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Abstrau. 7he linearized Einstein equations for a static, spherically symmetric fluid ball 
and ils empty surroundings m considered. It is shown that, given initial data obeying the 
ConsUaints. there exists a unique solution. which describes the motion of the perturbed fluid 
and the gravitational waves propagating inside and outside the fluid ball. The physical junction 
conditions for the boundary of the ball suffice to determine he evolution inside and oueide of 
the ball in tem of initial values. The equation of state is assumed smooth and such that the 
density and the speed of sound remain positive for vanishing pressure. 

PACS numben: 0230, 0420,0430 

1. Introduction 

The theory of small adiabatic, non-radial perturbations of a star in hydrostatic equilibrium 
within the framework of general relativity was initiated by Thome and Campolattaro in 
1967 [l]. There, and in all of the following investigations (see [2] for a fairly complete 
list of references) up to the very recent ones by Chandrasekhar and Ferrari [3], harmonic 
analysis in time was immediately invoked. This leads, together with an expansion in 
spherical harmonics, to a system of ordinary differential equations, which was used mainly 
to determine the 'quasinormal modes' of the system (see [9] for a discussion of quasinormal 
modes). The mathematical question conceming the existence of solutions of the full time- 
dependent equations was apparently never asked. 

For radial oscillations the quasilinear problem has been treated in [ 131. The analogous 
problem for non-radial oscillations appears to be beyond the reach of present mathematics; 
therefore we have to be content with a linearized treatment. 

In spite of the fact that the equations are linear, one has a non-trivial problem for 
the following reason. On the background star one has a system of equations for the fluid 
perturbations coupled to the gravitational wave perturbations. Outside the star there are 
just the gravitational perturbations. On physical grounds one expects that Cauchy data at 
some time t = 0, together with the general physical junction conditions, should determine 
a unique solution. 

We can, for example, consider a case in which at t = 0 there is just a gravitational wave 
outside the star moving towards it. If the gravitational wave impinges on the star it will be 
partly reflected, and partly enter the star and excite motions of the star which in tum will 
emit gravitational radiation. Such a solution should be completely determined by the data 
for the gravitational wave outside the star at t = 0. There is no room for free data at the 
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boundary. Just general junction conditions, as for example that the pressure vanishes at the 
boundary of the star, should make the evolution unique. 

Similarly, if we disturb just the equilibrium density disiribution, we expect that the 
matter will start to move and emit gravitational waves. Again, there should be a unique 
solution for such initid data. 

The main purpose of this paper is to show that this is actually true for background 
models with positive density and positive velocity of sound at the boundary. The case in 
which the density and the velocity of sound vanish at the boundary can probably be treated 
by the same method. 

In section 2 we formulate the field equations using the Regge-Wheeler gauge which 
removes all gauge freedom. We describe a formulation of the equations developed by 
Saskia Kind [4], in which there are three basic unknown variables, two linearized metric 
coefficients and the density perturbation. The three functions satisfy coupled linear wave 
equations: the characteristics of the metric quantities are the null cones and, for the density, 
the sound cones of the background spacetime. 

Besides these evolution equations there are constraints which tum out to be compatible 
with the evolution. 

This very useful separation of the equations into propagation and constraint equations 
is lost if one performs harmonic analysis in time. Then all equations contain only spatial 
derivatives and there are many choices of the basic unknowns. For example, Chandrasekhar 
and Ferrari use variables such that the matter perturbations are completely eliminated in 
favour of just metric perturbations from their fundamental system of equations. We think 
that a clearer physical picture emerges if we have the ‘physical degrees of freedom’4wo 
linearized metric coefficients for the gravitational waves and the perturbed density for the 
hydrodynamics-present. 

In section 3 we analyse more abstractly systems of equations in which a different number 
of unknowns is coupled at a boundary. The method of characteristics, the key tool for It1 
hyperbolic systems, is used to find conditions at the boundary which make the Cauchy 
problem well posed. 

Section 3 is the essential one. We demonstrate that the junction condition, the continuity 
of the first and second fundamental forms of the boundary hypersurface, contains enough 
information to make the Cauchy problem well posed. This result, together with an existence 
theorem proved in section 5, gives solutions in a neighbourhood of the boundary. 

In section 6 we outline the construction of global solutions. To avoid a discussion of the 
polar coordinate singularity, we patch global (in space) solutions together, using a general 
existence theorem for linearized hydrodynamics near the centre. This way one obtains, for 
each spherical harmonic, a solution for all r in some time interval. Since the equations are 
linear with bounded, time independent coefficients, this solution exists for all times and, for 
data with compact support, grows at most exponentially in time. 

We want to finish this introduction by comparing briefly the ‘time dependent’ and ‘time 
independent’ treatment of oscillations. The actual solution of the physical problem, the 
motion of the fluid and the perturbed gravitational field, is time &pendent. (This is also 
hue for any real scattering process described in quantum mechanics.) If the coefficients 
of the linear equations do not depend on time, one can obtain a large class of solutions 
as a superposition of solutions with harmonic time dependence. In the time dependent 
problem a particular solution is determined by initial data for the fluid (or in quantum 
mechanics for the initial state). The boundary conditions one has to impose in the time 
independent treatment-‘outgoing waves at infinity’dan only be derived and understood 
as a consequence of the time-dependent formulalion. The decay properties in time determine 
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whether Fourier or Laplace transformation in ,time is possible. By considering just the time 
independent equations one loses important insight into the physical and mathematical nature 
of the solutions. 

2. Basic variables and equations 

The linearly perturbed metric describing axisymmetric even parity modes of 'angular 
momentum I > 2' of an oscillating perfect fluid in Regge-Wheeler gauge is 

dsz=-cZe2@(l -2fPl)dt2+eZA(1 +2ff i )dr2+2ce@+hhfidtdr  

+rz(d8z+sin28dq52)(1 +2gfi) (2.1) 

where the @,e) field equation has already been used to express the perturbation of g,, in 
terms of that of gr , .  f, g, h are functions of (t, r) which denote the linearized perturbation 
of a static fluid solution determined by the functions 9(r) ,  h ( r )  which are smooth except 
at the boundary (see below). The Regge-Wheeler gauge is characterized by the property 
that the perturbed spacetime metric is block diagonal and the metric of the group orbits is 
perturbed just by a conformal factor. 

The perturbed fluid variables are 

6p = afi &U, = e"V9  6ue = rWPs.  (2.2) 

The time component of the velocity perturbation can be determined from the normalization 
of the 4-velocity. V .  W and U are again functions of (r, t). The ReggeAVheeler gauge 
determines f, g, h, U, V, W uniquely (I 

We assume that the background model describes a fluid ball of finite radius ro. with the 
property that the density and the velocity of sound are positive at the boundary. This is true 
if the equation of state p ( p )  satisfies p(0) = pa > 0 and dp/dp =: wz > 0 [ 5 ] .  Then, 9, 
a' and A are continuous at the b o u n w .  

The linearized field equations 6R.b = S(T.6- f g,aTC,) are (using the notation' = a p t ,  

2). 

= alar, 1 = [ ( I  + 1)) 

&-component: 

f +  f"-Zg"+ f' ,-Z,Z(A-@) .' 

- C-le(h-q (h ' I  +@'h)  

4rr C 
= Te2"(u(c2 - w2) + 2f(cZp - p ) )  



rl-component: 

(2.7) --e 4nG 2A (c -I ~ - h ) ( c * p + p ) = ~  
c4 

&component: 

Z Z  := I c - l e l ~ - o ) ( j  + 8) - - (v + ~ h )  - -eArc-lW(c2p + p )  = 0. (2.8) 
1 4xG 

2 4 C4 

The linearized equations of motion for the fluid are 

t-component: 

c-le(A-@l 2 A 
(c 6 + (czp + p ) ( f  + 2g)) - eA-(c2p + p)c-I w r 

C-' V' - h' + (c-' V - h )  

(2.9) 

r-component: 

(c'p + p)(c-ze'A-o'P - f') + o(c2 + tu2)@' + (ow')' = o (2.10) 

&component: 

(2.11) 

There are various possibilities in choosing a set of unknowns. We consider first the equations 
on the fluid hall of the background solution and proceed as Saskia Kind in [41 to derive a 
system for f,  g and a 'density variable' 

(2.12) 

The time derivative of (29) gives an equation for U in which we eliminate f, 5,  h, V ,  W .  
Rewriting this equation for H gives the wave equation 

-z -0 ' (c'p + p) (c  e rW - f )  t owa = 0. 

H := (c2p t p)-l". 

- w - 2 e 2 ( A - @ l f i j f " +  
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with sound characteristics, in which some 'source terms' are due to gravitational waves. 

and g with null characteristics 
By eliminating h from (2.3) and (2.5) using (2.4) we obtain two wave equations for f 

and 

+ 4 f (@" + 2@'@' - @'A') 

+ T e Z A ( ( c 2 p  + p ) ( ~ ~ u r - ~  - I)H + 2 ( 2 p  - p)f) = 0. 
4n G 

(2.15) 

If we add (2.5) and twice (2.3) to (2.6) all time derivatives cancel and we obtain 

4n G + TeZA((czp + p ) c Z w - ' ~  + (c2p - p)g  + (c2p + p )  f) = 0. 
(2.16) 

The equations (2.14X2.16) and (2.4) are equivalent to the equations (2.3X2.6). The 
equations (2.13H2.15) form a system of wave equations for the functions f,  g, H. Because 
of the constraint (2.16) we cannot choose the data freely. A lengthy calculation shows that 
sufficiently differentiable solutions of (2.13)-(2.35) (it is sufficient that H is of class Cz 
and f ,  g are of class C4) satisfy 

+ 22 @" - A"+ 3(@' - A')*+ -0 = 0. (2.17) 

Hence if Z, Z vanish initially and if 2 vanishes at the boundary, (2.16) is satisfied in the 
domain of detenninancy of these (trivial) data. 

Having found f, g, H, equation (2.4) is an ordinary differential equation for h which 
can be solved if initial data are given for h. 

The remaining field equations (2.7) and (2.8) serve to define V ,  W .  If all field equations 
are satisfied, the 'equations of motion' (2.9X2.11) follow from the Bianchi identities. 

Outside matter we have to proceed differently because (2.7) and (2.8) are now 
constraints. Solutions of (2.14), (2.15) and (2.4) (with H = 0) satisfy 

( 4 ,  r 

(2.18) 
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Hence these constraints propagate provided Z vanishes identically. 
We have thus shown that the local Cauchy problem consists of three linear wave 

equations inside the body and two wave equations outside. Hence local P solutions 
of the field equations for the interior, respectively exterior, problem exist. 

Our goal is to demonstrate the existence of solutions for the whole problem. the interior 
as well as the exterior, which are determined just by Cauchy data at some instant t = 0 and 
junction conditions at the boundary. 

We use a general existence theorem for linearized fluid solutions to obtain a local solution 
near the centre where our equations are singular because of the use of polar coordinates. If 
we prescribe axisymmetric even parity data the solution will also have this symmetry. 

The only complicated part is a region around the boundary of the star. The interior 
equations need some information about infalling gravitational waves at the surface of the 
star such that a unique solution is determined. Similarly for the exterior region. In the next 
sections we will see that Cauchy data alone are sufficient to determine a solution near the 
boundary. 

Finally we list two equations without second space derivatives which we will need in 
section 4 for the formulation of the junction conditions. They follow from (2.14H2.16): 
from (2.14) and (2.16) we eliminate g" and obtain 

h 
f) 

(2.19) 

To eliminate f" in (2.15) we differentiate (2.16) with respect to r and insert it into (2.15). 
The terms with g" and g"' which appear are eliminated using (2.14) and its r derivative. 
The result is 

+-e 47cG 2h (c 2 p + p ) ( H ' +  f'-2g'+4QP'f)=0. 
r' 

(2.20) 

3. Systems of 1t1 wave equations 

Existence and uniqueness of solutions for the system of wave equations derived in the last 
section can be established by the method of characteristics. We need a theorem for the 
inside and outside systems which are coupled by some boundary conditions. In this section 
we analyse the conditions which are needed at the boundary r = ro to make the Cauchy 
problem well posed. 

For a e r c ro we have a system for &(t,  r), b(r, r )  
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In the last section we saw that we have to solve wave equations. Later it will tum out 
that to control the conditions (2.16), Z = 0 , at the boundary we have to differentiate our 
basic system with respect to t. This is why we introduced the functions V, in the equations 
above. 

Similarly for ro c r 

The functions F, F ,  G, 
r. We assume that p > p. 

are linear in their arguments with coefficients depending only on 

We can rewrite the wave equations in characteristic form as follows 

(3.3) 

(3.4) 

which propagate along the characteristics, the system is equivalent to 

The last equation is a constraint, and the time evolution equations of (3.6) imply (provided 
there is sufficient differentiability) 

(3.7) 

Hence if U; - (1/2ak)(& + At )  vanishes initially it vanishes for all time and a solution of 
(3.6) is also a solution of (3.1). 

The functions Vj propagate along the curves r = constant and the functions Ab, & 
along the integral curves 

r(r) = r f ( t ;  ?, f )  and r(r)  = r;(t; f ,  f )  (3.8) 
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Figure 1. The domain D = DI U Ol and fhe baundary r = rg separating Dt and &. The 
fUnCtiOnS Ax3 Bk, Z, in Dt are Uanspoited along the outgoing (t), ingoing (-) and s ta t ionq 
(0) chancteristics. respectively; the corresponding statement holds for Ax. Bi ,  i, in &. Some 
characteristics hit lhe boundary at times r k ,  6. This requires conditions like (3.20)-(3.22) in 
order that all functions be determined solely by inirial data at 1 = 0. For simplicity only 0% 

characteristic of each type is shown. 

of the vector fields a, ;t akar through the point ( I ,  i), i.e. 

r t  (i; i, i )  = i r; (F; I, i )  = i (3.9) 

(see figure I ) .  Integrating along the characteristic curves we transform the system (3.6) into 
a system of linear integral equations. We consider the equations on a domain D such that 
for r < ro all A-characteristics and for ro < r all B-characteristics intersect t = 0. We 
denote the part of D with r < ro as D1 and the part with ro < r as 4. To simplify the 
integral equations we write (Z,) := (Uk, V,) and (E,) := ( A k ,  E x ,  Z,); then the system 
(3.6) reads 

(3.10) 

The functions h f k ,  N x ,  P,  are linear in E. with cwfficients depending on r .  We integrate 
from f = 0 to (2, r) and denote initial data by '̂ '. obtaining 

zm(t, r )  = i , ( r )  + pm(r, E,(s, r ) )  (3.11) 

(3.14) 
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On D2, we proceed analogously and rewrite the system (3.2) as 

The integration is as before 

(3.15) 

(3.16) 

- M r ,  r )  = B~c?;(o;  I ,  r ) )  + U s ,  r ) ) ~ , ~ ; ( , ; , , ~ ) .  (3.17) 

Now there are two possibilities for Ah.  If the backwards characteristic intersects I = 0 we 
have 

1 

(3.18) 

If, however, the characteristic intersects the line ( t .  ro) at the point &, then 

A&, r )  = A d & ,  ro)) + ds [ N d r ,  &(s3 r))lr=F;(s:,,r). (3.19) l -  2 -  

The only information not supplied by the Cauchy data are the functions Bk(t,rO) and 
&(f, ro) in (3.14) and (3.191, which are needed if the characteristics intersect the boundary 
line r = ro. In order to obtain a system of integral equations for which only initial data are 
needed, we assume that at the boundary, for 1 < k < j 
Bi = aAh + fJ& + K ( Z , ,  2 ~ )  K linear, a, p = constant (3.20) 

,ik = &Ek +PA,,  + &(Z,, ZM) i? linear, 5, j = constant (3.21) 

and, if p z j ,  for fi + 1 < t < p 

BI = y A /  + WZ,, .%). (3.22) 

we use these relations to express the missing values &($, ro) and Bk(tk, ro) in terms of 
the Cauchy data, using for the right-hand sides of (3.20H3.22) again (3.1 I), (3.12). (3.16), 
(3.17). 

Now we have obtained a system of linear integral equations whose coefficients contain 
only the Cauchy data and the coefficients of the original differential equations. In section 5 
we prove an existence and uniqueness theorem for this situation which provides C' solutions 
on the two domains if the coefficients of the differential equations are CX+* and the initial 
data are chosen appropriately. 
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4. The boundary conditions 

To linearize a one-parameter family of solutions describing an oscillating fluid ball together 
with its outside gravitational field we assume that there are coordinates in which the surface 
of the ball, which is generated by fluid world lines and at which the pressure vanishes 
[6], has the same coordinate values for all members of the family. One can. for example, 
take Gauss coordinates relative to the surface. Linearization implies that in this gauge 
the linearized pressure vanishes at the boundary and that the linearized first and second 
fundamental forms of the boundary are continuous. This is equivalent to the statement that 
in Regge-Wheeler gauge at r = ro 

gi =g2 fi  = f 2  hi = hz (4.1 ) 

where the indices 1, 2 refer to the interior and exterior, respectively. Because of (2.4), the 
boundary condition for h can be replaced by a continuity condition 

g - f E c'. (4.2) 

The equations we derived in section 2 are; on the fluid ball 

(4.3) 

(4.4) 

(4.5) 

and outside 

Hence we have the situation treated in the last section. f, g are defined on both sides of 
the boundary and H is defined only on the fluid ball. On physical grounds we expect that 
Cauchy data together with the junction conditions (4.1) should determine a unique solution. 
Hence we have to investigate whether the conditions (4.1) together with the field equations 
contain sufficient information to obtain conditions in the form of (3.20)-(3.22) considered 
in the last section. 

To obtain a solution of the field equations we have to satisfy not only the above system, 
but also the condition 2 0. As discussed in section 2 this is implied by the field equations 
if 2 = 0 for the data and at the boundary. Hence we have to satisfy (2.19) at the boundary 

and 

(4.8) 

(4.9) 
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Because of the second time derivatives we can use these conditions only if we use g as the 
unknown function. Differentiating the equations (4.4) and (4.7) for g with respect to f we 
obtain for 

21 =g1 zz = g 2  (4.10) 

the equations 

(4.11) 

(4.12) 

Now the conditions (4.8) and (4.9) are of the form (3.20). (3.21). (we now use the notation 
from the last section and put u2 = z )  

BZ = A2 + 2il t i 2  = E2 - 2iZ (4.13) 

where i is taken from (4.8). (4.9). To take care of f', g' in (4.8). (4.9). we have to treat 
f', g', f, g as unknowns together with z, to form a system like (3.1). 

Next we need conditions for f and H. The comparison of (4.8) and (4.9) between the 
inside and outside gives at r = ro where p =  0 

47r G 
CZ 

W(gi - gi) = -eZ"pH . 

Because of (4.2) we also have 

4n G 
C2 

Of( f [  - f ; )  = -e"pH 

(4.14) 

(4.15) 

From (4.1). (4.14), (4.15) we derive 

These are conditions of the form (3.20). (3.21) needed for f at the boundary. It remains 
to find a boundary condition for H. No relation between fi and H' was found. However, 
comparing (2.20) from both sides at the boundw one finds, using (4.1) 

(4.17) 
c-2e-w ..I 47r G 

(gl - g ; ) + - ~ ( H ' + f ; - 2 g {  +40'fi)=O. 
C2 

A second time derivative of (4.14), inserted into (4.17). gives 

c-2e2'A-m)H + @'(HI + f; - 29; + 4Q'fl) = 0. (4.18) 

We can use this condition if we take C := fi as an unknown function instead of H. As C 
is defined only for a c r < ro we need condition (3.22), and (4.18) allows us to calculate 
the ingoing quantity from the outgoing one. If we differentiate (4.6) with respect to time, a 
term f' appears. Therefore we have finally also to use the time derivative of the equation 
for f and use a time derivative of (4.16) at the boundary. 
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Proceeding in this way we have finally to check that for the solution obtained, we have 

gi = 8 2  and g; - f: = g; - f;. (4.19) 

This is established as follows: assuming (4.8), (4.9). (4.18). (4.16) and f, = fz and 
comparing (4.18) from both sides gives (Aa = a,  -a?) 

Comparing with (2.20) gives 

(4.21) 

Using (4.16) we replace by Af' and get 

Equations (4.20) and (4.22) form a linear, homogeneous, ordinary differential system for 
Ag and A(f' - g') as functions of t. If these quantities and their first time derivatives 
vanish at r = 0, they are identically zero. 

We have shown in this section that the physical junction conditions (4.1) provide just 
enough information to rewrite the equations as integral equations in which only the Cauchy 
data appear. 

5. An existence theorem 

In section 3 we obtained a system of linear integral equations. Now we will show 
the existence of solutions, using the method outlined in [7,8]. ((2,) := (Uk, b) and 
( E n )  := ( A h .  B k ,  Z,,,), quantities with a '-' are data at r = 0.) It may be helpful in 
connection with the following calculations to look at figure 1 once more. 

Within the star, r c ro , we have 

z,(t,r) = =&(r) + Pm(r, ~ , ( s , r ) ) &  (5.0 l 
&(I, r )  = &(r;(R f ,  r ) )  + ds [ W r ,  E&, W=,;ls:t,,). (5.2) l 

l 
For BA there are two possibilities. If the backwards characteristic intersects I = 0, we have 

(5.3) ' M t 3  r )  = h ; ( R  t ,  r ) )  + d.s [Nk(r. & ( ~ , r ) ) l , = , ~ ~ ~ ; , . ~ ~ .  

If, however, the characteristic intersects the line ( t ,  ro) at the point t k ,  we have 

(5.4) 
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For r > ro. outside the star 

z,(t, r )  = Z,(r) + Fm(r, E A  r ) ) d s  (5.5) l 
Bk(t ,  r )  = k(r ; (O;  t ,  r ) )  + (5.6) 

Now there are two possibilities for &. If the backwards characteristic intersects f = 0, we 
have 

ds [ f ik(r ,  ~ ~ ( s , r ) ) ~ , = i ~ ~ ~ ; ~ , , ) .  l 

l A&, r )  = h l ( 0 ;  t ,  r ) )  + ds [ h ( r ,  &(ss r ) ) l ,=~; ,~ : l ,~~ .  (5.7) 1 -  

If, however, the characteristic intersects the line ( f ,  ro) at the point Tk 

I 

(5.8) 2 -  
~ k ( i ,  r )  = X ~ ( G ,  ro)) + j ds [Nk(r ,  BAS. r ) ) ~  r = r + l x l , r ) ~  -k 

1, 

Assume that at the boundary we impose conditions 

Br = aAa + f l& + K(Z,, .&) K linear, a, p =constant (5.9) 

& = CAk + B A r  + i?(Z,,,, 2,) i? linear, 2,  = constant. (5.10) 

for A ,  B,  A,  B defined on the appropriate side. (If some of the variables are defined only for 
r < ro, we have to put p = 0 in (5.9).) We use these relations to express the missing values 
B k ( f k ,  r , )  and A&, r , )  in terms of quantities which can be calculated from the Cauchy 
data. 

’BkV ,  r )  = aAr@r ,  ro) + BBt(fr, ro) + K ( Z m ( k ,  TO), %&, ro) 

If we insert the boundary conditions in (5.4). we obtain 

, 
+ S, ds [Nn(r, ~ , ( s ,  r ) ) ~ , = , ; ~ ~ ; ~ , ~ ) .  (5.1 1) 

Similarly from (5.8) 
2 -  A&, r )  = .&(G, ro) + &M&, ro) + K(Z,(G, r d .  %&, ro)) 

I 

ds [&-, U s 3  r ) ) ~ ~ = ~ ; ( ~ ; ~ , ~ ) .  (5.12) 

In (5.11) and (5.12) all the quantities at (fk,ro) and (Tk,ro) can be expressed in terms 
of (5.1H5.3). (5.5H5.7). Now we have obtained a system of integral equations for the 
unknowns. 

Solutions of such systems are obtained by iteration. Suppose differentiable functions 
E,!” are given satisfying the initial conditions. Inserting these functions in all the integrals 
and performing the integrations we obtain functions E,!’) , which again satisfy the initial 
conditions. Thus we generate a sequence E,!’). The linear operator mapping E:’) to EA’+i’ 
consists of a finite number of integrations. If we write 

IlEll = max{lE,I. I&l] 

+ L  

for n = 1.. . . , N, ii = 1, .  . . , fi and ( t , r )  E D 
(5.13) 
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we obtain 

The constant depends on the maximum of all the coefficients in the integrals and the number 
of those integrals: 6 is the maximum of the lengths of the domains of integration, hence 
it is determined by the slopes of the characteristics and the domain D. We can make 6 as 
small as we want, and therefore the sequence IIE‘j)ll is a Cauchy sequence. This implies 
that the functions ‘ j )E(r ,  t )  and ‘ J ) 8 ( r ,  t )  converge uniformly in D to continuous functions, 
and these limits satisfy the integral equations. 

On the Characteristics through (0, ro) we have two expressions. We obtain for all iterates 
the same values, if the data satisfy the conditions (5.9). (5. IO) at (0, r,,). 

Moreover we have to show that the solution of the integral equations is differentiable, 
because only then have we obtained a solution of the differential equations. If all iterates are 
differentiable and if these derivatives converge in the maximum norm, then they converge 
to the derivative of the solution. 

For the derivative with respect tor  we obtain by differentiating the expressions defining 
E,!J’, an inequality as (5.14) if we include into the definition of ( ( E [ (  also the derivatives 
of the unknown E,.  8,. Hence we obtain convergence of the r derivative. The integral 
equations imply that we can differentiate in the direction of the characteristics, hence all 
functions are C’. 

Again there are two expressions for the derivatives along the characteristics through 
(0, ro) and we have to check that we obtain the same values. This will give further ‘comer 
conditions’ which guarantee the differentiability of the solution. Let us consider this in 
more detail. 

Assume that we have a solution which is C’ and satisfies the conditions (5.9). (5.10). 
Then there are two ways of calculating &(O, ro). From the data we know 4(0, ro) and 
the differential equation gives the derivative in the direction of the characteristic. Hence 
we also obtain &(O. ro). Altematively we may start from the boundary condition (5.9) 
to calculate &(0, ro). The condition that we obtain the same value is a restriction on the 
Cauchy data. If we use the above expressions (5.3). (5.4) to calculate r derivatives of the 
iterates, then the requirement that they coincide leads to the same condition. 

Differentiability of any finite order can be established along these lines if the coefficients 
of  the equations are Cm. The Cauchy data have correspondingly to satisfy the appropriate 
comer conditions. 

6. Global solutions 

It is now fairly easy to combine our local result near the boundary with standard existence 
theorems to obtain a global statement. First we have to show that solutions of the constraint 
equations inside and outside the star do exist. Because of the decomposition into spherical 
harmonics the constraints are ordinary differential equations. Inside the star the functions 
f, i, g. 8 ,  h .  H ,  k, U’, V have to satisfy the equations (2.16). its time derivative, (2.7) and 
(2.8). 

One way to satisfy all equations is the following: choose f, f, g, g and h as smooth 
functions such that the centre is regular and all functions have compact support within the 
star. Then we use (2.16) and its time derivative to define H and fi. (Note that the linearized 
density H need not be positive!) If we take vanishing data for all fields outside the star 
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we have a global solution of the constraints which also satisfies all comer conditions at the 
boundary. 

If one wants to prescribe the perturbed density one has to solve the constraints such 
that the geomehical quantities are regular at the centre. 

We can also consider the case in which we take trivial data on the star and prescribe 
only data for a gravitational wave outside the star. In this case the functions f, f, g, g and 
h have to satisfy (2.16), its time derivative, (2.7) and (2.8) with vanishing matter variables. 
These are four equations for five functions, hence there seems to be only one free function. 
There is, however, the relation 

between the constraints. Hence two functions can be chosen arbitrarily. 
From the equations it is not obvious that solutions with compact support exist. We can, 

however, take a linearized solution outside the star in any gauge and transform to Regge- 
Wheeler gauge. If the solutions have spatially compact support in the original gauge, this 
will also be the case in Regge-Wheeler gauge because it is unique. To obtain such solutions 
we can, for example, use the superpotentials described in [IO1 or the Zerilli formalism [ I  11. 

Clearly, more solutions of the constraints can be constructed by similar considerations. 
We have seen that there are many solutions of the constraints also satisfying the comer 

conditions at the boundq.  The comsponding data determine a unique solution in some 
time interval 0 < t < T .  This solution can be constructed as follows: near the centre we use 
a general local theorem for linearized hydrodynamics [12] to get around the polar coordinate 
singularity of our equations; near the boundary we use the main result of this paper; for the 
remaining part we can use the well-known theorems for 1 + 1 hyperbolic systems. As we 
take data of compact support we just have to use a finite number of overlapping patches to 
obtain a solution defined for 0 

The coefficients of the linear equations do not depend on time and are bounded as 
functions of r .  Therefore we can extend the solution from T to 2T etc., hence it is defined 
for all t .  The maximum of all our data can grow from I = 0 to t = T at most by a factor 
q, hence until time nT by a factor q". which implies that the solution is exponentially 
bounded. This shows, in particular, that all solutions defined by data of compact support 
have Laplace transforms. The question under which conditions the solutions are bounded 
relates to the problem of stability which is not mated here. 

Finally we would like to 'add the Em pieces' together. Suppose we have general data 
which can be decomposed into spherical harmonics. We obtain a solution for each YI, 
contribution. We expect that the sum converges again. If this could be established-what 
we do not to intend here-one would have an existence theorem for fairly general data. 

t < T .  
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