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I. INTRODUCTION

In an interesting paper, Nielsen and van Nieu-
wenhuizen [1] pointed out that when one introduces a pa-
rameter o~ ! in front of the standard term used to break
the gauge invariance of the electromagnetic action,

1 —~ .

éSGB=—E;fd4x\/g (4,597,

the ghost action also acquires an a dependence. This pa-
rameter dependence may formally be removed by a re-
scaling of the antighost field and so has generally been ig-
nored by previous authors, including ourselves for the
analogous case of linearized gravity [2]. However, Niel-
sen and van Nieuwenhuizen argue that this formal argu-
ment is invalidated by regularization and that a nontrival
a dependence of the ghost effective action can occur. In
particular, they show that the electromagnetic trace
anomaly is not a dependent, as suggested by Endo [3];
Endo’s a-dependent terms are canceled by opposite terms
which arise from a careful treatment of the ghost contri-
bution to the trace anomaly.

In this Brief Report we investigate the effect of the ob-
servation of Nielsen and van Nieuwenhuizen on our
Hadamard-renormalization scheme for electromagnetism
[4] and linearized gravity [2] and make some general
statements about their work. For simplicity we shall car-
ry out the detailed part of our argument for the Maxwell
field, but the extension to the gravitational case is
straightforward.
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II. ELECTROMAGNETISM

In terms of the vector potential 4,, the Maxwell ac-
tion is
Sy=—14[d*xVgF,F®, @.1)
where the field strength F,, =2V, 4. The field strength
is invariant under the gauge transformation A4,
— A, +V, A for an arbitrary scalar field A. To quantize
the theory, one must introduce a gauge-breaking term
into the action; the standardly used term is

Sop=—14 [d*xVg (4,7 . 2.2)
We consider the effects of using @~ !Sgp as the gauge-
breaking term, introducing the positive real parameter a.
Following Nielsen and van Nieuwenhuizen, the ghost ac-
tion needed to compensate for this choice of gauge-
breaking term is

S h=a”“zfd4x\/E17Ch7 ,

; 2.3)

where 77 and 7] are the complex anticommuting scalar
ghost and antighost fields, respectively. For the purposes
of quantization, the total action is then S
~i—a"l.'SGB +Sg,. The action gives the following equation
of motion for 4,:

[8.,’O0—R,+ (e '—1)V,V?]4,=0. 2.4)

The remaining equations of motion are On=0 and
07 =0 for the ghost and antighost fields.

The Feynman two-point functions for the vector poten-
tial and ghost field are defined as expectation values via a
path integral. The two-point function of the ghost field
satisfies

Oi{ TH(x)n(x")) =—a'8(x,x") , 2.5)
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where T denotes time ordering. The field rescaling
i":a"l/zﬁ, ¢ =1, enables the action to be rewritten as
The field rescaling ¢ =a ™~ !/%%, ¢ =7, enables the action to

be rewritten as

Sgn= [ d*xVgeQc . (2.6)
We denote the Feynman two-point functions by

G (x,x")=i{TA,(x)Ap(x")),, 2.7
for the vector potential, and

G(x,x")=i{Te(x)(x")), (2.8)

for the rescaled ghost field. The rescaled ghost two-point
function now satisfies

OG(x,x")=—58(x,x") . (2.9)

The other important aspect for us is the Ward identity,
which may be derived from the Becchi-Rouet-Stora
(BRS) invariance of the full action under the perturba-
tions 8 4,=V,c 8, dc=a 124,98, 8¢ =0. This in-
variance implies the Ward identity

G% (x,x")+aG(x,x'),, =0 . (2.10)

A similar equation can be obtained for the Ward identity
obeyed by the two-point function of 7.

Here we face the major difference between Hadamard
renormalization and those renormalization methods
which use what might be called analytic methods of regu-
larization. The Hadamard method deals directly with the
two-point functions of the theory and uses Wald’s axioms
to determine ¢ Tﬂ") g as uniquely as possible. In this case
regularization is achieved by point separation in the two-
point functions; geometrical singular terms are then re-
moved before letting the two points come together. The
formal equivalence of this procedure to a renormalization
of coupling constants in a generalized Einstein action was
discussed by Christensen [5]. As can be seen above, at
the level of two-point functions, there are no subtleties in-
volved in rescaling fields. It is more convenient to work
with ¢ and ¢ because G(x,x’) and GJ,. have the standard
Hadamard singularity structure. This is the procedure
that was adopted in Ref. [2].

We shall discuss analytic methods in the next section,
but here it is worth pursuing Hadamard renormalization
with arbitrary a a stage further, to demonstrate explicitly
the a independence obtained using the renormalization
prescription of Ref. [2] as applied to electromagnetism.

The two-point functions G(x,x’) and GJ,(x,x') have
the Hadamard form [4]

i Al/Zg b
G,,,,,(x,x')~§;; ~0—“+Va,,,1no+W,},,, , @1y
— i AI/Z _ _
Glx,x")=— +PInc+W |, (2.12)
8w o

where the singular parts are purely geometrical and all
state dependence is contained in W), and W. GZ. may
be obtained from G, and G with the relation [2]

G& (x,x") =Gy (x,x")
+(a—1 )V,,V,,'fd"x”\/—g_’—’é(x,x”)G(x”,x’).
(2.13)

As shown in Ref. [2], the convolution integral may be
rewritten as

fd“x”\/g'—’é(x,x")G(x",x')

=— —G(x,x';mz)} . (2.14)
am? m2=0
from which it follows that it may be written as
i 1 o 1 o .
——— [ =Al2+ —V, 0" |lnc+ .
877'2[ 5 glzn Lo lnc+W !, (2.15)
where
Wix,x')= s Wix,x';m?)
m mi=0

Expression (2.15) splits the convolution into a geometri-
cal singular part and a state-dependent regular part. We
shall define the regular part of —8imGg, to be

& =W —(a— 1)V, V, W . (2.16)

We now examine the dependence of the stress-energy ten-
sor on a. The classical stress tensors of the theory are
given by

v 2 SSM Vi v
T gy, e
j75%
S
ity = 2 GB
Vg 88,
I—*ZAG;G("A V)+%g‘uv(Aa;a)2+g#vAa;abAb ,
2 Ssgh I . .
TH = —— = ¢ ,v)+ WVE o3a
® Vg g, o e +ghe e

The Hadamard-renormalization prescription [4] involves
viewing these expression as coincidence limits of
differential operators acting on the appropriate state-
dependent part (W) of the appropriate two-point func-
tion, forming

TH =(T'+a” 'TE)[

ren

o 1+ TR W]

+ geometrical terms , (2.17)

with the geometrical terms chosen to ensure conserva-
tion: VTt =0. By ‘“geometrical terms” we mean any
polynomial expression of dimensions length™* formed
from the metric, the Riemann tensor, and its covariant
derivatives.

Now, formally, on using the Ward identity and ghost

wave equation, we may show that

a ' TER(GS 1+ T [G1=0. (2.18)
It follows that
PO
a ' TE[WE |+ T [W]=0, (2.19)



46 BRIEF REPORTS 863

where z denotes equality up to geometrical terms. This
is a consequence of the equations
_ % _ X
aw=0, Wg +aW., =0, (2.20)
which follow from the ghost wave equation and Ward
identity [4]. Since the total geometrical additions are

determined by conservation, we may proceed as if

a 'TER (WS 1+ TH[W]=0. (2.21)
Thus we are left to consider simply
T =T TWa ]
=TE[(Wh1—(a— DTEIV,V, W] . (2.22)

However, the second term on the right-hand side van-
ishes automatically by gauge invariance, and so we are
left simply with the tensor ™= T{[ W}, ] considered in
Ref. [4], where the case a=1 was studied in detail. As
the appropriate geometrical addition is determined by
conservation, it follows that the renormalized stress ten-
sor is independent of a.

III. ANALYTIC METHODS
OF REGULARIZATION

Another way to demonstrate the a independence of the
effective action is through the use of {-function regulari-
zation. The quantum part of the renormalized effective
action for electromagnetism may be expressed as

—1Indet[ —g,'0+R,+(1—a"")V,V’]

+Indet(—a~!/20), 3.1)
where the first operator acts on real four-vectors and the
second operator acts on real scalar functions. The first
term arises from the Maxwell and gauge-breaking terms
Sy+a”!Sgp in the action, and the second term arises
from the ghost part of the action Sen-

Now, because the four-dimensional vector space of po-
tentials A, is the direct sum of a three-dimensional vec-
tor space of transverse (divergenceless) vectors satisfying
V?4,=0 and a one-dimensional space of longitudinal
vectors V ¢, one can reexpress the first term in the
effective action as

—ndet[ —g,"0+R, >+ (1—a" 1)V, V,]

S effective

=—1Indet[ —g,’O0+R,°]—Lindet[a™'0?], (3.2)
where the first operator acts on transverse vectors and
the second term acts on real scalars. It is immediately
apparent that this second term is of the same form as the
ghost part of the effective action, but has opposite sign,
and one thus obtains a cancellation of all the a dependent
terms:

Seftective = — +Indet[ —g,’0+R,*] , (3.3)

where the operator acts on transverse vectors.

These determinants, which are here treated in a formal
fashion, can be rigorously defined in terms of generalized
¢ functions. The generalized ¢ function is a function of

the complex variable z and is defined on some right half-
z-plane by

=3I A7, (3.4)
n

where A, is the spectrum of the given operator. On the
remainder of the complex z plane, the generalized { func-
tion is defined by analytic continuation. These general-
ized & functions can be explicitly evaluated in certain spe-
cial (highly symmetric) space-times [6].

The determinant of an operator Q is now formally and
rigorously defined as

Indetu?Q = —£'(0)+£(0)In(u?) (3.5)

where p is a renormalization mass and £(z) is the zeta
function associated with the operator Q. Hence the ““di-
mension of the matrix Q” is effectively given by £(0) and
the argument above, showing that all @ dependence can-
cels from S g.ive> i perfectly rigorous. We note in pass-
ing that an incorrect treatment of .S g ive, in Which the a
dependence of the ghost term is neglected, generates pre-
cisely the same ambiguity as arises from a change of re-
normalization mass scale ,u2—>,u’2 and, hence, cannot
affect physically measurable quantities.

In the case of linearized quantum gravity, similar argu-
ments hold. Yasuda has shown [7] that the one-loop part
of the effective action may be expressed as

Seffective =- %ln det[A2+R /2]

+1Indet[A,+R /2], (3.6)
where A; denotes the Lichnerowicz Laplacian acting on
rank-/ symmetric tensors. Once again, the a dependence
cancels out of the effective action, and once again, if the
incorrect normalization is choosen for the ghost part of
the effective action, it corresponds in a simple way to a
change of the renormalization mass scale. One can also
repeat the earlier arguments of Sec. II, using the results
for linearized gravity given in Ref. [2], and reach con-
clusions analagous to those for the electromagnetic field.

These changes in the renormalization mass scale do
affect the renormalized stress-energy tensor, in the sense
that they affect the coefficients of the “ambiguous” or
“geometrical” terms which appear in it. The significance
of this ambiguity depends upon one’s point of view. Gen-
erally, workers in quantum field theory in curved space-
time regard it as a genuine ambiguity within this model;
this is certainly the view taken in Hadamard renormaliza-
tion. The ambiguity is absorbed in the coefficients ap-
pearing in the generalized Einstein-Hilbert action. In
this case the observation of Nielsen and van
Nieuwenhuizen though true is ignorable. The observa-
tion of Nielsen and van Nieuwenhuizen is, however, im-
portant to those who take a more ambitious stance: first,
to those who view quantum field theory in curved space-
time as an approximate theory complete in all respects
except for a knowledge of the connection between the re-
normalization mass scale and the Planck mass [5];
second, to those who trust that (super) symmetry can lead
to full anomaly cancellation.

We hope in any case that the approach to the problem
from an alternative viewpoint will be helpful.
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