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We present two examples where the contribution of one-loop gravitons to the renormalized stress-
energy tensor may be calculated explicitly from both the standard and the Vilkovisky-DeWitt effective
action. The renormalization is carried out using the Hadamard renormalization procedure outlined by
Allen, Folacci, and Ottewill [Phys. Rev. D 38, 1069 (1988)]. The examples show that the standard and
Vilkovisky-DeWitt formulations of quantum field theory lead to different physical predictions at one

loop.

PACS number(s): 04.60.+n, 03.70. +k

I. INTRODUCTION

To obtain a consistent one-loop approximation to
quantum gravity, it is necessary to include the effects of
linearized perturbations of the gravitational field. In par-
ticular, gravitons will contribute to the one-loop effective
stress-energy tensor a term of the same order as those
from ordinary matter fields.

There is an ambiguity in the definition of this stress-
energy tensor arising from an ambiguity in the one-loop
effective action. The ‘“‘standard” effective action arises
from a straightforward loop expansion of the Einstein-
Hilbert action. However, this theory possesses the un-
desirable features that the off-shell effective action de-
pends upon the choice of the background-field gauge and
the choice of gauge-breaking term in the action. Vilkovi-
sky [1] and DeWitt [2] have proposed a modification
which differs from the standard theory off shell and
claims to be free of these defects. Their definition has
great aesthetic appeal, advocating taking seriously the
geometrical structure of field space. Unfortunately, it in-
volves extreme computational complexity, and as the on-
shell effective actions agree, it is not clear that this addi-
tional complexity is warranted.

The one-loop effective stress-energy tensor for gravi-
tons arises from the differentiated effective action which
probes the off-shell structure. In Ref. [3] the calculation
of the renormalized one-loop effective stress-energy ten-
sor was outlined according to both definitions for gravi-
tons on a general Ricci-flat background. At that time we
were unable to find a specific background with a degree of
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symmetry sufficient to allow for the explicit evaluation of
the two stress-energy tensors, without being so great as to
make them equal. It is the purpose of this paper to
present such examples and thereby demonstrate that
there is a genuine difference between the physical predic-
tions of the two approaches.

The main example which we consider (Sec. II) concerns
quantum field theory in Rindler space. To reach the
graviton Green’s function, we first calculate the scalar
and electromagnetic Green’s functions. We take the op-
portunity to provide a pedagogical approach to practical
calculations using Hadamard renormalization [4].

The second example (Sec. III) is unphysical, corre-
sponding to Minkowski spacetime containing a ‘“‘gravita-
tional conductor,” but is striking in its simplicity and in
the way in which it illustrates the prime importance of
the Ward identities of the theory.

We should add that there has been much work [5] on
the Vilkovisky-DeWitt (VDW) effective action, and many
problems have arisen since Ref. [3] was written. These
problems concern the definition beyond one loop, and so
although of fundamental significance to the Vilkovisky-
DeWitt program, they do not affect our work directly.
We shall proceed with the faith that the elegance of the
one-loop term reflects some deeper truth.

Throughout the paper we use units in which zi=c =1
and follow the sign conventions of Misner, Thorne, and
Wheeler [6]. Equation numbers prefixed by “GR” refer
to formulas in the mathematical tables of Gradshteyn
and Ryzhik [7].

II. RINDLER SPACE

In this section we first give the Green’s function and
calculate the Hadamard-renormalized stress-energy ten-
sor for the scalar and electromagnetic fields on the
Rindler-space background and check the answers against
those previously obtained by more traditional methods
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(although the explicit formula for the electromagnetic
Green’s function in Feynman gauge has never, as far as
we know, been determined before). We will then be in a
position to perform the same calculation for the linear-
ized gravitational field, with and without the VDW
modification.

The line element for Rindler space is given by

dst=—£d P +dE+dy?+dz?, @.1)

where 7,5,z €ER and £E€(0, ). This line element may be
related to that for the cosmic string, which may be writ-
ten in coordinates (¢,r,¢,2) as

ds?’=—dt’+dr*+rid¢*+dz?, (2.2)
where the angular coordinate ¢ runs from O to a. The re-

lationship is given by making the identifications

r=§, ¢=ir,

and taking the limit a— . This will prove useful to us
since we calculated the scalar, electromagnetic, and grav-
itational Green’s functions on the cosmic string in Ref.
(8] and so may write down the corresponding Green’s
functions on Rindler space via this identification. In Ref.
[8] the Green’s functions were expressed in terms of the
parameter k=2mw/a, and so the appropriate Rindler
Green’s functions are obtained by letting k—0.

It will prove valuable for the ensuing discussion to
have an explicit formula for the bivector of parallel trans-
port g¥ (x,x’') in Rindler space. In Minkowski space
this object is just diag(1,1,1,1)*, in the usual Cartesian
coordinates; upon transforming to Rindler coordinates
and remembering that g¥ (x,x’) transforms as a bivec-
tor, we deduce that

=iy, z=z,

, I
§§—coshAr ——é—sinhAT 00
—¢&'sinhAr coshAr 0 O
ghvx,x =1 " ¢ 0 10| -
0 0 01 v
where Ar=(7—7').
A. Scalar field
Making the identifications mentioned above,
we find that the Green’s function G(x,x’)

=i{0|T[@(x)p(x’)]|0) for a massless scalar field ¢(x)
on Rindler space is

’ i l 1’
G(x,x")=—F—— , 2.3
4r? E5sinhn n— (A7) 23
where 7 is the non-negative real function given by
2 22 —p’)2 — )2
coshn=£+§ ty—y ) +(z=z) . (2.4

288"
The next objective is to isolate the regular part W(x,x’)
of G(x,x’'), which is given by [4]

2
Wix,x)=3"Gx,x')— L .
l g
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Here o(x,x’) is one-half the square of the distance along
a geodesic joining x to x'. In writing this equation we
have used the fact that we are dealing with a massless
theory in a flat space-time. Substitute Eq. (2.3) for
G(x,x') and expand the result to second order in powers
of the coordinate differences Ax*=(x —x’)¥; the expan-
sion

P=E"2(AEV+(Ay 2 +(Az)*]+O0((Ax*))

is useful in this regard. A lengthy calculation yields

| A¢ 11 2 )
Wix,x')=——={14+22 ———[(Ap)*+(A
(x,x") 6 £ 6052[( y ) +(Az)*]
49 , 1 )
+——6O§2(A§) —20(AT)
+0((Ax*)?) . (2.5)

To calculate the stress-energy tensor, we must now deter-
mine the first three coefficients occurring in the covariant
Taylor expansion

Wix,x")=w(x)+tw,(x)o*+ 3w, (x)oto"+ - -,

where o*(x,x')=o0°*(x,x’). Substituting (2.5) into the
formulas

LU(X )= [ W] )
w,()=[—g, W1,
w,uv(x)=[gyp’gv7’W;p"r’] ’

where the square brackets indicate the coincidence limit
x =x', we find that the only nonvanishing coefficients are

N .

6§2 ’ w§_ 6§3 ’
wo=w = -4 9
woTE 1808t T % 1806 T T 60€?

A useful check on these expressions is provided by the
identities [4]
w,=—jw w,,”=4(0w), w, =0,

H T

which follow from the anomalous wave equation for W
on a flat space-time and the symmetry property
W(x,x')=W(x',x). Substituting our expressions for the
Taylor coefficients into the formulas of Ref. [4], we find
that the renormalized stress-energy tensor is

(0IT,*|0) g

1
B d 3’_1’_1’_1 v
1 251{ iag( )u
+60(6—L)diag(—3,1,—2,—2),"} ,
(2.6)

where § denotes the coupling to the scalar curvature.
Equation (2.6) is in agreement with the standard result.

It should be clear from this example that the
Hadamard-renormalization procedure is both practical
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and straightforward; it even contains its own built-in

checks.

B. Electromagnetic field

Using the standard choice of gauge-breaking term [4],
the Green’s function

G*'(x,x")=i{0|T[ A"x)A4"(x")]|0) ,
for the vector potential 4#(x) satisfies the equation

OG*(x,x')=—g" 8%x,x"), 2.7)

and the Green’s function G(x,x")=i{0|T[¢(x)c(x')]|0)
for the associated complex, scalar ghost field c(x)
satisfies the equation

OG(x,x')=—8%x,x") . (2.8)

Becchi-Rouet-Stora (BRS) invariance yields the Ward
identity

G* ,+G"=0, (2.9)

for the theory.

From Ref. [8] we find that the tensor components of
the Feynman-gauge Green’s function for the electromag-
netic field on Rindler space are all zero apart from

G =G#* =G ,

j 1 cosh
GE = — L 12T 2.10)
s8G = £€'sinhn 72— (A7)?
1 A7sinh
Gir=—¢gGE=-L" U/
& £ 477 &E'sinhn 92— (AT)?
where G is the scalar Green’s function (2.3). The ghost

Green’s function G coincides with the scalar Green’s
function G.

As before, the next stage in the calculation is to deter-
mine the regular part of the photon Green’s function. It
proves most economical to introduce the natural null
complex tetrad as in Ref. [8]. In Rindler space this takes

the form
1 ) 1 _
efy) = 7—2-< IJ’“+Z“)=\/—§(O,O,—1,1),
el =*1——( iy”—z")=L_(0,o —i,—1)
(2) \/2 \/2 ) ’ )
) | 2.11)
efy = 7—57“+§“ 5 (176,1,0,0)
1 1
efy) = \/_5 T"+§“)=‘/— —1/€,1,0,0) ,

where {7#,&*,y#,z#} is the standard orthonormal tetrad
for the space-time. The nonvanishing components of the
photon Green’s function with respect to this tetrad are
found to be

GV =g =_g

7 coshy— Arsinhy
n*—(AT)?

4y & 1
47% £E'sinhy
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G )____ 1 7 coshy+ Arsinhy
47> £€'sinhy 7*—(A7)?

Note that G'*'"" and G'¥3” can be obtained from G'"?”
and G via the symmetry G@%)(x,x")
=G“’)(“'>(x',x )

We may now determine the tetrad components of the
regular part of the photon Green’s function by substitut-
ing for G'¥'®" in the formula [4]

) o ,
W‘”)“"(x,x’):g(b)(br)(x,x')W“’)(b )(X,X’)

872 .
:_l g(b)(b’)(x,xl)G(a)(b )(X,.X')
g(a)(b)

o(x,x")

and expanding the result as a power series in the coordi-

nate differences Ax*. Here
(b)
10 0 0
) S 01 0 0
87w XX)= 0 0 exp(—Ar) 0
00 0 exp(AT) (b")
and
(a)(b)
0 —1 00
(a)(b) — —1 0 00
g 0 0 01
0 0 10

are the tetrad components of the bivector of parallel
transport and metric, respectively. A straightforward
though tedious computation produces the result

W(l)l?_): W(2)(1):_ W,

W‘3"4’=L 5+5—§+4A + == 19 [(Ay) +(Az)?]
652 3 60&
281 (AE)? +4 _L+
60 £ 20
+0((Ax")) (2.12)

where W is given by the scalar expansion (2.5). The ex-
pansion for W3 is given by that for W% with the
substitution A7— —AT.

The next step is to determine the first three coefficients
occurring in the covariant Taylor expansion

W(a)(b)(x’x:):w(a)(b)(x)+w(a)(b)#(x)0u

1, (a)(b) U
+sw w(X)oto¥+
The coefficients of W= w2 will obviously be just
minus the scalar coefficients which we have already cal-
culated. The nonvanishing coefficients of W'¥ are
found by direct calculation to be

(3)(4) — 5
6&%

(34— S
6£2 "’

w
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281 4
(3)(4) — 3)4) —,, (3)4) —
=28 —w =4
£ 180¢* & 3
81 19
(304) — (3)4) —,,,(3)4) —
w =, =w .
™ 602 » = 180&*

The coefficients of W3 are plus or minus those for
W34 according as there are an even or odd number of
occurrences of 7 as a subscript.

At this point we can simultaneously revert to tensor in-
dices and compute the symmetric and antisymmetric
coefficients required for calculating the stress-energy ten-
sor using

v — () (a)(b)
s“p"'f—e(‘l;)e(b)w proT
and
v — v (a)(b)
at p...,.—e([f,‘)e(g)w PRPPpE

We can now assure ourselves that the calculation so far is
correct by checking that the coefficients we have comput-
ed satisfy those identities which arise from the symmetry
constraint, wave equation, and Ward identity satisfied by
the photon Green’s function [4]. Finally, utilizing the
formulas of Ref. [4], we find that the vacuum expectation
value of the renormalized stress-energy tensor for the
electromagnetic field on Rindler space is

11
7207284

in agreement with Ref. [9], where it was calculated by a
quite different method using Hertz potentials.

(O|T#"]O)R= diag(3,—1,—1,—1),", (2.13)

GV =—GWEE = §'2nyf’f' =G =G =_ G = §2G ' = 't =

GY&'E = _§§'GYTV‘T'=G§Z§'Z'= —EE'G TZT'Z':%Gé“s” ,
. oy ,
GV T =Gs? _%Gﬁf ,

i
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C. Graviton field

The calculation of the standard graviton stress-energy
tensor is more difficult than the photon calculation only
in that there are twice as many indices to juggle. Using
the standard choice of gauge-breaking term [3], the
Green’s function

G*P'"(x,x")=(i /32wG ){O| T[h*"(x)h?"(x")]|0) ,

for the graviton field ##"(x) satisfies the equation
OGP ™ (x,x")=—yPP78%x,x') , (2.14)
where
yll-VP"’" = %(g“”'g vt +g#f'g#p' _g#vgp’f)
and the Green’s function

G*'(x,x")=(i /327G ){0| T[c*(x)c”(x")]|0) ,

for the associated complex, vector, ghost field c*(x)
satisfies the equation

OGH (x,x")=—gr'8%x,x") . (2.15)
BRS invariance yields the Ward identity
T _ vy @V T) —
GHPT = 3G TV EGYPTI=0, (2.16)

for the theory.

From Ref. [8] we find that the nonzero tensor com-
ponents of the graviton Green’s function on a Rindler-
space background are

G,

1
2

(2.17)
7 cosh2y

G§§§'5 :§'2G EET'T — —§§’G £ — §2§’ZG T —

8m? £E'sinhy n2—(Ar)?

EGEET = —gg2GETT = i 1 A7sinh27

8m? &E'sinhn 72— (Ar)?

[where G and G*V are the scalar and photon Green’s
functions (2.3) and (2.10), respectively], plus those obtain-
able from the symmetries

GHP7(x,x") =G (x,x")
— 7p’
=GHP(x,x")

GHP7(x,x")=GP "M (x',x) .

(2.18)

The ghost Green’s function coincides with the photon
Green’s function. One can check explicitly that (2.17)
satisfies both the wave equation (for x#x’) and the Ward
identity.

The nonvanishing tetrad components of the graviton
Green’s function are

G(l)(l)(2’)(2’):2G(1)(2)(3’)(4’)=G ,

(DU W) = 7 (2)3N1')4) — IN4
G =G —'"-;—G( )(4") ,

GO — 1 1 7 cosh2n— A7 sinh2y
47* £&'sinhy 7*—(A7)?

plus those obtainable from the tetrad version of the sym-
metries (2.18). .
Substituting for G (@@ in the formula [3]

872 o
W(a)(b)(c)(d)(x’xf): _i g(c)(c,)g(d)(d’)G(a)(b)(c Nd )(x,x’)

(a)(b)(e)d)
-r | (2.19)

o(x,x")
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where

,y(a)(b)(c) =1 (g(a)

(a)(b)g(c)(d)) ,

(b)(d)+g(a)(d) (b)(c)

g
-8

and expanding the result to second order in powers of the
coordinate differences Ax#, we find that the only nonzero
tetrad components of the regular part of the graviton
Green’s function are

W(l)(l)(2)(2)=2w(1)(2)(3)(4)= W,

(1)(3)(2)(4) — (2)(3)(1)(4) — 3)4
l]/ ]‘)’ l‘]( (

23+23A§é +32A7

251 (Ay)*+(Az)?

60 &

1631 (AE)? AEAT
=5 2 +32 g

+ 481 2 ary

wosmw - 1

6&2

+

+0((Ax*))

plus all others obtainable from the symmetries

W @A)y yry— pbNa)eNd) x xry

__W(a ““”’(x,x'),

W(a)(b)(c)(d)(x,x )= W(C) b) (x',x) .

[Here W and W''® are to be replaced by the expansions
(2.5) and (2.12), respectively.]

Next, we determine the coefficients occurring in the co-
variant Taylor expansion

(a)(b)(c)(d)(x )+w(a)(b)(c)(d

Wb )= L (x)a*

1, (@) e)d) BgVa ...
+1lw o x)oto?+

In fact we only have to calculate the coefficients of
wIBNDD “since those of the remaining components are
electromagnetic or scalar coefficients which we have com-
puted above. Direct calculation yields

G(a)(b fv_g
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w3 = 23 3)3)4N4) — 23
b b
6§2 6§3
w3 16 (3)3)4x4) 1631
T 2 ? ’
3& 180&*
W@ _ 711 2.21)
TT 2 °
60&
WO =y 131 §=_3£
T T 3
3£
B3N (33N — 251
w yy—w zz

180&*

(with all others zero). Next, we obtain the symmetric and
antisymmetric parts of these coefficients
sEPT, L p=sletpelhelnels
+efpelyeloely @O B
and
akT, L p=glelpelpelnels
—efa)e (Tb)etlc)e (Vd) )w(a)(b)(d(d)a B
and check that our answers satisfy the identities [3]
a pvpra;a =0, spvpfaa =0 ,

spvpraB;Bz%D(syvpr,a) ,

S#“PT? v 28 V#PT;# +2a Puprv —4a VI—"PTp
_4av(p1’) +2§v(p;‘r) ’ (2.22)
soan;T/"_zs”“VP 7 +4a® uvp(o] —2a UUVP[T;H]
_2Sagvp‘r‘u+450uvp'r =4§#(VP)T—25,‘(‘,,]);7—2(‘1‘”(‘}“‘;;)) ,

the first three of which follow from the wave equation
and the last two from the Ward identity. It is now a
straightforward, if tedious, calculation to derive from the
formulas of Ref. [3] the vacuum expectation value of the
standard renormalized stress-energy tensor for the gravi-
ton field on Rindler space:

<O‘ T#v’0>R =

diag(753, —251,1459,1459),"

1
7207%E*
(2.23)

We now compute the VDW correction [3] to this stress-
energy tensor, which requires knowledge of not only the
graviton and photon Green’s functions, but also of the
convolution

"G a)(c”)(x’xn)G(c Wb )(x”,x') ,

of photon Green’s functions. To calculate G'“"*"(x,x’) explicitly, we use the alternative representation [3]

)

M —— G x,x"; M?) ,

M*=0

G(H)(b )(x,x')

where G'¥®)(x,x'; M?) is the Green’s function for a massive vector field which satisfies
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(O—M?*)G* (x,x";M?)=—g* 8%x,x") . (2.24)

We may solve (2.24) using the Euclidean mode decomposition method of Ref. [8]. [Note that, as we are taking the limit
k—0, we need to consider the special case 0 <k <1 discussed in Sec. III of Ref. [8]. This is responsible for the ap-
parently strange subscripts on the modified Bessel functions in Eq. (2.26).] We obtain the following nonvanishing, in-

dependent tetrad components of the Euclidean Green’s function:

G(El)(2')(M2)= _

f_""wdwe"wwfowdk kJo(k|AyDI , [(K2+M)'2E K|, [(K*+MY)' 2 ],

(2.25)

G1(23)(4’)(M2)=4_12_f°°dweiwA¢f “dk kJo(klAy|)Iw_l[(k2+M2)l/2§<]Kw-l[(k2+M2)l/2§>]

3 —J _doe® [ “ak Kok |AYDE LR+ MY 2 K, [ Mg
T

where 7= —iy and y=(y,z).

(2.26)

Consider Eq. (2.25); using GR 6.541.1 we can write the product of the modified Bessel functions as an integral of ordi-

nary Bessel functions:

G(El)(Z')(MZ): _

:_—f da)COSwAt/Jf dk kJ o k|AY|f

T [ doets [ i kiyklay) [

d ’
T,(%Ij_—wjlwl(Pé)Jym;(P§ )

——L’-’——J (PEV,(pE) .

Pyl (2.27)

We can now differentiate this equation with respect to M2 and perform the k integration using GR 6.565.4, yielding

(@) Ar2
96 _MT) _ 1oyl [ docosway [ “—LE K | [(p>+M)2|Ay| 1, (pEV,(pE) (2.28)
aM2 477_2 0 0 (p2+M2)1/2 @ @
[
When M?=0 the p integral can be computed using GR L2y —i 2 2
6.578.6. We find that G —Wln[n —(A7)*]+const (2.32)

G == f " 49 4 —omgos AY (2.29)
(we have also used GR 8.736.4, 8.754.4 to obtain the re-
sult in the form shown). This integral clearly contains
the standard infrared divergence expected in the massless

convolution [3]. Introducing an infrared cutoff, we have

©
G(l)(Z ) — lim f
87T €e—0

““Mcoshw AT

= = Tor ?_IR)[EI( —e(n+Ar))

+Ei(—e(n—AT)],

(2.30)

in the Lorentzian space-time, assuming 7% > (A1)%. Here
Ei(x) is the exponential-integral function defined by

x t
Ei(x)= [ ert ,

where for x >0 the integral is understood to mean

ST =m0+ 0]

Making use of the expansion (GR 8.214)

Ei(x)=C-+lnlx|+ 3

X
(2.31)
2~ kk!

(C is Euler’s constant), (2.30) becomes

(where the infrared divergence has been absorbed into the
constant).
The next task is to repeat the above argument for

GP'™) given by (2.26). A similar analysis to the above re-
veals
. , 1 © e —w(n—iAy)
G(3)(4 ) — d 7
E 1672 J‘0 @€ w—1
ne o(n+iAy)
te” )
¢ o+1

which may be written in closed form on the Lorentzian
space-time as

eI _1
1672

assuming 7?>(A7)%. Note that our answers are con-
sistent with the equations

ATEi(n+A7)+Ei(—n+A7)], (2.33)

DG«(l)(Z')ZG(l)(Z')(M2=O)

and

G(3)(4 _G(3)(4 )(MZ__ )

which follow from differentiating the tetrad version of
(2.24) with respect to M2 and then setting M2=0.
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We must now calculate W(‘”(b), which is given by the
formula [3]
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and since the Rindler space-time is flat, we know that
plab=1 g(")(b ). Noting that, in Rindler coordinates,

W@ —g®) 377 87 gtane) _ ey, | o =§g¢'(coshn—coshAr) ,
we obtain
W) = §§(cosh17 CozshAT) + const
n”?—(AT)
_ 1 1 AE 2_ 5 (AE? 1 (Ap)’+(Az)
=const+In§ 2 + (AT) 4 §2 24 T+O((Axﬂ)3)
and
W”)“)Z%{Ei(Aern)-i—Ei(—n+AT)—ln[§§’(coshn—coshAT)]}
_ 1 A& 5 2 (AE? | 5 (Ay)+(Az)? 3
=const—InE+ = =2 + A7+ = + 10 #y3)
const—In§ W At 24(A’T) 24 £ 24 Iz +0((AxH)”)

Taking derivatives and coincidence limits in the usual
fashion, we obtain the following Taylor-series coefficients:

w(”m=ln§+const , w[3)(4)=—ln§+const ,
L2 1 Lo 1 . (3)(4) _
w = w =—, w =1,
§ 26 ’ § 26 T
() 2y 1
w =w = ,
yy 2z 12§2
L) 3 (2 5
YT T s g
L34 (34 O
w = = ,
yy 2z 12§2
c) 11 e 11
143 1252 ’ 7T 12 ’

with the only other nonzero coefficients of W(‘” ® being
those of W= 12 and those of W13 , which are
plus or minus those of W) according as there are an
even or odd number of occurrences of 7 in the subscript.
From these coefficients we can then construct

(a)(b)

M p=elmelyw e g

a“"a...B=e{a>e(g)w‘”)””a...3 ,
and check that [3]

S#vaazs‘uv , dyva;a:O ,

. (2.34)
b p=1(Osh)

(where s* is a coefficient associated with the massless
photon Green’s function). We finally have all the
coefficients required to compute the VDW correction
term contained in Ref. [3] and obtain the result

(OIT#VIO)ﬁ— diag(45,—15,—8,—8)," .  (2.35)

é“

Thus the VDW approach to quantization genuinely does

f

make a difference to the physical output of the theory.

By adding on the correction term (2.35) to the standard
result (2.23), we obtain the renormalized stress-energy
tensor in the VDW approach:

(o|T,"[0) P

1
=———-—diag(2103, —701,1219,1219),,Y .  (2.36)
720m2E* g #
Note that the trace of this quantity is simply
16

(O|T HO)RPV=— .
I3 R 37T2§4
It is interesting to compare the expressions we have
found for the renormalized stress-energy tensors for all
three types of quantum field. We have the following re-
sults for the energy densities of the quantum fields:

—1 spin 0 (§=1),
1 —22 spin 1,

48072&* | —502 spin 2 (standard) ,
— 1402 spin 2 (VDW) .

—( T r= 2.37)

As one might expect, the graviton contribution to the to-
tal vacuum polarization strongly dominates that from
conformally invariant particles whether we use the stan-
dard or VDW approach; however, the effect is much
more pronounced in the VDW approach.

III. CASIMIR EFFECT

The simplest example of nontrivial space-time struc-
ture affecting the energy density of the vacuum is ob-
tained by introducing an infinite conducting plate into
Minkowski space. Although this example has been ex-
tensively studied in the past for both scalar and elec-
tromagnetic fields (see, for example, Ref. [10] for the elec-
tromagnetic case), it has never before been subjected to
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the Hadamard-renormalization procedure; the following
calculations are remarkable both in their simplicity and
in the way in which they highlight the fundamental role
played by the Ward identities in the theory. We also con-
sider here for the first time the Casimir effect for gravi-
tons, according to both the standard and VDW ap-
proaches. Although this case is unphysical, the results
are so striking from a theoretical point of view as to war-
rant their consideration.

We work in Cartesian coordinates (¢,x,y,2). The plate
is positioned in the z=0 plane, and we require that the
field satisfy Dirichlet boundary conditions upon it, in a
sense to be made precise below.

A. Scalar field

For a massless scalar field satisfying ¢=0 on z=0, it
follows immediately by the method of images that the
Green’s function is

G(x,x")=Gy(x,x")—Gy(x,X") , (3.1)

where G, denotes the Green’s function for uncluttered
Minkowski space and

x=(t,x,y,z) , Xx=(t,x,y,—z) .
Thus
i 1 1

Glx,x")= o(x,x")

B 872

, (3.2)
ag(x,x')

where o(x,x’) is one-half the square of the distance along
a geodesic joining x to x’ in Minkowski space, i.e.,

{— (A1) +(Ax )2+ (Ay P +(Az)? . (3.3)

o(x,x')=1
It is clear that (3.2) satisfies the wave equation
OG(x,x")=—8%x,x’') and vanishes whenever either z or
z' is zero. The regular part [4] of the Green’s function is

1

Wix,x')=—————,
o(x,x')

(3.4)
which, using (3.3), may be expanded as follows in terms
of the coordinate differences Ax*:

1 Az

N L Az 1 2 2 2
Wix,x') == 1224 T [(ArR—(Ax = (ay)

+3(Az)*]+O0((Ax*)?) (3.5)

In order to compute the Hadamard-renormalized stress-
energy tensor, we require the first three coefficients
occurring in the covariant Taylor expansion of W(x,x').
Following the procedure outlined in Sec. II, we deduce
from (3.5) that the only nonvanishing coefficients are

1
= —_—— , w = e—— ’
222 z 223 (3.6)
_ _ 1 _ 1 )
wtt_—wxx_"wyy'—?wzz__a .

One can easily check that these expressions satisfy the
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various identities which follow from the anomalous wave
equation and symmetry constraint for W(x,x").

Substituting (3.6) into the relevant formulas of Ref. [4],
we find that the renormalized stress-energy tensor is

1——-§§-(8 v—3 3Y),

1677224 u H“

where { is the coupling constant associated with the
massless scalar field and 2#=8," is the unit normal to the
conducting plate. The above expression is both con-
served and consistent with the symmetry of the system; it
also vanishes when the field is conformally coupled to the
background geometry ({= 1), as expected.

(0|T,*10) p = 3.7

B. Electromagnetic field

The photon Green’s function in uncluttered Min-

kowski space is
g ’y — i guv’
Gl (x,x)=—5 —E—
BV(x,x") 572 ox.x))

where g#"'=diag[1,1,1,l]y"' is the bivector of parallel
transport for Minkowski space. Using the method of im-
ages, we deduce that when a plane conductor is intro-
duced at z =0, the photon Green’s function becomes

) . g Vv g Vv
G, (x,x")=—1s{—E ¥ , (3.8)
® 8m? | o(x,x")  o(x,%')
where
_ v x” ,
I afa'gua
=g,” 25,8 (3.9)

is the reflection of g#"' in the z=0 plane. It is straight-
forward to verify that (3.8) satisfies the wave equation
Vv '’y — v'e4 ’
oG, " (x,x")= 8u 8%(x,x")
and Ward identity
G“V§#+G;V =0 S

with G given by (3.2); it also ensures that the electromag-
netic potential 4#(x) will obey Dirichlet boundary condi-
tions

*Fi2,=0,

on the plane z=0, where *F“VE%G‘WPAFPA is the dual of
the antisymmetric field-strength tensor FP*=2 4 (%],

The regular part of the photon Green’s function is thus
W#Vl(x’x'): __.g_l‘__
o(x,x")

, (3.10)
=2, Wx,x'),

where W(x,x') is the regular part (3.4) of the scalar
Green’s function. By virtue of (3.9) the first three
coefficients occurring in the covariant Taylor series of
g%y W#"' are just
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W, e gX)=(8,"—22,2 w0, ... (3.11)

" B(x) N

where the scalar coefficients w, ... g(x) are given explicit-
ly by (3.6). The splitting of these coefficients into their
symmetric and antisymmetric parts is trivial in this case
since w[’”]a,A.B clearly vanishes; we can thus proceed
directly to the next step in the procedure, which is to
check that our expressions for the coefficients obey the
various identities [4] which arise from the symmetry con-
straint, wave equation, and Ward identity for the photon
Green’s function. With this done we can finally utilize
the formulas of Ref. [4] to obtain the renormalized
stress-energy tensor for the system; we find that it van-
ishes as expected for a conformally invariant field in the
neighborhood of an infinite conducting plate.

C. Graviton field
In uncluttered Minkowski space the graviton Green’s
function is
i V#Vp‘f’

G (x,x')=——
0 ’ 872 ol(x,x')’

(3.12)
where
,},‘uvp'f' :g(,uplg v) T %gp,vgplrr .

If we now introduce the boundary at z =0, then by the
method of images the graviton Green’s function becomes

. p'r 7 P
- i Y Y
G, (x,x")=— | = = — , (3.13)
87T O'(X,X ) O'(X,_’)
where
7 Vp,TIE axp’ aXT 7/ \’aIBI
# ax axP "
:g(‘upgv'}T_%gyy'gpf+4?u2v2p2‘r
—4g,'P2,27 . (3.14)

One can verify that (3.13) satisfies the wave equation
' ry— 'T'Q4 '
E]Gw/pf(x,x )= 7/1“,” 8%(x,x")
and Ward identity
T 1 kd (p'7) =
G#vp K TGu#p ;v+GV g 0,

with G ° given by (3.8); it also ensures that the graviton
field #**(x) will satisfy Dirichlet boundary conditions

*RMP2 2, =0,
on the plane z =0, where

* B uvph — %eyvaﬁep)\yﬁR aByd ,

and R “P"® denotes the first-order variation of R 7%,
The regular part of the graviton Green’s function is

WP (x,x")=—

(3.15)

and so the first three Taylor coefficients of g# g7 W#v"'T'
may be expressed in terms of the scalar coefficients (3.6)
according to the formula

W, T gX)=(8,P8, 18,877 +48,2 227
—48,'%2,2 " w, ... 5(x) (3.16)

where we have used (3.14). We see immediately that

uvpt = 1 (pHvPT PTHY

M a B 2(l.lJ a‘..B-i-w (15)
=w”v’”a B>

HvpT =1 HvpT — PRV =

a a8 7(w a8 w a"'B) O,

and can easily check that the identities (2.22) are satisfied.
Substituting for the above coefficients in the formula of
Allen, Folacci, and Ottewill [3] for the standard renor-
malized stress-energy tensor, we find that

-3 3

OIT,"(x)|0) g =—7(8,"—2,27) . (3.17)
M R am2zt H ue3

In order to determine the VDW correction to this ex-

pectation value, we must once again consider the massive

photon Green’s function for the theory. In uncluttered

Minkowski space this Green’s function is [11]
va'(x,x’;Mz)
172

2
L H(IZ)[[_ZMZO.(X’XI)]I/Z} ,

olx,x")

_ g™
 16mi

from which we deduce that

GE (x,x")=— GE (x,x";M?)
oM? M=o
_ig" ,
=62 {Ino(x,x")+const} ,

where the constant includes the standard infrared diver-
gence. So, when a plane conductor is introduced to the
space-time at z =0, we obtain

i

G,V (x,x")= 5
167

I

{guvllna(x,x')—gu"llna(x,)?’)

+const><(guv'—§”vl)} , (3.18)

using the method of images once again. It is straightfor-
ward to check that this expression satisfies the identity

06,”=6,”,

where G #"' is the massless photon Green’s function (3.8).
The regular part of G,” is

U V—qoV
Wu =g’

872 v o

TG“ - V,u Ino
=—%(Suv—zfﬂfv)ln(a+222')+constX‘z‘u’z‘ N

using (3.18) and the fact that I'/#"'=%g#"' in a flat space-

time. Expanding in powers of the coordinate differences
Ax*, we have
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V= 2 AV
" const quz

— 18,7 22,2 {In2+21nz — 22
z

4 (Ax 2+ (Ay)?—(At)?—(Az)?
477

+0((Ax“)3)}

and obtain the coefficients

w "=const><2‘u’z‘"— (Suv—qué‘”)(ln2+21nz) ,

=

uw
bV =(8§V—2% ’W)f_"‘
W, " =(8,"=22,2") =~ ,
. 2. 2 2 2 1
wu"a3=—(SM”—Zz#z”)(gaB—Zzazﬂ)? .

Again, these coefficients are purely symmetric; one can
also check that they satisfy the identities (2.34). We are
now in a position to compute the VDW correction to the
standard stress-energy tensor (3.17); using the appropri-
ate formula in Ref. [3], we find

(OIT“”(x)IO)ﬁ=4—(8 v—2,2%),

4513

so that remarkably (OIT#"|0>XDW=O. We conclude
once again that the VDW modification does make a
difference to the physical output of a quantum field
theory.

IV. CONCLUSION

We have shown by means of explicit examples that the
one-loop theories of quantum general relativity about a
given Ricci flat (indeed flat) background obtained from
the standard and Vilkovisky-DeWitt effective actions
differ. While one may challenge the use of the word
“physical” to describe the predictions of the one-loop ap-
proximation to a nonrenormalizable theory, one may still
hope that in the absence of a full theory the one-loop
theory may provide some insight into quantum gravita-
tional effects. In this light the differences we have found
are significant. In any case, in a theory as complicated as
that of the Vilkovisky-DeWitt effective action, exact solu-
tions such as those we have given are an invaluable guide.
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