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We study non-linearsigma modelswith N local supersymmetriesin threespace-timedimen-
sions.For N = 1 and 2 thetarget spaceof thesemodelsis riemannianor Kähler, respectively.All
N> 2 theoriesareassociatedwith Einstein spaces.For N = 3 the target spaceis quaternionic,
while for N 4 it generallydecomposesinto two separatequaternionicspaces,associatedwith
inequivalentsupermultiplets.For N = 5, 6, 8 thereis a unique(symmetric) spacefor any given
numberof supermultiplets.Beyondthat thereareonly theoriesbasedon a singlesupermultiplet
for N = 9, 10, 12 and 16, associatedwith cosetspaceswith the exceptionalisometry groups
F

4) —20)’ E( 14)’ E7( 5) and E8(~8),respectively. For N = 3 and N> 5 the D = 2 theories
obtainedby dimensionalreductionaretwo-loop finite.

1. Introduction

For space-time dimensionsD ~ 4 a large variety of locally supersymmetric

theorieshas beenexplored,bothwith and without conformal invariance[1]. For
D = 2 conformally invariant theorieshave beenstudied extensively. In contrast,
only very few modelshavebeenworked out for D = 3. Nevertheless,gravity and
supergravityin three dimensionsare of interest in their own right. As is well
known, three-dimensionalfield theorieshavea numberof unique features.For
instance,masslessstatesdo not carry helicity, so that the associateddegreesof
freedomcangenerallybe describedby scalarfields. Puregravity and supergravity
are topological theoriesanddo not give rise to physical(i.e. propagating)degrees
of freedom.Apart from conical singularitiesat the location of matter sources,
space-timeis flat. Notwithstandingthis fact, classicalgravity in threedimensions
exhibits many intriguing properties[2]. More recently,pure quantumgravity in
threedimensionshas been reformulatedas a Chern—Simonsgaugetheory and
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shown to be solvable in the sensethat the quantumconstraints(i.e. the Wheeler—
DeWitt equation,in particular) can be solved exactly [31.In addition, genuine
observables(a la Dirac) can be constructed,in contrast to four-dimensional
canonical gravity, where the construction of observablesremains an unsolved
problem even at the classical level. Moreover, the three-dimensionaltheory is
especiallyamenableto a reformulationin terms of the new canonicalvariables
proposedin ref. [4] (see also ref. [5] for a cleardiscussion);the exactsolvability of
purequantumgravity in this approachhasbeendemonstratedin ref. [6]. A recent
treatmentof pureandmatter-coupledsupergravityin this frameworkcanbe found
in ref. [7]. Although many open questionsremain, it shouldbe clear from these
remarksthat three-dimensionalgravity and supergravitycan teachus a lot about
quantumgravity in general,andthat the modelsconsideredhere,at thevery least,
canserve as non-trivial toy models.

A further motivation for studyingthree-dimensionalsupergravityis the impor-
tant role it plays in the constructionof two-dimensionalsupergravitytheoriesvia
dimensionalreduction. Thesedimensionallyreducedtheorieshave a numberof
remarkableproperties;in particular, they possessinfinite-dimensionalsymmetries
acting on the spaceof solutions of the non-linear field equations[8—10].For
supergravity,thesesymmetriesmergewith the so-called“hidden symmetries”of
supergravity.All thesemodels are classically integrable in the sensethat they
admit linear systemsfor their non-linearfield equations[9,10].The belief that this
classicalsymmetrystructureshouldplay an importantrole for the quantumtheory
was one of the main motivations for a recent investigationof the quantum
divergencesof thesetwo-dimensionalsupergravitytheories[11],which showedthat
for sufficientlyhigh N (the numberof independentsupersymmetries)thesemodels
were two-loop finite. In order to appreciatethe relevanceof this result, it is
important to understandthe uniquenessof thesetheories.In ref. [11] the calcula-
tions werebasedon the conjecturedstructureof non-linearsigmamodelscoupled
to D = 3 supergravitywith homogeneoustargetspaces,as they were known or
expectedto ariseby dimensionalreduction from extended supergravityin four
space-timedimensions,but to dateonly a few of thesemodelshavebeenworked

out explicitly [12,7].
The presentpaperaimsat filling thisgap andgives a completeclassificationof

non-linear sigmamodels coupled to extendedsupergravityin three space-time
dimensions.For rigidly supersymmetricnon-linearsigmamodels,this analysisis
almost identical to the D = 2 case[13]. Thereit wasestablishedthat N-extended
supersymmetricsigmamodelsrequirethe presenceof N — 1 complexstructuresin
the targetspace.It turns out that non-linearsigmamodelsbasedon irreducible
targetspacescan haveat most N =~ 4 supersymmetries.Extensionsof this result
werestudiedin ref. [14],whereit wasfound that the boundon N is not affectedby
the presenceof torsion, while for local supersymmetrythe restriction N © 4

remains intact for conformally invariant theories.Without conformal invariance
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there are certainly theorieswith N> 4 [15,16], but those were never studied

systematically.Becausethree-dimensionalsupergravityhas no conformal invari-
ance,one expectsno restriction to N ~ 4 (although the N = 4 modelsremain

somewhatspecialas we shall see).On the other hand,extendedsupergravitiesin
four dimensionsare known to be restrictedto N ~ 8 in view of the non-existence
of consistentinteractingtheoriesdescribingmasslessparticleswith spin s> 2 (we
note, however, that this bound can possibly be circumventedin certain theories
which are not of the conventionaltype [17]). The fact that three-dimensional
supergravitieswith even N correspondto four-dimensionaltheorieswith N/2
local supersymmetriesandcanthereforebe constructedby dimensionalreduction,
suggeststhe bound N ~ 16 in threedimensions.Indeed,a central result of this
paper is that extendedtheories do satisfy this restriction, and this fact in turn
constitutesan alternativeproof of thefour-dimensionalresult. However,the result
now hingeson the geometricpropertiesof targetspaceswith restrictedholonomy
groups,a subjectwhich hasbeenstudiedin considerabledepthin the mathemati-

cal literature [18].
Becausethe geometricalargumentsleadingto theserestrictionsare at the heart

of this paper, we now briefly summarizethem. The general analysis of the
lagrangian and transformationrules given in sect. 3 enablesus to derive the
constraintson the Riemanncurvaturetensor,andhenceon the holonomygroupof
the targetmanifold, that are imposedby local supersymmetry(seeeq.(4.19),which
is the crucial formula). Theseconditionsbecomemore and more restrictivewith
increasingN; for N> 4, theycompletelydeterminethe targetmanifolds,whereas
theyare not strongenoughto determinethem for N ~©4. In particular,for N = 1,
thereare no restrictionsat all, and the targetspacemay be an arbitrary rieman-
nian manifold.For N = 2, thereis onecomplexstructure,andthe targetmanifold
is Kähler. For N = 3 and 4, thereare threealmost-complexstructures.For N = 3
the spaceis quaternionic,while for N = 4 the targetspaceis locally a productof
two quaternionic manifolds, associated with inequivalent supermultiplets.
Nonetheless,there remains a great variety of possibilities for N ~ 4, as the
manifolds are not homogeneousin general.For N ~ 5, on the other hand, eq.
(4.19)implies that the holonomygroupbecomes“too small” in a senseto be made
precisein sect. 5.We first show that all manifolds areEinsteinspacesandthenwe

derivehow d (the dimensionof thetargetspace)and N are restricted:we find that
an arbitrarynumberof supermultipletsis permittedfor N = 5, 6, 8, while only one
is allowed for N = 9, 10, 12 and 16. For other valuesof d and N no theoriescan

exist! We can then appealto a powerful mathematicaltheorem[19] and use our
knowledgeof the holonomygroup for N ~ 5 to concludethat all the corresponding
targetmanifolds must be symmetric spaces;their determinationis thus simply a
matterof matchingthe allowedvaluesof N and d with a list of symmetricspaces.
In this way, we identify a unique symmetric spacefor eachof thesevalues of N

and d. The isometrygroupsof the targetspacescorrespondingto N = 5, 6, 8 are



6 B. de Wit et al. / Non-linearsigmamodels

equal to Sp(2,k), SU(4, k) and SO(8, k), respectively,where k is the numberof
supermultiplets.For N = 9, 10, 12 and 16 the correspondingtargetspacespossess
the exceptional isometry groupsF4~.201,E6(.14), E7(_5) and E8(+5), respectively;
remarkably,they canbe interpretedas projectivespacesoverthe octonions[18]. In
view of our previousremarks and the fact that the maximally extendedN = 16
theory is invariant under the “maximally extended” exceptional Lie group E8
[8,12], we are intrigued by the fact that the apparentnon-existenceof massless
particlesof spin s > 2 in four dimensionsmay be relatedto the non-existenceof
exceptionalgroupsbeyondE8.

A characteristicfeatureof thenon-linearsigmamodelswith local supersymme-
try is that the target-spaceconnectionfor the fermions is no longer the usual

Christoffel connection,but it containsextratermsproportionalto the almost-com-
plex structuresassociatedwith the extra supersymmetries(see eq. (3.27)). This
aspectsis crucial for the two-loop finitenessof the dimensionallyreducedmodels,
which hingeson the fact that the contraction RikImRJkIm of the corresponding
curvature tensors remains independentof the modification of the fermionic
connection[11]. From the formulaederivedlater (in particular(3.30)and(4.11)) it
follows that this is alwaysthe casefor N = 3 and N> 4. For N = 4 the situationis
somewhatmoresubtle,as oneis in generaldealingwith two separatequaternionic
subspaces.Neverthelessupon using(3.30) and(4.38) onecan easily establishthat
this property holds whenever the two subspacesare of equal dimension. In
contrastthe N = 1, 2 theoriesfail to be finite at oneloop if thetargetspaceis not
Einstein.We will not return to this topic here andleave it to the readerto verify

theseresults.
This paper is organizedas follows. In sect. 2 we review the constructionof

D = 3 supermultiplets.Sect.3 containsthe resultsfor the invariant lagrangianand
the supersymmetrytransformationrules. The geometrical implications of the
presenceof N local supersymmetriesfor the targetspaceare thenworkedout in
sect.4. In sect.5 we identify the possibletargetspacesfor N> 5. As thoseareall

symmetric we include a discussionof the conventionalformulation of extended
supergravitycoupledto non-linearsigmamodelswith homogeneoustargetspaces
andelucidatethe connectionwith the target-spaceapproachusedin the previous
sections.Somematerialrelevantfor the exceptionalcosetsis relegatedto appendix
A.

2. MasslessD = 3 supermultiplets

Considerthe extendedsupersymmetryalgebra,with the anti-commutationrela-
tion

{~,~}= —2iy~P~, (I, J= 1,...,N) (2.1)

where the Q~are N independentMajorana spinor chargesand P,~ is the
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energy—momentumoperator.For stateswith light-like momentum,say in a frame
whereP°= P1 = w and P2 = 0, eq.(2.1) takesthe following form *:

{ Q~,Q
1~}= 2w5”(l + O-3)~f3. (2.2)

In a positive-definiteHilbert spaceof states,Q~must thereforevanishandwe are
left with the realchargesQj’, which generatean N-dimensionalClifford algebra~.

In addition a fermion-numberoperator F must exist satisfying F
2 = 1, which

anti-commuteswith the superchargesQ~.Therefore masslesssupermultipletsare
representationsof a real (N + 1)-dimensionalClifford algebraof positive signa-
ture. In the basiswhereF is diagonalwe denotethebosonicindicesby A, B,... =

1,. .. ,d and the fermionic indices by A, B,... = 1,. .. , d. The superchargesthen
take the form of off-diagonalgammamatrices

0 T4fj 1 0
11= F= . (2.3)

F~s’C 0 0 —1

As onecan alwayschoosea basiswhere the gammamatricesaresymmetric,the
two submatricesof F’ are eachotherstranspose;in termsof theupper-rightd x d

matricesF,~’E,which themselveshaveno specialsymmetryproperties,the defining
relationof the Clifford algebrareads

24AC BC AC BC “ AB~

The irreduciblesupermultipletsare listed in table 1, togetherwith their centraliz-

ers [20].
For odd valuesof N the supermultipletis uniqueup to a similarity transforma-

tion. For evenvaluesof N the productof the N + 1 generatorsof the algebra,

F~FFI...FN (2.5)

commuteswith F and F’. For N = 4 mod4 it satisfiesF2 = 1, so that the Clifford
algebracanbe decomposedinto two simple ideals,associatedwith the projection
operators~(1 ±F). Inequivalentirreducible representationsof_the Clifford alge-

bracorrespondto oneof theseidealsandarecharacterizedby F = ±1. For N = 2
mod 4 we have F2 = —1 and the representationis again unique; it cannot be
decomposedinto irreducible representationsunlessone introducescomplex pro-
jectionoperators.The existenceof inequivalentsupermultipletsis a specialfeature
of supersymmetryin low space-timedimensions.In higherdimensionsthe spinor
characterof the superchargesensuresthat inequivalentsupermultipletshave a

* We use y)) = — io~

2,y~= ~ y2 = a-3, with charge-conjugationmatrix C = a-2
Strictly speakingthe chargesare hermitian;we insist on reality in view of field-theoreticapplica-

tions.
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TABLE 1
Irreduciblemasslesssupermultipletswith dN thenumberof bosonicstates.Thecentralizer,which
constitutesa division algebra,containstheoperatorsthat commutewith thesuperchargesand with

fermion number.

N dN Centralizer

1 1 R
2 2 C
3 4 H
4 4 H
5 8 H
6 8 C
7 8 R
8 8 R

n+8 16d,, asforn

different spin content,so that thereis no needfor making a further distinction.
From table 1 we infer that the multiplets with N = 3 and N = 4 are the same;
likewise N = 5, 6, 7, 8 have identicalmultiplets (this result holds againmodulo 8,
so that also N = 11, 12 have identical multiplets, and so on). However, the
situation is different in the caseof local supersymmetry,becausethe numberof
gravitini is not the samefor differentvaluesof N.

Observethat fermionsandbosonsin an irreduciblemultiplet transformaccord-
ing to irreduciblespinor representationsof SO(N).Herewe recall the well-known
result that the spinor representationsof SO(N) are real for N = 1, 7, 8 mod 8,

complex for N = 2, 6 mod 8 and pseudo-realfor N = 3, 4, 5 mod 8 (see e.g. ref.
[21]).Fromtable 1 it is obviousthat thesecasescorrespondto thecentralizersR, C
andH, respectively.For N = 2,.. . , 6 mod 8, the centralizercontains(at least)the
identityanda real antisymmetricmatrix e with e2 = — 1, acting within the bosonic
and fermionic subspaces.Clearly, e can be traded for the imaginary unit i by
complexifying the representation.By use of the complex projection operators

~(1±ie) the real d-dimensional SO(N) representationsbecome (d/2)-dimen-
sional complexrepresentations,and the matricesF~[A canbe replacedby complex
d/2 X d/2 matrices.This observationwill be importantfor the derivation of the
completenessrelationsandFierz rearrangementformulasusedin appendixA. For
N = 3, 4, 5 mod 8, thereare two additional complexstructuresthat anticommute
with e. Eitheroneof them canbe usedto show that the representationis actually
pseudo-real.

In the remainderof this section we presentthe explicit constructionof the

superchargesfor N = 1, 2, 4, 8 mod8, to facilitate thediscussionin thesubsequent
sections(for further explicit details, seeref. [22]).The representationsfor interme-
diatevaluesof N havethesamedimensionalityas oneof the N = 1, 2, 4, 8 mod 8
representationsand can conveniently be studied by embedding them in the
higher-N representation;the centralizercan be explicitly constructedfrom the
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centralizer of the higher-N representation,possibleextendedwith some of the

extragammamatrices.
We start by defining a basis of the2 x 2 realmatrices,consistingof the identity

1, o~,cr
3 and c —icr2. Hencewe have

�—cr103, E0i. 03, ecr301. (2.6)

For N = 1 we choose(d1 = 1)

F(2)=cr3, F’(2)=o1, (2.7)

where thenumberin parenthesesindicatesthe dimensionof the matrix. Hence,for
N = 1 one has F~’A= 1. We note the properties

= 1 {c, F
1} = {e, F) = 0. (2.8)

For N = 2 a representationof the Clifford algebra is constructedby taking
directproductsof 2 x 2 matricestimesthe previouslower-dimensionalalgebra(so
that d

2 = 2):

F(4) = cr3 01(2),

Ft(4) =o~®F’(2), with F
12= 1 ®E (2.9)

F2(4) =o~~OF(2),

so that

F~A=(? ~),~ ?)• (2.10)

In additionwe note the existenceof thefollowing threecomplexstructures:

e
1(4) = (730�,

e2(4) = —cO 1(2), satisfying e,e~= —~l+ c~Jkek (2.11)

e3(4) = 0�,

Note that FF’F
2 = e

1, and

[e1, F!] = [e1, F2] = [e1, F] =0,

{e2, F’} = {e2, F2} = {e2, F}=0,

{e3, F’} = {e3, F2} = {e3, F) =0. (2.12)
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The centralizer of the Clifford algebra is basedon e0 1 and e1, so that the
associatedsymmetry group is U(1). Note, however, that in the bosonic or the
fermionicsubspacee1 and F’

2 are degenerate.
Fur futureuse note the identities

e
1F’ = F

2F, e
1F

2 = FF’, e
1F= F’

2. (2.13)

ForN = 4 we takeagaindirect productsof 2 x 2 matricestimesthe matricesof
the previousalgebra(so that d

4 = 4):

F’(8) =u,OF’(4),

F(8)=o301(4), F
2(8) =u,®F2(4), F4(8) =E0e

1(4),

F
3(8) =cr

1 OF(4), (2.14)

with the complexstructures

e1(8) = 1 0e1(4),

e2(8) = (73 0 e2(4), satisfying e1e1= —~l+ c)Jkek (2.15)

e3(8) =cr30e3(4),

Observethat FF’F
2F3F4 = —1. As explainedpreviously thereare two inequiva-

lent representations.A secondoneis, for instance,found by changingthe sign of
F’, F2, F3.

This time all e, commutewith F’ andF,

[e,, F’] = [e,, Fl = 0. (2.16)

so that the centralizerof the algebraconsistsof e
0 1 and e, associatedwith the

groupSU(2).
The S0(4) generatorsare

F
12=1 OF’2, F34=cr

3OFe1=u30F
12,

F23 = 1 0 F2F = 1 0 e
1F

t, F14 = (73 0 e
1F’, (2.17)

F
3’ = 10FF’ =10e

1F
2, F24=cr

30e1F
2,

where we madeuseof the identitiesderivedpreviouslyfor N = 2. This shows that

FF’~= ~�hJ~vI~.FJ<I~.. (2.18)
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Thereforethe SO(4)group factorsinto two SO(3)groups,oneactingon the bosons
(the selfdualcomponent)and oneon the fermions (the anti-selfdualcomponent).
This featurewill play an importantrole in the discussionof N = 4 theoriesin sects.
4 and 5.

For N = 8, we haved
8 = 8 from table 1. The gammamatricesare thenexplicitly

given by

F’(16) =o~OF’(8),

F
2(16) =u

10F
2(8), F6(16) =c0e

1(8),

F(16)=cr3®1(8), F
3(16) =cr,0F3(8), F7(16)=c0e

2(8),

F
4(16) =o 0F4(8), F8(16) = e 0e

3(8),

F
5(16) =o~OF(8), (2.19)

Justas for N = 4 this representationis not unique;a secondinequivalentrepresen-
tation exists, and may, for instance,be obtainedby changingthe sign of F6, F7

and F8.
For N> 8 the patternrepeatsitself; for N = n + 8, the dimensionalityof the

gammamatricesequals16d~andwe put (n ~ 8)

FI=Fl(2d )®F’(lo)
F=F(2d )01(16), Fs~=Fa(2d )o1(16),

F9=F1(2d~)®F(16),

(2.20)

whereI = 1,...,8 anda = 2,...,n, while F’(2d~)andF”(2d~)are the(2d~x 2d
1,)

gammamatricescorrespondingto the irreducible representationof the n-dimen-
sional Clifford algebra. The centralizer is of the form Z(2d~)0 1(16), where
Z(2d~)is the centralizerof the n-dimensionalClifford algebra.

Finally, let us add that for reducible representations,the centralizergenerates
the group SO(k), U(k) or Sp(k), dependingon whether the centralizer for an
irreduciblerepresentationcorrespondsto R, C or H, respectively.Herek denotes
the numberof irreducible representations.The case of N = 4 mod 4 is again
exceptionalbecauseone is dealingwith inequivalentrepresentations[23]. For k1
and k2 inequivalent representations,the correspondinggroups are S0(k1)0

SO(k2) (for N= 8 mod8) andSp(k1)0 Sp(k2)(for N= 4 mod 8).

3. Lagrangian and transformation rules

In this section we presentthe full lagrangianand transformationrules for a
non-linear sigmamodel coupledto N-extendedsupergravity.Let us first introduce
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the separatelagrangiansfor pure supergravityand the non-linearsigmamodel.
The supergravitylagrangiancanbe written as follows A:

— ~ic ‘~‘{e~R~pa(o) + D,~(w)~}, (3.1)

with the SO(2,1) covariantderivativeactingon a spinor as

~ (3.2)

The spin-connectionfield will beregardedasan independentfield (first-order
formalism). Its field equationimplies that the supercovarianttorsion tensorvan-
ishes,i.e.

D11~~(w)e’~~— /j!yaç(jJ = 0, (3.3)

where

D~(w)e~= a~e~+ ic~&.~be~C. (3.4)

From (3.4) one determinesthe spin connection;substitutingthe result into the
field strength

R~(w)= — + i�6~~ (3.5)

yields the Riemanntensor(up to gravitino-dependentterms).The lagrangian(3.1)
is locally supersymmetricunder N independent supersymmetries. There is no
restrictionon the numberof independentlocal supersymmetriesandthe theoryis
topological [3].

The rigidly supersymmetricnon-linear sigma model is describedby the la-
grangian

~mat,er = — ~g~1(~){a~’~ + ~ t)x~}~ (3.6)

where the target-spaceconnection t equals the Christoffel symbol and the
covariantderivativeis definedby (for arbitraryconnectionF)

D~(F)~’~ (3.7)

We denote the dimension of the target space by d, so that i, ~ = 1,.. . , d. The

* We use thePauli—Källénmetric with y,, y ~ = ~ ~ ~ y h] = ~�*h*Y~. Readerswho prefer

the (—, +, +) metric multiply Dirac conjugatespinors and~ by i, and ~*b* ~ —
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x4 termsareproportionalto the Riemanntensorof the sigma-modeltargetspace,

..~4 gR~
1~,(4~l)X’YaX

2 ~kya~l (3.8)

Ignoring the extra space-timecoordinate,the lagrangian(3.6) is identical to the

onein two dimensions;the x4 termscanbe rewritten in a form wherewe sumover
only two independentgamma matrices, by using the cyclicity of the Riemann
tensor.

The non-linear sigma models have N = 1, 2 or 4 independentrigid supersymme-
tries. The extra supersymmetriesare associatedwith complex structures f,’,,.,
labeled by P = 2,. .. N, which are hermitian,

g~Jf~k~gkJfj~~ = 0, (3.9)

and satisfy the Clifford property

f~kf~J+f~kf~= ~2~5PQ~j~ (3.10)

Furthermore they are covariantly constant (with respect to the Christoffel connec-

tion),

~ (3.11)

The upper limit on N arisesbecausethe holonomy group commuteswith the
complexstructures.Thereforethisgroup musteitheract reduciblyin targetspace,
in which casethe targetspacebecomesreducible(i.e. it decomposesinto separate
spaces),or, by Schur’s lemma (see e.g. ref. [24]), the complex structuresmust
generatea division algebra;the largestsuch algebrais the quaternionicone with
three complex structures,correspondingto N = 4 [13]. Alternatively, one may
makeuse of the fact that thesemodelsare invariantunderSO(N) rotationson the

fermions (for N = 4 one hasonly SO(3)). Combining these transformationswith
supersymmetryproves that the theory must be invariant under non-uniform
translationsof space-timecoordinatesas soonas N> 4, which implies that the
targetspaceis reducible [14].

So far we have put Newton’s constant to unity, but in what follows we want to
be a little more explicit about the dimension of the various quantities. It is
convenient to choose all bosonfields dimensionless,with the exceptionof the spin
connectionwhich has dimension [1] (in mass units); the fermion fields have
dimension[~]and the supersymmetrytransformationparameterdimension[—
In this way none of the transformationruleswill containdimensionalparameters,
whereasthe lagrangian contains just an overall constant i/K, where K has
dimension[—1]. Hence we write

1
~‘ {~.g.~i(in +~‘N +~4} (3.12)
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Here -~.g is the supergravitylagrangian, modified by extra matter-dependent
connectionterms(hereandhenceforthwe decomposethe indices I into I = i and
I = P = 2,.. ., N; the gravitino field and correspondingsupersymmetryparameter
with I = 1 aredenotedby fi~and c, respectively),

5~s.g. -~i�P{e~R~pa(w)+~D~(w,Q)c~~+~D~(w,Q)~}, (3.13)

where

D~(w,~

D~(w,Q)~i~’~ + Qf(~)~]. (3.14)

Clearly Q[ and Q[Q can be combined into an S0(N) target-spaceconnection
Q,~J.

The term ~‘kjn refers to the properly covariantized kinetic terms of the
non-linearsigmamodel,

~kin = — ~egt1(~){g~ a~’~ F)~J}, (3.15)

where the connection F is no longer the Christoffel connectionbut may contain

extra terms. As only the anti-symmetricpart of F appears in (3.15), we may
assume without loss of generalitythat the metric postulateremainssatisfied,

D,(F)gJ~=O. (3.16)

The torsion now receivescontributionsfrom the spinor fields ~‘, so that (3.3)
changesinto

D[~ (w)e~1— /jlyaqjl — ~iec ~e
1”~g

11x~x’= 0. (3.17)

Just as in the case of rigid supersymmetry, the extra supersymmetries are
associatedwith tensors f,,~,,..However, in the context of local supersymmetrythese
tensorsareusuallynot complexstructures,butonly almost-complexstructures(for
definitions,seee.g. ref. [25]); indeed,as we shall seelater, their Nijenhuistensors
do not vanishin general.The almost-complexstructuresappearin the lagrangian

-~‘N’ which refers to the Noethertermswith certainhigher-ordermodificationsto

ensurethe supercovarianceof the x
t field equation,

-~‘N= ~egJ~ly~(~4I( + ~ —f~k~I’~’)

— 1e —i p.~k(~j — ci P
— 2 ~ ‘ ~ k’Pj.t JPk~L

+ ~ +

+ ~ek’y~~’[(f
1p f Q])~1 yPy~y~~ ~ + y~yVyP)~], (3.18)
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wherewe usedthat the supercovariantderivativeof ~1’ is equalto

= - o~+f~1~)~. (3.19)

Also the x
4 termsaremodified dueto the local supersymmetry,andwe find

= ~e(g~’~)2 — ~eR jfk! X’YaX~~kyaXt (3.20)

The supersymmetry transformation rules are

5e~ = + ~_Pya~,P (3.21)

~/i~ =D~(w,Q)� + QrI~~’~Xy’~X’fpijy~,,~c’°, (3.22)

~‘=D~(w, Q)c~’[Q”~+Q~iQ]

+ ‘Y~’x~[(f[p fQ])
1~y~~cQ+fp11y,~,,eJ, (3.23)

= ~ ~ (3.24)

= ~ —f,~~c”)— FJ,,~~YXk. (3.25)

Let us now briefly commenton the derivation of theseresults.One startswith
the sum of (3.1) and (3.15) and follows the same strategyas in ref. [14] by
introducinganasyet undeterminedconnectionF into the lagrangianandtransfor-
mation rules.The first variationsarestandardand quickly revealthe needfor the
Noether terms. At that point one has variations proportional to d4~94xcand
Th134~/JE.The former can be cancelledby introducing the Q-dependentterms in
the gravitino transformationrules, which at the sametime requiresone to add
correspondingQ!/J~/Jtermsto the action.This restrictsthe form of Q1 to SO(N)
target space connections(cf. eq. (3.14)), and leads in turn to new B4B34n/JE

variations.Both the 3~04~cand 3/.B~I/JE variationsvanishprovided the S0(N)
curvaturessatisfy the condition

R~(Q)~a1QJ’+ Q7QQJ(2 — (i *-sj) = —

R~(Q)=a~QrQ+ Q,PRQJ

4Q — Q~°QJ2— (t ~-sj) — ~(f
1pfc2]),1, (3.26)

the connection F is givenby

ri—~ic~ci
ik ik ~iJPk’
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andthe almost-complexstructuresarecovariantlyconstantin the following sense:

Dk(1~)fp~J+ Q~QfQ)J+ Q~(f1~,f ~ = 0. (3.28)

The latter result ensuresthat the Bianchi identities of the SO(N) curvatures
remainconsistentwith the constraints(3.26). It also allows the evaluationof the
Nijenhuis tensors(no summationover P implied)

N,~1 fj~jfp~(1~j1— (i 4-*j), (3.29)

which satisfy ~ = 0, but vanish only for N= 2 where the complex structureis
covariantlyconstantwith respectto the Christoffel connection.Let us also note
that the curvatureassociatedwith the connection(3.27) is equalto

RIJk,(F) =RIJkj—~ (3.30)

wherewe usedeq.(3.28).
At this point all variationsof the lagrangianlinear in the spinor fields vanish.

Subsequentlyone concentrateson the termsproportionalto threespinorswith a
derivativeacting on oneof them.This thenrequiresoneto introducethe ~çfQI/Jc

and the x
2~variations in (3.22) (3.23) and the ~Ji~� variationscontainedin the

supercovariantderivative in (3.25). The gravitino fields in the lagrangian and
transformationrules are restricted by supercovariancearguments;therefore,in
view of dimensionalarguments,the only extra variations that one expectsare
possible~2c terms in (3.25). However, it turns out that thosearenot neededand
onedeterminesdirectly the x4 termsin theaction (cf. eq.(3.20))by making useof
the integrability conditions that are derived directly from (3.28) and (3.26). We
refrain from giving theseconditionshere, as they will be discussedin the next
section (cf. eq. (4.4)). By virtue of the integrability conditionsalso the remaining
variations,all cubic and quintic in the spinor fields, cancel after tediousbut
straightforwardcalculation!

4. Target-spacegeometry

In this sectionwe studythe implications of local supersymmetryon the target-
space geometry. The most obvious restriction concerns the dimension of the target

space.Locally it mustbe decomposable into a number of supermultiplets. There-
fore we must have d = kdN, where k is an integer denoting the number of
irreducible supermultipletsand dN is the numberof bosonic statesof an irre-
ducible supermultipletlisted in table 1. For N = 1, 2 the remainingimplications
are ratherstraightforward.When N = 1 the targetspaceis a riemannianmanifold
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of arbitrarydimension(asd, = 1) andno special properties are required while for
N = 2 we are dealing with a Kähler space,as thereis a complex structure that is
covariantly constant with respect to the Christoffel connection (cf. eq. (3.28)).
Obviously such a space must be of even dimension. It then follows that the Ricci
tensor is related to the first Chern class.

The analysis for N> 2 is more involved. It is convenient to adopt a manifest
SO(N) notation. First introducethe anti-symmetric tensors f,~J (we freely raise
and lower SO(N) indices),

fPQf[PfQ] flP ±f~, (4.1)

andthe SO(N) target-spaceconnectionsQ[J, consisting of Qr~and

QIP ~Q1. (4.2)

With these definitions eqs. (3.26) and (3.28) can be written as

Rff(Q) a1QJ~— + 2Q~[’ QJIK = .

1_f1J

D
1ff~D1(t)f/,,~”+2Q7~E’f1/]K=0. (4.3)

They lead to the integrability condition

RijmkfIJml — Rjjmif himk = _f1~[’ fkj]K, (4.4)

which, as pointed out in sect. 3, was required for the cancellation of the supersym-
metry variations of the action that are cubic and quintic in the spinor fields.

Obviously the tensors f,~,act as generators of SO(N) in target space,

fIJfKL —fKL f~=

4~K[I fJ]L — 4~L[J fJ]K. (4.5)

In additiontheysatisfy

2

(ft,) = —1 (land J f,xed)

fIKfKJ= (N— i)~,~—(N—2)f,~,

fIJ~JfKL1’ = 2d8
1[K ~ Lu ± ~N,4~IJKL~k (4.6)

The tensor J is definedby

(f~ ~ (4.7)



18 B. de Wit et al. / Non-linearsigmamodels

For evenvaluesof N it satisfiesthe following properties:

.J’kf~ ~ D,(t)J~k= 0, J2 = (_)N/2

1 J = (_)N/

2J•• (4.8)

andmustbe traceless,unlessN = 4. For N = 4 onederives

fPfQ= ~ Jfk. (4.9)

Hence Jkk is the trace of the product of the three almost-complex structures,
which is constantso that it may be evaluatedat anypoint in targetspace.As J is

symmetric for N = 4 and its square is equal to the unit matrix (cf. eq. (4.8)), we
find

Jkk = d~—d, (4.10)

where d ± are the dimensionsof the subspacesfor which the eigenvalueof J is
equal to ±1. More generally, for N = 4 mod 4, the subspaceswith J = ±1
correspondto the inequivalentsupermultipletsdiscussedin sect.2.

Let usnow proceedfor a generalvalue of N> 2. First we note that for N = 3
thetensorsf1J definepreciselythreealmost-complexstructures,which arecovari-
antly constantwith respectto a non-trivial SO(3) Sp(1) connection(cf. eq.(4.3)).
Hencethetargetspacemustbe quaternionicfor N = 3. Leavingthespecialcaseof
N = 4 until the end of this section,we now continueas generallyas possiblefor
N> 2. Contracting(4.4) with f,”[” and making useof (4.6) gives

RIJklfJJkt= ~df,~
11, (4.11)

while contracting (4.4) with g~, using the cyclicity of the Riemann tensor and the

aboveresult (4.11),yields

R,1 R~kf1g’~= cg1~, (4.12)

where

c=N—2+~d>0. (4.13)

Hencewe aredealingwith an Einsteinspace~.

* For N 3 this is in accordwith the fact that quaternionicspacesof dimensionhigher than four are

always Einstein [26]. In the caseat hand, the result alsoholds true for a four-dimensionaltarget
space.Our conventionshere are such that positive curvature(c> 0) correspondsto non-compact
manifolds; this conventionis oppositeto the one commonly adoptedin the mathematicalliterature.
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Now decomposethe Riemanncurvatureas RIlk! = Rijkl + ~f//ff~!,so that (4.4)
reads

‘~ gIJmp~ c/fm = 44
ijmki I ijmlJ k

This motivates us to introduce the set of independentantisymmetric tensors
h~(~),labelled by indices a definedby the requirementthat they commutewith
the S0(N) generators,

— h7kfJfk = 0. (4.15)

For the momentwe restrictourselvesto a givenpoint in targetspace,but the fact
that the S0(N) generatorsare realizedeverywhereon the manifold (in the spinor
representation),implies that the number of independenttensorsh~’ and their
associatedLie-bracket structureis the sameeverywhere.Obviously the h” gener-
ate the subgroup H’ of SO(d) that commutes with S0(N); it will play an
importantrole in what follows. Becauseof Schur’s lemma,H’ mustbe one the
groups SO(k,)oSO(k2),U(k1)OU(k2) or Sp(k1)®Sp(k2),where k, and k2
denotethe numberof inequivalentSO(N)representationsof the targetspace,and

we have k = k~+ k2, as every irreducible supermultipletcontainsprecisely one
irreducibleSO(N)multiplet of scalarfields. The natureof the group is determined
by the centralizerof the SO(N) representationand canbe readoff from table 1;
for N = 7, 8, 9 mod 8 thegroup is orthogonal,for N = 2, 6 mod 8, it is unitary,and
for N = 3, 4, 5 mod 8 it is symplectic. For odd N the spinor representationis
unique,so that one has k1 = k and k2 = 0. The structureconstantsof H’, which
may at this point dependon the target-spacecoordinates,aredefinedby

h~h
0— h0h’~=f~7h~. (4.16)

From the argumentsgivenabove,as well as from moregeneralconsiderations,it
follows that the compactgroup H’ factorizesinto a direct product of an abelian
group and a number of simple groups. In what follows these factor groups will
generically be denoted by H “. By a suitable redefinitionwe ensurethat an index a
refers exclusively to one of these factor groups. Without loss of generality it is
possible to impose the normalizationcondition

h~h’~~= 2dN~”0. (4.17)

With this normalization it follows that ~‘©~ is an invariant tensorunderH’, which
may be used to raiseand lower indices. The structureconstants~ are then
totally antisymmetric.
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Taking the covariantderivativeof (4.15) it follows that the covariantderivative
of h~’ commuteswith f~ andmust thereforebe proportionalto thesametensors,
i.e.

D
1(1~)h~(4)=Q~(4)h~(4). (4.18)

In other words, the tensors are covariantly constant with respect to the

Christoffel connectionandsomeconnectionu1~©~.In view of (4.17)this connection
is anti-symmetricin a and /3.

The fact that R commuteswith S0(N) (cf. eq.(4.14)) thus implies that locally
the Riemanntensorcanbe written as

R,Jkl = ~5{fiJfk1 + Ca~h~jh~i}, (4.19)

where Cap(4) is some unknown tensor, symmetric in a and /3, so that the
curvaturesatisfiesthe pair-exchange property. According to (4.18), (4.19) and the
second equation of (4.3), the curvature and its multiple covariantderivativestake
their valuesin the algebracorrespondingS0(N) 0 H’. Thereforethe target-space
holonomy group mustbe containedin this group. Note, however,that the holon-
omy group could in principle be smaller than SO(N)0 H’, dependingon the
actualvalues takenby the tensorCa~~and the connectionQ~.It is known [18]
that spaceswith restrictedholonomygroupshavespecialproperties,so we expect
(4.19)to have importantconsequences.We shall returnto this aspectin sect. 5.

The fact that we aredealingwith an Einsteinspaceimplies

C~h~”h~1= [N(N— 1)— 8c]g1~. (4.20)

Obviously, the aboveexpressionis invariant underH’, so that

C~,f~3h”h~ = 0. (4.21)

To ensure that the Riemann curvaturesatisfies the cyclicity property, the
tensorsf~ and h~shouldsatisfy

the/f r~ I~* ifS — 2
J[ij J ktj + ~afS

1~[ij ~ kt] — .

It is not easyto solve this equationin full generality.Thereforewe first considerits
contraction with fk~~<lLand hr,, usingeq.(4.5) and(4.6) and

fJh~.=0. (4.23)

The latter relation follows from the cyclicity of the trace and the fact that (for
N> 2) every tensorfL~canbe written as the commutatorof two such tensors(cf.
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eq. (4.5)).Note that this is also in accordwith (4.11) and(4.19). For the generators

h’~we usedthe sameargument when imposing (4.17) to ensure that the trace of
the product of two generators belonging to different factor groupsH” vanishes.

The contractionof (4.22) with f leadsagain to (4.20),while with h” we find

2d~Ca
0+ Cyaff Yf,~— i6c3,~= 0. (4.24)

This result showsthat C,,
0 vanisheswhen a and /3 belong to the different factor

groupsof H’. For that reasonwe may consider(4.24) and (4.21) for the simple
subgroupsseparately.For the abelianfactor (4.24) canbe solveddirectly,

8c
C,,0(H”) = —ö,,~, a, /3 e h” abelian. (4.25)

dN

For the simple factor groups, it is more difficult to find the solution of C,,0, but
after multiplying with h”h

0, with a and /3 belonging to the generatorsof the
simplefactorgroup, andmakinguseof (4.21), we find

16c
C,,

0(H”)h’’h
0 = 2dN + c

2(H”) h’’h”, with a, /3 ~ h”, (4.26)

where

fafYS = c2(H”)~. (4.27)

In the last equation we usedSchur’slemma.Observethat (4.26)appliesalsoto the
abelianfactor,as c2(H”) = 0 in that case.

Now thereis one more conclusionwe can draw from (4.22), namely that the
group SO(N)0 H’ must act irreducibly on the targetspace.To show this, it is
convenientto rewrite (4.22) with tangent-spaceindices.Let us then assumethat
thereis a subspacewhich is left invariantby SO(N)0 H’, so that this groupacts
reducibly. Denote the indices of this invariant subspaceby i, ~ and the
indices of its orthogonalcomplementby i ~, Subsequentlyconsiderthe

cyclicity equation(4.22),with indices i11, ‘H’ k1 and l~.Becauseof the invariance
of the subspacethereareno generatorswith mixed indices,so that (4.22) reduces
to

ghf ghf ~ ~,a ~ —n 2
J I))) f k111 afI i~1j1~ k111 — .

However, contracting this with ff’~ leadsto an immediatecontradiction.Hence
we concludethat SO(N)0 H’ acts irreducibly on the targetspace.

By Schur’slemma,this showsthat the abelianfactor in H’ hasdimension0 or 1,
with the square of its corresponding generator h equal to h

2 = —(2/k)1. Further-
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more both C,,0h~*hPand h”h~,with the generators restricted to one of the factor
groups H”, are proportional to the unit matrix. In this way we find

2 dim H”
— k

32c dim H”
Cap(H”)(h~h

0)ij= — 2dN + c
2(H”) k ~ (4.29)

where the sum extendsover the generatorsof each of the factor groups H”
separately.Last but not least, as SO(N) 0 H’ leaves the subspaceinvariant
constitutedby equivalentSO(N) representations,it follows that the target space
shoulddecomposeentirely into SO(N)representationsthat are equivalent.Conse-
quently,we may put k1 = k and k2 = 0.

Now we substitute(4.29) into (4.20) to obtain a relation betweenN and the
numberof supermultiplets.Using that c2 equals2(k — 2), 4k and 8(k + 1), for
S0(k), SU(k) and Sp(k), while the dimensionsof thesegroups are equal to

— 1), k
2 — 1 and k(2k + 1), respectively,leadsto the following equations:

dN — 1
for N= 7, 8, 9 mod 8,

dN + k — 2

N(N—1) d~,—4

8c = dN(dN+2k) forN=6mod4,

dN + 2
for N=3,5, 12 mod8, (4.30)

dN + 4k + 4

where c wasdefinedin (4.13). From theseequationsonemayverify that N(N — 1)
— dN must be positive, which implies that therecan be no solutions for N> 17.
Thereforeit remainsto searchfor a finite numberof explicit solutions,which are
rather rarein view of the fact that the parametersN and k mustbeintegers.The
result of this searchis shown in table 2.

We shouldstressthat so far we did not determinethe tensorCa
0. An obvious

solution is to chooseit equal to for every factor groupH”. In that casethe
Riemanntensortakesits valuesin the algebracorrespondingto SO(N) 0 H’ (in
the spinor representationof SO(N) andthe defining representationof H’), andit
is also invariantunderthis group.However, it is possiblethat therearealternative
solutions for C,,0, correspondingto nontrivial solutions of (4.24). The Riemann
tensorcould then take its valuesin the algebracorrespondingto a subgroupof
S0(N) 0 H’ (which shouldstill actirreduciblyon the targetspace).Let us denote
this group by H’ andassumethat it canbe written as a productof subgroupsH”
that are abelian(becauseof Schur’s lemma, the abeliangroup is at most one-di-
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TABLE 2
All solutionsto (4.30)with N = 3 or N ~ 5, which correspondto possiblenon-linearsigmamodels

coupledto extendedsupergravityin termsof N andthenumberof supermultipletsk. ThecaseN = 4 is
givenfor comparison.Thereonecan have two independentquaternionicsubspacescorrespondingto

k~and k inequivalentsupermultiplets

N dN k c H’

16 128 1 30 1
12 64 1 18 Sp(l)
10 32 1 12 U(1)
9 16 1 9 1
8 8 k 6+k SO(k)
6 8 k 4+k U(k)
5 8 k 3+k Sp(k)
4 4 k.,. 2+k~ Sp(k~)
3 4 k ~(2+k) Sp(k)

mensional)or simple. In additionto (4.24) also the following conditionmust then
be satisfied:

dim H” dim H”

= ~ 2~’ ‘H” (4.31)
~ 2d,,,,+c2(H ) H”cH’

1’N c
2~ )

where the subgroupsH” are known from table 2. For an explicit exampleof this
phenomenonconsider dN = 4 with the indices a, /3 taking values in the Lie
algebracorrespondingto Sp(k). In that caseone obvious solutioncorrespondsto
C,,0 a ~ while a secondsolutions is obtained by restricting C,,0 to take only
non-zerovalues for a, /3 correspondingto the generatorsof the obvious U(k)
subgroup.We leave it to the readerto verify that in both casesone can satisfy
(4.24) and (4.31). This exampleis relevant for N = 3, where indeed thereexist
homogeneousspacescorrespondingto thesesolutions,namely Sp(1, k)/(Sp(i) 0

Sp(k)) and U(2, k)/(U(2) 0 U(k)). As we shall discuss in sect. 5, the fact that the
holonomygroup is reducedhasimportantconsequencesfor the targetspace.

At this point we have not yet attempted to solve (4.22). The easiest way to find
solutions to this equationis to assumethat one is dealing with a homogeneous

space,in which case(4.22) is just oneof the Jacobiidentitiesfor the generatorsof
the isometrygroup. This will also be discussedin sect. 5. For a cosetspaceG/H
one expectsthe Riemanntensorto takeits valuesin the Lie algebraof H. In the

caseat handwe know that H mustbe containedin SO(N)0 H’. For a givengroup
H oneknows the dimensionof G, andin thisway it is relativelyeasyto find coset
spacesthat satisfy all the restrictionsgiven above.

Now we turn to a discussionof the N = 4 theories.An importantrole is played
by the symmetrictensorJ, whosedefinition andmain propertiesweregiven in eq.
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(4.6)—(4.10). As its eigenvaluesare equal to ±1, we can use it to define the
projectionoperators

(4.32)

By meansof theseprojectorsonedecomposesthe targetspaceinto two subspaces.
Becauseof the fact that the tensors H ± are covariantly constant,the Riemann
tensoris only nonvanishingwhen all its indicestakevaluesin the samesubspace
(to see this use the cyclicity of the curvature). Hence we decompose the curvature
into two tensors R~),satisfying

H~+IR~I,),,=H~
1D1(1

8)R~,~,,= 0, (4.33)

where the secondequationfollows from the first one combinedwith the Bianchi
identity. Underthesecircumstances,the spaceis locally aproductof two separate
riemannianspaces;this meansthat one can choosecoordinatessuch that the
metric acquiresa block-diagonalform, in accordancewith the projectors(4.32),
where the metricof onesubspacedoesnot dependon the coordinatesof theother
one.

Furthermore,becausethe almost-complexstructurescommutewith the tensor
J, they can be decomposedinto almost-complexstructuresbelonging to the two
subspaces.Hencewe may introducetwo tensorsf,’,±)l, which are only non-zero
when both indices take values in the correspondingsubspace,although at this
stagethey may still dependon the coordinatesof both subspaces.Decomposing
the SO(4)connectionsin terms of two setsof SO(3)connections,

Q(±)P = — I~PQRQQR R Q,”, (4.34)

onecanwrite (3.28) as follows:

Dk(F)f)~~”+ ~PQRQ

5~±)Qf.(.±)R = 0, (4.35)

while, according to (3.26), the curvatures of the two connections are equal to

~ ±f1~,~”. (4.36)

Hence the curvatures R’~(Q~
5~)vanish in the subspaceprojected out by H~.

Therefore by a suitable SO(3) gaugetransformation,one can ensure that the
connectionsQ(~~’vanish in this subspace.The remainingidentities then ensure
that the two spacesdecouplecompletely,with separatecomplex structuresf( ±)

and connectionsQ( ±) with componentsin the correspondingsubspaceand de-
pendingonly on the coordinatesof that subspace.Note that the tensorsf( ±)P

definealmost-complexstructuresin their respectivesubspaces.We shouldperhaps
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point out here that thesetwo subspacesdo not decouple in the field theory, but
interactvia the coupling to the dreibeinandgravitino fields.

Hencewe maynow concentrateon oneof thesesubspacesseparately.Dropping
all superscripts(±), the geometry in the subspaceis subject to the following
equations:

fPfQ =
8PQ’ ~PQRfR’

+ ~PQRQ~Qf.R = 0,

R~(Q)= ±f,~’. (4.37)

The subspacetransformsunder the action of the correspondingSO(3) group

accordingto inequivalentrepresentations.Again,as we havethreealmost-complex
structuresthat arecovariantlyconstantwith respectto a non-trivial Sp(l) connec-
tion, the spaceis quaternionic.

For reasonsof comparisonwe repeatsome of the samestepsas in the more

generalcase.Contractingthe integrabilitycondition correspondingto the second
equationof (4.37) with the almost-complexstructuresand the metric yields the
analogueof (4.11)and (4.12), butwith different normalizations,

RIJklf,~=~d÷fpIJ, R
11=~(8+d~)g11, (4.38)

where d~=4k ± is the dimension of the subspaceand k± the number of
supermultiplets(which equalsthe quaternionicdimensionof the subspace).Fur-
thermorewe havea similar decompositionof the curvatureas in (4.19),

RIlk! = ~{fIJfkI + C,,0h~h~,}, (4.39)

where the tensors h~,togetherwith the identity, span the centralizer of the
almost-complexstructures,so that they generatethe group Sp(k~ Togetherwith
the complex structures they generate the group Sp(l) 0 Sp(k ,j, which must again
act irreducibly. Again onederives

C,,0(h”h
0)~~=—~(2+d~)g

1~.. (4.40)

We shouldpoint out that the presenceof the two separatequaternionicspaces
can be understood from N = 2 supergravityin four space-timedimensions.In that
casethereexist two inequivalentmattermultiplets. The vector multiplets, whose
scalar fields parametrizea Kähler manifold [27], and the scalar(or hyper-)multi-
plets,whosescalar fields parametrizea quaternionicmanifold [28]. Upon dimen-

sional reduction the Kähler space of the vector multiplets is converted into a
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quaternionicspace(although not the most general)[29], so that one obtains two
quaternionicspacesassociatedwith inequivalentsupermultiplets.

Perhapswe shouldexplain why this phenomenoncan only happenfor N = 4,
while thereare inequivalentmultipletsfor all valuesN = 4 mod 4, as we showedin
section2. The reason is that the group SO(N) 0 H’ must act irreducibly in the
targetspace,so that only onetype of multiplet is allowed. The situationfor N = 4
is different,becausethe groupSO(4) factors into two separateSO(3)groups,each
of them acting in a different subspaceof the targetspace.

The question that remains to be answeredis what the possible spacesare
correspondingto N> 4. As we shall argue in the next section, it turns out that
thesespacesareunique.After identifyingeachoneof themit is ratherstraightfor-
ward to verify that all equationsof this sectionare indeedsatisfied.

5. Homogeneousspaces

A striking featureof the results derived in sect. 4 is that, except for the low

valuesN ~ 4, the numberof possibletheoriesis ratherlimited. In particular, for
N> 8, there remainonly four theoriesbasedon a single supermultipletcorre-
spondingto N = 9, 10, 12 and16. The bound N ~ 16 was obtainedheresolelyon
the basis of mathematicalconsiderations;since there is no helicity in three
dimensions,we cannotrely on “physical” arguments,unlike in four space-time
dimensions,where the analogousbound N © 8 follows from requiringabsenceof
masslessstatesof helicity higher than 2. The argumentsof sect. 4 are not yet
strongenoughto determinethe targetmanifolds,sincewe usedonly a contracted
versionof (4.22); to find out what the possiblespacesare,onemustexploit thefull
contentof theseidentities. Fortunately,we cannow invoke a powerful mathemati-
cal theoremto prove that the targetspacesare, in fact, symmetric and therefore
homogeneousfor sufficiently high N.

Theorem 5.1 [19]: Let 4’ be an irreducible riemannian manifold. If the
holonomygroupat apoint p ~.%‘ doesnot act transitively on the unit spherein the
tangentspaceT~4’at p, then .4’ is a symmetricspaceof rank > 2.

The contentof this theoremcanberephrasedas follows: if the holonomygroup
of .4’ is sufficiently “small” with respectto the genericholonomygroup (i.e. SO(d)
for an arbitrary d-dimensionalriemannianmanifold), then the manifold is com-
pletely determined;if, on the other hand,it is “large”, then little canbe said,and
thereis a greatervariety of spaces.We note,however,that the possiblyholonomy
groups for irreducible non-symmetricriemannianmanifolds cannotbe arbitrary
subgroupsof SO(d),but arestronglyrestricted;acompletelist is givenin corollary
10.92of ref. [18]. In the caseat hand,all the necessaryinformation is encodedin
the explicit formula (4.19) for the curvature tensor, which tells us that the
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TABLE 3

Completelist of targetspacesfor N ~ 5 supergravitytheories.Thecoefficient c, definedin (4.13),
coincideswith the dualCoxeternumberof thegroupG

N dN k c G/H Rank

16 128 1 30 E
5(~8)/SO(16) -~ 8

12 64 1 18 E7,_51/(SO(12)®SO(3)) 4
10 32 1 12 E5(_,4)/(SO(10)®SO(2)) 2

9 16 1 9 F41201/SO(9) I

8 8 k 6+ k S0(8, k)/(SO(8)®SO(k)) max(8,k)
6 8 k 4+ k SU(4,k)/S(U(4)®U(k)) max(4,k)
5 8 k 3 + k Sp(2, k)/(Sp(2)® Sp(k)) max(2, k)

holonomy group is containedin SO(N) 0 H’, where the centralizersubgroupH’
canbe read off from table2. As the dimensionof the targetspaceis d = kdN,we
must therefore checkwhetheror not the group SO(N) 0 H’ acts transitively on

the unit sphereS”’. When it doesnot, then the holonomygroup SO(N)0 H,
which is containedin it, doesnot act transitively either and we can apply the
theorem.This allows us to understandthe limitations on the numberof possible
theoriesfrom a slightly differentpoint of view: extendedsupergravitytheoriesare
scarcebecausethe mismatchbetweenthe actualholonomygroup SO(N) 0 H and

the genericholonomy group SO(d)= SO(kdN)becomestoo big for N> 4. For
N ~ 4, the information providedby (4.19)is not sufficient to completelydetermine
the manifold. In particular, for N = 1, there are no restrictions at all, and the
targetspaceis an arbitraryriemannianmanifold. For N = 2, the holonomygroup
has a U(1) factor; since there is one complex structure, the manifold must be
Kähler, andthe holonomy group is containedin U(k) with d = 2k. As this group
acts transitively on the sphere S2k1 we get no further restrictionsfrom the
theorem. For N = 3 and N = 4, the target spacesare quaternionicmanifolds of
dimensiond = 4k and d~=4k~, respectively,and the holonomy group is con-
tained in Sp(1) 0 Sp(k). Since the group Sp(l) 0 Sp(k) acts transitively on the
sphere54I~_1, the theoremimposesno immediaterestrictionson the manifold. For
all highervaluesof N with the exceptionof N = 9, the group S0(N) 0 H’, and
thereforethe holonomygroup doesnot act transitively. According to the theorem

we can then uniquely determinethe possible targetmanifolds by matching the
valuesof N andd with the list of symmetricspaces.This identification leadsto the

list of spacesshown in table 3, which forms a central result of this paper ~‘. All
non-linearsigmamodels coupledto N> 5 supergravityare thus uniquely deter-

* By someabuseof notationwe wrote orthogonalgroupsfor thecosetswherepossible.It should be

clearfrom thetext in sect.4 what the representationsarein which the isotropygroup acts.As SO(N)
acts in the spinor representationit would be appropriateto denoteis asSpin(N), whereastheSO(3)
group for N = 12 is actuallySp(l). Observethe importanceof triality for the N = 8 cosetspace,which
can be usedto interchangevectorand spinor representationsof S0(8).
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mined. The maximal numberof supersymmetriesis N = 16, which correspondsto
the theoryconstructedquite sometime ago in the first paperof ref. [12]. Thecase
N = 9 mayseemspecial,as Spin(9) doesacttransitively on S’5, but it canbeshown

that the cosetspaceF
4/Spin(9)(which is of rank 1) is the only solution [30] ~.

We expect that the theorieswith even N in table 3 can be obtained by
dimensional reduction of the correspondingN/2 theories in four space-time
dimensions.To obtain the theorieswith odd N, onewould haveto further truncate
the dimensionallyreducedtheories,but, evidently, neither the target spacesnor
the fact that thereare no theoriesfor certain odd valuesof N below N = 16 and
none at all aboveN = 16 could havebeenreliably predictedon the basis of such
arguments.We shouldperhapspoint out that exceptionalgroups(including G2)

also appearfor symmetric quaternionicspaces.All homogeneousquaternionic
spacesareknown and weregiven in ref. [31] (see also ref. [23]).

Havingestablishedthat the targetspacesaresymmetricfor sufficiently high N,
wedevotethe remainderof thissectionto elucidatingsomefeaturesof the relation
betweenthe target-spaceformulation of locally supersymmetrictheoriesas given
in sect. 3 and the formulation of extendedsupergravitytheoriesas G/H coset

spacetheories(see,for instance,refs. [12,32]).In particularwe shall indicate how
someof the resultsof our work arise in the contextof the latter formulation. We
assume,in accordwith the spaceslisted in table3, that G is a non-compactgroup
and H its maximal compactsubgroup,so that the spaceis symmetric.For N> 5
the possiblechoicesfor G andH canbe gleanedfrom table 3, but our resultscan

beappliedfor othercasesas well. Togetherwith theresultsderivedin sect.3, this
information then gives an explicit representationof the lagrangianand supersym-
metry transformationsof the theory.

Let us first discussthe group-theoreticalaspectsin a little more detail. From
sect.4 we know that the groupH alwaysfactorizesaccordingto SO(N)0 H, where
H c H’ (for the spaceslisted in table 3, H and H’ do actually coincide).The

generatorsof the group H will be denotedby h~where the indices a now take
their valuesin the Lie algebraof H: a = 1,.. . ,dim H. They commutewith fermion
numberandwith thematricesF,~A,

h~CFC’E+ h~F.~’e= 0. (5.1)

Denoting the SO(N) generatorsby x’~= —xi’, where I, J,... = 1,. .., N, and
the remaining(coset)generatorsby Y-~,where the bosonic indices A, B,... (or

* In ref. [18] thereadermayfind the list of subgroupsof SO(d)which act transitivelyon Sd_i.Besides
the regulargroups,there are three exceptionalcases,namely G2 acting on S

6. Spin(7) on S7 and
Spin(9) on S15. The first two of theseplay no role in our analysis,becausethe associatedmanifolds
are Ricci flat [18], which would leadto a contradictionwith (4.12)and(4.13).
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the fermioniconesA, B,...) = 1, . . . , d werealreadyintroducedin sect.2, the Lie
algebraof G is characterizedby the commutationrelations

[x’~,XKL] =
6fKXIL — ~bKXJL — ôfLXbK + ~ILXJK

[X~ X
0] =f~0

5X~ [X’~ X~]=0

[yhi vAl_ _I bJvB [v’ VA1_ ~ ~
I ‘ J 2 AD ‘ I ‘ J AB

[yA, yB] = ~FA’~X’~ + ~C,,Oh~BX
0, (5.2)

whereF~ F~F
8~

1,so that ~ generatesthespinor representationof SO(N).
Likewise

h~h0 —h0 h~ —~‘‘~ h~ 53AC CD AC CBJ -y AB

The tensorC,,
0 coincideswith the tensorintroducedin (4.19).Most of the Jacobi

identities implied by the algebra(5.2) are trivially satisfiedonce we assumethat
Ca0 is H-invariant. The remaining identity, and the one that leadsto the most
stringentconstraintson G, arisesfrom the commutator[yA yB], yC]; it reads

F[’,~B F’C~D]+ C,,fIh~Bh~01= 0. (5.4)

This equationis just (4.19), except that C,,0 is now assumedto be fi-invariant.
From sect.3 we can thereforededuceits valuesfor the spaceslisted in table3,
using the normalization(4.17). For N = 16 and 9, C,,0 obviously vanishes;for
N = 12, 10, 8 and5, I~Iis simple, so that C,,0 is proportionalto the identity, andits
eigenvaluesareequalto 2, 3, 8 and2, respectively.The caseN = 6 is slightly more
complicated.For the SU(k) subgroupCa0 is proportional to the identity with
eigenvalueequal to 4, whereasfor the U(1) subgroup,we havethe eigenvalue
4 + k. In appendix A we will give an explicit proof of the Jacobi identity (5.4) for
the groups E8, E7, E6 and F4.

In the coset space formulation the scalar fields that parametrize the coset space
are characterizedby a matrix ~V(x) eG/H, on which G actsas a rigid symmetry
group from the left, while H is realizedas a local symmetryacting from the right.
To understandthat this description is equivalent to the one in terms of the
target-spacecoordinate fields qY(x), we note that the matrix ~ represents
d = dim(G/H) = dim G — dim H physical degreesof freedom. The spurious

(gauge)degreesof freedomassociatedwith the subgroupH canbe eliminatedby
choosinga special(“unitary”) gaugewhere the matrix ~ is directly parametrized
through the target-spacecoordinate 4~(x)used before, i.e. ~= ~‘~1(x)). To

maintain this gaugechoice underlocal supersymmetrytransformations,compensat-
ing H rotations will be needed.We will also needa vielbein ef

1 as well as gauge
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connectionsQff and Q7 for the tangent-spacegroup SO(N) 0 H. These are
definedby (for a systematicand completediscussionof cosetspaces,seee.g. ref.
[33])

~ t~
9~7~~Q[~X’~ + Q~’X~+ ~AyA (5.5)

where0~is the derivativewith respectto the target-spacecoordinate4’.

The integrability condition correspondingto (5.5) are the so-called Cartan—
Maurer equations.In this casethey read

D11 e~1= ~ e~1+ (~Q(,’FA’~B+ Q~h~)e~= 0, (5.6)

R’~— 1 A BrbJ— 2e~eJIAB,

R~= — ieAeB1~ h
0

if 8 I j aO AD’

where R[~1 was alreadydefinedin (4.3), while R,~equals

R,~- 3
1Q7 — 0JQ,~+f~0-yQrQJ. (5.9)

The geometricalcontent of the theory is fixed once we identify e~as the
vielbein of the cosetmanifold with Q[’ and Q~the spin-connectionfields. The
latter taketheir valuesin the algebraof the isotropygroup,which is the subgroup
of SO(d)that actson the tangentspacewith the generators~F’~ and h~defined
above.According to (5.6) the spaceis torsion-free,so that the vielbein is covari-
antly constantwith respectto the Christoffel connection,

D1e~=3~e,’~—1~e~+ ~ (5.10)

The vielbein cf
1 is relatedto the target-spacemetricof sect.4 by

g,
1(4) = ef1(4)ef(4)i~AB, (5.11)

where ~AB is a symmetricand il-invariant tensor;in casethereis more thanone
invariant tensor,the metricis thusno longerunique.Thevielbein canalso beused
to convertcurvedinto flat indicesin the usualfashion;for instance,thegenerators
of H arerelatedto (asubsetof) the matricesh~usedpreviously(seeeq.(4.15))by

h~= h~Bef1e7. (5.12)

The curvature tensor on G/H can be computed from

R11,,1= —ef1eP(+RUF~+ R~h~B). (5.13)
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Usingeqs.(5.7) and(5.8) one thusobtains

RABCD = ~(FA”BFC’~D+ Caph~BhgD), (5.14)

which preciselycoincideswith (4.19). In termsof flat indices,the curvaturetensor
is thereforeconstant;moreover,the Jacobiidentity (5.4) ensuresthe cyclicity of the
Riemanntensorandis thusequivalentto (4.22).

From the previous sections we know of the existence of N — 1 almost-complex

structuresf,~’(rememberthat P, Q,... = 2,. .., N). In the coset formulation they
canbe representedby

f,~’=±(F”F
1)ABef1ej~, (5.15)

and are not SO(N) covariant.On the otherhand,the antisymmetrictensorsf,~’,
which weredefined in (4.1), are S0(N)covariant,andtakethe form

f/f= —F~’~ef’ef. (5.16)

The tensorsf,~’are only almost-complexstructures;from (5.10)and the definition
(5.15),we immediatelydeducethat

D
1(F)f1~=±~Q[’[F

11, F”F1]fk= _Q,Qf
1~_Q[Qf1~, (5.17)

where we madeuse of the definition (4.2). Relation (5.17) is nothing but the
previousformula (3.28).

In the cosetformulation the fermionfields do not carry target-spaceindices.To
appreciatethis feature,let us recall the supersymmetrytransformation

= ~x’ + ~Pf,ç~i). (5.18)By making use of the supersymmetrytransformationwith parameter E, onenaturallydefinesfermion fields that transformas the componentsof a target-space
vector. In the cosetformulation, on the otherhand,one considers~ which
takesits valuesin the Lie algebraof G. By a suitable(field-dependent)H-transfor-
mation, this expressioncanbe restrictedto take its valuesin the generatorsyA~

This motivatesone to introduce fermion fields XA that transform covariantly
underH, so that the supersymmetryvariationtakesthe form

~ I~/,~Aj~h.yA (5.19)

In a given gaugethe two transformationsshouldcoincide,moduloa compensating
(field-dependent)H-transformationto maintain the gaugechoice.
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By comparing the two supersymmetryvariations we can find the relation
betweenthe fermionfields x’ and ~A. Wefirst observe that the directvariationof
~‘ yields

~‘~‘~‘= ~ ‘~~= ~Y(~Q[~X” + Q’X~+ ef~YA). (5.20)

Obviously the first two terms correspondto infinitesimal field-dependentH-trans-
formations.The last term shouldbe matchedwith (5.19), so that

(ix’ + ~“f,~jx~)ef1 = gI~AF~I. (5.21)

Making use of (5.15) this relation leadsto the identificationsc’ = ±cand

= ±F~.jef1x’. (5.22)

With this result the variations(5.18) and (5.19) coincide, provided one adds a
compensatingH-transformationto (5.19)with parameters

(
01f = ~4JIQ!J w(* = ~ (5.23)

This compensatingtransformationmust be included in all supersymmetryvaria-
tions.To seethe correspondingrelationfor the fermionsx’ is slightly moresubtle.
Using (5.22) we find

= ±1T~L.i(~ef’x’+ ef1~x’)

= ±F~A~4~(~ef1—F~’e~)~’+ ~FIA ef1 Øç&’ c’, (5.24)

wherewe madeuse of (3.25) and (5.15). Here it is important that FJ~’ is not the
Christoffel connection,but the modified connectiondefinedin (3.27). Using(5.10)
and(3.27) showsthat the first term is equal to

~WX = — ~w
11F~~’~— wah~xB (5.25)

where h~’
4B= F,~’Ah~BFABby virtue of (5.1). In deriving this, we also madeuse of

(4.2) and (5.10). The terms (5.25) are preciselycancelled by the compensating
transformation(5.23).The remainingvariation thustakesthe form

= ~y~E’FA’AP,f1, (5.26)

wherewe usethe notation

PA_á’~teA (5.27)
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Finally, by similar manipulationsas describedabove,onemay verify that

D
1,(F)~’= ±(D~(f)e~)FA1AXA±e ~A3l,XA — e~4FAPAQ~~3cbixA

= ±e~F~A(6A~d1,+ ~Q~FJ~ + Q~h~4x”, (5.28)

where

Q~’=a~YQf~, Q~=d.~,4’Q~. (5.29)

The modification of the fermionic connectionas given in (3.27) is thus indispens-
ablefor recastingthe results in such a systematicandcovariantform in the coset
formulation. The readeris advisedto consult ref. [12] to seethat thesevarious
ingredientsare indeedpresentfor the theoriesconstructedthere.

Appendix A

In this appendix, we will establish the crucial Jacobi identity (5.4) for the
exceptionalgroupsE8, E7, E6 andF4. For the convenienceof the reader,we here
repeatformula (5.4) for C,,0 =A3,,0

rbJ rbJ .iAt.a ~ — 1
[AB CD] ~‘ [AD CD]—

For G = E8 and F4, the subgroup iI is trivial, and the secondterm is therefore

absent.For G = E7 and G = E6, we have H = Sp(i) and H = U(i), respectively, so
the secondterm in (A.i) must be taken into account; with the normalization
adoptedin (4.17),we find A = 2 for E7 and A = 3 for E6, asstatedbelow (5.4). To
prove (A.1), we will needto know the Fierz identitiesfor matricesacting on the
d-dimensionalchiral spinor representationsof SO(N) (there is only onemultiplet,
sowe haved = dN). Sincewe aredealingwith a real representationof the Clifford
algebra, the standardFierz identities for complex F-matrix algebrasmust be
modified. Fierz identities for real Clifford algebrashavebeenderivedin ref. [22];
however, theseare not quite suitable for our purposes,and we will therefore
presentan alternativeformulation. We will makeuseof the standarddefinition

F” ‘2k Fr” .. . Fb2k]. (A.2)

Notice that we consideronly matricesbuilt out of an evennumberof F-matrices,
which do not mix the d-dimensional chiral subspaces. For brevity, we will denote
these matrices by F~

2”~below, so that ~ .~‘2kV The matrices F(212) are
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symmetric for even k, and antisymmetric for odd k. Let us first record the
importantformulas

Tr(F/1126Ff,...J
2k) =d(_)k(2k)!~~, (A.3)

and

F~FK1K2pFu = (N— (N— 4p)

2)FKIK2P, (A.4)

which are valid for arbitrary N (tracesare understoodto be over the chiral
subspacelabeledby the indicesA, B,... = 1,. . . , d). From the explicit representa-
tion of the F-matricesin sect. 2, it is not difficult to checkthat, for N = 4 mod 4,
the matrix F in (2.5) canbe takenequalto the identity matrix. Sincethe fermion
number operatorF is also unity in the chiral subspace,the matricesF~2~and
F21~ are related to each other by duality, hence linearly dependent;for
2k = N/2 thereare thusonly ~(~‘) linearly independentmatrices.For N = 2 mod
4, we find r = e; therefore, duality now relates FV2I~~and eF~21~.For odd N, on
the otherhand,all matricesare linearly independent.

For N = 8n, we have d = ~ 1 from table 1. Elementarycountingarguments
show that the matrices1, ~ ~ . . , F~4~form a completeand linearly inde-
pendentset of (real) d x d matrices(for the matricesF~4”~,onemustnot forget to
take into account the self-dualityconstraint,as we just explained).The relevant
Fierz identity for an antisymmetric matrix MAD (which is all we needfor (A.1))

thereforereads

MAD = — F~ Tr( MF(2k)). (A.5)
k=1,3 2n—l ( )~

Summation over the 2k indices~ ‘2k is implied in (A.5) andsimilar formulas

below. For N = 16, this sumevidentlycontainsonly two terms.Evaluating(A.5) for
the matrix MAD = F~(AF’A]D, we obtain

11 11
FC’(~F~]D= -~-~-~ + -~-~ ~ (A.6)

From (A.4), we get FL~F(2)FH= — 128F~2~and F’~F~6~F’~= 0, so (A.6) reduces to

rbJ If __..1. If hi 7
C[A B]D 2 AB CD’

from which the desiredrelation(A.1) follows directly (with A = 0).
For N = 4 + 8n,we have d =

2
2+4n In contrast to the previous case, a complete

set of reald x d matricesnow cannotbe constructedfrom the F-matricesalone,as
one can quickly verify by counting the numberof such matrices. In addition,



B. de Wit et aL / Non-linearsigmamodels 35

however, there are now threecomplexstructuresrepresentedby the antisymmetric

matrices h~Dfor a = 1, 2, 3, which generate the centralizer subgroup Sp(i). With
the normalization(4.17),we have(h~)2= —2 (no summationover a) and

[ha, h0] = 2~/~e,,
0h. (A.8)

A complete and linearly independentset of antisymmetric matrices is given
by h’’, ~ ~ . . . , h”F~

4”~,Ft4”~2~,while the symmetric matrices are
1, h’’Ft2~,Ft4~ ~ h~Ft4’~2~.Insteadof writing down the generalformula,
let us immediately specialize to N = 12, so that d = 64; in this case, the relevant
identitiesare

u’!! ru
‘C[A1 DiD

= ~ + ~

+ 2
4!~F )AB(FhFF)CD + F~(FHF(6)FIJ)CD}

= ~{—66h~Dh~D — 26F~F,~— ~ + ~ (A.9)

and

I,, Ia
‘~DID

= ~{~h~D( h~h
0h~)CD + ~

+ 2
4!~F )AD(hhFh)CD + 2.6!FAB(hFh)CD}

= ~{h~Bh~D — 3I~F~ + ~ — ~ (A.10)

where (A.3) was used (the extra factor of ~ in front of the terms containingF~
6~is

due to the self-dualityconstraint,whichwasexplainedabove).It is now straightfor-

ward to checkthat

If rh _ ‘iIa ,a — — If ru ru -~a z.a
C[A’ B]D ‘~“C[A “-D]D — 2~.1AD1CD ‘ L~ ‘AD”CD

so that (A.1) is satisfied with A = 2.
For N = 2 + 8n, we read off d = 2! +4fl from table 1. There is now only one

complex structurerepresentedby the antisymmetricmatrix hAD, which generates
the groupU(1) andis againnormalizedsuch that (h)2 = —2. The antisymmetric
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matrices are h, ~ ~ . ., ~ ~ while the symmetric ones are
1, hF~2~,. . . , hF~4”~2~,~ One checks that altogether there are ~d2 antisymmet-
nc and ~d2 symmetric matrices, so it would seem that we cannot generate a
complete set of matricesin this way. However, we now recall that the representa-
tions are complexfor these values of N (see the discussion in sect. 2), which means
that, instead of getting d2 realmatrices,we shouldend up with (d/2)2 complex
(i.e. (d/2)2 hermitean and (d/2)2 antihermitian)matrices; this is precisely the
number of matrices just obtained. Specializing to N = 10 with d = 32, the relevant
identitiesread

r!-I rh
1C[A’ B]D

= ~{~hAD(FuJhFuf)CD + ~

+
2.4!F)ABhFF~}

= —
4ShADhCD— 13F,~F~+ ~(hF(4))AB(hFt4))CD}, (A.12)

and

hC[A h DJD ~{~hAD(h)CD + ~F~(hF~2~h)CD+
2.4!F)ADhFCD}

= —hABhCD — F~F~ — hF~
4))AB(hF(4))CD}. (A.13)

Again, it is easy to check that

FC’(A F~]D+ 3hc[A h B]D = — ~ + 3hABhCD), (A.14)

so the identity (A.1) now holds with A = 3.
Finally, for N = 9, we have d = 16. As for N = 16, there are no complex

structures;a complete and linearly independent set of real antisymmetric 16 X 16
matricesis given by the (~) matricesF~2~and the (~) matrices~ The relevant
Fierz identity now reads

F~(AF’B~]D= -~-~~F~(FL~F(2)FhJ)CD + -~-~ ~FA(FL~F(6)F/J)CD. (A.15)

From (A.4), we now get F’~F~2~F’~= — 16F’2~and, by another fortunate numeri-

cal coincidence,F’~F~6~F’~= 0. Except for the different range of indices, the
resulting identity is the sameas (A.7), so (A.1) is againobeyedwith A = 0.
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There is no need at this point to discuss other values of N, since we know from
the classificationof Lie algebrasthat, apartfrom G2, thereare no other excep-
tional Lie algebrasbesidesthe onesconsideredabove.Wehavegivena pedestrian
andratherexplicit constructionof thesealgebras,not leastbecause,exceptfor E8,
the relevant Fierz identities do not seem to have been discussedanywherein the
literature.From the presentpointof view, thereexist no exceptionalLie algebras
beyondE8 becausethe numberof terms that must cancelafter the Fierz rear-
rangementsbecomestoo large, so that (A.1) can no longerbe satisfied.
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