicitly demonstrating that this space is not Hausdorff. 
There are two non-trivial homology cycles a and ft. 
The condition ( 18 ) and the corresponding condition 
for the fermionic holonomies (cf. (19) ) reduce to 

g~gpg~l g~l = 1, 

(g~ -- 1 )~b a = (ga - 1 )~b~. (23) 

Two sets of  holonomies are then equivalent if they are 
related as in (17). From the first condition in (23), we 
infer that go and gp must commute, and hence belong 
to the same conjugacy class of  SL (2,R). There are four 
special points corresponding to the matrices g~, gp = 
4-1. Only for g~ = ga = 1 there are fermionic mod- 
uli. In principle there are four such moduli (corre- 
sponding to the four constant ~u~ coordinates), but by 
requiring equivalence with respect to SL(2,R) we are 
left with only two. Apart from these four points there 
are three types of  conjugacy classes which we now dis- 
cuss in turn. 
- I f  both g~ and gp are elliptic (corresponding to mu- 
tually commuting timelike generators), they can al- 
ways be brought into form of  an SO(2) transforma- 
tion, 

( c o s 0 y  s i n 0 r ~  ~ b y = 0 ,  (24) 

gr = - s i n 0 7  cos 07} ' 

for 7 = a, ft. As (gr - 1 ) is always invertible in this 
case, it is easy to see that all fermionic holonomies can 
be gauged away and there are thus no supermoduli. 
From the representation (24) it is evident that this 
part of  the bosonic moduli space is just a torus with 
the four points corresponding to g~, gp = 4-1 cut out. 

- I f  both g~ and gp are hyperbolic (corresponding to 
mutually commuting spacelike generators), the stan- 
dard representative is given by 

(er¢°~ °/:) 0 ) 
ga = "4- e -rc°s(O/2) , 

(~" e rsin(O/2) 0 ) 

g# = -4- k, 0 e -rsin(O/2) ' 

¢~ = O, (25) 

for r > 0 and 0 ~< 0 < 2zt. The absence of  fermionic 
moduli is again straightforward to prove. This part of  
moduli space consists of  four copies of  the plane with 
the origin cut out. 
- If  both g~ and gp are parabolic (corresponding to 
mutually commuting lightlike generators), we get 

g ~ = ± ( ~  1 ) '  g B = + ( 1 0  b l ) '  (26) 

where we can scale a and b by an SL(2,R) transfor- 
mation to obey the restriction a 2 + b 2 = 1. This part 
of  the bosonic moduli space is thus homeomorphic to 
four copies of  the circle S ~ (with no points cut out). 
In contrast to the cases discussed before, however, the 
matrices (g~ - 1 ) fail to be invertible if both signs are 
+ ,  and we then have extra fermionic moduli. 
To see that this is not a Hausdorff  space consider for 
instance a sequence of  elliptic elements in SL (2,R) ap- 
proaching a point on the lightlike boundary (i.e., on S 1 
according to the above analysis). By conjugating these 
matrices into the SO(2) subgroup as we did above, 
we obtain a sequence of  points in SO(2) converging 
to 5:1. However, although they converge to different 
limit points on the lightlike boundary, these two se- 
quences are identified in the moduli space. Phrased 
otherwise, this means that for any two distinct points 
in the parabolic sector, we cannot find open neigh- 
bourhoods that separate them! The situation is sim- 
ilar for sequences approaching the boundary in the 
hyperbolic sector, although there are now three limit 
points, two on S l (at opposite points) and -4-1. Thus, 
the total moduli space can be modelled as follows: take 
a torus with four holes and four copies of  the plane 
with a hole cut out at the origin. Glue them together 
in such a way that each plane gets attached to one of  
the holes in the torus and that each boundary on the 
torus winds twice around the border of  the hole in 
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the plane to which it is attached. These boundaries  
have the topology of  a circle and parametr ize the four 
parabolic conjugacy classes. To each of  them we put  
an extra point  and define the open neighborhoods of  
these points to be all open sets containing the whole 
circle. There are no fermionic moduli  except along 
one of  the circles. 

Finally, we note that the difficulties encountered 
here disappear  altogether in the so-called mini- 
superspace approximat ion,  where from the outset one 
deals only with a finite number  of  degrees of  freedom. 
In the light of  the results obtained it appears that this 
approximat ion cannot truly capture the remarkable 
features of  quantum gravity and supergravity. 

Note added. It has been demonstra ted in [ 13 ] that 
there are no purely bosonic states in d = 4, N = 1 
supergravity and addit ional  arguments are given that 
there are no states of  any fixed but  finite fermion 
number.  

We benefi t ted from valuable discussions with 
D.Z. Freedman,  D.N. Page and H. Verlinde. We 
would also like to thank P. Slodowy for informing us 
about ref. [ 12 ]. 
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