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Abstract. We use quantum tori Lie algebras (QTLA), which are a one-parameter 
family of sub-algebras of gl~, to describe local and non-local versions of the Toda 
systems. It turns out that the central charge of QTLA is responsible for the 
non-locality. There are two regimes in the local systems - conformal for irrational 
values of the parameter and non-conformal and integrable for its rational values. 
We also consider infinite-dimensional analogs of rigid tops. Some of these systems 
give rise to "quantized" (magneto-)hydrodynamic equations of an ideal fluid on 
a torus. We also consider infinite dimensional versions of the integrable Euler and 
Clebsch cases. 

1. Introduction 

Infinite dimensional Lie algebras are natural to describe symmetries of integrable 
systems in 1 + 1 and 2 + 1 dimensions. For  example, Kac -Moody  algebras are 
known to describe symmetries in 1 + 1 dimensions (cf., for example [1]). gl~ and 
its subalgebras arise in the case of 2 + 1 dimensions; see [2, 3] for KP and [4] for 
the two-dimensional infinite Toda chain. Some new systems were considered in 
[5-7]. The Virasoro algebra plays a role in the description of the symmetries of the 
KdV equation [8] and some other equations [9]. 

Here we consider trigonometrical Lie algebras ~ [10], which, having Connes 
non-commutative geometry [11] in mind, are also called quantum tori Lie algebras 
(QTLA). This is due to the fact that they arise as the natural commutator of 
associative algebras ~r that are generated by two non-commutative elements U1 
and Uz satisfying U 1 U  2 = e4~i'4U2U1 [12]. The algebras are also related to 
S U (Go) Yang-Mills theories and membranes [ 13-15] and are possible candidates 
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for the universal algebra in the description of all integrable interactions which arise 
in string theory [16]. 

QTLA's can be considered as a one parameter (A) family of subalgebras of 9l~, 
the Lie algebra of all two-sided infinite dimensional matrices with only a finite 
number of non-zero diagonals. They can be characterized as matrices with 
(quasi)periodic dependence along the diagonals for (ir)rational values of A. 

Starting from a Lie algebra one can naively try to derive dynamical systems 
with additional integrals of motion. It is then not guaranteed that the resulting 
systems are completely integrable. There exists however the so-called Adler- 
Kostant-Symes scheme, based on Hamittonian reduction, which does yield integr- 
able systems. This approach was developed and extended by the Leningrad school; 
cf. [17, 18] and references therein. It allows, starting from a Lie algebra and an 
additional structure related to the classical r-matrix, to derive the Lax representa- 
tion, conservation laws, classical solutions to the corresponding Riemann problem 
and so on. All steps to be performed are more or less straightforward, following the 
recipe laid out in [17]. Therefore we will use their approach only for constructing 
the Lax pairs for integrable systems based on QTLA's. 

Our interest in the systems under consideration is based on the idea that 
algebras that from the very beginning play some role in physical systems often lead 
to non-trivial dynamical systems, which eventually lead to physical applications. It 
is worthwhile to emphasize that these algebras describe hidden symmetries of the 
resulting systems. 

From this point of view QTLA are good candidates. The simplest system that 
we obtain in the above way is the well-known Michailov-Ueno-Takasaki Toda 
chain [-4] which is a universal object in the theory of integrable systems. As such it 
appeared recently also in the matrix approach to two-dimensional gravity. This is 
one more reason why we feel that QTLA's deserve thorough investigation within 
this approach. In a similar fashion we also derive the non-local version of the Toda 
system and find that the central charge of the QTLA is responsible for the 
non-locality. 

In the Toda systems we find that their properties depend crucially on the 
parameter A, leading to conformal theories for A rational and integrable theories 
otherwise. It is also easy to generalize our construction to the whole Toda 
hierarchy and to describe the dressing procedure for it in the spirit of [4]. Tops for 
finite dimensional Lie algebras and for the algebra of symplectic diffeomorphisms 
were introduced by Arnold [19]. There is a lot of work devoted to generalized tops 
on finite-dimensional algebras (cf. [17, 20] and references therein). The Euler top 
on the Virasoro algebra, which is in fact the KdV equation, was considered in 
[21, 9]. Top-like systems naturally arise for the trigonometric algebra because in 
the limit A ~ 0 it coincides with the algebra of symplectic diffeomorphisms on 
a torus. In this case the Euler top is equivalent to the hydrodynamics of an ideal 
fluid on a torus (this is a particular case of the Arnold approach) and a top in 
a gravitational field to magneto-hydrodynamics of a superconducting ideal fluid. 
Thus the systems under consideration correspond to "quantum" versions of these 
equations where A plays the role of Planck's constant. 

The paper is organized as follows. In Sect. 2 we present some preliminaries (to 
be used in subsequent sections) which contain two types of results. We first describe 
our main object, QTLA and three realisations which we will use to construct 
dynamical equations. We then present some Z2 gradations of QTLA and finally its 
coadjoint action. The former part is needed for deriving the equations for the 
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top-like systems whereas the latter leads directly to a generic form of equations 
related to the Lax or Zacharov-Shabat equations. We also include here a brief 
discussion of the Leningrad version of the Adler-Kostant-Symes scheme [17] 
which also serves as a justification for our choice of Lax equations. After these 
preliminaries we consider in Sect. 3 several dynamical systems, starting with 
Toda-like systems. We then treat generalized Euler equations on QTLA and their 
integrable versions. We end with a discussion of generalized tops in an external 
field, magneto-hydrodynamics and its integrable version. 

2. Generalities 

2.1. Quantum Tori  Algebras,  g l~ ,  Representa t ions ,  and Subalgebras.  Consider the 
non-commutative associative algebra ~r over ~, generated by two elements 
{u~,u~}, 

U 1 U  2 = o J U 2 U  1 , (2.1) 

where co = e "~'a. Thus ~r = {c,,,,,UTU"2} = ( ~ T ~ }  (ffz = (ml ,m2)eZ)  with 
i 

T,~ = ~ o9~ . . . .  U~ '~ U ~'~. This describes a non-commutative (or quantum) two- 

torus [11]. The following three representations of SgA (A irrational), given in refs. 
[22, 23, 13], respectively, will be used below: 

i m~m2 
= o9 -~ e i " ~  " ~  - t e~mlO+rnzaO~ (2.2) r~ ~ ~ , 

i mira2 
- -  ~ og'~kEk, k+m ~ , (2.3) Z~ ~ ~o9 2 kE~' 

We have defined 

i ei~. ~ (2.4) ~r~=~ 

,~ = 4r~A, co = e i~ . (2.5) 

In all three representations we have 

Tr, T~ = -2 09-~"• . (2.6) 

Multiplication in representations (2.4) is via the star product (cf. below). In the 
following we will refer to (2.2) and (2.4) as vertex and star product representations, 
respectively. Representation (2.3) is the embedding into g l~ ,  i.e. the algebra of all 
two-sided infinite dimensional matrices with only a finite number of non-zero 
diagonals. Eij denotes the infinite-dimensional matrix with value I at position (i, j) 
and 0 everywhere else (i.e. (Eij)kl = 6ikt j t )  obeying 

[Ei j ,  E~l] = 6 j k E i l  - -  r  i , j ,  k, l ~ Z  . (2.7) 

Note that T~ in (2.3) is zero everywhere except on the mE th off-diagonal, on which 

elements are different from zero (in fact, up to the factor ~, they are powers of co, all  
A 
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i.e. have absolute value one). Representation (2.2), or, equivalently 1 

i 
- -  - e irn20+mt'~~176 (2.2)' 

T,~= 2 

should be thought of as acting on smooth periodic functions of 0. If we write for 
a general element F = ~a f~  Te, of Lea in the vertex representation 

F = ~fm(0) T " ,  (2.8) 

where T = e ~~ is the shift operator which satisfies 

T " f ( O )  = f ( O  + 2 m ) T  m , (2.9) 

this becomes, expressed in the representation (2.3) 

F = Z Z fm(4rckA)Ek, k+,, .  (2.10) 
m ~ Z  k E Z  

We have thus the embedding of fm(O)T m in gl~ as an m-off-diagonal matrix with 
quasi-periodic dependence along the non-vanishing diagonal: 

fro(O) T m ~ diagm( . . . .  fro( -- 4rcA),f,,(O),fm(4rcA) . . . .  ) .  (2.11) 

This will be relevant when comparing our Lax operators for the local Toda system 
in Sect. 3.1 with the ones of [4]. 

Finally, the (associative) "s tar-product" ,  in (2.4) is defined for any pair (f, g) of 
smooth functions on the torus as 

( f*g) (~P)  : = f g  + ~ ~ ~ . . . .  . . .  ~ . . . .  (~"~ . . . . . .  f)(O'~, . . . . .  g) (2.12) 
n = l  

such that 

(cf. (2.6)). The *-product may also be defined by the formula 

i 2 i  , . 

( f*  g) (O) : -  ~2-23 5 d~o' d~p" e ~  too o t f(O,)g(~,,)  

with 

(2.13) 

(2.14) 

: =  • + •  + • 
r 

This definition extends to the case where f and g are integrable, but not necessarily 
smooth. 

When working with the *-product representation it is useful to note that 

I ~ f *  9 
d~ 

= I ( ~ ) 2 f 9  =: Tr( /g) .  (2.15) 

i 
1 Concerning the Lie algebra, any T~ = + -  e/a~ will do as long as [A1, A 2 ]  = +__ i21 

2 
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Thus, we may take (2.15) as an invariant trace on the associative algebra. In the 
representation (2.2), an invariant trace is (cf. (2.8)) 

( Tr ~ fm(O)e ma~176 := ~fo(O) = I ~ - f F ( O ,  T ) .  (2.16) 
\ m e Z  / 

We now define 5r as the associated Lie-algebra constructed from ~r by the 
standard commutator. ~e~ consists of allfinite linear combinations (over 112) of basis 
elements T~ with commutation relations 

1 
ITs,  T~] = w--Tsin(ZrcA(ffzx~))T~+~ Ae(0, 1). (2.17) 

This is the class of trigonometric Lie algebras introduced in [10]. With reference to 
our discussion of da ,  we will call them Quantum Tori Lie Algebras (QTLA). The 
invariant trace and the two-coycle (cf. below) on ~A correspond, in the language of 
[11] to the canonical trace , ( ~ c a T ~ ) =  c~ and an element of the first cyclic 
cohomology group, respectively. 

The A ~ 0 limit ~0 is analogously defined by 

ETa, T~] = (ffz x fi)T,~+a. (2.18) 

For irrational A, A'e(0,  �88 one can prove [24] that LPA and ~ a ' .  a are non- 
isomorphic. Note that (2.17) and (2.18) are invariant under the transformation 

A e GL(2, Z )  
T" = _+ TA~ (2.19) 

(detA = + 1). 

M 
For rational A = ~- ~eA contains a large ideal (of finite codimension) 

= {~i E ci(Tgn+ N(p~,q~) - T ~ ) , c ~ , e ~ , p ~ , q ~ e Z }  . (2.20) 

For N odd, M, N relative prime integers, dividing out the ideal yields gl(N, ~): 

s "" gl(N, t12). 
R -  

The corresponding basis of gl(N, C) is given by 

iN . . . .  N -  1 
- - - -  . . , T~ = 4riM o 2 g"lh"2, rnl,rn2 = 2 ' ' + -  

where 

with 

i1 ) 
g - ~ -  0) 2 , h =  

. . .  . 

( D N - 1  

'.. 1 ) '  
O/ 

(2.21) 

N - 1  
2 ' (2.22) 

M 

gN = h N = I, hg = ~ogh . (2.23) 



434 J. Hoppe, M. Olshanetsky, and S. Theisen 

In all three cases ((2.17), (2.18), (2.22)) there is an additional one-dimensional ideal 
generated by T~ which, depending on the situation, we will automatically consider 
as factored out, yielding sl(N, C)  in the case of (2.22), or a certain "dense" 
subalgebra of the complexified Lie algebra of deformed symplectic diffeomor- 
phisms of the torus, diffa T z - ~a ,  in the case of (2.17). Note that for the repres- 
entation (2.22) one has 

T~ = - T_r", T* = -- T-m . . . .  , (2.24) 

so that 

sl(N, IR) ~ x*  = - - X - m , , m 2 ,  

su(N, IR) ~ x*  = x - r , ,  

so(N, IR) ~ x*  = x-r,  = - x _ , ,  . . . . .  (2.25) 

when writing an element X of gl(N, fig) as 

X = ~ xr" Tr". (2.26) 
r" 

Both ~a  and Lfo permit nontrivial central extensions ~a  and 5Co [23, 25, 22] by 
means of a vector fi = (al, az)~C 2. Let ~a  = &~ ~c, where c is the central 
element. Then 

1 
[Tr", Ta] = ~ sin(2nA(ff~ x ~)) Tr"+~ + ft. ff~Sr"+~,oc, 

[Tr", c] = [c, c] = 0 ,  (2.27) 

which is also defined for A --* 0. In the star product representation this reads in 
compact form 

d~ (2.28) [f(~9), O(b)] = { f  g},  + e 5 f i ' (V/)g (2n) 2 , 

where {f, g}.  = f . g - g . f  In the vertex representation we find for the choice 
a = (a, 0) 

[F(O, T), G(O, T)] = [F(O, T), G(O, T)]xe, + aTr(GOoF)e  

= ~, (f~(O)gn(O + 2rn) --fro(0 + 2n)g, (O))T "+" 
m , n  

+ a T r ( G O o F ) c ,  (2.29) 

where in the second line we have represented F and G as in (2.8). 
We close this section by pointing out the relation of dA to the algebra of 

magnetic translations in two dimensions, relevant in the discussion of the quantum 
Hall effect (cf. e.g. [26]). Magnetic translations are generated by the mechanical 

momentum P i -  , where pl = 0~ is the canonical momentum and As the 
z 

vector potential. The generators of finite translations T~ e~.( ~ ie. = -~" ) satisfy 
B 

T~I T~2 = e-i%(~1 • ~2)T~, +~2, where B = V x .~ is a uniform perpendicular magnetic 
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field and ~b = hc the flux quantum. For 71 and 72 linearly independent, T~, and 
e 

T~ generate a two-dimensional lattice and one finds that for "rational" values of 
the B-field there are closed paths for which the accumulated phase under magnetic 
translations vanishes. 

2.2. Automorphisms and Gradinos of~a. One of the most apparent features of the 
Lie algebras Lea (as well as their underlying associative algebras, (2.6), which are 
projective representations of the abelian group 712 [22, 12]) is their 71 x 71 grading. 
In their embedding into glow, (2.3), or, when partially completing in one direction 
(e.g. with respect to ml), one of the 71-gradings is hidden, while the other is stressed 
(in (2.3) the grading with respect to the non-zero off-diagonal is manifest, while in 
the representation (2.2) we have - cf. (2.8) - [fm Tin, On T"] = h,, +, r"+").  

For some of the dynamical systems constructed in Chapter three, 712 gradings 
of L~aa will be essential. With this motivation we will discuss them in some detail, 
They naturally result from invohtive automorphisms of L~aA. So let 

have the properties 

~r 2 = id, 

Then Lea = ~ (~ Le~ with 

a: LeA ~ ~A (2.30) 

[a(x) ,a(y)]  = a(Ex, y ] ) .  (2.31) 

 (LeA = +-- Le, , ] C 

[A~ .W a ] c Le~, [5r LPA ] c Ar (2.32) 

Observing (2.19), it immediately follows that there exist involutive automorphisms 
of LeA, 

A ~ GL(2, Z) 
a(Tr,) := + TAm A 2 = 1 ' (2.33) 

where the + sign in (2.33) corresponds to having det A = _ 1. 
A and B define equivalent automorphisms iff A and B are conjugate to each 

other in GL(2, Z) and one would like to know a complete set of non-conjugate 
matrices A ~ GL(2, 7l), A z = 1. It is given by [27] 

(~  ~) ,  ( - ~  +01), (--10 _ ~ ) ,  (~  10). (2.34, 

The corresponding invohtive automorphisms will be referred to as bo, 81, b2, 83 
respectively. In particular 

81(Ta) := - T-m1,,,2 , 

82(T,~) := + T_,~. (2.35) 

Comparing with (2.24), one finds that for the finite-dimensional case, 81 corres- 
ponds to complex conjugation, and 82 to minus hermitian conjugation. This also 
holds for the infinite dimensional representations (2.2) and (2.3), as those also 
satisfy (2.24). As we defined ~a  (as well as gl(N)) as Lie algebras over IE, it is of 
course necessary to supplement (2.35) by a prescription of how to act on the 
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complex-valued coefficients. We need 

in order to justly call ol and 0-2 complex conjugation and minus hermitian 
conjugation, respectively. Care is needed in the representation (2.4), where ol 
corresponds to complex conjugation accompanied by q~2 ~ -~%. 

When writing elements F = ~ f ~  T,~ (in the representation (2.2)) in the form 

F =  ~ fm(O)Tm-{ - L T-~f-,,,(O), T=eZ~176 (2.37) 
m>0 m>0 

one can easily check, using 

i ~ f  (.o~lmlneinO fro(O) = ~ ~ j , , , ,  (2.38) 

that o'1 and 0- 2 indeed act properly: 

a l (F)=F*= Z f*(O) Tin+ Z T-mf*-m(O)' 
m>O m>O 

o2(F) = - F  t = -  ~ T-" f*(O)-  ~ f*-m(O)T". (2.39) 
m>0 m>0 

We will denote the corresponding invariant subalgebras of &aa by 5el and ~A U (R 
standing for "real" and U for unitary, meaning antihermitian for the generators of 
the algebra): 

0-1(X) = X, ~/X E ~ ,  ~ ,  0-2(X) = X, VX ~: , ~ A  U �9 (2.40) 

We also define ~sa~ = {xl0-1(x) = 0-2(x) = x}. Subalgebras of this type have pre- 
viously been considered in [13, 28, 12 and 29]. There exist, of course, many other 
involutive automorphisms, such as 

) c a T _ a ,  (2.41) a(cr~Tr,) = (-- ~ * 

( - )~a+~  = ( - ) ~ + ~  Vff~, fi~7/2 . (2.42) 

Finally, it seems worth mentioning yet another subalgebra of 5~ which, in the 
vertex representation, is obtained by demanding 

0 
f+,,(O)=O at ~ = - 1 , - 2  . . . . .  - m  ( m > 0 )  (2.43) 

in (2.37). In order to check that this is consistent with the Lie structure (and the 
associative structure) one uses (2.9). 

2.3. Coadjoint Action and Orbits. Let us introduce the dual space ~ ]  and the 
coadjoint action. 

In the star-product representation LP* is the space of linear functionals on the 
space of trigonometric polynomials Lea -- { f(~b)} or other smooth functions on the 
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torus. We can define them as integrals using the formalism of distributions 

5~* = {g[(g , f )  finite} Vfe..~CPa , (2.44) 

where we have defined the pairing 

( g , f )  = T r ( g * f ) .  (2.45) 

~ *  contains singular functions as the delta-function or its derivatives and therefore 

In the vertex representation s is the space of functionals on a sequence (fro), 
where fm= f,.(O) is a trigonometric polynomial or a smooth function on the circle: 

~ a * = {  (gin) rn~Z ~1 2'~, dOf,,g* finite} . (2.46) 

Note that if we write F e &~ a as in (2.8) and likewise for G �9 L,e*, the dual space is 
defined via the pairing (G, F )  = Tr(FG*). The part of LP* corresponding to the 
central charge is a one-dimensional spaceand we can define in the star-product 
representation, for (f, C)�9 and (g, d)�9163 '~ 

((g, d), ( f  c ) )  = Tr(g*f)  + cd*, (2.47) 

and likewise in the vertex representation, with (F, c) �9 s and (G, d) �9 # *  

((G, d), (F, c))  = Tr(FG*) + cd*. (2.48) 

The coadjoint action of f � 9  ~A in the *-product representation is then 

ad~(g, c) = ( -  {f*,  g},  + e(fi*. ~)f*,  0). (2.49) 

If 

g = Z g~ Tra, f = ~J~ T~ (2.50) 

with T~ as given in Eq. (2.4), then 

2 ' 2  ) ) ad~(g,c)=(2-sm(-(fnxfi ) f%o~,T~+~-ic~(~*Fn)f%Ta, O (2.51) 
\e,,~2 \2  

In the vertex representation we get for the choice ~ = (1, 0) for the coadjoint action 

ad~(G, c) = ([F*, G]~ A + cSoF*, 0). (2.52) 

Representing F and G as in (2.8), we obtain 

ad~(G, c ) =  ( %  [f*-,,(O + m2)9,(0 + m2) 

--  g . (O)f*- , . (O + (m + n)2) ]  T "+" 

+ c ~ 8of*-m(O + m2)T m, O]. (2.53) 
m / 

The actions in both spaces are well defined because of the definitions of &~ 
and L#*. 

Thus the orbits are parametrized by pairs (g, c) ( g e ~ * ,  celR), where g is 
defined up to the "gauge" transformations (2.49)-(2.53). 
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If c = 0, then for a subspace in La* we can define invariant functionals 
(Casimirs) 

I,  = Tr(g") ,  (2.54) 

where in the star-product representation the n th power is with respect to , .  
The equations of motion for general rigid tops have the standard form of 

Hamilton• equations on coadjoint orbits. The Poisson structure on an orbit is 
induced by the standard Lie brackets in the space of functions on f#*. It takes the 
form of a coadjoint action 

6H 
Ot ~ = ad*nY, f~f#*,  - -  = g r a d H 6 f # .  (2.55) 

To describe integrable cases, or, more precisely, to construct integrals of motion, 
we use the formalism of Lie-Poisson structures in a similar fashion as it was 
developed in [17] for finite dimensional algebras. 

Let us briefly recall this construction. For a Lie algebra f# consider the twisted 
loop algebra 

cg(f#, ~) = ~ f#~#J, (2.56) 
J 

where a is an automorphism and f#j are homogeneous subspaces (eigenspaces of a). 
Let 

~+(~ ,~ )  = Y. ~ J ,  ~ _ ( ~ , ~ ) =  ~ ~ J ,  (2.57) 
j>__o j<o 

and P• the projection operators onto ~• parallel to the complementary subalg- 
ebra. The Lie-Poisson structure is (R = P+ - P_)  

i 1 
- + [ r  = - 

~_+ = P_+r r/_+ = P e r / .  (2.58) 

We can continue the pairing from f9 to cg(f#, a): 

<X, Y>v(e,,)= Res,=o# -1 <X(#), Y ( # ) > e d # .  (2.59) 

We then have with respect to (2.57), 

~*((~, tr) = cd* (c~, a) + cg, ((~, a ) ,  (2.60) 

Y. j , 
j_-<O j > 0  

The bracket (2.58) induces R-Poisson brackets on cd*(2, a). Invariant polynomials 
on cg.(f#, or) are 

q9 tk) =-- R e s u = o ( # - " I k ( # ' n ~ ( # ) ) ) d # ,  m, n ~  �9 (2.61) m,n 

f (#)~cg. ( f f ,  (r) and Ik is a Casimir on the original algebra f~*. 
The construction of integrable systems is now based on the following two 

important facts. (i) The q~,,,, are in involution with respect to the R-bracket on 
cg.(2, a) and (ii) if H has the form (2.61), then the equation of motion with respect 
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to the R-bracket has the form 

~ / =  ad~tf = q - ad*~f ,  (2.62) 

6H 6H 
where M = R2- ~ ,  M+ = +_P• ~ -  and ad* is the standard coadjoint action. 

These two statements allow us to construct integrable Hamiltonians. 
In the following we will put our equations in the form (2.62). The integrals of 

motion are defined by (2.61). 

3. Dynamical Systems 

3.1. Toda Chain. We consider the central extension (~(~A) of the loop algebra 
with values in s Let u(z)~ cg(Z2~ 

u(z): S 1 ~ s (3.1) 
with 

u(z) = (F(z),  c(z)),  F(z)  ~ ~ a  , 

c(z) central charge in L~a. 

The commutator of two elements in ff(LPa) is 

[(u(z), kl), (v(z), k2)]~(~, = ([u(z), v(z) ]~ ,  k sl~ dz Tr.~( ~gzu(z)v(z)) ) , (3.2) 

where Trz( , )  is the invariant trace in ~e. In the vertex representation the commuta- 
tor of two elements off, & ~ cr163 

off = (u(z), kl) = (F(z, O, T), el(z), kl ) ,  

= (v(z), k2) = (G(z, O, T), Cz(Z), k2) (3.3) 
is thus 

dTdO G [off, ~ ] ~ )  = [V(z, o, T), ~(z, O, T)]~ A, ~ ~ -  ~ (z, 0, T)~oF(Z, O, T), 

iarao ) -~- ~ dzG(z, 0, T)0zF(Z, 0, T) . (3.4) 

The invariant form on cg(s is 

dT dO 
(of f ,~)~(~)  = ~dz--~-~F*G + ~dzc*(z)c2(z) + k~k2 (3.5) 

which allows us to define the dual algebra cg*(L~A). We then find for the coadjoint 
action on (O(z, O, T), c(z), k) ~cr163 

ad~(~.0, r)(O(z, O, T), c(z), k) = ([Ft(z ,  0, T), ~b(z, 0, T)]~a 
+ (c(z)~o + kC~z)F*(z, O, T), O, 0). (3.6) 

The Lax pair with spectral parameter # and the corresponding equation of motion 
for the Toda system can now be constructed: 

OiL = ad~tL (3.7) 
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L = q,(z, 0) + ~ T ~ * ( - - ~ ) ,  

M *  = ~ -  ~ V ( z ,  0 ) r - ~  ~ ( ~ ) ,  

o r  

O,L - (c(z)t~o + k O z ) M *  + [L ,  M t ]  = 0 .  

Separating the O(#-1)  and O(# ~ terms, we get the equations 

(c(z)Oo + kOz)F(z ,  O) = (~9(z, O) - ~ ( z ,  0 - 2))F(z, 0 ) ,  

O,~O(z, O) = F ( z ,  O) - F ( z ,  0 + 2) .  (3.8) 

The first equation is solved by 

F ( z ,  O) = e ~(~'~176 ~) , 

~ ( z ,  O) = (c(z)Oo + kO~)q(z ,  0 ) ,  (3.9) 

and the latter leads to the most general equation of Toda type: 

O,(c(z)Oo + k ~ ) t p ( z ,  O) = e ~(z '~176 - e ~(z'~176 . (3.10) 

This equation has two regimes. For  k = 0 it is the non-local two-dimensional Toda 
system first described in [5] where it was derived via reduction and a dressing 
procedure was proposed, thus proving its integrability. In the approach taken here, 
the non-locality is due to the central charge of ~r For k ~: 0 one is lead to the local 
two-dimensional Toda system (cf. e.g. [30, 6]). Indeed, if we perform the change of 
variable with non-singular Jacobian 

0 = i c ( z ' ) d z '  - kO , 
0 

z = z , (3.11) 

and define c)(z, '9) = q~(z, 0), Eq. (3.10) becomes 

kOtOz~(Z, ,9) = e '~(z'o)-c~176 - e ~(z'o-k't)-r176176 (3.12) 

This is equivalent to Eq. (3.10) with c(z)  = 0 which is local. Therefore, as long as the 
central charge k of the loop algebra cg(~a) is non-vanishing, the central charge of 
5~ is irrelevant for the Toda system. 

Letting q~,, = tp( - 2m), me7Z, we see that (3.10) (with c(z)  = 0, k = 1) implies 
the set of coupled equations 

~,~=(Pm = e ~ ' -~  . . . .  e ~m-l-~m, me7Z , (3.13) 

which is the first equation in the Ueno-Takasaki  hierarchy [4, 31]. 2 However, 
whereas in [4] the dependence on m is completely arbitrary, the solutions of (3.13) 
are strongly constrained if they are to originate from a smooth periodic function 
(satisfying (3.10)). 

Maybe a general remark about 5r and our representations is in place here. We 
have always used T as e ~~176 and an acting on the linear space 1/1 of trigonometric 

2 It is straightforward to generalize our Lax pair along the lines of ref. [4] to generate the whole 
hierarchy 
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polynomials or the space V1 of.sm0oth (real analytic) functions. As the basic 
relation 

Tf(O) =f(O + 2)T (3.14) 

can be realized between integral operators (acting on a much larger space 
V ~ 1/1 ~ V1, including distributions)with kernels 

T(O, 0') = a(O + ~ - 0 ' ) ,  

f(O, 0') = f(O)3(O - 0'), (3.15) 

one could relax the smoothness condition in (3.10) (thus changing the constraints 
on the solutions of (3.13) as well). T and f(O), when acting on the veetorspace 
V2 c V, defined as the linear span of Era = 6(0 + 2m), me~, take the matrix form 

( T ) i j  = 61, j - 1  ( f ( O ) ) i j  = f ( - - j 2 ) b i j  , (3.16) 
which makes contact with the matrix representation (2.3). With this choice, the Lax 
operators coincide with the ones in [4]. On V1, T is diagonal and (f(O)) off- 
diagonal (yet commuting with any other (g(O)), as it should). 

Let us now make some conjectural remarks concerning the local Toda system. 
Whereas the non-local Toda system was just integrable, the local case seems to be 
conformal as it is a N ~ ~ limit of the non-periodic glN Toda system which is 
conformal. Equation (3.10) (with c(z) = 0 and k = 1) can be derived from the action 

S = ~ dO ~ dtdz ( ~ ~tq~t3zCp + e ~(~ ~)-~(~ ) (3.17) 

or, Eq. (3.13) from the action 

S = ~ dzdt(~ dt~P'Oz~~ + ~ e~"~~ (3.18) 

where ~ = {~0m} and fi~ = ( . . .  0, 1, - 1, 0 . . . .  ) with non-vanishing entries only 
in the mth and (m + 1) ~t positions. Expressions (3.17) and (3.18) resemble the 
Liouville action. The energy-momentum tensor is traceless and the non-vanishing 
components are T, and T= with 

1 
T~ = ~ 0~(~" ~ - ~ ~m" (~2 (~, (3.19) 

m 

where ~,, = ( . . . .  1, 1, 0, 0 . . . .  ); the change occurs after the mth entry. In the 
continuum picture one finds 

1 2~z dO 1 dO 2 
T~, = ~ ! ~ O,~0(0)O,(p(0) + ~ ~ ~ 00~ q~(0). (3.20) 

In analogy with the W~r symmetry of the glN Toda system, we expect W( oo ) 
symmetry for the system discussed here and that it describes W(oo) gravity. 

M 
The arguments given above only hold for A =4-~n irrational. For 2A = ~  

(M, N relative prime), ~0U = r i.e. only N fields couple and we are lead to the 
periodic Toda chain, which is integrable, but not conformal. For example, if 
2A=�89  for each 0e[0,21r] only two fields couple, namely q~a =q~(0) and 
q22 = ~ ( 0  "~ 7~) and we arrive at the sinh-Gordon equation. 
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3.2. Euler  Top. Consider a subalgebra c# ~ &aa. Let f e ~ *  and fix a linear oper- 
ator d :  f# --* f#*. In what follows f is called angular momentum, d is an inertia 
tensor and co = d - 1 f ~ fr is an angular velocity. The generalized Euler top on f# is 
defined by the equation [19] 

* (3 .21)  dtf  = a d ~ o f  - 

This equation is Hamiltonian with respect to 

1 1 1 
H = ~ (co(g), ~)  = ~ ( d - l ~ ,  f )  = ~ (co, r i c o ) .  (3.22) 

The phase space of this system is an orbit of the coadjoint action which is fixed by 
the Casimirs. In particular, if the central charge c is equal to zero, they have the 
form (2.54). For  f# = so(3), (3.21), (3.22) is the usual Euler top and the three-wave 
interaction equation for SO(3) Kac -Moody  with c ~: 0 [32]. 

In the star-product representation, in accordance with (2.49), Eq. (3.21) takes 
the form (for co = co(0 ) and ~r = {(~)~f#*) 

~,(dco(0)) = - {co*(O), { (0)} ,  + c(fi" 0)co*(O). (3.23) 

Let f# be the algebra of real functions on T 2. In the limit 2--* 0 algebra f# is 
isomorphic to the algebra of non-constant symplectic diffeomorphisms of the torus 
and the star-bracket reduces to the standard Poisson bracket. If we take 

d = 0 2  +02  = A  (3.24) 
r ~2 

and c = 0, Eq. (3.23) is the Euler equation of two-dimensional hydrodynamics 
[33, 19] 

O, ACO = - ( ~ ,  cod~2 A co - ~ ,  ACOO~,CO) . (3.25) 

Here co plays the role of the stream function which defines the velocity field 

v~ = - 0 ~  co, v~ = +O~ co. (3.26) 

Therefore, Eq. (3.23) can be considered as a quantum version of two-dimensional 
hydrodynamics on a torus with 2 playing the role of Planck's constant [35]. 

In Fourier modes Eq. (3.23) takes, in correspondence with (2.51), the form 
(f  = ~f~T,~, co = ~ co~T~, with the reality condition co~ = -co*~)  

2 ~ co~f~_~sin (r~x~) + ic( f i ' ih )cos , .  (3.27) 

Note that for 2--* 0, 

Ot{~ = ~ co~f,~-~(m x fi) + ic(a" i'n)co~ . (3.28) 

For  the hydrodynamical case (3.25) one gets in this limit 

1 
0tco~ = ~ ~ (N - fi)2 (~ x ~)co~_~co~ . (3.29) 

The role of the central charge c in two-dimensional hydrodynamics was discussed 
in [34]. It takes into account the effect of the overall rotation of the system. 
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Let 

f q = o g ( + ~ ,  [ ~ " , s ( ( ] c J ,  [ o ~ f " , ~ ] ~ ,  [ ~ , r  (3.30) 

correspond to the Z2 gradation of some subalgebra f# c ~e a. In accordance with 
the definition of the dual space 

f#* = ~('* + ~ *  (3.31) 

and in accordance with (3.30) we have 

ad*-Jf*  ~ X * ,  a d * ~ *  c ~* ,  ad*~('* c N*, ad*N* ~ ~ * .  (3.32) 

We investigate integrable cases of Eq. (3.21). To this end we put 

E6~f  "*, co(~~ (3.33) 

Consider the Lax representation with spectral parameter # which corresponds to 
the 7z2 gradation (3.30), (3.32), 

L = a # + g o ~ f # * ,  a ~ * ,  

M = b# + o9~C~, b E ~ .  (3.34) 

The Lax equation 

leads to the equations 

OiL = ad~tL (3.35) 

ad* a -- 0 ,  

ata -- ad*a + a d * f ,  

O,g -- a d * f .  (3.36) 

The third equation is the Euler equation (3.21). The first two allow for the 
description of integrable inertia tensors. 

Consider in detail when ~ - ~ql = J t  + ~ with ~1 - 5e~ and J (  ~ 5 ~176 In 
the vertex representation 

~ =  ~ ( f . , ( O ) T " - - T - m f . , ( O ) ) = - f * s J f * ,  
m > O  

0.1= 2 (Oom(O) T i n -  T-me~ = -~ ~ J~/" " (3.37) 
m > 0  

From the first equation in (3.36) it follows that we can choose 

a = a ( O ) = a t ( O ) ~  *, b = b ( 0 ) = b * ( 0 ) s ~ .  (3.38) 

We can also include a central charge in which case ad~t = [M*, J + cOoM ~. Then 
the second equation in (3.36) becomes 

~,a(O) - cOo(b(O) - o9(0)) = [a(0), c0] + [b(0), g ] .  (3.39) 

Consider the simplest case, c = 0, and let Ota = 0. From (3.39) and (3.37) we obtain 

gin(O) = ~m(O)c%(O) , (3.40) 
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~ . ( o )  = 
a(O) - a(O + m2) 

b(O) - b(O + m2)" 

The functions ~0m(0) describe an integrable inertia tensor. They lead to the Hamil- 
tonian 

1 2~ 
H = - ~-~o ~ ~ [ ~km(O)coz(O)dO" (3.41) 

The energy is positive definite if Om(0)> 0. This is, for example, the case if 
a(O) = 1/(b(O)) ~ and b(O) > 0. Then, e.g. for r = 1, 

1 
0m(0) = - 

b(O)b(O + m2) 

The equation of motion is 

0,~.(0) = 

(3.42) 

[4(0 + ,'2,m)com+n(O) -- 4(0 -- ,;~n)com+n(O -- )~n)] 
n > 0  

+ Y. [4(0 - 2 . ( n  - m ) ) c o . - m ( O  - -  , ~ ( n  - -  m ) )  - -  4(0)co.-m(0 + ,~m)] 
? l > m  

+ ~ [4(O)COm-,(O + 2n) - 4(0 + 2 ( m -  n))com-,(0)]. (3.43) 
0 < n < m  

To include the dynamics with respect to 0 it is necessary to take c + 0. Due to (3.39) 
it leads to a dynamical tensor of inertia. Equation (3.43) acquires the additional 
term COocok(O, t) on the right-hand side. 

Let us now consider (3.36) in the star-product representation. Here we take 
~ N2 = X(( + ~ with ~ = 5~ and c f  = 5eSA ~ LPA v consists of purely imaginary 

functions of b, while elements of 5eSA ~ have, in addition, to be antisymmetric under 
q?2 --~ --q)2" To satisfy (3.36)1 we may choose (~, flelR), 

Using 

and 

a = i ~ ( r  

b = ifl(qh). (3.44) 

g(@l) ,e  imp2 = eim~g(@ a - - ~ ) ,  

= i ~ 4,(~ol)sin(rn~o2) ( 4 , e l R ) e ~ * ,  
m > 0  

co = i ~ com(<pl)sin(mq)2)(comelR)eZf, 
m > 0  

(3.36)2 yields, with the additional choice ~?ta = 0, 

~m(~01) = Cm(~01)com(~01) 

(3.45) 

(3.46) 

(3.47) 
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with 

Using this one finds that the Hamiltonian 

1 
o 27 4~"&~ (3.48) 

is positive for qS., > 0. The equation of motion is 

a , ~ , ( 0 1 ) = 2 , > o  co, q)l+~(n+m) ~,+, ~ol+~n 

+ 2 o< .< , .  -- ~(rn - n ) )  ~,._. 

--COn ({,01 Ju~(m--n))~rn-n(~ol--~n)l 
+ 2 . > m  ~ ( n - -  2 

- c o " (  qh 2 +  2"-(n - m))f.-,,(qol + ~ n ) ]  . (3.49) 

Here we have considered the case of vanishing central charge. A central charge is 
easily incorporated; we refer to the comments made above in the context of the 
vertex representation. 

3.3. Rigid Body in an External Field. Let us now look at the situation where the 
decomposition (3.30) N = • + N is also a semidirect sum decomposition. We then 
have 

[W, a f ] c Y ,  E a ~ , N ] c N ,  EN, N ] - - 0 ;  (3.50) 

N* = a f*  + N* and accordingly 

ad*a4 r* c f * ,  a d * N *  c N*, ad~W* = 0, ad*N* c X * .  (3.51) 

Let, as previously, lea( f* .  We introduce the new dynamical field heN*.  The 
equations of motion reflecting the structure (3.50) have the so-called "Kirchhoff 
form" 

8if --- ad*u~ + ad*H h,  
37 a-~ 

0th = ad*uh. (3.52) 
37- 



446 J. Hoppe, M. Olshanetsky, and S. Theisen 

For  finite dimensional algebras there are many applicable Hamiltonian equations 
(3.52). Among them are tops in external fields or rigid bodies in an ideal fluid. In 
many cases these mechanical systems are integrable (see, e.g. the reviews [20, 17]). 
We shall consider some particular Hamiltonians which are generalizations of 
(3.22). 

Let ~f be an operator cd: ~ *  ~ 0~ and 

1 1 
H = ~ (co, f )  + ~ (Cgh, h ) .  (3.53) 

If f# = g, ~ = so(3), ~ = IR 3 and cd = diag(cl, c2, c3), this Hamiltonian describes 
the Clebsch system, namely the motion of a rigid body in an ideal fluid, which is 
completely integrable for certain values of ci. In this case co and f have the same 
meaning as for the Euler top and h s IR 3 is the momentum of the body-fluid system 
in a coordinate system rigidly attached to the body. 

Let us also consider one of the 2E2 graded algebras from Sect. 2.3. The equations 
of motion in the first representation are generalizations of (3.23). For h = h(q3) and, 
as previously, co = co(q3), f = rico(q3), we have 

GE = - {co*, f } ,  - {(Cgh)*, h}.  + c(fi" ~)(co* + (Cgh)*), 

Gh = - {co*, h},  + cfi '~co*. (3.54) 

(Note that ~ can in principle depend on ~.) In Fourier modes this takes the form 
(for d = 2 f~ Ta, co = 2 co~ T~, h = 2 h~ Ta, Cdh = 2 s~ T~), with f, co, h, Cgh real, 

Gf~ (coaf~_~+s~ha_~)sin ~ ( N x f i )  +ic(fi'Fn)(coc,+sc,), 

tVthr" = 2 ~ " c o n h " - n s i n ( ~ ( i h x n ) )  + ~ . (3.55) 

For 2 ~ 0 ,  c = 0 Eqs. (3.54), (3.55) coincide with the equations of magneto- 
hydrodynamics on T 2 for an ideal fluid with very high conductivity [36]. In this 
case sr = curl and cg __ curl and H(q3) corresponds to the component of the 
magnetic field normal to T 2. 

Let us now consider integrable examples. Let 

1 
H = ~ (co, f )  + ( b , h ) ,  (3.56) 

where h e ~ *  is a dynamical field whereas b is non-dynamical. Then the equations 
of motion take the form 

aGof + ad*h ,  ~?tf = * 

~th * = ad~h.  (3.57) 

In the finite-dimensional situation they correspond to a top in a gravitational field. 
Following the general recipe we introduce the Lax pair 

L = a # + f + h / ~  -1 ~ f # * ( # , ~ ) ,  

M = b# + co c if(#, tr). (3.58) 
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The Lax equations lead to the following system 

ad* a = 0 ,  

63to * =ado ,  a + ad*to,  

~tto * ad*h , = ado, to + 

~th * = ado, h .  (3.59) 

The first two equations coincide with the constraints for the Euler top (first two 
equat ions in (3.36)). We now write down Eqs. (3.57) in the vertex representation for 
f#l = ~ �9 R which generalize (3.43). For  arbi t rary a, b which satisfy (3.59)1, 2, 
a = a(O, t), b = b(O), 

t ~  ~ [ ~ ( 0 ) T  m - T - m ~ , ( O ) ] + c c ,  
m > O  

CO= ~ [O)m(O)T m -  T-m(.Om(0)], 
m > O  

h = Y~ E h d O ) T  m + T - ' % d O ) ]  + ho(O), (3.60) 
m > O  

and 

a , ~  -- 2 r~(0 4- ~.rrt)COm+n(O ) -- ~ ( 0  --  2n)fOm+n(O -- )~n)] 
n > 0  

+ ~ [~(0  -- 2(n - m))O)n_m(O -- ~.(n -- m) )  --  ~(O)60n_m(O 4- 2m)] 
n > m  

+ Y [4(e)~m_,,(O + ~n) - 4(0 + ~(m - n ) ) ~ - d e ) ]  + eae~m(e) 
n < m  

+ Eb(e) - b(e + ,~m) ]hde) ,  

3,h, ,  = - ~ [hn(O + 2m)COm+,(0) - h~(O - 2n)o)m+,(0 - 2n)] 
n > 0  

+ ~ [h , (O - 2(n - m))og , -m(O - 2(n - m)) - h,(O)o)~_m(O + 2m)] 
n > m  

4- ~ [h , (O)com_, (O + ).n) - h~(O 4- 2 ( m  - n))e)m-,(0)]  4- COoO)m(O) . 
n < t a  

(3.61) 
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