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Abstract. I1 is shown thal for a given spherically symmelric disvibution of a perfect Huid on 
a spacelike hypersurface wiul boundary and a piven. time-dependent boundary prt?sure. there 
exis15 a unique, local-in-lime solution of the Einstein equations. A Schwmchild spacetime 
can be allached to h e  Huid bady i f  and only if the boundary prcssurc vanishes. We asume 
a smooth equation of slate for which UW density and the speed of sound remain psilive for 
vanishing pressure. 

PACS numten: 0230, 0420 

1. Introduction 

An important problem in any theory of gravitation is the construction of models of isolated 
systems of bodies. In general relativity, models of single static, spherically symmetric fluid 
balls [ I ]  and time-dependent, spherically symmetric dust solutions 121. are well understood. 
Until recently, nothing rigorous was known about the existence, let alone the propties 
of more general cases. Only in 1991 Rendall [3] solved. globally in space and locally in 
time, an initial value problem for a class of spacetimes containing one or several perfect 
fluid bodies separated by empty space, generalizing work by Makino [4] on the analogous 
Newtonian problem. His method, however, does not cover bodies in, or close to, static 
equilibrium which have a non-vanishing surface gravity. and it does not provide uniqueness 
of the solutions in terms of initial data. 

In order to get rid of the restrictions of the Makinc-Rendall work, which requires 
equations of state p(@) with p(0) = 0 and p’(0) = 0, one can try to use an equation 
of state for which the pressure vanishes for a positive value of the mass density. Then 
some variables have to be discontinuous at the surfaces of the bodies, the interior and 
exterior evolution equations are different and one is faced with a mixed initial-boundary 
value problem instead of a pure initial value problem. For quasilinear partial differential 
equations such as Einstein’s, a problem of this type appears to be tractable at present only 
if. besides time, no more than one spatial coordinate is significant. This leaves one with 
spherically symmetric bodies in radial motion, surrounded by a Schwarzschild vacuum field. 

In this paper, which is a shortened version of a part of the doctoral thesis of the first 
author to which the reader is referred for details [5], the mixed initial-boundary value 
problem for a spherically symmetric perfect fluid body is solved. We show that for a given 
spherically symmetric distribution of matter on a compact spacelike hypersurface and for a 
given boundary-value of the pressure, there exists locally in time a unique spacetime which 
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can be matched to a vacuum Schwarzschild spacetime if and only if the boundary-pressure 
vanishes. Our results cover static and nearly static configurations which describe bodies 
with non-vanishing surface gravity. 

This problem is solvable since the spherically symmetric system depends on two 
independent variables only. Courant and Lax have developed a method of solving the initial 
value problem for quasilinear symmetric hyperbolic systems of two independent variables 
which has been reviewed in [6,7]. Their method is generalized to mixed initial-boundary 
value problems in section 3.3 of this paper. 

Misner and Sharp 181 have for the first time written down the spherically symmetric 
Einstein equations for a perfect fluid in a manageable form. Their system of equations, which 
is reviewed in section 2.3 below, is not symmetric hyperbolic. However, in section 3.2 it  
is transformed into such a system. 

The neighbourhood of the bodies' centre is treated separately in 'Cartesian' coordinates 
because in polar-coordinates, the differential system is singular at the centre, whence the 
above mentioned proof fails; this is done in section 3.1. 

To attach a Schwarzschild spacetime to the star it is required that the first two 
fundamental forms of the inner and outer sides of the star's surface agree. While the 
initial-boundary value problem for the fluid body alone can be solved for an arbitrarily 
given boundary-pressure, a Schwarzschild spacetime can be joined to it if and only if the 
pressure at the star's surface vanishes, as would be expected on physical grounds. The 
calculations concerning this junction of vacuum surroundings will not be reproduced here. 
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2. Formulation of the problem 

2.1. Choice of the equation of state 

We assume that the specific entropy of the perfect fluid be constant both in space and time, 
sa that the equation of state has the simple fonn p = p(p). We require further that the 
density e and the speed of sound s be positive at vanishing pressure. So for Q > 0 

ec2 + p > 0. 

Note that s < c is not assumed; it is mathematically irrelevant for the problem treated in 
this paper. 

2.2. Choice of coordinates 

In a globally hyperbolic, spherically symmetric spacetime occupied by a perfect fluid, there 
exist coordinates in which the metric has the form 
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where 

dR2 = de2 + sin2 9 d(02 

is the metric of the unit 2-sphere, and R,  19.60 are constant along the world lines of the fluid 
particles (comoving, Lagrangian coordinates) 

U" = (e-". 0.0.0). (2.3) 

(For a global treatment of spherically symmetric spacetimes, see [9].) The coordinates 
(T,  R )  become unique if we require 

Q(T, Ro) = 0 r(0, R )  = R (2.4) 

where RO corresponds to the surface of the body. (The second condition excludes initial 
spatial contigurations with a 'neck'.) 

The non-vanishing components of the energy-momentum tensor T," = (e + 
( I / r 2 ) p )  ud,u, ,  + pg,,,, with respect to this coordinate system aie 

T~~ = e2"pc4 TRR = p e  2A 

Tna = p r 2 T,, = pr2 sin' 9. 

2.3. Einstein and matter equations 

In a spherically symmetric spacetime, those Einstein and matter equations which contain 
an odd number of angle indices are satisfied identically. Due to the contracted Bianchi 
identities the ($8)- and ((of$)-components of the Einstein equations follow from the other 
equations and need not be considered. Only five equations for the functions a, A, r and e 
of T and R remain (we use the notation (r = a / a T ,  ()' = a/aR) .  From TuP,b = 0 we 
obtain 

(I = T :  e +  ( e + ;  p > ( h + ~ : )  = O  

(2.7) (I= R: (er2 + p )  Q' + P' = 0. 

8nG 
c4 

and from G,, = - Tu Y 

(2.9) 

(2.10) (vu) = (RT) : io' + r'A - i' = 0. 
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Equation (2.7) can be integrated at once, taking into account (2.4) 
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(2.1 I) 

T then measures proper time at the star's surface, and 4 is henceforth to be considered as 
a function of p. 

It is useful to define a radial velocity 

U := e-"i 

and a mean density of the matter within a ball of coordinate radius R 

With these variables, (2. IO) can be written as 

U' A =ee-  
r )  

and the local energy balance (2.6) takes the form 

Moreover, (2.8) and the regularity of the metric at the centre imply 

and (29) can be recognized as the equation of motion 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

which generalizes the Tolman-Oppenheimer-Volkoff equation of hydrostatic equilibrium. 
These equations fulther imply 

r (2.18) 

The last equation is equivalent to the adiabatic energy balance dE = -pdV for the 
'total energy' E := $ f p r ' c 2  within the R-ball. Thus, we have obtained a system of 
evolution equations for the variables r, U, e. A, p .  Moreover, these variables are subject to 
the constraints (2.13) and (2.16). 
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2.4. Initial and boundary data 

On both physical and mathematical grounds we expect that ~(0, R)  =: C ( R )  and u(0, R )  =: 
C ( R )  can be chosen asfree initial &fa. Obviously, t(0) = 0. In contrast to the Newtonian 
case, 6 and 0 are constrained by the inequality 

(2.19) 

as follows from (2.4). and (2.13) and (2.16). This inequality bounds the 'compactness' 
of the initial mass distribution, similar to the Schwarzschild-Buchdahl inequality [ I O ] ,  
2Gm/RcZ .c $ for static bodies. Misner and Hernandez [ 111 have pointed out that if the 
left-hand side of (2.19) exceeds unity, gravitational collapse to a singularity is inevitable. 
It should be noted that, since ir is the proper time derivative of the 'areal radius' of a fluid 
particle, not the velocity in any local inertial system, it is not constrained by 5 e c. 

The initial data for r , p  and A follow from (2.4). (2.13) and (2.16). respectively. 
It is easily checked that the specified initial data determine the metric of the initial 
hypersurface T = 0, 0 < R < Ro, as well as its extrinsic curvature (in the spacetime to be 
constructed), &ob. In  fact 

&, dx" dxb = e2' dR2 + RZ dRZ ( 2 . 2 0 ~ )  

(2.20b) 

At the surface of the fluid body, formed by those particles which form a sphere of radius 
Ro at the initial time, the pressure can be specified freely. The required boundary value is 
given by the function p ( T ,  Ro) =: $ ( T ) ,  subject to the constraint j ( 0 )  = p(a(R0)).  

The problem to be solved in the next section consists of proving existence and 
uniqueness of suitably differentiable (see below) solutions to the evolution equations (212) .  
(2.17), (215). (2.14). (218) for the variables r, U . Q .  A, p, subject to the specified initial 
and boundary data. The proof will show that the constraints (2.13). (2.16) are satisfied 
as a consequence of the evolution equations since the data have been chosen to obey the 
constraints initially. Thus, a solution of the Einstein equations is indeed obtained. Note that 
all preceding considerations hold if r ,  U, e,  A. p are three times continuously differentiable. 

Remark. If one substitutes @ --t @/c2 in the foregoing equations and then puts I/c = 
0, one obtains the equations of the corresponding Newtonian problem in Lagrangian 
formulation; @ then denotes the Newtonian potential. 

3. Existence and uniqueness of the solution 

We show local existence and uniqueness of the solution, first in a domain G I  surrounding 
the centre of the body, and then in a neighbourhood Gz of its boundary, as indicated in 
figure 1. In the overlap GI n Gz, the two solutions agree due to uniqueness. 
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Figure 1. The two solution domains GI, Ga and their intersection. 

3.1. Solution in the domain Cl 
Rendall has shown [3] that the Einstein and matter equations for a perfect fluid can, by use 
of harmonic coordinates and an appropriate density variable, be brought to such a form that 
they are symmetric hyperbolic in a neighbourhood of appropriately chosen initial data. Such 
initial data are obtained from our data as follows. We introduce 'Cartesian' coordinates in 
the initial hypersurface, x := R sin 19 cos rp.+y := R sin I9 sin rp, z := R cos 8. We compute 
the metric and the extrinsic curvature Koh in these coordinates, using (2.20), and then 
put sob = 2kab (where the dot now refers to the harmonic time-coordinate in the spacetime 
to be constructed). Moreover, we put & = -2, & = 0 for a ,  b E [ x ,  y ,  zj. The initial 
data for dao and gob are provided by the harmonicity condition, and the data for the matter 
variables are @ and I?" = 0. According to [3],for given Cm dafa there exists locally in time 
a unique Cm solution of the Einstein and matter equations. 

The requirement that &,, Rob and 6 be C" with respect to Cartesian coordinates 
restricts our two basic initial data 6, 6 as follows: for R E [0, Ro], @ ( R )  = f(R) and 
C ( R )  = Rh(R), where f and h are even, smooth (C"), real-valued functions on R, and 
f > 0. Therefore, O(0) = 0, and at R = 0, all odd-order (right-)derivatives of 6 and 
C / R  vanish. Spherical symmetry of the solution corresponding to such data follows via 
uniqueness from the spherical symmetry of the data. 

3.2. Symmetric hyperbolic equations 

To prove existence and uniqueness in the domain Gz, we first cast the equations of the 
preceding section into the form of a quasilinear, symmetric hyperbolic system of first order 
with constraints. 

Instead of r and e we use logarithmic variables 

Q := In(R/r) (3.1 ) 

Since the relation between e and C. is invertible, Q, p .  s and @ can be considered as known 
functions of L, given an equation of state. 

To obtain quasilinear equations, we introduce the variable 

w := r' (3.3) 

6 can easily be computed by (2.12). Thus we get a first-order, quasilinear. hyperbolic 
system for Q, U. E ,  A ,  pq o. To achieve symmetry as well, we use 

w := ufr (3.4) 
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instead of v and introduce two additional variables 

x := e-"C:' 

A system of equations for Q, L, A ,  w ,  w ,  X, Y and p is now obtained in the following way: 
(2.1% (2.17). (2.14), (2.12) and (2.18) provide evolution equations for C, w, A, io, and p, 
respectively. Evolution equations for X and Y are obtained by differentiating the respective 
definitions with respect to time and eliminating the time derivatives on the right-hand sides. 
Equations (2.12) and (3.4) give an evolution equation for Q. The equations (3.3). (3.5). 
(3.6) and the derivatives with respect to R of (2.13) and (2.16) are constraints. 

Thus, we have obtained the following basic system of equations 

- (Y - 2 ~ ) '  - 2wZ - 4 z G  @ + - ( 31 

1 S 
L, =e8 w(Y - 2w) - - 

C2 
RXw 

1 

[ 
= -3e'w(p+ 2 p )  

2, := RQ' + wep - 1 = 0 

zz := c' - e"X = 0 

Z 3  := Re-Pw' - w(Y - 310) = 0 

(3.7) 

( 3 ~  - p) - w(Y - 2w) = 0. 1 Z5 := e-2A(w' - oh') + 
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The characteristics of the system (3.7) are the integral curves of 
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= &se*-" 

which correspond to outgoing and incoming sound waves, and the fluid streamlines, 
R = constant. Gravitational, i.e. null characteristics, do not occur since spherically 
symmetric gravitational waves do not exist 

Note that at two places in equations (2.7). R occurs in the denominator, in the form 
X / R .  The resulting singular behaviour of the equations at R = 0, which is due to the use 
of polar coordinates, forced us to treat the centre separately, as remarked above. 

A straightforward but lengthy calculation shows that, for a C' solution X, . . . , p of 
(3.7). the quantities ZI,  . . . , ZJ defined by (3.8) obey a linear, homogeneous system of the 
form 

5 

ia = A H Z ~  
c= I 

where the Akt are continuous functions of X, . . . , W .  Hence the constraints Zk = 0 are 
satisfied for all time if they are satisfied at T = 0. 

From the initial data &R) ,  B(R) specified in section 3.1 above we immediately obtain, 
taking into account (2.4) 

L(0, R )  := L(C(R)) ~ ( 0 ,  R )  = - ir(R) Q(0, R )  = 0, R 

The equations (2.131, (2.16). (3.3). (3.5) and (3.6) then provide the initial data for I.L, A, U ,  

X and Y, which obey the constraints Zk(0, R )  = 0. These data are smooth on [RI, Ro], 
where 0 < RI c Ro. 

From the smooth boundury value S(T) we obtain L(T, Ro), and the fifth equation (3.7) 
then provides 

In the following paragraph the main theorem is proved which CM be applied to our problem 
if we require a, 6 and i j  to be chosen so that the comer conditions of that theorem are 
satisfied. 

Remark. The parameter A = I/cz enters (2.7). (2.8) only as a factor of undifferentiated 
terms (relativistic 'corrections' to the companding Newtonian equations). Therefore, the 
solutions depend continuously and differentiably on A, even at h = 0, as can be verified by 
a slight extension of the proof given below. An analogous limit statement does not follow 
from the argument in section 3.1 above, since the reduced Einstein equation ceases to be 
hyperbolic at h = 0. Although we also expect a Newtonian limit to exist in that case, we 
have not established it. 

3.3. Existence and uniqueness theorem 

Existence and uniqueness of a Ck solution in a domain Gz is proved hy applying to the 
system (3.7) the following theorem: 
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Theorem. Let the system 

X + a(U)Y' = F(X, Y ,  U ,  R )  

Y t a(U)X' = G ( X ,  Y ,  U .  R )  

c i j = ~ , . ( ~ , ~ , u , ~ ) )  j = 1 ,  ..., p 

(3.9) 

be given, where F. G, Hj and a are Ck+' functions of their arguments (for R 2 0). and 
a is always positive. Further, let C'+' initial values i ,  f and 6 on [ R I ,  Ro], and the 
Ckt' boundary value B ( T )  be given. The data are assumed to satisfy the comer conditions 

according to which Y(O), p(O), .. .. Y (0) equal the values of Y ,  Y ,  . .., Y at (0 ,  Ro) 
which are determined by (3.9) and the initial data Then (3.9) has a unique C' solution on 
a compact trapezoidal domain 7 as indicated in figure 2, provided TO and the slope of the 
left boundary of 7 are sufficiently small. 

k+l k+ l  

Figure 2. The trapezoidal domain 1. 

Proof. Let 

A : = X + Y  B : = X - Y  

and use the abbreviations 

U := (UI, ..., U,) E := ( A ,  B ,  U ) .  

Then the system (3.9) can, in an obvious notation, be rewritten as 

(&+U&). = L ( E ,  R )  

(& -a&)B = M ( E ,  R )  

(3.10) 

(3.1 1) 

a -U = N ( E ,  R )  
aT 

where L ,  M and N are Ck+' functions of their arguments. This system of evolution 
equations is in canonical form, i.e. each unknown is differentiated in a characteristic direction 

As before, we have C'+' initial data k for all components of E. P provides the 
only. 

boundary value for A - B 

( A  - B ) ( T ,  KO) = 2B(T). (3.12) 
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In order to transform (3.11) into a system of integral equations, we integrate along the 
characteristics. We denote by R,,2(T; ?, 8)  the sound characteristics which pass through 
the point (i, 2) 
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(3.13) 
d 

dT - R1.2 = f a l U V ,  R d l .  

By integrating the first of equations (3.1 1) we obtain 

A(?, 8 )  = e?(Ri(O; ?, 8) )  + 

In the case of B we have to distinguish two cases: 

(1) R ~ ( T ;  7, R )  stam from T = o 

(3.14) 

B ( f ,  8 )  = b ( R z ( 0  ?, /i) + dT M ( E ,  R)l,,,,,,,.,j, . 1. 
(2) RdT; F ,  8 )  starts from R = Ro. In this case we define T,(F, 8)  implicitly by 

( 3 . 1 5 ~ )  

(3.16) 
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We then have to express ~ ( T R ,  Ro) in terms of known quantities. 
For B ,  we use (3.3); B(TR,  Ro) = A(TR,  Ro) - 2?(TR) 

TR 

B ( 7 ,  fi) = ~ ( R I ( @  TR. Ro)) -2f(TR)- drL(E, R ) I R = R I ( R T 8 . R o )  

(3.15b) 

The equation for U is the simplest one 

U(?, R )  = G(R)  + L'dT N(E,  R ) .  (3.17) 

We now consttllct a sequence (E"), n = 0.1.2, . . . of approximate solutions on a domain 
7 as indicated in the theorem. We choose a value Rt between 0 and RO and an a 
priori bound T,,, for the maximum time up to which the E" are to be determined. The 
functions E" will be constructed such that they and their derivatives take on the given 
initial and boundary data on R I  < R < Ro and 0 < T < T,,, respectively. Moreover, 
we prescribe a priori ranges for the functions E; and their derivatives on the domain 
((T, R)IO < T < T,,. RI < R < Ro],  compatible with the data, according to the 
inequalities 

11571 < So ID'EJI < SI < S ( I  < k + 1 )  (3.18) 

where D' denotes differentiations of order I; the constants Si will be chosen later. Let A1.z 
denote the minimum, respectively maximum, of a(U)  on the domain lujl 6 So; 0 -= AI -= 
AZ c w. Then the slopes dT/dR of the sound characteristics in the domain considered will 
be in the range I /A2  < dT/dR < I /A' .  We therefore now define the left boundary of 7 to 
be the line through (0, R I )  with slope l /Az .  

The sequences E" and RY.? are defined on 7 as follows. Eo is chosen freely, apm from 
the restrictions imposed by the data and the inequalities (3.18). The initial characteristics 
RP,2 are defined by 

( 3 . 1 9 ~ )  

E"+' is computed by means of (3.14). (3.15) and (3.17) where, of course, E" and R;,* are 
to be used on the right-hand sides. R;; are found as the solutions of 

ERC$'(T; 7 ,  R )  = fa[U"+'(T, R$'(T; 7,  A?))] 
d 

R;;'(?; ?, e) = R .  
(3.19b) 

In accordance with ( 3 . 1 9 ~ ) .  we impose the opriori bounds 

(3.20) 
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In the original method of Courant and Lax, the approximate characteristics are treated on 
the same footing as the approximate solutions, i.e. they are obtained by iterating an integral 
equation. That is not possible in the F e  of a mixed initial-boundary value problem because 
each R;(T; f ,  l?) is defined on a different T interval. Note also that we treat the quasilinear 
system directly, without using results for semilinear systems. 

In order to check whether the inequalities (3.18). (3.20) are preserved during the 
iteration, we estimate the right-hand sides of the iteration equations and the required 
derivatives of them with respect to I? and 'f. The constants Si, ui are then chosen so 
that, for a sufficiently small, positive TO(< T-), (3.18) and (3.20) remain valid. For such 
a choice to be possible it is crucial that the bounds of L ,  M and N and their derivatives on 
the domain defined by (3.18) and R I  depend on SO only. 

R ; ( T ; O ,  Ro) divides I into two subdomains I; and q in which B"+' is defined 
differently, corresponding to (3.15~6). respectively. The comer conditions of the theorem 
guarantee that on the boundary between I; and ?;". both definitions of B"+' and Bntl' 
and their derivatives agree. 
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[,d* 
R"iT.0.R I 

RO 

In order to prove convergence of the sequence of approximate solutions we form the 
differences Enti - E" and estimate the right-hand sides of the equations with the help of 
the mean value theorem. When estimating Bntl - B" we have to distinguish three cases: 

The first case does not cause any difficulties. In the other two cases, attention has to 
be paid to the different domains of definition of R? and R;-l, respectively. In the second 
case, let 

w h e r e ( m , r i t ) = ( n , n - l ) o r ( n - l , n ) .  
Then we obtain: 
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When estimating the right-hand sides, expressions of the form constant x IT? - Til 
will be obtained. which can be estimated further by 

IT; - T ~ I  <constant x I ( R ~  - R$)(T;; F ,  R)I. 

In the third case, estimation of B"+l - B" in a similar manner will lead to expressions of 
the form 

constant x T," 

constant x (Ro - R;"(O; Tz ,  Ro)) 

constant x (Ro - R$(O F ,  R ) )  

which can all be estimated by CI(RF - R F ) ( T f ;  F ,  & with a suitably chosen constant C. 
For all these estimates it is crucial that 0 < hl < a < A*. so that the absolute values 

of the slopes of R'; and R; are bounded below and above by positive constants. For this 
reason we had to assume the speed of sound remained positive at the surface of the body. 

Next we have to estimate I Ry,2 - Ry,;' I in terms of IE" - E"-' I. This is done by means 
of the equation 

(R;,2 - RY,j ' ) (T;  ?, R )  = i (3.21) 

and with help of the Gronwall lemma. (Note that (3.21) is defined only for T E J" n J"', 
where J" is the T interval on which R;(T; ?, E )  is defined.) 

(a[U"(r,  R 3 ]  - a[U"-'(t,  Ry,j'])dt l 
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Finally, we set 

-I- &\(B" - B"-')(T, R)) ] & > O  

and obtain 

A:" < d A; 

with a constant d which can be chosen to satisfy d < I ,  provided TO and E are chosen 
sufficiently small. In this case E" conserges absolutely and uniformly on 7 to a continuous 
solution E of the integral equations (3.14). (3.15) and (3.17). These equations imply that 
the characteristic derivatives of the limit functions Ej  also exist and are continuous, and 
that (3.1 I )  holds. However, this does not mean that these functions are C ' ,  let alone C'. To 
prove that they are, we use the fact that, according to the inequalities (3.18), all the functions 
E; and their derivatives up to order k satisfy, uniformly on 7, the same Lipschitz condition 
(compare [6, ch V, sections 6 and 71). They form, therefore, a uniformly equicontinuous 
set  Thus, any sequence DIE; ( l ,  j fixed) of derivatives contains, according to Ascoli's 
theorem, a uniformly convergent subsequence, whose limit equals D'E,. Hence, the Ej are 
Ck functions, as claimed. Uniqueness of the solution can be established by means of an 
energy estimate. This finishes the proof. 
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