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We review recent advances towards the computation of string couplings. Duality sym- 
metry~ mirror symmetry, Picard-Fuchs equations, etc. are some of the tools. 

One of the main topics of this conference was the matrix model approach to non-critical strings. There 
the outstanding open problem is to proceed above c = 1. Here we want to review some recent progress in 
the 'old-fashioned' formulation of critical string theory with (c, ~) = (15, 26) (in the case of the heterotic 
string). Since the description of the space-time degrees of freedom only uses up (6, 4) units of the central 
charge, one uses the remaining (9, 22) to describe internal degrees of freedom (gauge symmetries). We 
will not discuss any of the conditions which have to be imposed on the string vacua, such as absence of 
tachyons, modular invariance, etc. In the class of models we will mainly be concerned with, namely Calabi- 
Yan compactifications [1], they are all satisfied. We will rather address the problem of how to close the 
gap between the formal description and classification of string vacua and their possible role in a realistic 
description of particle physics. Even if one finds a model with the desired particle content and gauge 
symmetry, one is still confronted with the problem of computing the couplings, which determine masses, 
mixing angles, patterns of symmetry breaking etc. These couplings will depend on the moduli of the 
string model, which, in the conformal field theory language, correspond to the exactly marginal operators, 
or, in the Calabi-Yau context, to the harmonic (1,1) and (2,1) forms, which describe deformations of the 
Kghler class and the complex structure, respectively. Indeed, if one varies the metric gij ( i ,]  = 1, 2, 3) 
on the Calabi-Yau space, preserving Ricci flatness, one finds that iggij (corresponding to variations of the 

Kghler class) are (real) components of harmonic (1,1) forms, whereas f~ij l~gi~ (corresponding to variations 
of the complex structure) are (complex) components of harmonic (2,1) forms. Here f~ijk = gki ij is the 
unique (up to a scale) eovariantly constant three form which is always present. Recall that h3,0 = 1 and 
hi,0 = h2,0 = 0 on Ricci flat Calabi-Yau three-folds. (htj  denotes the number of harmonic ( i , j )  forms.) 
From its equation of motion one finds that the internal components of the anti-symmetric tensor field also 
have to correspond to harmonic forms. Since there are no harmonic (2, 0) forms, we can take the mixed 
components B~3 to complexify the components of the harmonic (1,1) forms. In (2,2) compactifications 
which are the ones which have been most intensively studied to date, the two types of moduli are related 
by world sheet supersymmetry to the matter  fields, which transform as 27 and 27 of E6. In the conformal 
field theory language the moduli correspond to truely marginal operators. In a low energy effective field 
theory description, which includes all the light states, but having integrated out all heavy (> mplanck) 
string modes, the moduli appear as massless neutral scalar fields with perturbatively vanishing potential. 
Thus, the strength of the couplings, such as the Yukawa couplings, which do depend on the moduli, are 
undetermined. Only if the vacuum expectation value of the moduli fields is fixed by a non-perturbative 
potential do the couplings take fixed values, which could then be compared with experiment. To get the 
physical couplings one also needs to determine the K•hler metric for all the fields involved in order to 
normalize them properly. 

Generic string models are believed to possess duality symmetry [2], which is a discrete symmetry on 
moduli space that leaves the spectrum as well as the interactions invariant and whose origin is tied to the 
fact that strings are one-dimensional extended objects. This symmetry has been explicitly found in simple 
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models, such as the compactification on tori and their orbifolds [3], but more recently for some simple 
Calabi-Yau compactifications [4-6]. It is a generalization of the R -+ 1/R symmetry of the bosonic string 
compactified on S 1 . 

On the effective field theory level this string specific symmetry is manifest insofar as the Lagrangian 
must be invariant [7]. This has the important consequence that the moduli dependent couplings must have 
definite transformation properties under transformations of the duality group. For the simplest Case where 
the duality group is just the modular group SL(2, Z), they are modular forms. A possible non-perturbative 
potential for the moduli fields must also respect this symmetry. 

Let us illustrate this on a simple model. Since we are dealing with string theories with N = I 
space-time supersymmetry, the low-energy effective action will be a K~ihler sigma model. Consider the 
case with one field only whose Kghler potential is K = -31og(t + ~. Let us assume (as is the case in 
simple orbifold compactifications) that t is the modulus field whose vacuum expectation value determies 
the size of the six-dimensional compact space, i.e. t = R 2 + ib where R measures the size of the internal 
manifold in units of x/~ 7 and b, whose presence is required by N = 1 space4ime supersymmetry (t must 
be a chiral superfield) the internal axiom This vacuum expectation is however undetermined as there is no 
potential for t (it is a modulus). The supergravity action, which is completely determined by the Kghter 

a t ~ i b  potential, is invariant under the continuous SL(2; R) isometries of the K~ihler metric, i.e. under t -+ ict§ 
with a d -  bc • O. The invariance is broken by adding a (non-perturbatively generated) superpotential 
W(t) for the field t. The matter part of the supergravity action is now described by a single real function 
G(t, t~ = K( t ,  t-) + log W(t)  + log l~-(t) [8]. Looking at the new terms in the action which arise from the 
addition of the superpotential (e.g. the gravitino mass term), one finds that the action is only invariant 
under those transformations t --+ f ( t )  that leave G(t, t-) invariant. It thus follows that any non?trivial 
superpotential will break the continuous SL(2; R) symmetry. This is all right as long as we can choose a 
superpotential such that the action has a residual SL(2; Z) symmetry which reflects the stringy duality 
symmetry. One thus needs that G is a modular invariant functions. With K as given above , this entails 
that W(t)  transforms as W(t)  --~ ei~(ict + d)-a W(t) ,  where the phase may depend on the (real) parameters 
of the transformation, but not on t. We have thus found that the superpotential for the modulus field 
must be a modular function of weight - 3  (possibly with a non-trivial multiplier system (the phase)). Such 
a function is furnished by q(t) -6, where rl(t) is the Dedekind function. (This solution is not unique, since 
one may always multiply by a function of the modular invariant j(t).) One now takes t he  expression for 
G and computes the scalar potential. For the simple case described here, one finds that it has a minimum 
in the fundamental region for R ,-, O(1), i.e. the compactification is stable. If we now add charged matter 
fields, we have to modify the K~hler potential to include them. Let us denote the charged mat ter  field 
by A and include it in the K/s potential in the following form: K - log { (~ + ~3 _ A A ( t +  t.') }. 
(This is the lowest order appearance of the charged matter fields in the twisted sector of simple orbifold 
compactifications [9, 10].) For the Ks potential to be invariant ( u p t o  a Ks transformation), we 
need to require the following transformation properties for the matter  fields: A --~ ~ Consequenttyl t i c t + a  ) . : 

the Yukawa coupling, which is the term in the superpotential cubic in A, must be, up to a phase, a modular 
function of weight +3, e.g. rl(t) a. (This is again not unique but the arbitrariness may be fixed by going to 
special points in moduli space where a simple formulation of the underlying string theory, e~g. in terms 
of free fields, is valid and the couplings can be computed.) Its value at the minimum of the potential for 
the field t determines the strength of the Yukawa coupling. 

The above program has been carried through for simple orbifold compactifications only [10]. For 
general string eompaetifications one does not know the duality group and in the few cases where :it has 
been determined, functions with definite weight are generally not known. Below we wii1 discuss a w a y  
of determining the duality group for simple Calabi-Yau eompactifications from the monodromy of the 
solutions to the corresponding Piccard-Fuchs equations, which are the differential equations satisfied by 
the periods of the Calabi-Yau manifold as functions of the moduli. 

A.bove we have already mentioned the two different kinds of moduli and that they appear as massless 
scalar fields with vanishing potential in the low energy N = 1 supersymmetric effective action. Their 
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Kghler metric is the Zamolodchikov metric on the space of conformal field theories parametrized by the 
moduli. It is given by the two-point function of the corresponding truely marginal operators. Using 
superconformal Ward identities it was shown in [9] that the moduli manifold has the direct product 
structure 3d = Adh~,t x .Mh2,~ where Adhi,~ are Ks manifolds with dimension hi, j .  This result was 
first obtained in [11] using N = 2 space-time supersymmetry via the link between heterotic and type II 
theories; i.e. that  the same (2,2) superconformal field theory with central charge (c, g) = (9, 9) could have 
been used to compactify the type II rather than the heterotic string with the former leading to N = 2 
space-time supersymmetry. (Recall that for the heterotic string the remainder of (0, 13) units of central 
charge is used for the Es x SO(10) gauge sector where the SO(10) factor combines with the U(1) current 
of the left moving N --- 2 SCA to E6.) 

What will be important in the following is the fact that the moduli metric is blind as to which theory 
one is compactifying and thus has to satisfy also in the heterotie case the additional constraints which 
come from the second space-time supersymmetry in type II compactifications. 

The constraints amount to the fact that in a special coordinate system (called special gauge) the 
entire geometry of the Calabi-Yau moduli space is encoded in two holomorphic functions of the moduli 
fields, fi-(1,1) and ~(2,1), where the subscript indicates that there is one function for each type of moduli 
[12]. ~ is called the prepotential in terms of which the Kghler potential is given by 

[ - _ ] K = - l n ]  7 with l T = i  , (1) 

where Yi = O~-/Ot  i and t i, i = 1 , . . . ,  h1,1, h2,1 are the moduli fields. The Yukawa couplings are simply 

9 3 ~ 

g i j k  - - - - O t i ~ J O t k  ~" �9 

The Riemann tensor on moduli space is then 

2 K  , " ~ r n f i  
Ri jk t  = G i j G k i  -[- GiTGkj  - e I'r , 

where Gi j  - ~ K is the Kghler metric on moduli space. One may introduce homogeneous coordinates 
- -  OPOt~ 

on moduli space in terms of which the prepotentials are homogeneous functions of degree two (cf. below). 
There is, of course, one set of above expressions for each factor of moduli space corresponding to 5c0,1) 

and ~(2,1). K/ihler manifolds with these properties are called special. Note that above expressions are not 
covariant and only true in the special gauge. For the covariant formulation, see [13, 14]. 

As expected, these constraints on the Kh~hler structure are inherited from the Ward-identities of the 
underlying (2,2) super-conformal algebra [9]. 

We have seen that the Yukawa couplings are given by the third derivatives of the prepotentials with 
respect to the moduli. This entails that they do not mix the two sets of moduli and their corresponding 
matter fields; i.e. the Yukawa couplings of the 2-7~s of E6 only depend on the Kghler moduli and the 
couplings of the 27% depend only on the complex structure moduli. Whereas the former acquire contri- 
butions from world-sheet instantons, the latter do not [15] and are thus in general easier to compute. In 
fact, the 273 Yukawa couplings can be evaluated exactly at the a-model tree level or in the point field 
theory limit. The absence of (perturbative and non-perturbative) a-model corrections is due to the fact 
that the a-model expansion parameter a t~R2  depends on one of the (1,1) moduli which, as noted above, 
does not mix with the (2,1) moduli. 

Let us now connect the above discussion with the cohomology of the Calabi-Yau space M [16, 17]. Let 
O~a and fib (a, b = 0 , . . . ,  h2,1) be an integral basis of generators of H 3 ( M ,  Z), dual to a canonical homology 
basis ( A  ~, Bb )  for H a ( M ,  Z) with intersection numbers A ~ �9 A b = B~ �9 Bb = O, A ~ �9 Bb = 5~. Then 

b a 
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with all o ther  pair ings vanishing. A complex s t ructure  on M is now fixed by choosing a par t icular  3-t?orm 
as the holomorphic  (3,0) form, which we will denote by fl. It may be expanded  in the above basis of 
H a ( M , Z )  as a = z~ - 7 o ~  ~ where z" = fAo a ,  J:o = f~o a are caned the  periods of rio As shown 
in [18] the  z ~ are complex projective coordinates for the complex s t ructure  modul i  space, i.e. we have 
~'a = ~ , ( z ) .  Considering now tha t  under  a change of complex s t ructure  ft changes as [19] oa = e~afl+Ga 
where G,  are (2,1) forms and ha is independent  of the  coordinates of M it follows that  f flA ~ = 0. USing 

1 0 f z b ~ t  "~ O-:P 1 a 
- _ = S o ( Z ) ,  the expression for fl given above, we conclude tha t  Dra = 2 0~  k b), or ~'a 0~ wi th  

~() ,z)  = ,k29C(z). The  (2, 1) forms in the variation of fl also enter  the expression for the  metr ic  on 
moduli  space which can be shown be shown to be [20] G ~  - - f Ga A G ~ / f  f t  a (1 and can be wri t ten 
as Gab -- - c G ~  l n Y  with Y = - i  f f~ A f~ = - i ( z ~ a  - z ~ a ) .  If we now t ransform to inhomogeneous  
coordinates t ~ = z~  ~ = (1, t i) ,  i = 1 , . . .  ,h2,1 (in a pa tch  where z ~ r 0) we find tha t  ~ ( z )  = (ZO)2~(t) 

~ 3  

and Y = Iz~ with Y as given in Eq.(1). The  Yukawa couplings are t hen  ~ijk - o~ozJOz~ ~1~=~ = 
~ - 0, we find tha t  under  f f t h  ~ ~  z 0 = l  . Since it follows from the homogenei ty  of 9 r tha t  f fl A --ozoo~b -- 

a change of coordinates t i --+ ti(t) the  Yukawa couplings t ransform homogeneously.  

In this discussion the  choice of basis for Ha(M, Z) has not been unique. In fact, any B~ ] = 

(0 '0) S Bb wi th  S an integer mat r ix  tha t  leaves J = - 1  invariant ~ (1 = l(h2,~+t)x(h2,~+l)) wiil 

lead to a canonical  basis. If we write S in block form as S = ( a  b'~ c d /  then  the  basis of H a ( M , Z )  
k 

transforms as o~' " Looking at the decomposi t ion of fl = (z,c~S)J \~ c~ fl~j we find tha t  

z' = z Under  these t ransformat ions  Y = -i(z,~D~)J \-O--Y) is also invariant,  
(ore)' om 

however not  in general the prepotent ia l  9 c. Those Sp(2h2,1 + 2, Z) t ransformat ions  which act on the  
homogeneous  coordinates on modul i  space as symmetr ies ,  i.e. for which 7 = 5c, are referred to as dual i ty 
t ransformat ions  [21]. 

So far we have only discussed the (2, 1) forms. An analogous discussion for the (1,1) forms in t e rm 
of a basis of H2(M, Z) is also possible [16,17]. However as we have no ted  above, the point  fietd theory 
results obtainable  in this way are only a small part  of the story, since they will get corrected per turbat ive ly  
and by instantons.  It is known [16,17] tha t  prior to receiving q u a n t u m  corrections the prepotent ia l  ~0 

~ 1 for the (1,1) modul i  space takes the form ~0 = -g~ jk t~ t  jtk, where t ~ (i = 1 , . . . ,  h~_) are now the 
( inhomogeneous)  coordinates  on (1,1) modul i  space and ~iy~ are integral intersection matr ices  of (1,1) 
forms ei  which fo rm a basis of H~(M, Z) and in terms of which we expand  B + iJ  = tie4 where J is the 
Kghler form on M and B the  an t i symmetr ic  tensor field. One can int roduce homogeneous  coordinates  a~ ~ 
with t ~ = ~_2_= - (1, ti), (a 0,. , hs,~) in terms of which 9r(w) = ( c o ~  is homogeneous  of degree two. 

Due to a perturbative non-renormalization theorem for the Yukawa couplings [22] the complete ex- 
1 eCijktitJtk + �89 _~ bit i + c §  O(e =t) where pression for the (1,1) prepotent ia l  must  of the form ~ = - g  

the polynomial  par t  is per turba t ive  and the non-polynomial  part  due to ins tan ton  corrections which are, 
except for simple torus compactifications,  hopelessly difficult to compute  directly. One has  to th ink  of 
alternative ways to get at the full prepotent ia l  (and thus the Yukawa couplings and the  Ks metric) 
for the (1,1) sector. This is where mirror  symmetry,  to be discussed next,  enters the  stage. 

On the  conformal  field theory level the 27~s and 2-7~s of E6, and by world-sheet supe r symmet ry  the  two 
types of modul i ,  can be simply in terchanged by flipping the relative sign of the  lef t  and  right U(1) charges 
of the (2,2) superconformal  algebra [23]. On the geometrical  level this corresponds t o  an interchange of 
the Hodge numbers  hl,~ and h~,~ and thus to a change of sign of the Euler  number .  This  so called mirror  
map  relates topologically dist inct  Calabi-Yau spaces. The  mirror  hypothesis  s ta tes  t ha t  the  prepotent ia ls  
for the  different types of modul i  are interchanged on the manifold and its mirror.  Mirror symmet ry  thus 

2 This  means  tha t  s T J s  = J = S J S  T, i.e. S C Sp(2h2,1 + 2; Z). 
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allows one to get the instanton corrected couplings for the (1,1) forms on a given Calabi-Yau manifold M 
from the couplings of the (2,1) forms on its mirror M' ,  which have no instanton corrections. 

The crucial question whether such a mirror manifold always exists is not answered for general CY 
manifolds. For special constructions, e.g. for the (canonical desingularizations of) Fermat-type hy- 
persurfaces in weighted projective spaces ]P(w) of dimension four, it is known [24, 25] that a mirror 
manifold M'  with flipped Hodge diamond (i.e. hid ~ h3-j , i )  can always be obtained as (a canoni- 
cal desingnlarization of) the orbifold of the Fermat hypersurface w.r.t, to its maximal abelian isotropy 
group Gm~• which acts locally as a subgroup of SU(3). The Fermat hypersurfaces are defined 3 by 
M := �9 e (w) lW0 4 ----- ~-"~i=0 " nl ---- 0 } ,  a i �9 C (we set ai = k / n i  in the following), n i  �9 N. = _ azx i 
The degree of W0 is k := lcm{n} and for the weights one chooses wi = k / n i  such that Eq. W0 = 0 is 
well-defined on the equivalence classes Ix_] of ]P(w) (subject to xi ~- )~W'xi with ), �9 C \ {0}). The map 
W0: (C 5, 0_) ~ (C, 0) is transversal in ]P(w) as the only solution to dWo = 0 is located at x_ = 0 ~ ]P(w). It 
is said to have an isolated singularity at the origin. Nevertheless X k ( w )  is singular as W0 = 0 intersects in 
general the singular locus of IP(w_). The latter one is described by Sing(]P(w__)) = [.Jic{0,...,4l{]Pi]cz > 1}, 
where ] P z =  {x --0,Vi �9 I} and ci := gcd(wilj �9 { o , . . . , 4 } , j  ~ I). 

Vanishing of the first Chern class cl = 0 requires [26] 

4 

(2) 
i=0  

it renders the number of Xk(w__)'s finite. Eq. (2) implies also that Xk(w) has only singular points and 
singular curves. Due to Eq. (2) the corresponding singularities are moreover of Gorenstein-type [24,25] 
and can be resolved in a canonical way to a Calabi-Yau manifold. The resolution process introduces new 
dements in the Hodge cohomology H 1'1 (and H2,1). The only examples for which this does not occur, 
because Xk(w) N Sing(IP(w)) = ~ are: X5(1, 1, 1, 1, 1), X6(2, 1,1, 1, 1), Xs(4, 1, 1, 1, 1) and X10(5,2, 1, 1, 1). 
Here the only class of form degree (1,1) is the pullback of the K/ihler class of lP(w). 

There are strong indications that string theory on Fermat CY manifolds - -  at a special point of the 
moduli space - -  correspond to string compactifications on Gepner models [27]. These are tensor products 
of five (four) n = 2 superconformal S U ( 2 ) / U ( 1 )  coset models (minimal n = 2 series), where the left and 
right characters are tied together according to the A-type affine modular invariant, i.e. diagonally 4. The 
correpondence is established at the level of cohomology, i.e. the dimensions of the cohomology groups 
and parts of the ring structure in cohomology on the Calabi-Yau manifold coincide with the one of the 
cohomology of the (chiraI,  chiral)  and (chiraI,  ant ichiral )  rings [28] in the n = 2 superconformal theory. 

Let us look at the correspondence between the two constructions at the level of the discrete symme- 
tries. Each of the factor theories has a (Zv+ 2 x Z2) symmetry 5. The partition function of the heterotic 
string theory is constructed by orbifoldisation of the internal tensor theory together with the external 
contributions w.r.t, a subgroup of these symmetries namely Go = Zl.c.m.{p~+2} x Z25 and contains as 

the residual invariance G 5 = H i = I  Zpi+2/Zl.c.m.{ki+2}" The latter is in one to one correspondence with 
the discrete symmetry group on the hypersurface Xk(w__) generated by x~ ~-* exp[2~riaJni]xi .  We denote 
symmetries by their generating elements a_. One can construct new heterotic string theories by dividing 
out subgroups of G, which leave the space-time supersymmetry operator, a conformal field in the Gepner 
model, invariant [29]. This is the case if 

5 

�9 (3) 
i=1  

3 Underlined quantities are five tuples, x := (x0 , . . . ,  x4) etc. 
4 The power ni is related to the level pi of the i ' th minimal factor model by ni = pi + 2. At most one 

ni can be 2, in this case one has only four nontrivial factor models. 
5 There exist left and right versions of these symmetry. We restrict ourselves here to the left-right" 

symmetric subgroup. Permutation symmetries, which are present whenever several tensor theories are 
identically carry triviMly over to the manifold. 
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V their generators and is analogeous to the geometrical requirement that  the group acts trivial on the 
holomorphic (3, 0)-form. In the formalism of orbifold construction of CFT it is possible to prove [27.,30] 
that these new models appear in mirror pairs and that  the mirror of a model is obtained by orbifoldizing 
w.r.t, the maximal subgroup Gm~x of G subject to condition (3). Moreover the only difference }n the  
portion function of these mirror pairs is a sign flip of the U(1) charge of the holomorphic sector relative 
to the antiholomorphic sector. 

The procedure of dividing out these subgroups Gi of G can also be performed on the hypersurface  
Xd(w__). The orbit space Xk(w__)/Gi is in general singular due to fixed point singularities. With help of 
(2) and (3) one can show that  the singular locus consists again only of points and curves. Furthermore 
all the singularities are of Gorenstein-type and can be desingularize d canonically to a smooth Calabi-Yau 
manifold. The string theories described by the geometric orbifold and the CFT orbifold coincide at the  
same level as the original theories do, namely in parts of their cohomology structure and their symmetries 

[29,30]. As mentioned above the mirror M'  is given by the canonical desingularization M~ = Xk(w_)/Gm~x 
[24]. 

There exists an elegant and mathematically rigorous formulation of the o ccurence of mirror symmetry 
in the context of toric varieties, which includes all orbifolds of the Fermat-type hypersurfaces mentioned 
above. The data  of the space are encoded in a pair of reflexive polyhedra with integral vertices and 
a lattice. The Fermat- type hypersurface and their orbifolds can be constructed from pairs of simplicial, 
reflexive polyhedra and a lattice by means of toric geometry. It is shown in [25] that  the same construction 
applied to the dual polytope in the dual lattice gives rise to the mirror configuration likewise represented:  
as a hypersurface in a toric variety. 

The mirror hypothesis implies a one to one map between the moduli  space of the complex Structure 
moduli on the manifold and the Kghler structure moduli of its mirror. The close relation to the CFT 
theories and properties of their orbifolds mentioned above suggest that  such a map exists, at least locally; 
in the vicinity of the exactly solvable pair and can therefore be extended - possibly not  uniquely - to the 
whole moduli  space. 

As we have seen, the physically relevant quantities, namely the Ks potential and the Yukawa 
couplings for the sector of the theory which depends on to the complex structure moduli,  can be calculate 
from the period functions. If the mirror hypothesis is correct one can obtain the same information for the 
sector which depends on the Kghler moduli from the periods of the mirror manifold [4-6]. The periods 
are known to satisfy linear differential equations, called Piccard-Fuchs equations. To illustrate this we 
consider the torus T 2 defined as the algebraic curve y2 = x(x - !)(x - )~). Consider the differentia1 
f~(,k) = d~, whose integrals over the two non-trivial homology cycles are the periods. Since the first Betti  

Y 

number bl(T 2) = 2 there must exist a relation between the three differentials ~2, ~-~~ and 5-~-'~ Some linear 
combination with coefficients being functions of ~ must be an exact differential whose integral vanishes 
upon integration over a closed cycle; i.e. the periods of the torus satisfy a linear ordinary second order 
differential equation 6. We will denote the periods by Hi = fc~ w. 

The generalization to more complicated cases, including higher dimensional manifolds and more than 
one modulus is straightforward, in the latter case leading to systems of partial differential equations. In t h e  
following we will restrict ourselves to the case of one modulus only and consider the Fermat CY manifolds 
(see above). Here the periods are defined as above, namely as the integrals of the holomorphic three form 
over the H3(M, Z) cycles. Since b3 = }--~p+q=a hp,q = 4, the differential equation satisfied by the periods as 
functions of the one complex structure modulus, which we will denote by a, will be of fourth  order whose 
four solutions correspond to the four periods. The problem will be to find the correct linear combinations 
of the solutions such that  they correspond to the periods of ~2 expanded in the basis of integer cohomology 

6 It might be interesting to note that  the differential equations one gets from the requirement of the 
vanishing of the curvature of the metric in coupling constant space [al] for the three c = 3 topological 
Landau-Ginzburg theories are exactly the Picard-Fuchs equations for the tori these theories are orbifolds 

of 
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dual to the canonical cycles (A ", Bb). 
The Calabi-Yau spaces tha t  so far have been amenable to above t rea tment  are the ones mentioned 

before, which have only one Kahler modulus  (see [4] for the case k = 5 and [5,6] for all four cases (see also 
[33])). Allowing for all possible deformations of the complex s tructure they take the form 

X k ( w )  { x i  C ]P(w) lW =- Wo E i j k l m } "~- -- aijklmXoXlX2X3X 4 ~- 0 

c[~d with the with W0 as given above. The deformations of W0 are the elements in the polynomial  ring 74 = dWo 

same degree as W0. The coefficients a i j k lm  parametr ize 3t(2,1) and one finds h2,1 = 101,103,149,145 for 
k = 5, 6, 8, 10 respectively, corresponding to Euler numbers X = 2(h1,1 - h2,1) = - 2 0 0 , - 2 0 4 , - 2 9 6 , - 2 8 8 .  
Their  mirrors are obtained by dividing by the full phase symmet ry  group which is Za 5, Z3 x Z~, Z2 x Zs 2 
and Z~0 for the four cases considered. The only surviving deformation is then a - a l n n  and T4 consists of 
the elements (x0 . . .  x4) x, & = 0, 1, 2, 3 only. Indeed, by restricting to this invariant subring, we essentially 
s tudy the complex s t ructure  deformation of the mirror manifold, which has h2,1 = 1. One may verify the 
interchange of the  Hodge numbers  h2,1 and h1,1 by explicit construction of the geometric desingularization. 
With  a suitable choice of constants in W0 (namely ai = k )  and a ~ koz, o~ k = 1 are nodes of the four 
manifolds. They  become singular at a --~ ec. 

To set up the  Picard-Fuchs equations [34,35,32, 36] we need an explicit expression for the peri- 
ods [34,37]. If 3' is a small circle winding around the hypersurface W = 0, we may represent the holomor- 
phic three form f~ as 

with w = 
4 

E ( - 1 ) i x i d x  ~ A . .  . A dx  i"~ A . . .  A dx  4 

/=0 

where the hat  denotes omission. Obviously, under  X i --+ /~X i, ~ does not change and is thus a (nowhere 
vanishing) three form on lP4. The function q(~) reflects the gauge freedom of t2, which is a holomorphic 
section of the  projective line bundle associated to the Hodge bundle over A4(2,1) with fibers H a ( M )  [13]. 

The periods are then II= = fro q(~) " W(-~(~) ~, where P~ is a 4-cycle in IPa - M  which is homologous to a tube over 

a three-cycle on M. This is shown in [34] where one also finds a proof of the fact that  one may integrate 
by parts  with respect to the coordinates of lP4. 

For the purpose of deriving the  period equation, it is most convenient to set q(o 0 = 1. Differentiating 

times with respect to ~ produces terms of the form f (~~ wa+*(~) w. The ~ = 4 term, which is the first to 

produce an integrand whose numera tor  is no longer in the ring 7~, can be expressed, using the expressions 
O W / O x i  and integrat ion by parts, in terms of lower derivatives. The computat ion is s traightforward and 

produces 

] ~ = 5 :  

k = 6 :  

k = 8 :  

k = 1 0 :  

( 1  - -  O~ 5 ) H  ( /v )  - -  10OL 4I-I  IH - -  25OL 3 rI  H - 1 5 o t  2YI  ! - oLIl  : 0 

~ 2 ( 1 -  ~ 6 ) I I ( ' v ) -  2~(1 + 5~~ II ''' + ( ~ - 2 5 ~ ~  n ' ' -  15~5 n '  ,- ~4 n = 0 

~3(1 - ~ )  ii(~v) - ~2(6 + 10~ ~) rI"' + 5~(3 - 5~ ~) H " -  15(1 + ~ )  rI' - ~7 rI = 0 

~3(1 _ ~10) ri(~v) _ 10~2(1 + ~ 0 )  H"' + 5~(7  - 5~ 1~ n"  - 5(7 + 3~ 1~ rI' - ~ ~ = O 

A fundamenta l  system of solutions may be obtained following the me thod  of Frobenius for ordinary 
differential equations with regular singular points [38] which are here c~ = 0, a = cx~ and ak = 1. 
The solutions of the indicial equations at the three singular points are p = (0, 1, 2, 3)k=5,  ( 0 ,  1, 3,4)k=6, 
(0,2,4,6)k=S,(0,2,6,8)k=10 for a = 0, p = (0,12,2) for o~ k = 1 and p = 04 for o~ = oc. The subscripts 
denote the multiplicities of the solutions. It follows from the general theory  that  at c~ = ec there is one 
solution given as a pure power series and three containing logarithms (with powers 1, 2 and 3, respectively). 
At c~ = 0, all four solutions are pure power series as one sees e.g. by noting that  we can rewrite the 
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differential equation in terms of the variables a k, for which the solutions of the indicial equation would 
no longer differ by integers. The point a = 1 needs some care. (The other solutions of a k = 1 are treated 
similarly). There is one power series solution with index p = 2 and at least one logarithmic solution for 
p = 1. Making a power series ansatz for p = 0 one finds that  the first three coefficients are arbitrary 
which means that  there is one power series solution for each p. One also easily checks that  in the second 
solution to p = 1 the logarithm is multiplied by a linear combination of the power series solutions with 
indices 1 and 2. To summarize, the periods of the manifolds have logarithmic singularities at the values of 
a corresponding to the node (a k = 1) and to the singular manifold (a  = cxD). We will thus get non-trivial 
monodromy about these points. 

With  reference to the literature [4-6] we will skip the details of the computat ion which is a sophisti- 
cated exercise in the theory of linear ordinary differential equations with regular singular points. 

As we have discussed above, in order to get the prepotential from the solutions of the period equation 
we have to find a basis in which the monodromy acts as SP(4,  Z) transformations and .7" is then given as 

1 a b r = ~Y~z . This can be achived since it is possible to compute two of the periods explicitly. Then, up to 

a S P ( 2 ,  Z) C S P ( 4 ,  Z) transformation which acts on the remaining two periodsi this basis can be found] 
Again skipping details [4,5], we simply give the results for various quantities of interest in the limits 

of large and small values of the modulus a. For the Kiihler potential and K~ihler metric we find (7 = 
k ]-[4 (W.~- -w i / k  ~ 

I 1 i = 0 \  z/ ] 
OL --+ (X): 

e - K ~  (27r)3 ( ?  l ~  OrdG 

3(1+ 
g ~  ~ 41~12 log 2 IVa I 

2 ( 4 ) )  
- Z , r , + ~ k3 W 3 

i=0 

" 

3 In terms of the variable t or i log(Ta) the leading behaviour is gd ~ (t_--:-~)2 which is the metric for the 

upper half plane with curvature R = -4 /3 .  
OL ----+ 0: 

- K  (27r)3 5 1 213/371.8 
r (~)1~t2  + o(1~14); - K  I~12 + oc l ,~?) ,  --  ek=6 = 3 1 1 / 2 F 2  2 8 5 ek=~ 5 5 r s ( } )  (~)r (~) 

_ ~ eot~(~)  _~ 
- -  C k = 1 0  ek=K8 128 r8(}) i~12 + ~ __ 104.61 lal 2 + o(Io~16); 

4 2 ) 3r8(~) +0(1~12), ~__~ ( r ( ~ ) r ( ~ )  
g ~  25 3-fVT-~,r~= + O(lal2), k=6 

= g ~  - ~ r (~) 

k=S 6 4 ( 3  - -  2 3 / 2 ) 2 r 8 ( } )  loll 2 -~- O ( t o f l 8 )  ' k=10 = o ~  ~ 0,~70 I~t ~ + o(1~1~). g ~  r.(}) 
The invariant Yukawa couplings are defined as 

- -3 /2  K 
Yinv  = goL6~ e K~ota] 

~ They correspond to a canonically normalized kinetic energy of the mat ter  where n ~  = f f~ A KS-x~3" 
- 3 / 2 ~  fields (hence the factor y ~  ) and are invariant under Ks gauge transformations induced by moduli- 

dependent rescalings of f/ (hence the factor eK). For the cases under consideration we found ~ = 
( 2 ~ i ) 3 k ~ k - 3 / ( O r d V  (1 - ~k)). 

In the limits considered above we find for the leading terms of the Yukawa couplings of the one 
multiplet of 27 of E6: 
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OL ---+ 0 0 :  

a --+ O: 

2 
~inv - -  V k ; ,/g 

5_ 

g)F(g)  \ 

= �9 " ) + o(1 12), \F3(2  4 _ = Yinv + o(t 13), 

_ +o(l 12),  inv = 3.394 Is + ). Yi~ s F6(5 2 1  ~ k = 1 0  12 o(1 1 
F 6 ( 3  2 7  

For k = 5, 8 the nonvanishing couplings coincide with the values of the corresponding Gepner models, 
which can be calculated using the relation [15] between the operator product  coefficients of the minimal 
(n = 2) superconformal models and the known ones of the su(2) Wess-Zumino-Witten theories. In the 
k = 6, 10 cases the additional U(1) selection rules at the Gepner point exclude the coupling, which is 
allowed for generic values of the modulus. 

This closes the first part of the program. We have found the exact (due to absence of c~-model 
corrections) Kiihler potential  and Yukawa couplings for the (2,1) sector of the moduli  space of the CY 
spaces Mk. 

To get the couplings for the single (1,1) form of the original manifold, one has to perform the mirror 
map. This way we wilt obtain the complete expression, i.e. including all (instanton) corrections, e.g. for 
the Ynkawa couplings. This then contains also information about the numbers on instantons (rational 
curves) on the original manifold, information otherwise hard to obtain [4-6,33]. 

As already mentioned, the (1,1) sector of the original manifold is also described by a holomorphic 
function ~- which is homogeneous of degree two. The large radius limit of ~c is known; it takes the simple 

form ~-0 ~o (~1)3 ~0 ~1 - 6 ~0 - 6 (aJ~ 2ta = (w~ 2~0 where t = 7 is the inhomogeneous coordinate of the 

(1,1) moduli  space. ~c0 = -0t3~'0 is the infinite radius limit of the Yukawa coupling and is given by an 
intersection number.  The latter evaluate to s0 = {5, 3, 2, 1} for k = {5, 6, 8, 10} for the manifolds under 
consideration [26,5]. Like the Yukawa coupling(s) the K/ihler potential derives from .T as in Eq. (1). One 
finds (t = tl  + it2) 

/'4~; 3"~ I<0 = -lo  ) 

3 and of the Ricci tensor From this we easily arrive at the large radius limits of the metric gO = 

R0  2 gO For the Rieci scalar one thus gets R ~ - -4_ and for the invariant Yukawa coupling 3)0 - 2 = - g  tP -- 3 vS" 
These same constant values were found as the large complex structure limits for the (2,1) moduli  spaces 
of the mirrors M~. 

As discussed before, these infinite radius results get modified by sigma model loops and instanton 
contributions, the lat ter  being non-perturbative in the sigma model expansion parameter  1 / R  2 ,,~ 1/ t ,  R 
being a measure for the size of the manifold. The fully corrected prepotential  has the form 

The polynomial part  is perturbative and restricted by the perturbative non-renormalization theorem for 
Yukawa couplings; note that  only imaginary parts of a, b and c do affect the K/ihler metric. 

The mirror hypothesis implies now that the two prepotentials for the (2, 1) modulus on the mirror and 
the (1, 1) modulus  on Xk(w) are essentially the same, but generally expressed in two different symplectic 
bases for the corresponding period 7 vectors. We have already seen that  in terms of the variable t cx i log(Ta) 

7 Of course we can define and calculate the periods as integrals over cycles only on the mirror. The 
'period' vector depending on the (1, 1) modulus is derived from the corresponding prepotential  Eq.(4) and 
has components  (w0, ~ 1 , 0 7 / 0 ~ 0 , 0 7 / 0 ~ '  ). 
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the large complex structure and large radius limits of the K/ihler metrics for the moduli  spaces of the (2,!) 
and (1,1) moduli  agree. By comparing the large radius limit with the large complex structure limit one 
also determines an integer symplectic matrix which relates the period vectors up to a gauge transformation 
which expresses the freedom in the definition of ~Q, i.e. the fact that  it is a section of a: projective bundle.  
This also fixes the coefficients a, b, c in eq.(4), a and b turn  out to be real and the quadratic and linear 
term do thus not contr ibute to the Kiihler potential, c on the other hand is imaginary e ( ( (3)  and has been 
identified in [4] with the four loop contribution calculated in [39]. This term also makes its appearance in 
the effective low-energy string actions extracted from tree level string scattering amplitudes [40], 

1 4 The relation between t and a is (@(N) = g Ei=o wi~(1  + w i N ) -  ~b(1 + kN),  ~b(x) = d l o g P ( z ) / d z )  

F I 4 - ~ N ) ,  Oily ) lVaj  
~01 ]g IO"{^'OL "~ N = O l i i = ~  " ' (5)  

o O  t -  wo - 2rci X-" (kN)! g.~a~_kN 
/_~ l-I 4 (w~N)! ',I J 
N:O xx{=o - 

where the second expression is valid for a large. Using the monodromy matrices %r the periods on the 
mirror one finds that  as a is carried around infinity, t -+ t + k. 

To get the Yukawa coupling we transform e ; ~  to the coordinate t and find that  the infinite radius 
value ~0 gets corrected to 

The prefactor expresses the gauge freedom and is due to the relative factor (besides the integer symplectic 
matrix) we have chosen between the two 'period vectors.' Its components appear in the definition of the 
holomorphic three form which enters quadratically in n ~ .  In the gauge co o = I this becomes no + O(q) 
with q = exp(2rcit), where the instanton contributions come with integer coefficients. Indeed, on inverting 

o o  
the series (5) and expressing the result in the form nttt = e;0 + ~ j = l  n~Jaq~ conjectured in [4] and proven 1 --q~ 
in [41] we find the numbers nj which count the rational curves of degree j in M [4-6]. 

One can now also study the duality symmetry of those models. The details can be found in [4-6]. The 
Yukawa coupling will have a simple transformation law under duality transformations. This follows from 
the fact that  the one mat ter  superficial which is related to the modulus via world-sheet supersymmetry 
will t ransform homogeneously and to have an invaraint supergravity action the Yukawa coupling must also 
transform homogeneously [21]. Having computed the Yukawa couplings we thus have an explicit function 
of the modulus,  which, when raised to the appropriate power, is also a candidate for a non-perturbative 
superpotential  for the modulus itself. Of course, whereas for the modular  group SL(2; Z) this function is 
known to be more or less unique, practically nothing is known about automorphic functions of the  groups 
one encounters here. 

The models considered represent only a very restricted class. To make further progress towards 
realistic models one has to extend the analysis in several directions. One is to consider models described 
by higher dimensional projective varieties. There are a few examples of this kind with h<i = i, which 
can be studied as a first step in this direction. Another generalization is to models defined by more than 
one polynomial constraint. The other obvious direction to go is to consider models with more than one 
modulus, leading to partial differential equations for the periods. This seems to be the hardest of t h e  
possible generalizations. 
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